INCORPORATE TRAVEL MODE CHOICES IN THE REGIONAL STRATEGIC PLANNING MODEL (RSPM) TOOL

Final Report

PROJECT 788

INCORPORATE TRAVEL MODE CHOICES IN THE REGIONAL STRATEGIC PLANNING MODEL (RSPM) TOOL

Final Report

PROJECT 788

by

Liming Wang Portland state University Toulan School of Urban Studies and Planning

for

Oregon Department of Transportation Research Section 555 13th Street NE, Suite 1 Salem OR 97301

and

Federal Highway Administration 1200 New Jersey Avenue SE Washington, DC 20590

November 2018

Technical Report Documentation Page				
1. Report No.	2. Government Accession No.		3. Recipient's Catalog No.	
FHWA-OR-RD-19-06				
4. Title and Subtitle			5. Report Date	
Incorporate Travel Mode Choi	ces in the Regional St	rategic	-November 2018-	
Planning Model (RSPM) Tool			6. Performing Organization Code	
7. Author(s)			8. Performing Organization	
Liming Wang			Report No.	
9. Performing Organization Name	e and Address		10. Work Unit No. (TRAIS)	
Oregon Department of Transpo Research Section	ortation		11. Contract or Grant No.	
555 13 th Street NE, Suite 1				
Salem, OR 97301 12. Sponsoring Agency Name and	Address		13. Type of Report and Period	
Oregon Dept. of Transportatio			Covered	
Research Section	Federal Highway Adr		Final Report	
555 13 th Street NE, Suite 1	1200 New Jersey Ave		14. Sponsoring Agency Code	
Salem, OR 97301	Washington, DC 205	90		
15. Supplementary Notes			·	
16. Abstract The GreenSTEP family of tools in used in performance-based plannic current implementation has a suff the representation of non-auto mo- inputs. This project develops and VETravelDemandMM, for RSPM new module, we follow the best p particular, we address the uncertar validation and model selection (in nationwide dataset that combiness Database, and regional roadway ar relevant literature and data source sensitivity and prediction tests for models and Trip Frequency and L	ing at the state and reg icient model of house odes, and especially ho implements a multi-m I with the new Vision practices for model dev inty and validity in our addition to variable s 2009 National House and transit services inf es, the results of mode the Annual Average	tion level in C hold vehicle r ow their usage nodal travel de Eval framewo velopment rec r models by g selection). We hold Travel S formation. Thi l estimation, w Daily VMT n	Dregon and elsewhere. While the miles traveled (VMT), it lacks in e would respond to various policy emand module, ork. In the development of this commended in the literature. In going through rigorous cross- e use a unique high-resolution urvey, EPA's Smart Location is report presents a review of validation, model selection, and nodel, Personal Miles Traveled	
17. Key Words		18. Distr	ibution Statement	
Regional Strategical Planning Mo Mode Choices; Travel Behavior;		-	lable from NTIS, and online at <u>n.gov/ODOT/TD/TP_RES/</u>	
19. Security Classification	20. Security Class	sification	21. No. of Pages 22. Price	
(of this report)	(of this page)		151	
Unclassified	Unclassified			

Technical Report Form DOT F 1700.7 (8-72)

SI* (MODERN METRIC) CONVERSION FACTORS									
A	APPROXIMATE CONVERSIONS TO SI UNITS				APPROXIMATE CONVERSIONS FROM SI UNITS				ITS
Symbol	When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply By	To Find S	Symbol
		LENGTH					<u>LENGTH</u>	[
in ft yd	inches feet yards	25.4 0.305 0.914	millimeters meters meters	mm m m	mm m m	millimeters meters meters	0.039 3.28 1.09	inches feet yards	in ft yd
mi	miles	1.61 <u>AREA</u>	kilometers	km	km	kilometers	0.621 <u>AREA</u>	miles	mi
in ²	square inches	645.2	millimeters squared	mm ²	mm ²	millimeters squared	0.0016	square inches	in ²
ft ² yd ² ac	square feet square yards acres	0.093 0.836 0.405	meters squared meters squared hectares	m ² m ² ha	m ² m ² ha	meters squared meters squared hectares	10.764 1.196 2.47	square feet square yards acres	ft ² yd ² ac
mi ²	square miles	2.59	kilometers squared	km ²	km ²	kilometers squared	0.386	square miles	mi ²
		<u>VOLUME</u>					VOLUMI		
fl oz gal ft ³ yd ³ *NOTE	fluid ounces gallons cubic feet cubic yards : Volumes greater	29.57 3.785 0.028 0.765 than 1000 L	milliliters liters meters cubed meters cubed shall be shown in	$ml \\ L \\ m^3 \\ m^3 \\ m^3.$	ml L m ³ m ³	milliliters liters meters cubed meters cubed	0.034 0.264 35.315 1.308	fluid ounces gallons cubic feet cubic yards	fl oz gal ft ³ yd ³
	C	MASS					MASS		
oz lb	ounces pounds	28.35 0.454	grams kilograms	g kg	g kg	grams kilograms	0.035 2.205	ounces pounds	oz lb
Т	short tons (2000 lb)	0.907	megagrams	Mg	Mg	megagrams	1.102	short tons (2000 ll	o) T
	TEMP	ERATURE	(exact)			TEM	PERATURI	E (exact)	
°F	Fahrenheit	(F- 32)/1.8	Celsius	°C	°C	Celsius	1.8C+3 2	Fahrenheit	°F
*SI is th	ne symbol for the Ir	nternational	System of Measure	ement					

ACKNOWLEDGEMENTS

The author would like to acknowledge the valuable assistance in this project from members and friends of our Technical Advisory Committee (TAC), who helped us make key decisions at various points of the project and kept us focused on relevance and usability of project outcomes:

- Aaron Breakstone, Oregon Metro
- Matthew Barnes, ODOT Transit
- Brian Gregor, OAS LLC
- Brian Dunn, ODOT TPAU Manager
- Brian Hurley, ODOT Planning
- Jeremy Raw, FHWA
- Amanda Pietz, ODOT Planning Manager
- Josh Roll, LCOG Planner
- Tara Weidner, TPAU Analyst

In addition to his role as a member of the TAC, Brian Gregor's guidance and support throughout the project are indispensable to the project. Two graduate students at Portland State University, Huajie Yang and Jacqueline Nayame, made invaluable contributions to this project.

We would also appreciate the data and technical support in the process of the study by staff at FHWA and Oakridge National Laboratory, in particular, Jeremy Raw, Stacey Bricka, Jasmy Methipara, and Tim Reuscher. Last but not least, we are grateful to Tony Knudson, ODOT research section coordinator, for his help managing this project.

DISCLAIMER

This document is disseminated under the sponsorship of the Oregon Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Oregon and the United States Government assume no liability of its contents or use thereof.

The contents of this report reflect the view of the authors who are solely responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views of the Oregon Department of Transportation or the United States Department of Transportation. The State of Oregon and the United States Government do not endorse products of manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document.

This report does not constitute a standard, specification, or regulation.

TABLE OF CONTENTS

EXEC	CUTIVE SUMMARY	XIII
1.0	REVIEW OF LITERATURE AND DATA SOURCES	
1.1	Key Drivers	1
1.	1.1 Socio-demographics	1
1.	1.2 Built Environment Variables	
1.	1.3 Trip Context Variables	2
1.	1.4 Transportation Supply and Services	3
1.2	MODEL FORM OF MODE CHOICE MODELS	5
1.3	Elasticities in the literature	5
1.4	TRAVEL BUDGET	7
	4.1 Household Travel Time Budget	
1.	4.2 Household Monetary Budget	
1.5	DATA SOURCES	
-	5.1 National Household Travel Survey (NHTS)	
1.	5.2 Smart Location Database	
1.	5.3 Place Types	
1.	5.4 Additional Datasets	11
1.	5.5 Conclusion	13
2.0	DATA SOURCES AND DESCRIPTIVE ANALYSIS	
2.1	2009 NHTS	15
	1.1 Travel Mode Reclassification	
	1.1 Traver mode Reclassification 1.2 Unweighted trip frequencies by mode	
	1.3 Shares of trips by trip purpose and mode	
	1.4 Distribution of raw trip distance (miles)	
	1.5 Trip distance by mode	
2.	1.6 Total household travel distance (miles) and travel time (minutes) by mode used	
2.	1.7 Survey day VMT versus annual VMT	20
2.2	SMART LOCATION DATABASE (SLD)	
2.3	DESCRIPTIVE STATISTICS	
3.0	MODEL DESIGN AND ESTIMATION	
3.1	INTRODUCTION	
3.2	CURRENT GREENSTEP DVMT MODELS	
	2.1 Zero DVMT model	
	2.2 DVMT model	
	2.3 Combined model	
3.3	PROPOSED NEW MODELS	
	3.1 AADVMT Model (Power-transformed linear regression model)	26
	3.2 Person Miles Traveled (PMT) Models	
3.4	TRIP FREQUENCY-LENGTH (TFL) MODELS	
	4.1 Trip Frequency Models	
	4.2 Average Trip Length Models	
3.5	OTHER MODEL STRUCTURES CONSIDERED	
	5.1 Total Person Miles Traveled by Mode (TPMTM) Model	
3.6	COMPARISON OF MODEL APPROACHES FOR NON-AUTO MODES	
4.0	MODEL TESTING	

4.1	TASK DESCRIPTION	49
4.2	PHASE I	49
4.2.	l Annual Average Daily VMT (AADVMT)	
4.2.2	2 Bike PMT	
4.2.		
4.2.4		
4.3	PHASE II	
4.3.		
4.3.2		
4.3.		
4.3.4		
4.4	PHASE III	80
5.0 V	/ETRAVELDEMANDMM MODULE ACCEPTANCE REVIEW	81
5.1	CONTRIBUTION REVIEW CRITERIA	81
6.0 F	REFERENCES	85
APPEN	DIX A: ADDITIONAL FIGURES FOR MODEL TESTING	A-1
APPEN	DIX B: RESPONSES TO VETRAVELDEMANDMM CONTRIBUTIO	N
	W FEEDBACK	
	DIX C: VETRAVELDEMANDMM (VISIONEVAL TRAVEL DEMAN	
IMPLE	MENTATION	C-1
OVER	RVIEW	C-1
	er Representation of Multi-Modal Travel	
	ating Models with the Latest and Best Data Available	
	brous Benchmark and Selection of Different Model Structures	
	ing advantage of the R infrastructure and new packages	
	HODS AND MODEL STRUCTURE	
	ables Used in Models	
Data		C-2
	3	
	allation	
	lel Prediction	
Моа	lel Estimation	C-6
CODE	REPOSITORY AND AUTOMATED TESTS	C-7
ADDIT	IONAL DOUMENTS	C-7

LIST OF TABLES

Table 1.1 Summary of Key Drivers in the Literature	4
Table 1.2 Model Form of Mode Choice Models	
Table 1.3 Weighted Average Elasticities of VMT with Respect to Build-Environment Variables	6
Table 1.4 Weighted Average Elasticities of Walking with Respect to Build-Environment	
Variables	6
Table 1.5 Weighted Average Elasticities of Transit Use with Respect to Build-Environment	
Variables	6
Table 2.1 Crosswalk between NHTS Modes and RSPM Modes1	6

Table 2.2 Unweighted Trip Frequencies by Mode	16
Table 2.3 Shares of Trips by Trip Purpose and Mode	. 17
Table 2.4 Raw Trip Distance by Mode	. 18
Table 2.5 Trip Distance by Mode after Filter	. 19
Table 2.6 Total Household Travel Distance (miles) by Mode	. 19
Table 2.7 Total Household Travel Time (minutes) by Mode	. 19
Table 2.8 Variables, their Source, Description and Summary Statistics	
Table 3.1 Binomial Logit Models of Zero DVMT	
Table 3.2 Power-Transformed Regression Models of DVMT (DVMT > 0)	. 25
Table 3.3 Accuracy of Combined GreenStep DVMT Models	
Table 3.4 Power-Transformed AADVMT Model	
Table 3.5 Prediction Accuracy of AADVMT Model	. 28
Table 3.6 Transit PMT Hurdle Model	
Table 3.7 Prediction Accuracy of Transit PMT Model	. 30
Table 3.8 Walking PMT Hurdle Model	. 31
Table 3.9 Prediction Accuracy of Walking PMT Model	. 32
Table 3.10 Biking PMT Hurdle Model	. 33
Table 3.11 Prediction Accuracy of Biking PMT Model	. 34
Table 3.12 Transit Trip Frequency Hurdle Model	. 36
Table 3.13 Prediction Accuracy of Transit Trip Frequency Model	
Table 3.14 Walking Trip Frequency Hurdle Model	. 38
Table 3.15 Prediction Accuracy of Walking Trip Frequency Model	. 39
Table 3.16 Biking Trip Frequency Hurdle Model	40
Table 3.17 Prediction Accuracy of Biking Trip Frequency Model	
Table 3.18 Power-transformed Average Transit Trip Length Regression Model	. 42
Table 3.19 Prediction Accuracy of Average Transit Trip Length Model	. 42
Table 3.20 Power-transformed Average Walking Trip Length Regression Model	
Table 3.21 Prediction Accuracy of Walking Trip Length Model	
Table 3.22 Power-transformed Average Biking Trip Length Regression Model	
Table 3.23 Prediction Accuracy of Biking Trip Length Model	
Table 4.1 Elasticities of AADVMT with Respect to D1B	
Table 4.2 Elasticities of AADVMT with Respect to Household Income	. 53
Table 4.3 Elasticities of AADVMT with Respect to Freeway Lane Miles per Capita	
Table 4.4 Elasticities of AADVMT with Respect to Transit Revenue Miles per Capita	
Table 4.5 Elasticities of Bike PMT with Respect to D1B	
Table 4.6 Elasticities of Bike PMT with Respect to AADVMT	
Table 4.7 Elasticities of Bike PMT with Respect to Household Income	
Table 4.8 Elasticities of Bike PMT with Respect to Freeway Lane Miles per Capita	
Table 4.9 Elasticities of Bike PMT with Respect to Transit Revenue Miles per Capita	
Table 4.10 Elasticities of Transit PMT with Respect to D1B	. 67
Table 4.11 Elasticities of Transit PMT with Respect to AADVMT	. 68
Table 4.12 Elasticities of Transit PMT with Respect to Household Income	. 69
Table 4.13 Elasticities of Transit PMT with Respect to Freeway Lane Miles per Capita	
Table 4.14 Elasticities of Transit PMT with Respect to Transit Revenue Miles per Capita	
Table 4.15 Elasticities of Walk PMT with Respect to D1B	
Table 4.16 Elasticities of Walk PMT with Respect to Household Income	

Table 4.17 Elasticities of Walk PMT with Respect to Freeway Lane Miles per Capita	73
Table 4.18 Elasticities of Walk PMT with Respect to Transit Revenue Miles per Capita	73
Table 4.19 VETravelDemandMM Predictions	74
Table 4.20 RSPM Predictions	75
Table 4.21 OHAS Observations	75

LIST OF FIGURES

Figure 2.1 Shares of trips by trip purpose and mode	17
Figure 2.2 Histograms of raw trip distance (miles)	18
Figure 2.3 Boxplots of total household travel distance (miles) and travel time (minutes) by mod	de
Figure 2.4 Distribution of survey day VMT, annual average daily VMT, and their transformation	on
Figure 3.1 Histogram of power-transformed transit person miles per household for metro and non-metro residents	
Figure 3.2 Histogram of power-transformed walking person miles per household for metro and non-metro residents	1
Figure 3.3 Histogram of power-transformed biking person miles per household for metro and non-metro residents	
Figure 3.4 Flow chart of trip frequency-length model	
Figure 3.5 Histogram of transit trip frequencies per household for metro and non-metro resider	nts
Figure 3.6 Histogram of walking trip frequencies per household for metro and non-metro residents	37
Figure 3.7 Histogram of biking trip frequencies per household for metro and non-metro resider	
Figure 3.8 Histogram of power-transformed transit trip distance per household for metro and non-metro residents.	41
Figure 3.9 Histogram of average walking trip distance per household for metro and non-metro residents	
Figure 3.10 Histogram of average biking trip distance per household for metro and non-metro residents	44
Figure 3.11 Flow chart of total person miles by model	
Figure 4.1 Elasticities of AADVMT with respect to D1B: overall (a); segmented by density (b) income (c) and development type (d).	
Figure 4.2 Elasticities of AADVMT with respect to household income: overall (a), segmented density (b), income (c) and development type (d)	
Figure 4.3 Elasticities of AADVMT with respect to freeway lane miles per capita: overall (a), segmented by density (b), income (c) and development type (d)	
Figure 4.4 Elasticities of AADVMT with respect to transit revenue miles per capita: overall (a) segmented by density (b), income (c) and development type (d)),
Figure 4.5 Maps (a) and line chart (b) of VMT by Census Tract from RSPM, VETravelDeman and OHAS	d,

Figure 4.6 Maps (a) and line chart (b) of bike trips and PMT by Census Tract from RSPM,
VETravelDemand, and OHAS
Figure 4.7 Maps (a) and line chart (b) of walk trips and PMT by Census Tract from RSPM,
VETravelDemand, and OHAS
Figure 4.8 Maps (a) and line chart (b) of transit trip and PMT by Census Tract from RSPM,
VETravelDemand, and OHAS
Figure A.1 Elasticities of biking PMT with respect to D1B: overall (a), segmented by density (b),
income (c) and development type (d)
density (b), income (c) and development type (d)
Figure A.3 Elasticities of biking PMT with respect to household income: overall (a), segmented
by density (b), income (c) and development type (d)
Figure A.4 Elasticities of biking PMT with respect to Freeway lane miles per capita: overall (a),
segmented by density (b), income (c) and development type (d)
Figure A.5 Elasticities of biking PMT with respect to transit revenue miles per capita: overall (a),
segmented by density (b), income (c) and development type (d)
Figure A.5 Elasticities of transit PMT with respect to D1B: overall (a), segmented by density (b),
income (c) and development type (d)
Figure A.6 Elasticities of transit PMT with respect to AADVMT: overall (a), segmented by
density (b), income (c) and development type (d)
Figure A.7 Elasticities of transit PMT with respect to household income: overall (a), segmented
by density (b), income (c) and development type (d)
FigureA.8 Elasticities of transit PMT with respect to freeway lane mile per capita: overall (a),
segmented by density (b), income (c) and development type (d)
Figure A.9 Elasticities of transit PMT with respect to transit revenue miles per capita: overall (a),
segmented by density (b), income (c) and development type (d)
Figure A.10 Elasticities of walking PMT with respect to D1B: overall (a), segmented by density
(b), income (c) and development type (d)
Figure A.11 Elasticities of walking PMT with respect to AADVMT: overall (a), segmented by
density (b), income (c) and development type (d)
Figure A.12 Elasticities of walking PMT with respect to household income: overall (a),
segmented by density (b), income (c) and development type (d)
Figure A.13 Elasticities of walking PMT with respect to freeway lane miles per capita: overall
(a), segmented by density (b), income (c) and development type (d)
Figure A.14 Elasticities of walking PMT with respect to transit revenue miles per capita: overall
(a), segmented by density (b), income (c) and development type (d)

EXECUTIVE SUMMARY

Performance-based planning helps planners to understand the potential impacts of policy decisions, supporting cost-effective investments and policy choices. In addition, it can enable monitoring of progress and facilitate needed adjustments, help facilitate communication with the public, and assist with meeting federal regulations and the intent of MAP21. ODOT has successfully developed a process for and applied performance-based planning in statewide and regional scenario planning efforts. These efforts have led to significant interest by regions and locals to integrate the process and tool ODOT developed into other planning and decision-making efforts. Additionally, ODOT planning is using the tool to help quantify modal and topic plan visions and policies and better communicate the anticipated benefits in ways resonating well with stakeholders and elected officials. As popularity for using the tool and process grow, there is recognition that a deeper understanding is needed to determine how mode choices and mode share may be impacted by policy and investment decisions. This is particularly important when starting to apply the tool in a broader base of planning and decision-making processes to truly understand what may be the best decisions for the entire transportation system (multimodal and intermodal).

This project aims to understand how traveler's mode choices may change in response to different policy and investment decisions. Existing tools like GreenSTEP have a sufficient model of how household vehicle miles traveled (VMT) is likely to change in response to policies like pricing, but they do not currently have the ability to estimate what effect that might have on travel by other modes, and how household mobility/accessibility might be affected. This research places ODOTs performance-based planning process in a multimodal context and enables ODOT, regions, and locals to cost-effectively deliver a transportation system that best achieves respective goals.

This research assesses the impact of different policy decisions on long-term VMT and the use of alternative (non-auto) modes. Additionally, the findings from travel behavior models have been implemented into the proven RSPM model, which supports ODOT and metropolitan area planning. The use of the tool can help assess the performance of policies in a future world, where key attributes of that future differ significantly from today (pricing, travel options, demographics, etc.), and support strategic investments and policy decisions that simultaneously improve the system and realize community goals. Other ODOT models may also be upgraded in future efforts based on insights from this research and results will be used in general planning decision-making. This capability will provide the information needed for a much more robust performance-based planning tool and to help achieve long-term goals for Oregon, ODOT, and individual regions, counties, and cities.

This project researches the key drivers of multi-modal analysis, as they relate to individual households travel behavior, in particular from built-environment, socio-demographic characteristics, and transportation supply. The research utilizes a unique high resolution nationwide dataset that combines 2009 National Household Travel Survey, EPA's Smart

Location Database, and regional roadway and transit services information to model multi-modal travel behavior at individual household level. With a rigorous model selection process, the selected models balance theoretical foundation, performance, and prediction accuracy. The final models estimated using the unique data sources have been implemented as an open-source module, VETravelDemandMM, for the Regional Strategic Planning Model (RSPM) with the new VisionEval framework. The implementation has been tested for reasonableness of sensitivity and prediction accuracy against the comparable model in GreenSTEP and observed data from Oregon Household Activity Survey. The models and their implementation are producing reasonable results in those tests.

1.0 REVIEW OF LITERATURE AND DATA SOURCES

The purpose of this chapter is to review key drivers of mode choice behavior at household and individual level and to develop a mode choice module that incorporates some of most relevant factors. In the literature, those factors largely follow into four categories, namely, socio-demographic characteristics, built environment variables, trip context attributes, and measures of transportation supply and services. Table 1.1 summarizes the factors found in the literature reviewed.

1.1 KEY DRIVERS

1.1.1 Socio-demographics

There are a number of socio-demographic characteristics influencing an individual's choice of mode of transportation. According to Plaut (2005), there is a difference in preference or behavior in choosing non-motorized commute modes between renters and house owners, with a higher probability of renters switching from motorized to non-motorized. Income is a key variable in travel mode choice: Individuals and households with low income tend to have a high probability of walking and bicycling (Cervero and Duncan 2003; Plaut 2005). Research also suggests that minority population are more likely to walk, with African Americans showing a higher probability of walking (Cervero 1996; Cervero and Duncan 2003). The presence of one or more children is associated with reduced likelihood of using non-auto mode choice (Cervero and Kockelman 1997; Hamre and Buehler 2014), which may be because households with children may have more rigid time budgets related to childcare and school schedules that lead to more complex trip-chaining as well as other factors. Gender plays an important role in the choice of non-motorized modes, with men more likely to use non-motorized travel modes compared to women (Cervero and Kockelman 1997; Hamre and Buehler 2014; Plaut 2005; Schwanen and Mokhtarian 2005). Persons younger than 35 years are more likely to participate in active transportation compared to older age groups (Cervero and Kockelman 1997; Cervero and Duncan 2003; Hamre and Buehler 2014; Plaut 2005; Schwanen and Mokhtarian 2005), and the likelihood of using non-motorized transportation decreases with increasing age (Whitfield, Paul, and Wendel 2015). Access to car reduces the probability of an individual choosing a non-auto mode and increases that of driving (Cervero and Kockelman 1997; Hamre and Buehler 2014; Schwanen and Mokhtarian 2005).

1.1.2 Built Environment Variables

Cervero and Kockelman (1997) summarize the built environment factors influencing travel behavior as 3Ds: density, design, and diversity. Later research gradually expands the factors into 5Ds: density, design, diversity, destination accessibility, and distance to transit (Ewing and Cervero 2001; Ewing and Cervero 2010).

Population density has an influence on an individual's mode choice behavior: People who live in high-density areas are more likely to choose non-motorized modes than people who live in low-density areas. The design of built environments in a neighborhood has an influence on whether an individual chooses non-auto modes. The type of intersection influences on whether individuals choose to use auto or non-auto mode of transportation: neighborhoods with a high share of four-way intersections and limited on-street parking tend to average less single-occupancy-vehicle travel for non-work trips (Cervero and Kockelman 1997; Cervero and Duncan 2003; Schwanen and Mokhtarian 2005). Research by Cervero and Duncan (2003) reveals that areas with large city blocks and neighborhoods with large shares of 3-way intersections are not pedestrian/bicycle friendly environments. On the other hand, areas with 4-way intersections as well as intersections with 5 or more converging streets are shown to be pedestrian/bicycle friendly. Neighborhoods with grid pattern streets and few barriers between origin and destination pairs encourage commuting through walking and cycling.

Mixed-use land-uses encourages non-auto commuting, having retail activities and consumer services within 300 feet of one's residence have been found to encourage commuting by non-auto modes (Cervero 1996; Cervero and Kockelman 1997). Automobile usage is lower in higher density, more mixed-use and pedestrian-friendly neighborhoods with a higher share of public transit and slow modes of transportation. The presence of mixed uses of land improves street connectivity, and higher densities appear to support non-motorized modes of travel.

Research by Schwanen and Mokhtarian (2005) compares how commuting mode choice differs by a residential neighborhood and by neighborhood type dissonance (a mismatch between a commuter's current neighborhood and her preferences regarding physical attributes of the residential neighborhood). The level of residential type mismatch increases the probability of commuting by automobile. They found that mismatched urban residents were more likely to use automobile than mismatched suburban residents due to limited transit service. Mode choice differs according to a commuter's residential neighborhood. Residential self-selection process has been found to play a significant role in explaining travel pattern behavior of individuals. Residents in the suburb have a higher probability of automobile use, while residents in urban areas show a higher probability of non-auto modes.

1.1.3 Trip Context Variables

Trip context variables – variables directly related to the attributes of a trip, such as trip purpose, trip distance, time of the trip, safety and security, influence traveler's mode choice decision. Trip purposes that do not require punctuality, such as travel to social and recreation/entertainment activities, have a higher probability of choosing walking. For different trip purposes, built environment factors have different influences on an individual's mode choice decision. Distance is an important factor in mode choice behavior. An increase in travel distance means an increase in travel time and effort needed for traveling, which leads to a reduction in commuters using non-auto modes (walking and cycling). The resistance to travel probably may increase disproportionately with distance due to the physical effort required (Heinen, Wee, and Maat 2010). Depending on the distance that a commuter has to travel, he/she will probably have to combine two different modes of travel or make transfers for non-driving modes. The extra effort required to make transfers has been considered to be a significant contributor to transit users' inconvenience. Besides distance, other barriers to walking and cycling include steep slopes,

nightfall and less secure environments (Heinen, Wee, and Maat 2010). Singleton and Wang (2014) document the effects of time of travel and safety and security concerns on the decision between driving and non-driving modes, especially for non-motorized modes.

1.1.4 Transportation Supply and Services

The provision and level of service of a transportation mode have large impacts on the decision of choosing the mode. There is some overlap between built environment variables, trip context variables and variables measuring transportation supply and services, for example, distance to transit stops (a built environment variable) and transit services (a transportation supply and services variable). But in general, the former describes the built environment of the origin and/or destination or their relation to the transportation supply or services (e.g., distance to transit stops in this case), while the latter measures the presence and quality of transportation supply and services at the origin and destination and/or those connecting the two (e.g., the travel time by transit, the frequency or headway of transit system connecting origin and destination).

Research has found that availability and prices of parking (if not free) at the destination are influential factors in choices between driving and non-driving modes (Hamre and Buehler 2014; Hess 2001). Availability of bike parking and other facilities influences commuter's choice of biking (Hamre and Buehler 2014).

Variable	References
Social-demographics	
Age	Cervero and Kockelman (1997); Cervero and Duncan (2003); Hamre and Buehler (2014); Plaut (2005); Schwanen and Mokhtarian (2005); Whitfield, Paul, and Wendel (2015)
Gender	Cervero and Kockelman (1997); Plaut (2005); Schwanen and Mokhtarian (2005); Hamre and Buehler (2014); Whitfield, Paul, and Wendel (2015)
Income	Cervero and Kockelman (1997); Cervero and Duncan (2003); Plaut (2005); Schwanen and Mokhtarian (2005); Hamre and Buehler (2014); Whitfield, Paul, and Wendel (2015)
Race and Ethnicity	Cervero and Kockelman (1997); Schwanen and Mokhtarian (2005); Hamre and Buehler (2014); Whitfield, Paul, and Wendel (2015)
Household size	Cervero and Kockelman (1997); Schwanen and Mokhtarian (2005)
Presence of Children	Cervero and Kockelman (1997); Hamre and Buehler (2014)
Level of Education	Cervero and Kockelman (1997); Hamre and Buehler (2014)
Possession of driver's license	Cervero and Kockelman (1997); Schwanen and Mokhtarian (2005)
Vehicle ownership	Cervero and Kockelman (1997); Hamre and Buehler (2014)
Housing tenure	Cervero and Kockelman (1997); Plaut (2005)
Built Environment	
Population and employment density	Cervero and Kockelman (1997); Hamre and Buehler (2014)
Land use mix (diversity)	Cervero (1996); Cervero and Kockelman (1997); Gehrke and Clifton (2015)
Design	Cervero and Kockelman (1997)
Distance to transit stops	Cervero and Kockelman (1997)
Distance to retail activities	Cervero (1996); Cervero and Duncan (2003);
Terrain or Slope	Rodriguez and Joo (2004)
Trip Context	
Costs of travel	Cervero (1996);
Trip Purpose	Cervero and Duncan (2003)
Travel Time	Cervero (1996); Hess (2001)
Trip distance	Cervero and Kockelman (1997); Cervero (1996); Hamre and Buehler (2014)
Time of travel	Singleton and Wang (2014)
Safety and security	Singleton and Wang (2014)
Transportation Supply	
Provision of pedestrian,	Cervero and Duncan (2003); Cervero and Kockelman (1997); Hamre
cycling and transit	and Buehler (2014)
infrastructure	
Level of service	Cervero and Kockelman (1997); Cervero (1996); Hamre and Buehler
	(2014)

Table 1.1 Summary of Key Drivers in the Literature

1.2 MODEL FORM OF MODE CHOICE MODELS

Table 1.2 summarizes the common structures of mode choice models. Discrete choice models of various specifications (Multinomial Logit Model & Nested Logit Model), binomial model, and log-odds model are the most common model forms of mode choice models in the literature.

Model Form	Dependent Variable	References
Discrete Choice	Travel modes	Cervero and Duncan (2003); Rodriguez
Model		and Joo (2004); Schwanen and
(Multinomial		Mokhtarian (2005); Singleton and Wang
logit)		(2014); Srinivasan and Ferreira (2002);
		Train and McFadden (1978); Ewing,
		Schroeer, and Greene (2004); Moeckel
		(2016)
Discrete Choice	Travel modes with	Hensher and Ton (2000)
Model (Nested	nested structure	
logit)		
Binomial model (a	Choice of one mode	Cervero (1996); Cervero and
special case of	versus other modes	Kockelman (1997)
MNL)	(e.g. driving alone or	
	not; transit or not)	
Log-odds	Probability of	Hess (2001)
-	choosing mode versus	
	other modes	
Artificial neural	Travel modes	Hensher and Ton (2000)
networks (ANN)		

Table 1.2 Model Form of Mode Choice Models

Besides travel mode choices, travel by mode aggregated by a person, household, or geography, such as vehicle miles traveled, person mile traveled by modes and number of trips by modes are commonly used as dependent variables in the literature.

1.3 ELASTICITIES IN THE LITERATURE

Ewing and Cervero (2001; 2010) conducted two of the most comprehensive review of literature in the relationship between built environment and travel outcomes, including VMT, walk trips, walking/biking person miles traveled. Table 1.3, Table 1.4, and Table 1.5 summarize the weighted average elasticities they calculated in their meta-analysis (Ewing and Cervero 2010).

		Total number of studies	Number of studies with controls for self-selection	Weighted average elasticity of VMT(e)
Density	Household/population density	9	1	-0.04
	Job density	6	1	0.00
Diversity	Land use mix (entropy index)	10	0	-0.09
	Jobs-housing balance	4	0	-0.02
Design	Intersection/street density	6	0	-0.12
	% 4-way intersections	3	1	-0.12
Destination	Job accessibility by auto	5	0	-0.20
ccessibility	Job accessibility by transit	3	0	-0.05
-	Distance to downtown	3	1	-0.22
Distance to transit	Distance to nearest transit stop	6	1	-0.05

Table 1.1 Weighted Average Elasticities of VMT with Respect to Build-Environment Variables

Table 1.2 Weighted Average Elasticities of Walking with Respect to Build-Environment Variables

		Total number of studies	Number of studies with controls for self-selection	Weighted average elasticity of walking (e)
Density	Household/population density	10	0	0.07
	Job density	6	0	0.04
	Commercial floor area ratio	3	0	0.07
Diversity	Land use mix (entropy index)	8	1	0.15
	Jobs-housing balance	4	0	0.19
	Distance to a store	5	3	0.25
Design	Intersection/street density	7	2	0.39
-	% 4-way intersections	5	1	-0.06
Destination accessibility	Job within one mile	3	0	0.15
Distance to transit	Distance to nearest transit stop	3	2	0.15

Table 1.3 Weighted Average Elasticities of Transit Use with Respect to Build-Environment Variables

		Total number of studies	Number of studies with controls for self-selection	Weighted average elasticity of transit use
Density	Household/population density	10	0	0.07
	Job density	6	0	0.01
Diversity	Land use mix (entropy index)	6	0	0.12
Design	Intersection/street density	4	0	0.23
C	% 4-way intersections	5	2	0.29
Distance to transit	Distance to nearest transit stop	3	1	0.29
Distance to transit	'	3	1	

1.4 TRAVEL BUDGET

1.4.1 Household Travel Time Budget

Trip makers have specific daily travel time budgets, which can be related to their location of residence and modes of travel used during the day (Zahavi 1974). Zahavi in his research examined the stability of travel time budget. Zahavi and Ryan (1980) argued that people spend a fixed percentage of their income on travel. They showed that an average car-owning household spent about 10% to 11 % of their income and carless households spent 3 to 5% of their income on travel. Zahavi (1974) in his study found that time and money budgets allocated to transportation differ within urban regions as a function of age, income and residential location, with location showing to be a better indicator of travel behavior than income. According to Gunn (1981), time spent traveling increases with increase in income. Travel time budget is strongly related to individuals and household characteristics (e.g income level, gender, employment status, and car ownership), attributes of activities at the destination (e.g activity duration), and characteristics of residential areas (e.g density, spatial structure and level of service) (Gunn 1981; Mokhtarian and Chen 2004). Travel time expenditure differs according to area types, with an increase in travel times in areas with higher densities. However, the effects of area characteristics (e.g., density) on travel time expenditure are not as strong as the effects of individual and household characteristics (Gunn 1981; Mokhtarian and Chen 2004). Trip linking affects the number of trips that a traveler makes and therefore, in turn, affects her/his choice of using motorized or non-motorized mode of transport. There is a significant difference in a tripmaker's travel time budget as it depends on the combination of transport modes used by the traveler.

1.4.2 Household Monetary Budget

There is a relationship between the travel money expenditure and area density of a place. The amount of money spent on travel is lower in large urban areas than in small urban areas (Mokhtarian and Chen 2004). According to Golob (1990), if travel decisions are made in a way that is consistent with a household utility-maximizing process subject to constraints associated with time or money budgets, then households will react to changing external conditions in a predictable way. Household travel expenditure is directly related to household income, as a percentage of either income or total expenditure. It is the lowest in the low-income groups and the highest in the middle-income groups (Gunn 1981). Goodwin (1981) also suggests that travel monetary expenditure varies among individuals and groups. However, household expenditure on travel expressed as a proportion of income is almost the same for car-owning households.

According to Goodwin (1981), when time and money are added together and expressed as a single budget, the resulting generalized cost is relatively stable from different locations and over short periods of time, which would suggest possible trade-offs between travel time expenditure and travel money. Empirical studies have concluded that travel time and money expenditure is unlikely to remain constant over a wide range of circumstances (Goodwin 1981; Mokhtarian and Chen 2004; Tanner 1981).

1.5 DATA SOURCES

Since the choice of independent and dependent variables and specifications for mode choice models also depends on what information is available for model estimation and prediction, we explore the datasets available for model estimation, with a special focus on those with nation-wide coverage.

1.5.1 National Household Travel Survey (NHTS)

NHTS is a microdata dataset with detailed social-demographic information of households and persons surveyed, and their vehicle and daily (travel day) trip level data (USDOT, Federal Highway Administration 2009). The 2009 NHTS dataset contains data for 150,147 completed households nationwide. The mode choice (dependent variable) and socio-demographic variables, and trip context variables are sufficient for estimating mode choice models. However, the built environment variables and measures of transportation supply and services in the dataset fall short of information needed for a meaningful mode choice model specification. Chapter 2 discusses the built environment variables and measures of transportation supply and services variable included in NHTS. They are either too limited: for example, urban/rural indicators, population density (per squared miles), housing unit density, workers density, and percent of renter-occupied unit variables available at the block group level; or too coarse: for example, another set of density variables at the census tract level and heavy rail status at the MSA level. Most of the built environment and transportation supply and service variables identified in the literature are not available.

Unlike the regional household travel survey data, the geo-coordination or higher resolution geography identifier is not available in the NHTS data, which makes it impossible to join with a built environment database such as the Smart Location Database to get the information missing from the NHTS data.

1.5.2 Smart Location Database

The Smart Location Database is a nationwide geographic data resource provided by EPA for measuring location efficiency (Ramsey and Bell, 2014). It includes more than 90 attributes summarizing characteristics such as housing density, diversity of land use, neighborhood design, destination accessibility, transit service, employment, and demographics. See Ramsey and Bell (2014) for a complete list of variables available. Most attributes are available for every census block group in the United States for 2010. Those variables are selected for their impacts to travel behavior, especially the 5D variables identified in the literature (Ewing and Cervero 2001; Ewing and Cervero 2010) as well as transportation supply and services, particularly the transit service. However, the Smart Location Database does not provide information on mode shares. Thus it alone will not be sufficient for estimating mode choice models. Provision of non-motorized transportation infrastructure (for example, bike lanes and cycle tracks) is not available in the Smart Location Database.

1.5.3 Place Types

Place types are land use categories that are useful for describing development patterns and their relationship to human behavior (e.g. travel behavior) and well-being (e.g. health) (Gregor, 2016).

In the RSPM mode shift project, we use place types as a means to simplify the work for RSPM users when they create scenarios.

This project adopts the work by Brian Gregor and others and establishes categories over the following 3 dimensions:

- (flag) Location Type: categorizes the general urban context of the place (e.g. a large urbanized area, a small city, etc.).
 - Urbanized: A contiguous area of urban development which has a large population. Criteria: population within 5 miles >= 30,000 and population within 1 Mile >= 1,000;
 - Urban near Urbanized: Urban development (e.g. cities, towns, communities) located in the fringe of an urbanized area but are not part of the contiguous urbanized area. Criteria: Population within 15 Miles >= 60,000 and Population within 2 Mile >= 2,000;
 - Rural Near Urbanized: Urban development not located on the fringe of an urbanized area. Criteria: Population within 15 Miles >= 60,000 and Population within 2 Mile < 2,000
 - 4. Urban Not Near Urbanized: Urban development not located on the fringe of an urbanized area. Criteria: Population within 15 Miles <= 60,000 and Population within 2 Mile >= 2,000
 - 5. Rural Not Near Urbanized: Rural development not located on the fringe of an urbanized area. Criteria: Population within 15 Miles <= 60,000 and Population within 2 Mile <= 2,000
- Area Type: categorizes the spatial relationship of urban places to the urban center (e.g. urban center, suburbs, etc.).
 - 1. Regional Center: Places within urbanized areas that have high levels of population accessibility to jobs and developed at densities and having transportation networks that would allow a substantial portion of the population to get to jobs or other activities by non-auto transport modes. Criteria: if ACCESS is high, and DENSITY is medium or high, and DESIGN is high;
 - 2. Close In Community: Places within urbanized areas and other urban areas that are located near regional centers or are places with relatively high levels of population accessibility to jobs within urban areas that are not urbanized. Criteria: if ACCESS is high, and DENSITY is medium or high, but DESIGN is not high, or if ACCESS is high and DENSITY is low, or if ACCESS is medium and DENSITY is medium or high;

- 3. Suburb/Town: Places in urbanized areas, smaller urban areas, and towns that have lower population accessibility to jobs. Criteria: if ACCESS is high but DENSITY is very low, or if ACCESS is very low or low and DENSITY is not very low;
- 4. Low Density/Rural: Low density places with low job accessibility located primarily in rural areas, but may occasionally be found in large vacant tracts in urbanized areas. Criteria: in all other cases.
- Development Type: categorizes the general character of land uses occupying the place (e.g. residential, employment, mixed, etc.)
 - 1. Low Density/Rural: These are places that have very low-density development in urban or rural areas. In urban areas, these can include large tracts of parkland or greenfields. Criteria: if DENSITY is very low;
 - 2. Employment: These are places where there are more jobs than households and do not qualify as mixed-use as described below. Criteria: if not Mixed and Diversity1 is greater than 1 (i.e. more jobs than households);
 - 3. Residential: These are places where there are more households than jobs and do not qualify as mixed-use as described below. Criteria: if not Mixed and Diversity1 is less than 1 (i.e. more households than jobs);
 - 4. Mixed: These are places where there is a mixture of jobs and households that meet a specified ratio of the two uses. Criteria: if DIVERSITY is high and DENSITY is medium or high and DESIGN is medium or high;
 - 5. Mixed High: These are places that are mixed and have relatively high densities. Criteria: if Mixed and DENSITY is high and DESIGN is high;
 - 6. Transit-Oriented Development (TOD): These are places that are mixed, have relatively high densities and have relatively high levels of public transit service. Criteria: if Mixed High and TRANSIT is high, or if Employment and TRANSIT are high and DESIGN is high.

By default, the accessibility measure ACCESS = $(2 * \text{EMPTOT}_2 * \text{TOTPOP10}_5) / 10000 * (\text{EMPTOT}_2 + \text{TOTPOP10}_5)$, where EMPTOT_2 is employment within 2-mile radius, and TOTPOP10_5 is total 2010 population within 5-mile radius. The break points for very low, low, medium, and high are 0.1, 0.5 and 2, respectively.

The Density level uses D1D variable in SLD - gross activity density (employment + HUs) on unprotected land (per acre) - with break points of 0.1, 1, and 5.

The Design measure is based on two variables from the SLD: D3amm variable (network density in terms of multimodal links per square mile) and D3apo variable (network density in terms of facility miles of pedestrian-oriented links per square mile). The default break points for D3amm are 1.3, 2.5, and 3.3, while those for D3apo are 12.5, 15.6, and 20. The final value of the Design

measure is the maximum value of the two. For example, if the D3amm value is low and D3apo value is medium, the final value of the design measure would be medium.

Diversity Level is a measure of the mixing of jobs and households in the block group. It is based on measures in the SLD: D2A_JPHH (ratio of jobs to households in the block group and the ratio of retail and service jobs to the number of households (E5_RET10 + E5_SVC10)/HH.

Transit Level is a measure of the level of transit service derived from the SLD D4c (aggregate frequency of transit service within 0.25 miles of block group boundary per hour during evening peak period). The threshold values for the 4 levels are 1, 20, and 150.

Based on discussion with the TAC, in particular, Brian and Tara, we primarily use the place types as an intermediate step to facilitate scenario creation, but not as independent variables directly included in the model specification.

1.5.4 Additional Datasets

There are two areas where extra data would be beneficial. One area we wish to have a better handle on is the day-to-day variation in mode choice and total demand (for example, the amount of driving measured in vehicle miles traveled) so that we can predict long-term behavior from a daily model. However, NHTS, as well as the three travel surveys above only capture the travel information for one single day. In GreenSTEP, Brian Gregor assumed the stochasticity in household daily VMT model (a linear regression model with transformed VMT as the dependent variable) represents the day-to-day variation in VMT. Such an approximation of weekly VMT from daily information may be imperfect. Verification of the relationship between daily and longer-term VMT and an explicit model of weekly (or annual) VMT may be necessary. A few potential data sets would be helpful in looking into the relationship. In particular, the 2004 -2006 Traffic Choices Study by the Puget Sound Regional Council. For a pilot project on congestion-based tolling sponsored by Federal Highway Administration, the study placed GPS data loggers into the vehicles of about 275 households in the Seattle metropolitan area. The project recorded roughly 18 months of trip data (from November 2004 to April 2006) and included more than 400 vehicles. Such long-term data would be helpful to look into the relationship between daily and long-term VMT.

Another potential area we are looking into for improvement is the modeling of price elasticities of travel demand. Brian tested three different methods of capturing price elasticities: income effect, price coefficient, and household budget model. There are a number of challenges to get a realistic price elasticities, including

- 1. The lack of disaggregated panel data that can be used to study how household travel decisions change over time in response to changes in fuel prices;
- 2. The relatively low historical price of fuel;
- 3. The prospect for future fuel prices that may be several times greater than present prices;
- 4. A lack of research consensus on the magnitude of the effects; and,

5. The difficulty of sorting out the short- and long-range effects.

Because of these challenges, the first two methods do not have sufficient sensitivity and Brian adopted the household budget model. All the challenges Brian identified above remain for the current project. Using the household budget model as the baseline model, we hope to draw from literature around the world (for example, Graham and Glaister, 2002) on the magnitude of the price elasticities and explore alternative methods of incorporating the elasticities into the new model of travel demand. Tolling studies such as the Puget Sound Traffic Choices Study provide some useful information on the price elasticities of travel demand (even though not from fuel price change).

These are a few additional datasets the project team reviewed but did not use for this project.

1.5.4.1 Regional Household Travel Surveys

Like NHTS data, regional household travel data, such as the Oregon Household Activity Survey (OHAS), is a microdata dataset with detailed social-demographic information of households and persons surveyed, and their vehicle and daily (travel day) trip level data. The advantage of regional travel survey data is that the geo-coordination or higher resolution geography identifier may be obtained from the survey agency, and such information can be used to join it with the built environment and transportation supply and service information. However, the process of retrieving and processing each dataset can be very tedious as each survey dataset may be in different format and coding, and it is unknown whether the data available will be representative. For example, models estimated from the OHAS data may not be easily transferable to other states/regions – a goal of the RSMP tool, as Oregon, is likely too unique in many ways. Such an effort may only be worthwhile if data for one or multiple diverse regions can be obtained and processed.

1.5.4.2 Consumer Expenditure Survey

The Consumer Expenditure Survey (CE) provides a continuous and comprehensive flow of data on the buying habits of American consumers (US Bureau of Labor Statistics 2014). These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index. Bureau of Labor Statistics (BLS) provides two public used microdata: an interview survey containing data on monthly expenditures for housing, apparel and services, transportation, healthcare, entertainment, personal care, reading, education, food, tobacco, cash contributions, and personal insurance and pensions, as well as income and characteristics data, and a diary survey with data on weekly expenditures of frequently purchased items such as food at home, food away from home, alcoholic beverages, smoking supplies, personal care products and services, and nonprescription drugs, as well as income and characteristics data. Both surveys include detailed information on social-demographics including household income and housing characteristics that may be useful for estimating mode choice models. The interview survey includes vehicle ownership information, detailed out-of-pocket costs of transportation, such as vehicle operating expenses including vehicle repairing and maintenance, gasoline, and costs for using mass transit for various purposes (work,

school, and other places). It also asks the surveyors about long trips (overnight trips or those longer than 75 miles), modes used and related costs.

The advantage of the CE data is that the information therein makes it easy to investigate monetary travel costs of overall household expenses (budget) and/or household income. There may be a possibility to infer mode shares from vehicle ownership, operating expenses, and costs of using mass transit, etc. However, since the CE dataset was not collected for such purpose, non-motorized travel is not reported; trip context, built environment, and transportation supply and service variables are not available.

The CDC Active Transportation Surveillance (Whitfield, Paul, and Wendel 2015) reviews national datasets that can be used for surveillance of active transportation usage in the US. The authors review not only datasets commonly used in travel behavior research such as American Community Survey and NHTS, but also datasets not so commonly used, such as the American Time Use Survey, National Health and Nutrition Examination Survey, and National Health Interview Survey. Not all of them are useful for the purpose of estimating mode choice models, as the health-focused surveys only partial mode information (active transportation mostly).

1.5.5 Conclusion

Mode choice behavior is a core element of travel behavior and has significant implications in transportation planning and investment decision. Increasing shares of public transit and non-motorized modes of travel has been promoted as a potential policy lever to reach more sustainable urban development and as a policy goal itself. This project aims to enhance the mode choice module for Regional Strategic Planning Model that links policy inputs to more refined mode choice outcomes. Task 1 reviews the literature, explores available datasets and sets the stage for later tasks. The four categories of variables – socio-demographics, built environment, trip context, and transportation supply, and services – identified in the literature are important to model household or individual level mode choice decision. On the data end, there is a challenge as nationwide data currently available are unable to provide a complete set of variables:

- Socio-demographic variables are influential and abundant in data with nationwide coverage (NHTS);
- Nationwide built environment and transportation supply/service (particularly transit) variables are available (Smart Location Database), but difficult to mesh with travel behavior (mode choices) and socio-demographic variable;
- Regional data can be meshed to get all necessary information but may post a challenge of transferability and requires extra data processing.

The ideal data sources are the NHTS dataset joined with the Smart Location Database. If such dataset cannot be accessed early in the project, an alternative would be a consolidation of regional travel survey data from diverse regions for similar years (ideally circa 2010), which can be then joined with the Smart Location Database or other data sources for built environment information. Consumer Expenditure Survey data would be the third option.

2.0 DATA SOURCES AND DESCRIPTIVE ANALYSIS

The primary data sources we identified and used for later tasks are the 2009 National Household Travel Survey (NHTS) and 2010 EPA Smart Location Database (SLD). Additional data sources include Texas Transportation Institute's (TTI) Urban Mobility Report dataset and National Transit Database. We retrieved the 2009 NHTS data with confidential block group level residence location (and Census Tract and ZIP code of workplace location), which is the ideal data set we eyed for modeling mode choice. With the confidential residential block group location, we joined the 2009 NHTS with the 2010 SLD to get a combined dataset of travel information and built environment/urban form variables of households' residential block group.

2.1 2009 NHTS

In addition to surveyed households' socio-demographic characteristics, the 2009 NHTS (USDOT, Federal Highway Administration 2009) collected daily trips taken in a 24-hour period and includes:

- purpose of the trip (work, shopping, etc.);
- means of transportation used (car, bus, subway, walk, etc.);
- how long the trip took, i.e., travel time;
- time of day when the trip took place;
- day of the week when the trip took place; and
- if a private vehicle trip:
 - number of people in the vehicle, i.e., vehicle occupancy;
 - o driver characteristics (age, sex, worker status, education level, etc.); and
 - vehicle attributes (make, model, model year, the amount of miles driven in a year).

The 2009 NHTS included 150,145 households, 308,901 household members and 1,167,321 trips.

2.1.1 Travel Mode Reclassification

According to the <u>codebook for G34 TRPTRANS</u>, we collapse the original NHTS modes into 5 modes in our model development: Auto (Driving), transit, biking, walking, and other modes (not modeled). Table 2.1 shows the crosswalk between these two classifications.

NHTS Mode		RSPM Mode Name		
Code	NHTS Mode Name			
1	Car	Auto		
2	Van	Auto		
3	SUV	Auto		
4	pickup truck	Auto		
5	other truck	Auto		
6	recreational vehicle	Auto		
7	motorcycle	Auto		
9	transit bus	Transit		
10	commuter bus	Transit		
11	school bus	Transit		
12	charter bus	Transit		
13	city to city bus	Transit		
14	Shuttle bus	Transit		
15	Amtrak	Transit		
16	Commuter train	Transit		
17	Subway	Transit		
18	Streetcar/trolley	Transit		
22	Bicycle	Bike		
23	Walk	Walk		
8	Light electric veh (golf cart)	Other		
19	taxi cab	Other		
20	Ferry	Other		
21	airplanes	Other		
24	Special transit-people w/disabilities	Other		

Table 2.1 Crosswalk between NHTS Modes and RSPM Modes

2.1.2 Unweighted trip frequencies by mode

Table 2.2 Unweighted Trip Frequencies by Mode

mode	n	%
Auto	955345	88.5
Walk	93182	8.63
Transit	22483	2.08
Bike	8753	0.811

2.1.3 Shares of trips by trip purpose and mode

Table 2.3 Shares of Trips by Trip Purpose and Mode							
TRIPPURP	mode	n	%				
HBO	Auto	195189	84.7				
HBO	Bike	1023	0.444				
HBO	Transit	13157	5.71				
HBO	Walk	21161	9.18				
HBSHOP	Auto	243832	95.2				
HBSHOP	Bike	1097	0.429				
HBSHOP	Transit	1251	0.489				
HBSHOP	Walk	9814	3.83				
HBSOCREC	Auto	110582	71.5				
HBSOCREC	Bike	4832	3.12				
HBSOCREC	Transit	812	0.525				
HBSOCREC	Walk	38473	24.9				
HBW	Auto	102319	95.9				
HBW	Bike	684	0.641				
HBW	Transit	1671	1.57				
HBW	Walk	2009	1.88				
NHB	Auto	303423	91.4				
NHB	Bike	1117	0.337				
NHB	Transit	5592	1.69				
NHB	Walk	21725	6.55				

Table 2.3 Shares of Trips by Trip Purpose and Mode

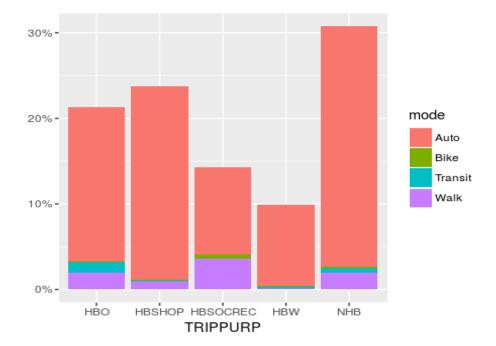


Figure 2.1 Shares of trips by trip purpose and mode

2.1.4 Distribution of raw trip distance (miles)

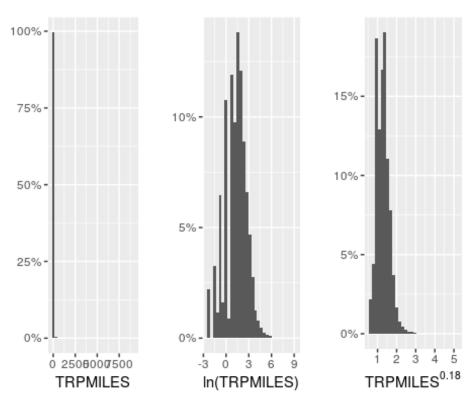


Figure 2.2 Histograms of raw trip distance (miles)

2.1.5 Trip distance by mode

mode	n	5%	25%	50%	75%	95%	99%	max	mean	sd
Auto	964961	0.556	2	4	10	32	91	5600	9.82	26.9
Bike	8842	0.111	0.556	1	3	10	22.6	320	2.58	6.25
Other	9940	0.222	1	4	12	238	1500	5000	61.3	297
Transit	22709	0.556	2	5	10	30	95	2005	9.85	31.3
Walk	93809	0.111	0.222	0.5	0.889	2	4	46	0.687	0.859

Table 2.4 Raw Trip Distance by Mode

Since raw trip distance is very skewed (Table 2.4), Table 2.5 show trip distance distribution after trips made by vehicles w/ commercial license plates and with distance above the 99 percentile are filtered. Results below are after applying this filter.

mode	n	5%	25%	50%	75%	95%	99%	max	mean	sd
Auto	955345	0.556	2	4	10	29	57	91	8.03	10.8
Bike	8753	0.111	0.556	1	2.89	8	17	22	2.21	3.11
Transit	22483	0.556	2	4	9	26	55	95	7.73	10.3
Walk	93182	0.111	0.222	0.5	0.778	2	3	4	0.646	0.612

Table 2.5 Trip Distance by Mode after Filter

2.1.6 Total household travel distance (miles) and travel time (minutes) by mode used

Table 2.6 Total Household Travel Distance (miles) by Mode

mode	n	5%	25%	50%	75%	95%	99%	max	mean	sd
Auto	127999	4	17	40	80	183	308	1205	59.9	64.9
Bike	3412	0.222	1.11	3	7	20	37.1	76	5.67	7.61
Transit	9107	1	4	10	22	66	130	434	19.1	27.3
Walk	32780	0.222	0.556	1.11	2.22	5.44	8.67	40.2	1.84	1.88

Table 2.7 Total Household Travel Time (minutes) by Mode

mode	n	5%	25%	50%	75%	95%	99%	max	mean	sd
Auto	127999	19	50	97	167	325	500	2084	125	106
Bike	3412	5	19	30	60	140	240	515	48.6	49.6
Transit	9107	13	31	60	106	220	380	1155	82.7	79.5
Walk	32780	4	15	30	55	118	196	1110	40.6	42.4

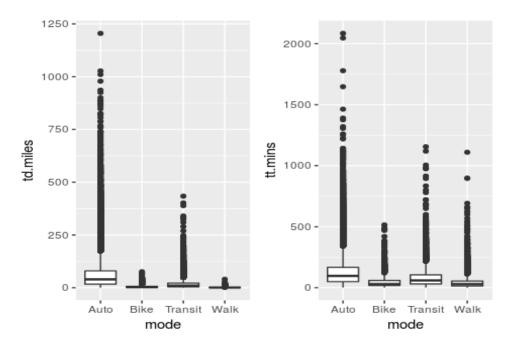


Figure 2.3 Boxplots of total household travel distance (miles) and travel time (minutes) by mode

2.1.7 Survey day VMT versus annual VMT

There are a few VMT measures available in the 2009 NHTS dataset:

- DVMT: Calculated trip distance (miles) for auto trips;
- ANNMILES: Self-reported annualized miles estimate (containing many missing values);
- BESTMILE: Best estimate of annual miles (by ORNL), from which an annual average daily VMT (AADVMT) is derived (AADVMT=BESTMILE/365).

Figure 2.4 shows the distribution of survey day VMT, annual average daily VMT and their transformed values.

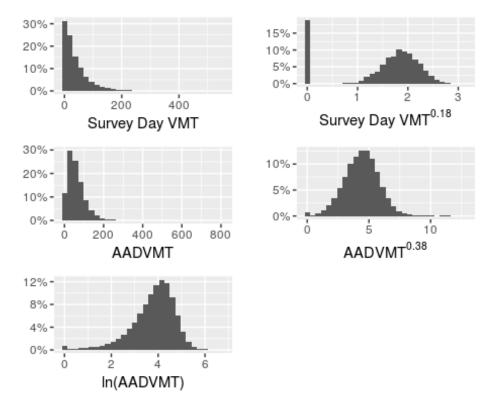


Figure 2.4 Distribution of survey day VMT, annual average daily VMT, and their transformation

After consulting with the Technical Advisory Committee, we directly model long-term AADVMT. For strategic planning tools like RSPM, annual average daily VMT (AADVMT) is more useful than modeling VMT on the day of the survey and approximating average or annual VMT, which is commonly done in practice due to data availability or limitation. For example, GreenSTEP and the RSPM currently synthesize AADVMT for each household because the 2001 NHTS estimates of annual VMT are incomplete (available for less than half of the records) with "questionable data quality" (Clifton and Gregor 2012).

2.2 SMART LOCATION DATABASE (SLD)

The Smart Location Database (Ramsey and Bell 2014) is a nationwide geographic data resource for measuring location efficiency. It includes more than 90 attributes summarizing characteristics such as housing density, diversity of land use, neighborhood design, destination accessibility, transit service, employment, and demographics. Most attributes are available for every census block group in the United States. The variables in SLD are largely organized according to the 5D built environment measures: Density, Diversity, Design, Transit, Destination, in addition to demographics and employment. A complete list of the variables can be found <u>here</u>.

The confidential NHTS data contain Census Block Group information of households' residence Census block group (2010 geography), which is joined with SLD to retrieve land use features for these locations. Land use information in SLD provides a rich set of factors that are documented in existing research literature to have an influence on households' travel behavior including mode choices and travel distance.

All households in the 2009 NHTS data have a matched block group in the SLD.

2.3 DESCRIPTIVE STATISTICS

Table 2.8 presents a select subset of variables with descriptions, sources, and summary statistics after data joining and cleaning up.

Name	Source	Dies, their Source, Description and Summary Statistics Description	Mean	std dev
	NHTS	Household Annual average daily VMT	59.33	48.58
DVMT	NHTS	Household VMT on the survey day	40.12	45.58
TransitTrips	NHTS	Transit trips during the day of the survey	0.173	0.7727
BikeTrips	NHTS	Biking trips during the day of the survey	0.06922	0.7727
WalkTrips	NHTS	Walking trips during the day of the survey	0.00922	1.667
TransitPMT	NHTS	Transit Personal Mile Traveled during the day of the survey	1.37	9.474
			0.1597	1.649
BikePMT	NHTS NHTS	Biking Personal Mile Traveled during the day of the survey Walking Personal Mile Traveled during the day of the	0.1397	1.049
WalkPMT	NUL2		0.4810	1.282
	NHTS	survey Number of household members younger than 14	0.2015	0.5745
Age0to14	NHTS	Number of household members older than 65	0.2013	0.3743
Age65Plus		Census division classification for home address: New	0.0203	0.775
CENSUS_R	NHTS	England, Middle Atlantic, East North Central, West North		
		6		
		Central, South Atlantic, East South Central, West South		
Dwy A go Don	NHTS	Central, Mountain, or Pacific	2.024	0.019
DrvAgePop Drivers	NHTS	Driving age population	2.034	0.918
		Number of drivers in the household		0.7641
HhSize	NHTS	Count of household members	2.235	1.192
LifeCycle	NHTS	Household life cycle classification: Single, Couple w/o		
	NUTC	children, Couple w/ children, or Empty Nester	10.72	0.0(20
LogIncome	NHTS	log total household income	10.72	0.8629
Vehicles	NHTS	Number of vehicles	2.003	1.151
VehPerDriver	NHTS	Number of vehicles per licensed driver	1.126	0.5832
Workers	NHTS	Number of workers in household	0.952	0.9144
D1B	SLD	Gross population density (people/acre) on unprotected land	5.999	15.77
D2A_EPHHM	SLD	Employment and household entropy	0.471	0.2256
D2A_WRKE MP	SLD	Household Workers per Job, as compared to the region	9.872	31.01
D3bpo4	SLD	Intersection density in terms of pedestrian-oriented	12.95	22.77
		intersections having four or more legs per square kilometer		
D4c	SLD	Aggregate frequency of transit service within 400 meters of	25.42	65.36
		block group boundary per hour during evening peak period		
D5	Place	Accessibility measure ACCESS = (2 * EMPTOT_2 *	0.9763	3.652
	Types	TOTPOP10_5) / 10000 * (EMPTOT_2 + TOTPOP10_5),		
		where EMPTOT_2 is employment within 2-mile radius, and		
		TOTPOP10_5 is total 2010 population within 5-mile radius		
FwyLaneMiPC	HPMS	Urbanized area freeway lane-kilometers per 1,000 person	0.0007008	0.0003855
TranRevMiPC	NTD	Urbanized area transit annual vehicle revenue kilometers per	0.01703	0.01184
		1,000 person		

Table 2.8 Variables, their Source, Description and Summary Statistics

3.0 MODEL DESIGN AND ESTIMATION

3.1 INTRODUCTION

Task 2 of the project is to "select one or more possible model designs for RSPM mode shift, estimate model parameters and evaluate the designs and estimated parameters with sensitivity tests and validation". More specifically, the plan is to select and estimate one or more possible designs of the mode choice model based on literature review and data exploration in Task 1 and to understand what mode shifts occur as vehicle travel is reduced, incorporating and testing interactions in RSPM. These approaches build on the existing RSPM module and utilize household and land use inputs and budget constraints already embedded in the RSPM tool. The PSU team will suggest functional form and independent variables for model estimation with associated data sources for estimation and validation. PSU researchers will also identify sensitivity tests to assess the upgraded model with literature elasticities, repeating some of the tests previously calculated by the RSPM to ensure these remain intact, as well as adding tests to evaluate the new functionality. The PSU team will discuss and coordinate with Brian Gregor in the model design and estimation process, as he implements the RSPM common framework, to make sure the design and adjust the proposed designs, estimation data, and validation data/approach.

This chapter is adapted from the deliverable of Task 2, a working paper that describes model designs, estimation, results of sensitivity tests and validation; the documented R scripts used to process and analyze data is available on the project GitHub page: https://github.com/cities/RSPM_ModeChoice.

For auto mode, Annual Average Daily VMT (AADVMT) is used, instead of the more common Daily VMT (on the day of the survey), is modeled at the household-level. After testing a handful of different model structures, a power-transformed (i.e., Box-Cox transformation) linear regression model is selected for its simplicity, performance, and prediction accuracy.

Three specifications were considered for estimating the non-auto modes miles by transit, walk & bike in metro and non-metro areas. Of the 3 models, the first two result in person level non-auto miles rolled up to the household level. The last is a household level model

- **Person Miles Traveled (PMT)** hurdle model of PMT for the three non-driving modes: transit, bike, and walk. Since there is a predominant number of zeros in non-driving PMT, hurdle model is used to model them as it captures both the zero and non-zero data generation processes in a single model structure.
- **Trip Frequency-Length (TFL)** hurdle models (one for each mode) of trip Frequency of transit, bike, and walk trips, and, when the trip frequency is not zero, a power-transformed linear regression models of average trip length by mode.

• Total Person Miles Traveled by Mode (TPMTM) – A linear regression model (log or power transformed) of total household person mile traveled, and a log-odds exponential model of total miles allocated to modes (including driving).

3.2 CURRENT GREENSTEP DVMT MODELS

GreenSTEP models Daily Vehicle Mile Travel (VMT) by drivers in its household travel model and does not explicitly model non-driving travel (for example, by transit or non-motorized modes), except for diversion of short-distance trips to bike. The current household travel model in GreenSTEP has two sequential (conditional) models: a binary model of whether a household will have non-zero daily VMT (Zero DVMT model) and a regression model of the actual daily VMT for households with non-zero VMT (DVMT model). Such a model structure provides a good balance between behavioral realism as well as simplicity and performance.

3.2.1 Zero DVMT model

P(DailyVMT == 0) = logit(DrvAgePop + LogIncome + Htppopdn + Age65Plus + Hhvehcnt + ZeroVeh + Tranmilescap + Urban: Tranmilescap)

(3-1)

The estimated model coefficients are listed in Table 3.1.

	metro	non-metro
(Intercept)	4.71 (0.14)***	4.65 (0.15)***
DrvAgePop	-0.20 (0.01)***	-0.27 (0.02)***
LogIncome	-0.55 (0.01)***	-0.52 (0.01)***
HTPPOPDN	0.00 (0.00)***	-0.00 (0.00)
Age65Plus	0.11 (0.01)***	0.15 (0.02)***
HHVEHCNT	-0.30 (0.02)***	-0.22 (0.01)***
ZeroVeh	3.49 (0.08)***	3.17 (0.10)***
Tranmilescap	6.96 (1.03)***	
AIC	56420.05	44534.53
BIC	56494.31	44597.37
Log Likelihood	-28202.03	-22260.26
Deviance	56404.05	44520.53
Num. obs.	79379	58557
$p^{**} > 0.001, p^{**} > 0.001$	1, *p < 0.05	·

Table 3.1 Binomial Logit Models of Zero DVMT

3.2.2 DVMT model

lm((DailyVMT)^{0.18} = Census_r + LogIncome + Htppopdn + Hhvehcnt + ZeroVeh + Tranmilescap + Fwylnmicap + DrvAgePop + Age65Plus + Urban + Htppopdn: Tranmilescap).

(3-2)

The estimated model coefficients are listed in Table 3.2.

	metro	non-metro
(Intercept)	4.71 (0.14)***	4.65 (0.15)***
DrvAgePop	-0.20 (0.01)***	-0.27 (0.02)***
LogIncome	-0.55 (0.01)***	-0.52 (0.01)***
HTPPOPDN	0.00 (0.00)***	-0.00 (0.00)
Age65Plus	0.11 (0.01)***	0.15 (0.02)***
HHVEHCNT	-0.30 (0.02)***	-0.22 (0.01)***
ZeroVeh	3.49 (0.08)***	3.17 (0.10)***
Tranmilescap	6.96 (1.03)***	
AIC	56420.05	44534.53
BIC	56494.31	44597.37
Log Likelihood	-28202.03	-22260.26
Deviance	56404.05	44520.53
Num. obs.	79379	58557
*** p < 0.001, ** p < 0.01,	*p < 0.05	

Table 3.2 Power-Transformed Regression Models of DVMT	$(\mathbf{DVMT} > 0)$)
		,

3.2.3 Combined model

We can combine both model steps and assess the accuracy of its predictions with in-sample validation. The validation results measured by RMSE and normalized RMSE are in Table 3.3.

v	rmse	nrmse	r2
metro	51.8	1.57	0.11
non_metro	64.9	1.54	0.102

Table 3.3 Accuracy of Combined GreenStep DVMT Models

Another related model in GreenSTEP is the household budget model that captures the price elasticity of travel. The budget approach to modeling is based on the perspective that households make their travel decisions within money and time budget constraints. According to Brian's research on historical consumer expenditure survey data, household spending on gasoline and other variable costs are done within a household transportation budget that is relatively stable, as households shift expenses between transportation budget categories when gasoline prices fluctuate. Households will necessarily reduce their travel in direct proportion to the cost increase only when fuel prices or other variable costs increase to the point where it is no longer possible to shift money from other parts of the transportation budget (B. Gregor 2010). Brian assumes the

transition between inelastic and elastic behavior will not be abrupt unless there is little time for the household to recognize the impact of the cost increases on the budget or respond to the cost increases. If the changes are more gradual, the transition will be less abrupt. Given the focus of GreenSTEP/RSPM on long-term forecasting, we would only need to model long-run elasticities.

3.3 PROPOSED NEW MODELS

3.3.1 AADVMT Model (Power-transformed linear regression model)

Instead of modeling DVMT and then approximating annual VMT from it, an alternative is to directly model annual average daily VMT (AADVMT). Both 2001 and 2009 NHTS contain annual mile estimates for each vehicle in a household provided by ORNL, from which we can derive AADVMT.

$$AADVMT_h = \frac{\sum_{\nu_h=0}^{V_h} AVMT_{\nu_h}}{365}$$

(3-3)

Where

- AADVMT_h is the annual average daily VMT for household h,
- $v_h \in \{0, ..., V_h\}$ indexes vehicles in household h,
- V_h is number of vehicles in the household h, and
- AVMT $_{v_h}$ is the annual VMT driven for vehicle v_h .

In model estimation, household AADVMT AADVMT_h computed with Equation (3-3) is then regressed on independent variables including household characteristics, built environment, and transportation supply:

$$AADVMT_h = f(SD_h, BE_h, TS_{R_h})$$

(3-4)

Where

- AADVMT_h is the annual average daily VMT for household h,
- SD_h represents the demographic and social-demographic characteristics of household *h*,
- BE_h is the built environment variables (of various geographical resolution) of household h, and

• TS_{R_h} is the transportation supply of the region where household *h* resides.

In terms of model structure options for household AADVMT model (f(.) in Equation (3-4)), we consider three of the most commonly used structures in the literature (Ewing and Cervero 2001): linear and transformed linear regression models, and a hurdle model, as well as the model structure used in the current version of the travel demand module of RSPM: 2-step models of binomial logit and linear/non-linear regression model.

After comparing all three model structures for predictive accuracy in cross-validation, the power-transformed (with λ =0.38) linear regression model is chosen.

Table 3.4 shows the estimated coefficients of the AADVMT model with the power-transformed (with λ =0.38) linear regression model structure, while Table 3.5 shows its prediction accuracy measured by RMSE (Root Mean Squared Error) and normalized RMSE.

	non_metro	metro
(Intercept)	-1.27 (0.06)***	-0.69 (0.07)***
Drivers	0.65 (0.01)***	0.69 (0.01)***
HhSize	0.06 (0.01)***	
Workers	0.12 (0.01)***	0.19 (0.01)***
CENSUS RNE	-0.10 (0.01)***	-0.10 (0.01)***
CENSUS_RS	0.06 (0.01)***	0.07 (0.01)***
CENSUS_RW	-0.23 (0.01)***	-0.11 (0.01)***
LogIncome	0.31 (0.01)***	0.20 (0.01)***
Age0to14	0.04 (0.01)***	0.11 (0.01)***
Age65Plus	-0.10 (0.01)***	-0.08 (0.01)***
log1p(VehPerDriver)	1.71 (0.02)***	1.91 (0.03)***
LifeCycleEmpty Nester	-0.26 (0.02)***	-0.31 (0.02)***
LifeCycleParents w/ children	-0.04 (0.02)*	0.03 (0.02)
LifeCycleSingle	-0.20 (0.02)***	-0.24 (0.02)***
D1B	-0.01 (0.00)***	-0.00 (0.00)***
D2A_EPHHM	-0.14 (0.02)***	
D1B:D2A_EPHHM	0.00 (0.01)	
FwyLaneMiPC		111.72 (19.82)***
D2A WRKEMP		-0.00 (0.00)***
D3bpo4		-0.00 (0.00)***
TranRevMiPC:D4c		-0.01 (0.00)***
R ²	0.47	0.46
Adj. R ²	0.47	0.46
Num. obs.	50399	40369
RMSE	0.90	1.05
$p^{**} = 0.001, p^{**} = 0.01, p^{*} = 0.05$		

Table 3.4 Power-Transformed AADVMT Model

	rmse	nrmse	r2
non_metro	32.3	0.524	0.438
metro	29.3	0.554	0.432

Table 3.5 Prediction Accuracy of AADVMT Model

3.3.2 Person Miles Traveled (PMT) Models

PMT Models model PMT for the three non-driving modes: transit, bike, and walk. Since there is a predominant number of zeros in non-driving PMT, hurdle model is used to model them as it captures both the zero and non-zero data generation processes in a single model structure.

3.3.2.1 Transit Person Miles Traveled Model (hurdle model)

Figure 3.1 shows a histogram of Transit Person Mile Traveled (power-transformed), as it can be seen that its distribution is much skewed towards 0.

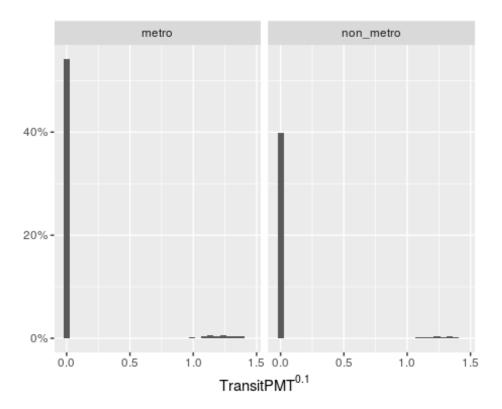


Figure 3.1 Histogram of power-transformed transit person miles per household for metro and non-metro residents

Table 3.6 and Table 3.7 shows the estimated model specification and accuracy of model predictions, respectively.

	non metro	metro
Count model: (Intercept)	3.24 (0.02)***	3.33 (0.02)***
Count model: AADVMT	0.00 (0.00)***	0.00 (0.00)***
Count model: HhSize	0.25 (0.00)***	
Count model: VehPerDriver	0.15 (0.01)***	-0.35 (0.01)***
Count model: LifeCycleEmpty Nester	-0.52 (0.03)***	-0.03 (0.01)
Count model: LifeCycleParents w/ children	-1.21 (0.02)***	-0.05 (0.01)***
Count model: LifeCycleSingle	-0.15 (0.04)***	-0.17 (0.02)***
Count model: Age0to14	-0.10 (0.00)***	-0.07 (0.00)***
Count model: Age65Plus	0.05 (0.01)***	
Count model: CENSUS RNE	-0.01 (0.01)	0.12 (0.01)***
Count model: CENSUS RS	-0.03 (0.01)**	0.07 (0.01)***
Count model: CENSUS_RW	-0.40 (0.01)***	-0.12 (0.01)***
Count model: D1B	-0.01 (0.00)**	0.00 (0.00)***
Count model: D3bpo4	-0.00 (0.00)	-0.00 (0.00)***
Count model: D1B:D2A EPHHM	-0.08 (0.01)***	
Zero model: (Intercept)	-4.55 (0.07)***	-3.61 (0.07)***
Zero model: AADVMT	0.00 (0.00)***	-0.01 (0.00)***
Zero model: Workers	0.15 (0.03)***	0.43 (0.02)***
Zero model: HhSize	0.50 (0.02)***	
Zero model: Age0to14	0.49 (0.03)***	0.33 (0.02)***
Zero model: CENSUS RNE	0.02 (0.07)	-0.09 (0.05)
Zero model: CENSUS RS	-0.20 (0.05)***	0.11 (0.05)*
Zero model: CENSUS RW	-0.42 (0.07)***	-0.51 (0.05)***
Zero model: D3bpo4	-0.00 (0.00)	0.00 (0.00)**
Zero model: D1B	-0.06 (0.02)***	
Zero model: D1B:D2A_EPHHM	0.03 (0.03)	0.02 (0.00)***
Count model: Workers		0.03 (0.00)***
Count model: D2A_EPHHM		0.12 (0.02)***
Count model: FwyLaneMiPC		-422.06 (17.23)***
Count model: TranRevMiPC		5.06 (0.29)***
Count model: D4c		0.00 (0.00)***
Count model: D5		-0.02 (0.00)***
Zero model: LifeCycleEmpty Nester		-0.65 (0.07)***
Zero model: LifeCycleParents w/ children		1.07 (0.05)***
Zero model: LifeCycleSingle		-0.37 (0.07)***
Zero model: D5		0.02 (0.00)***
Zero model: TranRevMiPC		23.86 (1.29)***
Zero model: TranRevMiPC:D4c		0.04 (0.00)***
AIC	109757.79	163781.13
Log Likelihood	-54852.89	-81857.56
Num. obs.	49821	40756
$p^{***} = 0.001, p^{**} = 0.01, p^{*} = 0.05$		

Table 3.6 Transit PMT Hurdle Model

	rmse	nrmse	r2
non_metro	9.49	7.04	0.0315
metro	8.7	6.27	0.0357

Table 3.7 Prediction Accuracy of Transit PMT Model

3.3.2.2 Walk Miles Traveled Model (hurdle model)

Figure 3.2 shows a histogram of Walking Person Mile Traveled (power-transformed), as it can be seen that its distribution is very skewed towards 0.

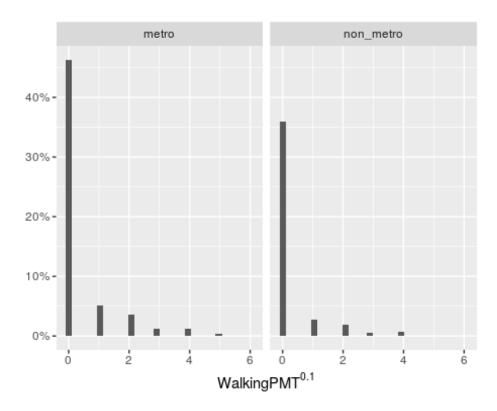


Figure 3.2 Histogram of power-transformed walking person miles per household for metro and non-metro residents

Table 3.8 and Table 3.9 shows the estimated model specification and accuracy of model predictions, respectively.

	non_metro	metro
Count model: (Intercept)	0.28 (0.05)***	0.46 (0.04)***
Count model: AADVMT	0.00 (0.00)***	0.00 (0.00)***
Count model: HhSize	0.08 (0.01)***	
Count model: VehPerDriver	-0.00 (0.02)	-0.12 (0.02)***
Count model: LifeCycleEmpty Nester	0.03 (0.03)	-0.09 (0.03)***
Count model: LifeCycleParents w/ children	-0.10 (0.03)**	-0.07 (0.02)***
Count model: LifeCycleSingle	0.08 (0.04)*	-0.42 (0.03)***
Count model: Age0to14	0.02 (0.01)	0.14 (0.01)***
Count model: Age65Plus	-0.16 (0.02)***	
Count model: CENSUS RNE	-0.11 (0.03)***	0.01 (0.02)
Count model: CENSUS RS	-0.09 (0.03)***	-0.02 (0.02)
Count model: CENSUS RW	0.16 (0.03)***	0.08 (0.02)***
Count model: D1B	-0.00 (0.01)	0.00 (0.00)***
Count model: D3bpo4	-0.00 (0.00)**	0.00 (0.00)***
Count model: D1B:D2A_EPHHM	0.03 (0.01)**	
Zero model: (Intercept)	-3.94 (0.19)***	-1.49 (0.05)***
Zero model: AADVMT	-0.00 (0.00)	-0.00 (0.00)***
Zero model: Workers	0.01 (0.02)	0.19 (0.02)***
Zero model: LogIncome	0.20 (0.02)***	
Zero model: HhSize	0.18 (0.01)***	
Zero model: Age0to14	0.02 (0.02)	0.17 (0.02)***
Zero model: CENSUS RNE	0.15 (0.04)***	0.01 (0.03)
Zero model: CENSUS RS	-0.13 (0.03)***	-0.05 (0.03)
Zero model: CENSUS RW	0.44 (0.04)***	0.19 (0.03)***
Zero model: D3bpo4	0.00 (0.00)***	0.00 (0.00)***
Zero model: D5	0.05 (0.02)*	0.04 (0.00)***
Count model: Workers	, , ,	0.08 (0.01)***
Count model: D2A EPHHM		-0.06 (0.03)
Count model: FwyLaneMiPC		-125.50 (32.18)***
Count model: D5		0.01 (0.00)***
Count model: TranRevMiPC:D4c		0.00 (0.00)
Zero model: LifeCycleEmpty Nester		-0.22 (0.04)***
Zero model: LifeCycleParents w/ children		0.45 (0.03)***
Zero model: LifeCycleSingle		-0.40 (0.04)***
Zero model: TranRevMiPC		11.22 (0.86)***
Zero model: D1B:D2A EPHHM		0.02 (0.00)***
AIC	68027.72	108981.79
Log Likelihood	-33987.86	-54459.90
Num. obs.	45985	40467
***p < 0.001, **p < 0.01, *p < 0.05	·	·

Table 3.8 Walking PMT Hurdle Model

	rmse	nrmse	r2
non_metro	1.13	2.97	0.0209
metro	1.38	2.57	0.0411

Table 3.9 Prediction Accuracy of Walking PMT Model

3.3.2.3 Bike Miles Traveled Model (hurdle model)

Figure 3.3 shows a histogram of Biking Person Mile Traveled (power-transformed), as it can be seen that its distribution is very skewed towards 0.

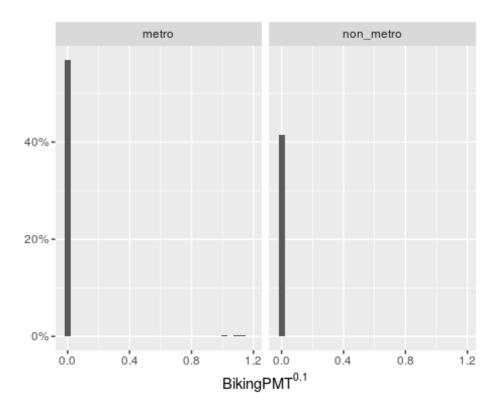


Figure 3.3 Histogram of power-transformed biking person miles per household for metro and non-metro residents

Table 3.10 and Table 3.11 show the estimated model specification and accuracy of model predictions, respectively.

	non metro	metro
Count model: (Intercept)	2.05 (0.05)***	1.82 (0.07)***
Count model: AADVMT	0.00 (0.00)***	0.00 (0.00)***
Count model: HhSize	0.10 (0.01)***	
Count model: LifeCycleEmpty Nester	-0.36 (0.05)***	-0.43 (0.04)***
Count model: LifeCycleParents w/ children	-0.85 (0.04)***	-0.50 (0.03)***
Count model: LifeCycleSingle	-0.39 (0.05)***	-0.35 (0.05)***
Count model: Age0to14	-0.27 (0.02)***	-0.17 (0.01)***
Count model: Age65Plus	0.15 (0.03)***	
Count model: D1B	0.04 (0.01)***	0.01 (0.00)***
Count model: D3bpo4	0.00 (0.00)***	
Count model: D1B:D2A EPHHM	-0.09 (0.01)***	-0.03 (0.00)***
Zero model: (Intercept)	-4.43 (0.14)***	-3.38 (0.15)***
Zero model: AADVMT	-0.00 (0.00)***	-0.00 (0.00)***
Zero model: Workers	0.10 (0.04)*	0.33 (0.04)***
Zero model: LifeCycleEmpty Nester	0.17 (0.13)	-0.37 (0.12)**
Zero model: LifeCycleParents w/ children	1.19 (0.10)***	0.56 (0.08)***
Zero model: LifeCycleSingle	-0.15 (0.14)	-0.85 (0.13)***
Zero model: Age0to14	0.34 (0.03)***	0.41 (0.03)***
Zero model: D1B	0.02 (0.01)*	-0.01 (0.00)***
Zero model: D2A_EPHHM	0.24 (0.14)	
Zero model: D3bpo4	0.00 (0.00)***	
Zero model: D5	-0.04 (0.07)	0.03 (0.01)***
Count model: Workers		0.10 (0.01)***
Count model: VehPerDriver		-0.00 (0.02)
Count model: CENSUS_RNE		-0.01 (0.04)
Count model: CENSUS_RS		0.19 (0.03)***
Count model: CENSUS_RW		0.24 (0.03)***
Count model: D2A_EPHHM		0.17 (0.06)**
Count model: FwyLaneMiPC		-187.80 (51.23)***
Count model: D4c		-0.00 (0.00)***
Count model: D4c:TranRevMiPC		0.15 (0.01)***
Zero model: CENSUS_RNE		-0.72 (0.10)***
Zero model: CENSUS_RS		-0.10 (0.08)
Zero model: CENSUS_RW		0.05 (0.07)
Zero model: FwyLaneMiPC		-714.87 (129.69)***
Zero model: TranRevMiPC		-5.82 (2.57)*
Zero model: D1B:D2A_EPHHM		0.01 (0.01)
AIC	20735.55	26350.20
Log Likelihood	-10345.78	-13143.10
Num. obs.	49821	40756
*** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$		

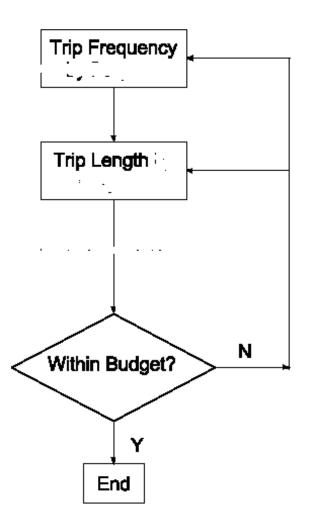
Table 3.10 Biking PMT Hurdle Model

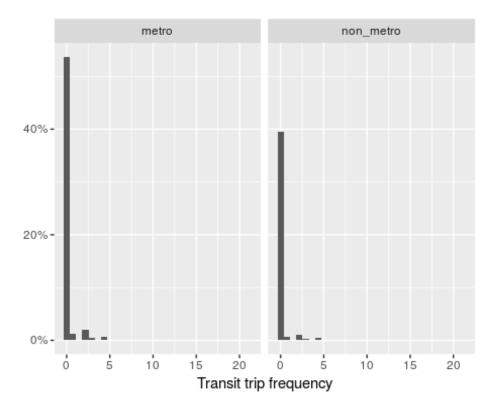
	rmse	nrmse	r2
non_metro	4.24	34.8	0.000000638
metro	2	10.6	0.000481

 Table 3.11 Prediction Accuracy of Biking PMT Model

3.4 TRIP FREQUENCY-LENGTH (TFL) MODELS

An alternative model structure we propose is a combination of household level models of trip frequency and average trip length by mode (Figure 3.4).




Figure 3.4 Flow chart of trip frequency-length model

3.4.1 Trip Frequency Models

The trip frequency models of Transit, Bike, and Walk are hurdle models with the dependent variable (# Trips): (#*Trips*) = $zinb(X\beta)$. A hurdle model only allows zeros to arise from the zero hurdle process but not the count process. Like other models, the trip frequency models are segmented by metro and non-metro areas.

3.4.1.1 Transit Trip Frequency Model (Hurdle Model)

Figure 3.5 shows a histogram of Transit Trip Frequency, as it can be seen that its distribution is much skewed towards 0.

Figure 3.5 Histogram of transit trip frequencies per household for metro and non-metro residents

Table 3.12 and Table 3.13 show the estimated model specification and accuracy of model predictions, respectively.

	Non Metro	Metro
Count model: (Intercept)	0.92 (0.22)***	0.06 (0.04)
Count model: log1p(AADVMT)	0.01 (0.02)	
Count model: log1p(VehPerDriver)	0.14 (0.07)*	
Count model: HhSize	0.14 (0.01)***	0.14 (0.01)***
Count model: LifeCycleEmpty Nester	0.47 (0.13)***	0.04 (0.05)
Count model: LifeCycleParents w/ children	0.04 (0.11)	0.07 (0.04)*
Count model: LifeCycleSingle	0.52 (0.18)**	-0.23 (0.06)***
Count model: Age0to14	0.19 (0.02)***	0.09 (0.01)***
Count model: LogIncome	-0.10 (0.02)***	
Count model: D1B	-0.00 (0.01)	0.00 (0.00)
Zero model: (Intercept)	-5.28 (0.33)***	-1.98 (0.10)***
Zero model: log1p(AADVMT)	0.12 (0.04)***	, , , , , , , , , , , , , , , , , , ,
Zero model: log1p(VehPerDriver)	-0.34 (0.12)**	
Zero model: Workers	0.04 (0.03)	0.34 (0.02)***
Zero model: LifeCycleEmpty Nester	-0.17 (0.15)	-0.65 (0.07)***
Zero model: LifeCycleParents w/ children	2.61 (0.11)***	0.88 (0.05)***
Zero model: LifeCycleSingle	-0.65 (0.21)**	-0.10 (0.07)
Zero model: Age0to14	0.47 (0.02)***	0.29 (0.02)***
Zero model: D1B	-0.07 (0.01)***	0.01 (0.00)***
Zero model: D3bpo4	0.00 (0.00)	
Zero model: LogIncome	0.05 (0.03)	
Count model: AADVMT		-0.00 (0.00)***
Count model: TranRevMiPC		5.34 (0.72)***
Count model: D4c		0.00 (0.00)***
Zero model: AADVMT		-0.00 (0.00)***
Zero model: VehPerDriver		-1.43 (0.06)***
Zero model: HhSize		0.09 (0.02)***
Zero model: FwyLaneMiPC		-39.06 (69.88)
Zero model: TranRevMiPC:D4c		0.05 (0.00)***
AIC	24301.11	44355.93
Log Likelihood	-12129.55	-22155.96
Num. obs.	45985	40467
**** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$	1	1

Table 3.12 Transit Trip Frequency Hurdle Model

Table 3.13 Prediction Accuracy of Transit Trip Frequency Model

	rmse	nrmse	r2
non_metro	0.673	4.7	0.143
metro	0.701	4.48	0.104

3.4.1.2 Walking Trip Frequency Model (Hurdle Model)

Figure 3.6 shows a histogram of Walking Trip Frequency, as it can be seen that its distribution is much skewed towards 0.

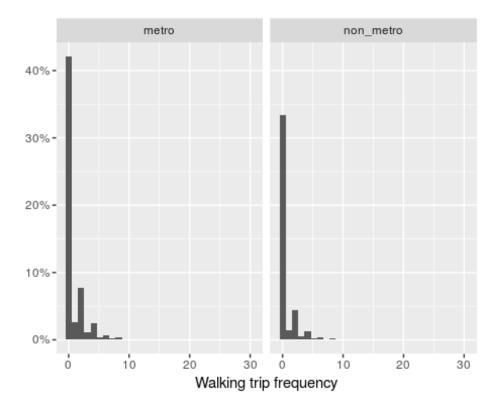


Figure 3.6 Histogram of walking trip frequencies per household for metro and non-metro residents

Table 3.14 and Table 3.15 show the estimated model specification and accuracy of model predictions, respectively.

	non metro	Metro
Count model: (Intercept)	0.33 (0.11)**	0.44 (0.08)***
Count model: AADVMT	-0.00 (0.00)***	-0.00 (0.00)
Count model: VehPerDriver	0.00 (0.01)	-0.11 (0.01)***
Count model: HhSize	0.07 (0.01)***	0.07 (0.01)***
Count model: LifeCycleEmpty Nester	-0.13 (0.02)***	-0.14 (0.02)***
Count model: LifeCycleParents w/ children	-0.04 (0.02)	-0.13 (0.02)***
Count model: LifeCycleSingle	-0.08 (0.03)**	-0.28 (0.02)***
Count model: Age0to14	0.07 (0.01)***	0.13 (0.01)***
Count model: D1B	0.02 (0.00)***	0.00 (0.00)***
Count model: D2A EPHHM	0.28 (0.03)***	0.25 (0.02)***
Count model: D3bpo4	-0.00 (0.00)	0.00 (0.00)***
Count model: D5	-0.03 (0.01)**	0.01 (0.00)***
Count model: Workers	-0.08 (0.01)***	
Count model: LogIncome	0.05 (0.01)***	0.05 (0.01)***
Zero model: (Intercept)	-4.10 (0.20)***	-2.86 (0.17)***
Zero model: AADVMT	-0.00 (0.00)	-0.00 (0.00)***
Zero model: VehPerDriver	-0.09 (0.02)***	-0.16 (0.03)***
Zero model: HhSize	0.20 (0.02)***	0.21 (0.02)***
Zero model: LifeCycleEmpty Nester	-0.01 (0.04)	-0.23 (0.04)***
Zero model: LifeCycleParents w/ children	-0.05 (0.04)	0.19 (0.04)***
Zero model: LifeCycleSingle	0.05 (0.05)	-0.19 (0.04)***
Zero model: Age0to14	0.02 (0.02)	0.04 (0.02)
Zero model: D1B	0.04 (0.00)***	0.01 (0.00)***
Zero model: D2A_EPHHM	0.11 (0.06)	0.24 (0.05)***
Zero model: D3bpo4	-0.00 (0.00)	0.00 (0.00)***
Zero model: Workers	0.01 (0.02)	0.08 (0.02)***
Zero model: LogIncome	0.21 (0.02)***	0.11 (0.02)***
Count model: FwyLaneMiPC		-326.19 (25.28)***
Count model: TranRevMiPC		0.95 (0.41)*
Count model: D4c		0.00 (0.00)***
Zero model: D5		0.04 (0.00)***
Zero model: FwyLaneMiPC		-39.30 (45.48)
Zero model: TranRevMiPC		10.13 (0.85)***
Zero model: D4c		0.00 (0.00)***
AIC	74022.13	113601.76
Log Likelihood	-36984.07	-56767.88
Num. obs.	45985	37547
*** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$		

Table 3.14 Walking Trip Frequency Hurdle Model

	rmse	nrmse	r2
non_metro	1.45	2.48	0.0259
metro	1.77	2.17	0.0782

 Table 3.15 Prediction Accuracy of Walking Trip Frequency Model

3.4.1.3 Biking Trip Frequency Model (Hurdle Model)

Figure 3.7 shows a histogram of Biking Trip Frequency, as it can be seen that its distribution is very skewed towards 0.

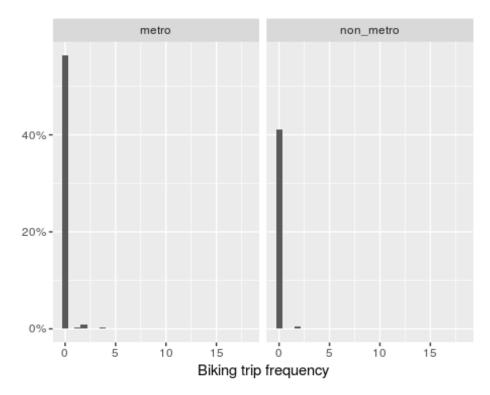


Figure 3.7 Histogram of biking trip frequencies per household for metro and non-metro residents

Table 3.16 and Table 3.17 show the estimated model specification and accuracy of model predictions, respectively.

	non_metro	Metro
Count model: (Intercept)	0.28 (0.32)	1.22 (0.23)***
Count model: AADVMT	-0.00 (0.00)***	-0.00 (0.00)***
Count model: VehPerDriver	-0.14 (0.05)**	
Count model: HhSize	0.13 (0.03)***	
Count model: LifeCycleEmpty Nester	-0.14 (0.09)	
Count model: LifeCycleParents w/ children	-0.34 (0.08)***	
Count model: LifeCycleSingle	-0.38 (0.11)***	
Count model: Age0to14	0.01 (0.03)	0.14 (0.02)***
Count model: Age65Plus	-0.02 (0.05)	0.09 (0.03)**
Count model: D1B	-0.03 (0.01)***	-0.00 (0.00)*
Count model: Workers	-0.14 (0.03)***	-0.02 (0.02)
Count model: LogIncome	0.08 (0.03)**	-0.01 (0.02)
Count model: D3bpo4	0.01 (0.00)***	0.00 (0.00)
Zero model: (Intercept)	-7.86 (0.50)***	-5.00 (0.39)***
Zero model: AADVMT	-0.01 (0.00)***	
Zero model: VehPerDriver	0.08 (0.06)	
Zero model: LifeCycleEmpty Nester	0.33 (0.14)*	-0.31 (0.11)**
Zero model: LifeCycleParents w/ children	1.24 (0.11)***	0.61 (0.08)***
Zero model: LifeCycleSingle	-0.09 (0.15)	-0.56 (0.11)***
Zero model: Age0to14	0.31 (0.03)***	0.38 (0.03)***
Zero model: Age65Plus	-0.12 (0.07)	0.04 (0.06)
Zero model: D2A EPHHM	0.21 (0.14)	0.02 (0.10)
Zero model: D5	0.01 (0.05)	
Zero model: Workers	0.03 (0.04)	0.25 (0.04)***
Zero model: LogIncome	0.33 (0.05)***	0.18 (0.04)***
Zero model: D3bpo4	0.01 (0.00)***	0.00 (0.00)
Zero model: log1p(AADVMT)		-0.17 (0.03)***
Zero model: HhSize		0.04 (0.03)
Zero model: FwyLaneMiPC		-464.20 (87.23)***
Zero model: TranRevMiPC		-15.31 (2.08)***
AIC	13826.58	23367.31
Log Likelihood	-6887.29	-11661.66
Num. obs.	46665	57362
**** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$	·	1

Table 3.16 Biking Trip Frequency Hurdle Model

Table 3.17 Prediction Accuracy of Biking Trip Frequency Model

	rmse	nrmse	r2
non_metro	0.432	7.93	0.00887
metro	0.554	6.85	0.0199

3.4.2 Average Trip Length Models

The average trip length models are linear regression models with the dependent variable (TRPMILES) power-transformed: *TRIPMILES*^{0.10} = $X\beta$. These models are similar in model structure to the non-zero DVMT model in GreenSTEP, but for average trip length for Transit, Bike and Walk trips.

The TFL model option is simplified from the original Trip Frequency-Length-Mode (TFLM) Model, which models individual trips for each household in the sample. One of the reasons for this simplification was performance: even though it has advantages in that it allows trip information to be utilized in these models, for example, trip purpose and trip length, which are important factors in mode choice decision. In the estimation of TFLM model with NHTS data, it needs to use the trip dataset, which has more than 1 million observations; while in simulation, it requires to create a dataset with one observation for every trip. Even though it can work, the requirement for memory and the penalty of speed are high. We eventually settle with the simplified TFL model that captures the essential of travel demand for non-driving modes.

3.4.2.1 Transit Trip Length Model

Figure 3.8 shows a histogram of Average Transit Trip Length for households making at least one transit trips.

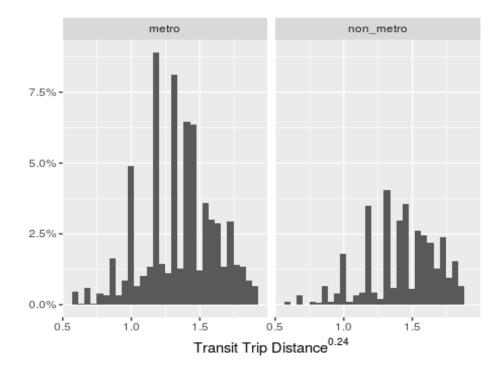


Figure 3.8 Histogram of power-transformed transit trip distance per household for metro and non-metro residents

Table 3.18 and Table 3.19 show the estimated model specification and accuracy of model predictions, respectively.

	non_metro	Metro
(Intercept)	1.92 (0.31)***	0.15 (0.29)
AADVMT	0.00 (0.00)***	0.00 (0.00)
Age0to14	-0.19 (0.02)***	-0.23 (0.03)***
Age65Plus	0.17 (0.06)**	0.28 (0.06)***
LogIncome	0.07 (0.03)**	0.14 (0.03)***
LifeCycleEmpty Nester	-0.90 (0.15)***	-0.59 (0.11)***
LifeCycleParents w/ children	-0.77 (0.11)***	0.03 (0.06)
LifeCycleSingle	-0.71 (0.21)***	0.10 (0.10)
D2A EPHHM	-0.30 (0.09)***	-0.07 (0.09)
 D1B	-0.07 (0.01)***	-0.00 (0.00)
D5	0.10 (0.04)**	-0.01 (0.00)***
VehPerDriver		-0.25 (0.06)***
D3bpo4		-0.00 (0.00)
TranRevMiPC		6.68 (1.55)***
TranRevMiPC:D4c		-0.00 (0.01)
R2	0.10	0.09
Adj. R2	0.10	0.08
Num. obs.	2653	2744
RMSE	0.99	1.37
**p < 0.001, **p < 0.01, *p < 0.01	5	

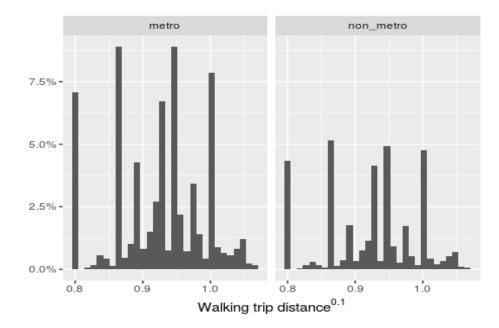

Table 3.18 Power-transformed Average Transit Trip Length Regression Model

Table 3.19 Prediction Accuracy of Average Transit Trip Length Model

	rmse	nrmse
non_metro	9.37	18.3
metro	5.35	10.6

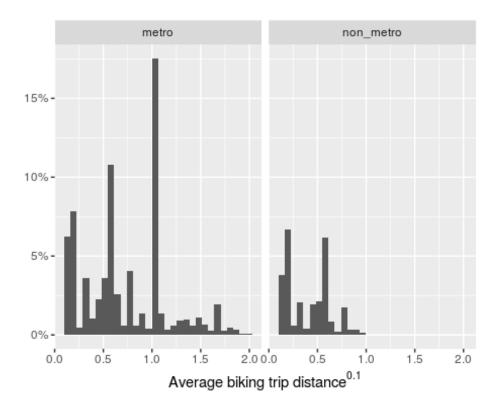
3.4.2.2 Walking Trip Length Model

Figure 3.9 shows a histogram of Average Walking Trip Length for households making at least one walking trip.

Figure 3.9 Histogram of average walking trip distance per household for metro and nonmetro residents

Table 3.20 and Table 3.21 show the estimated model specification and accuracy of model predictions, respectively.

	non metro	Metro
(Intercept)	-1.60 (0.13)***	-1.12 (0.12)***
AADVMT	0.00 (0.00)***	0.00 (0.00)***
Age0to14	-0.01 (0.01)	-0.05 (0.01)***
Age65Plus	-0.02 (0.02)	0.03 (0.02)
LogIncome	0.07 (0.01)***	0.06 (0.01)***
LifeCycleEmpty Nester	-0.03 (0.03)	-0.07 (0.03)*
LifeCycleParents w/ children	-0.03 (0.03)	-0.06 (0.02)*
LifeCycleSingle	-0.03 (0.03)	-0.08 (0.03)**
D2A EPHHM	0.08 (0.04)*	-0.22 (0.04)***
D1B	0.00 (0.00)	-0.00 (0.00)
D5	-0.01 (0.01)	0.01 (0.00)***
VehPerDriver		-0.02 (0.02)
D3bpo4		0.00 (0.00)
TranRevMiPC		-4.81 (0.64)***
TranRevMiPC:D4c		-0.00 (0.00)
R2	0.01	0.02
Adj. R2	0.01	0.02
Num. obs.	9602	11108
RMSE	0.80	0.97
***p < 0.001, **p < 0.01, *p < 0.05		•


			D I BC I B
Table 3.20 Power-transformed	Average Walking	🤉 Frin Length	Regression Model

	rmse nrmse 0.523 3.63			
non_metro	0.523	3.63		
metro	0.556	2.88		

Table 3.21 Prediction Accuracy of Walking Trip Length Model

3.4.2.3 Biking Trip Length Model

Figure 3.10 shows a histogram of Average Biking Trip Length for households making at least one biking trip.

Figure 3.10 Histogram of average biking trip distance per household for metro and nonmetro residents

Table 3.22 and Table 3.23 show the estimated model specification and accuracy of model predictions, respectively.

	non_metro	Metro
(Intercept)	-2.06 (0.52)***	-1.16 (0.51)*
AADVMT	0.00 (0.00)	0.00 (0.00)***
Age0to14	-0.21 (0.05)***	-0.26 (0.04)***
Age65Plus	0.23 (0.08)**	-0.03 (0.08)
LogIncome	0.28 (0.05)***	0.20 (0.04)***
LifeCycleEmpty Nester	-0.42 (0.16)**	-0.66 (0.15)***
LifeCycleParents w/ children	-0.86 (0.13)***	-0.83 (0.10)***
LifeCycleSingle	-0.55 (0.17)**	-0.15 (0.16)
D2A_EPHHM	-0.39 (0.17)*	-0.12 (0.14)
D1B	0.05 (0.01)***	0.00 (0.00)
D5	0.06 (0.09)	
VehPerDriver		-0.20 (0.05)***
D3bpo4		-0.00 (0.00)
TranRevMiPC		3.95 (3.05)
TranRevMiPC:D4c		0.10 (0.02)***
R2	0.24	0.21
Adj. R2	0.24	0.20
Num. obs.	967	1254
RMSE	1.18	1.17
*** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$		

 Table 3.22 Power-transformed Average Biking Trip Length Regression Model

 Table 3.23 Prediction Accuracy of Biking Trip Length Model

	rmse	nrmse
non_metro	2.37	47.3
metro	3.6	45.3

3.5 OTHER MODEL STRUCTURES CONSIDERED

3.5.1 Total Person Miles Traveled by Mode (TPMTM) Model

The TPMTM model is made up of two sequential models: a Total Person Miles Traveled (TPMT) and a Mode Allocation Model (Figure 3.11).

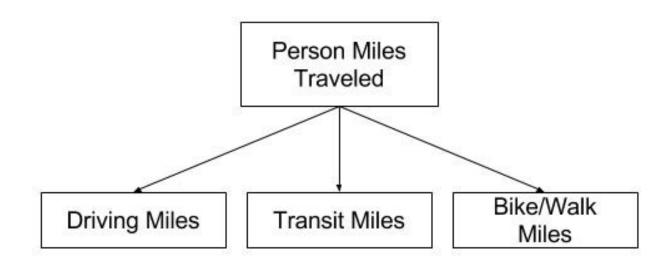


Figure 3.11 Flow chart of total person miles by model

The total person miles traveled is a household level model of total person miles traveled by all household members. It is a linear regression model with total PMT (log or power transformed) as the dependent variable: $\ln(pmt) = X\beta$ or $(pmt)^{\lambda} = X\beta$, while the mode allocation model captures the percentage of PMT by modes for households and allocates total PMT to each mode in prediction. In estimation, we first choose a base mode, compute the ratio of PMT percentage for all other modes relative to that for the base mode, and then use log of the ratio (i.e., log-odds ratio) as the dependent variable of the mode allocation model. We will estimate n - 1 models if there are n modes in total. In prediction, we first predict the log-odds ratios from each of the n - 1 models, exponentiate the predicted log-odds ratios to get odds ratios, and apply the additional condition that the odds for all modes sum up to 1 to get the predicted PMT percentage for each mode. The model structure is consistent with a multinomial logit model that is commonly used in mode choice modeling.

$$\ln(\frac{P_{Transit}}{P_{Auto}}) = X\beta,$$

$$\ln(\frac{P_{Bike/Walk}}{P_{Auto}}) = X\beta.$$
(3-5)

(3-6)

Both models can be segmented by life stage of a household (e.g. single, young couple, full nesters, empty nesters), built environment variables or other demographics for better model fit and predicting power.

The advantage of the TPMTM model is that the model structure is similar to the existing household travel model in GreenSTEP, and consistent with mode choice models in travel demand modeling, however, the disadvantages include:

- 1. TPMTM is modeled at an aggregated household level and some of the traveler/trip information that is useful for mode choice modeling is lost. For example, a household will likely have a different probability of choosing walking for 2 trips of half mile each than for 1 trip of 1 mile.
- 2. The NHTS data is dominated by driving when mode shares are measured by distance. The small share of transit and bike/walk mode may bring large variance of the odds ratio variable.

Finally, special handling is required when any of the shares are 0 among the modes being modeled (Auto, Transit, Bike, Walk), which is common for daily travel.

3.6 COMPARISON OF MODEL APPROACHES FOR NON-AUTO MODES

After reporting to the TAC in October 2016, we converged to suspend the work on TPMTM models and focus on PMT and TFL models, which are subsequently implemented. These two alternate non-auto model approaches were pursued through implementation and testing.

Statistical significance, theoretical foundation, and predicting power: because of the large sample size (n>15,000) of 2009 NHTS, it is easy to get a large number of significant coefficients, but they do not necessarily make for a good predictive model. On the other hand, models solely focusing on predictive power (for example, those based on machine learning algorithms) may lack theoretical basis thus may break down when predicting outcomes for conditions far from the base year range. One thing that is particularly hard to do for predictive models is for them to capture behavior that has not been observed in data, for example, potential non-linearity of price elasticities when price rise.

4.0 MODEL TESTING

4.1 TASK DESCRIPTION

PSU researchers shall apply the newly incorporated mode shift module (in the updated RSPM tool) in the Rouge Valley Metropolitan Planning Organization (RVMPO) to assess how it can inform decision-making and to adjust the model as needed to provide accurate and helpful information. ODOT staff will assist in assembling the necessary data for sensitivity tests. Initial testing will be documented by the PSU researchers.

The phases of the testing task are:

Phase 1: Test modules on their own using SLD/NHTS data used in estimation; Test module sensitivity, vary SLD/NHTS inputs one at a time – elasticity response vs. Literature VMT, PMT by mode, total and split by HH income, density, urban form groups

Phase 2: Test module in RVMPO RSPM (using a code wrapper and supplemental RVMPO block group place type inputs) comparing current vs. new outputs, VMT/Alt mode trips at MPO/district geographies (maps) and HH attributes (place types, income, ...) – tests full model performance improvement over existing tool using built form variables

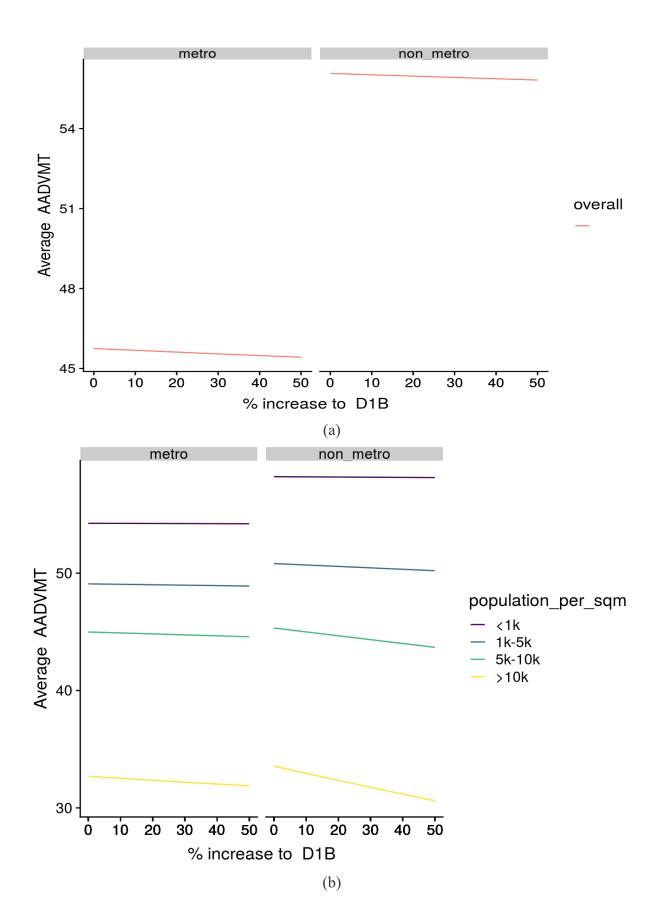
Phase 3: Test module in VisionEval (written up to the 1st call of this module) – tests to see if the module will work in future VisionEval tool

All models estimated in Chapter 3 except for Trip Length Regression Models for Transit, Bike and Walk are tested for sensitivities below. The elasticities are compared with the DVMT model in GreenSTEP and with those reported in the literature.

4.2 PHASE I

For Phase I of Task 4, elasticities of AADVMT and PMT with regard to density (D1B), household income, freeway supply (Freeway lane miles per capita), transit supply (transit revenue miles per capita) are computed using the 2009 data. Except for a few unexpected counterintuitive directions of elasticities (bike PMT elasticities wrt D1B), the elasticities are in line with what has been documented in the research literature: travel behavior responses to density change is small in magnitude. Given the non-linear nature of the models, the elasticities vary by different segments - such as income group, development type, and current density level. Those segments are adopted from what <u>Brian Gregor used in his sensitivity testing for GreenSTEP</u>.

4.2.1 Annual Average Daily VMT (AADVMT)

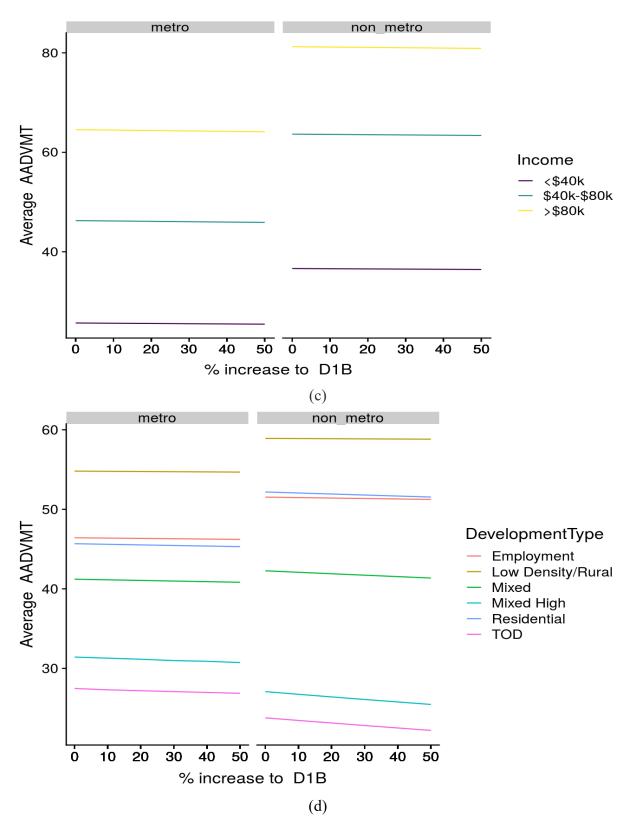

The specification for the AADVMT model is available in Chapter 3 AADVMT Model Specification.

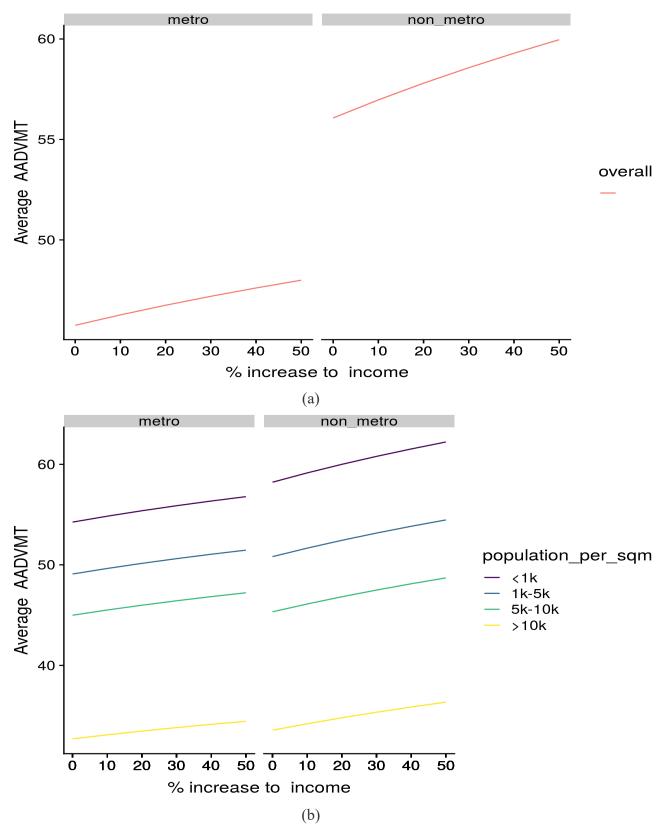
4.2.1.1 Population Density (D1B) Sensitivity

Both Table 4.1 and Figure 4.1 below demonstrate small negative elasticities of AADVMT to local population density (D1B from Smart Location Database population density at block group level). Non-metropolitan areas have larger elasticities; higher density areas have larger elasticities, and TODs have larger elasticities.

			AT with Resp					4 D1D		
	~				Δ AADVMT wrt Δ D1B					
metro	Category	n	AADVMT		+10%	+20%	+30%	+40%	+50%	
Overall										
metro		66669	45.7		-0.067	-0.134	-0.202	-0.263	-0.327	
non_metro		53859	56.1		-0.050	-0.100	-0.149	-0.199	-0.248	
population_per_sqm										
metro	<1k	6700	54.3		-0.008	-0.016	-0.025	-0.033	-0.041	
metro	1k-5k	36154	49.1		-0.037	-0.074	-0.112	-0.149	-0.186	
metro	5k-10k	16752	45.0		-0.082	-0.163	-0.245	-0.326	-0.407	
metro	>10k	7063	32.7		-0.171	-0.340	-0.512	-0.658	-0.812	
non_metro	<1k	39696	58.2		-0.014	-0.029	-0.043	-0.057	-0.072	
non_metro	1k-5k	12572	50.8		-0.122	-0.243	-0.365	-0.486	-0.607	
non_metro	5k-10k	1387	45.3		-0.333	-0.664	-0.993	-1.321	-1.647	
non_metro	>10k	204	33.6		-0.610	-1.208	-1.797	-2.376	-2.944	
			incom	e						
metro	<\$40k	24391	25.7		-0.049	-0.098	-0.148	-0.189	-0.235	
metro	\$40k-\$80k	20864	46.3		-0.074	-0.147	-0.220	-0.293	-0.362	
metro	>\$80k	21414	64.6		-0.085	-0.170	-0.255	-0.339	-0.422	
non_metro	<\$40k	23436	36.6		-0.037	-0.073	-0.110	-0.146	-0.182	
non_metro	\$40k-\$80k	17640	63.7		-0.053	-0.106	-0.159	-0.212	-0.265	
non_metro	>\$80k	12783	81.2		-0.069	-0.139	-0.208	-0.277	-0.346	
			Developmen	ntTy	уре					
metro	Employment	12117	46.4		-0.041	-0.082	-0.122	-0.163	-0.203	
metro	Low	6506	54.8		-0.024	-0.049	-0.073	-0.097	-0.122	
	Density/Rural									
metro	Mixed	3770	41.2		-0.077	-0.155	-0.232	-0.309	-0.385	
metro	Mixed High	931	31.4		-0.137	-0.271	-0.441	-0.531	-0.695	
metro	Residential	42829	45.7		-0.074	-0.149	-0.224	-0.294	-0.364	
metro	TOD	516	27.5		-0.167	-0.279	-0.389	-0.498	-0.606	
non metro	Employment	10073	51.5		-0.058	-0.116	-0.174	-0.231	-0.289	
non_metro	Low	32352	58.9		-0.019	-0.038	-0.058	-0.077	-0.096	
—	Density/Rural									
non metro	Mixed	160	42.3		-0.185	-0.368	-0.549	-0.730	-0.908	
non metro	Mixed High	8	27.1		-0.336	-0.665	-0.987	-1.302	-1.611	
non metro	Residential	11261	52.2		-0.128	-0.256	-0.383	-0.510	-0.637	
non metro	TOD	5	23.8		-0.324	-0.644	-0.959	-1.271	-1.577	

Table 4.1 Elasticities of AADVMT with Respect to D1B



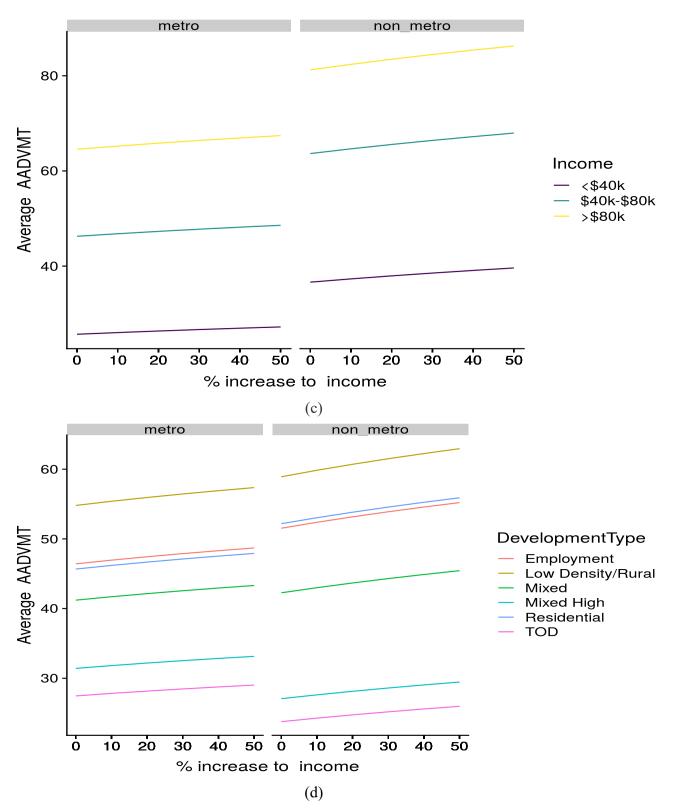

Figure 4.1 Elasticities of AADVMT with respect to D1B: overall (a); segmented by density (b), income (c) and development type (d).

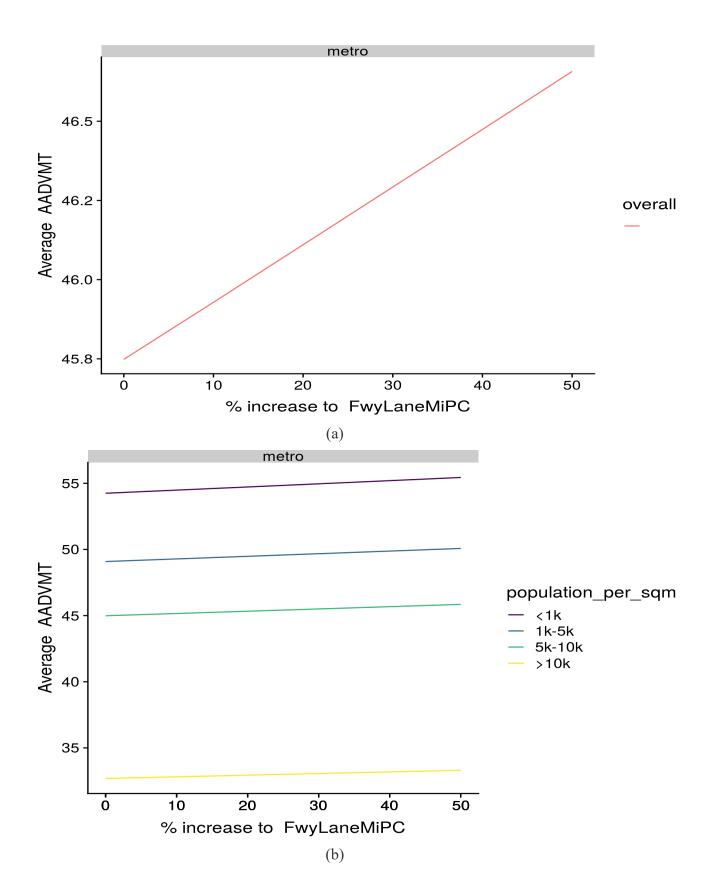
4.2.1.2 Household Income Sensitivity

As expected, household income has a positive elasticities to AADVMT (Table 4.2 and Figure 4.2). The elasticities to income are mostly stable across segments.

1 able 4.2 El	asticities of AA		with Kespect t	ιU	Household Income Δ AADVMT wrt Δ income				
	Catagory		AADVMT						
metro	Category	n		1	+10%	+20%	+30%	+40 %	+50%
Overall metro 66669 45.7 0.521 1.000 1.445 1.860 2.250									
		53859	56.1		0.921	1.731	2.502	3.220	3.900
non_metro 53859 56.1 0.901 1.731 2.502 3.220 3.900 population per sqm									
metro	<1k	6700	54.3	er	<u>sqm</u> 0.589	1.130	1.631	2.100	2.530
metro	1k-5k	36154	49.1		0.552	1.059	1.528	1.960	2.330
metro	5k-10k	16752	45.0		0.532	0.996	1.437	1.900	2.230
metro	>10k	7063	32.7		0.399	0.770	1.119	1.440	1.750
non metro	<1k	39696	58.2		0.925	1.777	2.568	3.310	4.000
non metro	1k-5k	12572	50.2		0.843	1.621	2.344	3.020	3.650
non metro	5k-10k	12372	45.3		0.779	1.497	2.164	2.790	3.370
non metro	>10k	204	33.6		0.643	1.237	1.790	2.310	2.790
non_metro	> IOK	204	Income	`	0.045	1.237	1.770	2.510	2.790
metro	<\$40k	24391	25.7	-	0.355	0.683	0.989	1.270	1.540
metro	\$40k-\$80k	20864	46.3		0.535	1.031	1.488	1.910	2.310
metro	>\$80k	21414	64.6		0.668	1.031	1.850	2.380	2.870
non metro	<\$40k	23436	36.6		0.687	1.322	1.912	2.460	2.980
non metro	\$40k-\$80k	17640	63.7		0.994	1.911	2.761	3.550	4.300
non metro	>\$80k	12783	81.2		1.163	2.235	3.228	4.150	5.020
non_metro	· WOOK	12705	Developmen	ťΤ		2.233	5.220	1.120	5.020
metro	Employment	12117	46.4	U I	0.529	1.016	1.466	1.890	2.280
metro	Low	6506	54.8		0.595	1.141	1.647	2.120	2.560
interi o	Density/Rural	0200	2 110		0.090		1.017	2.120	2.000
metro	Mixed	3770	41.2		0.487	0.936	1.351	1.740	2.100
metro	Mixed High	931	31.4		0.400	0.769	1.110	1.430	1.730
metro	Residential	42829	45.7		0.519	0.998	1.443	1.860	2.240
metro	TOD	516	27.5		0.361	0.693	1.001	1.290	1.560
non_metro	Employment	10073	51.5		0.850	1.634	2.362	3.040	3.680
non_metro	Low	32352	58.9		0.932	1.792	2.589	3.330	4.030
	Density/Rural								
non_metro	Mixed	160	42.3		0.733	1.410	2.038	2.630	3.180
non_metro	Mixed High	8	27.1		0.549	1.057	1.530	1.970	2.390
non_metro	Residential	11261	52.2		0.859	1.651	2.387	3.070	3.720
non_metro	TOD	5	23.8		0.507	0.975	1.412	1.820	2.210

 Table 4.2 Elasticities of AADVMT with Respect to Household Income



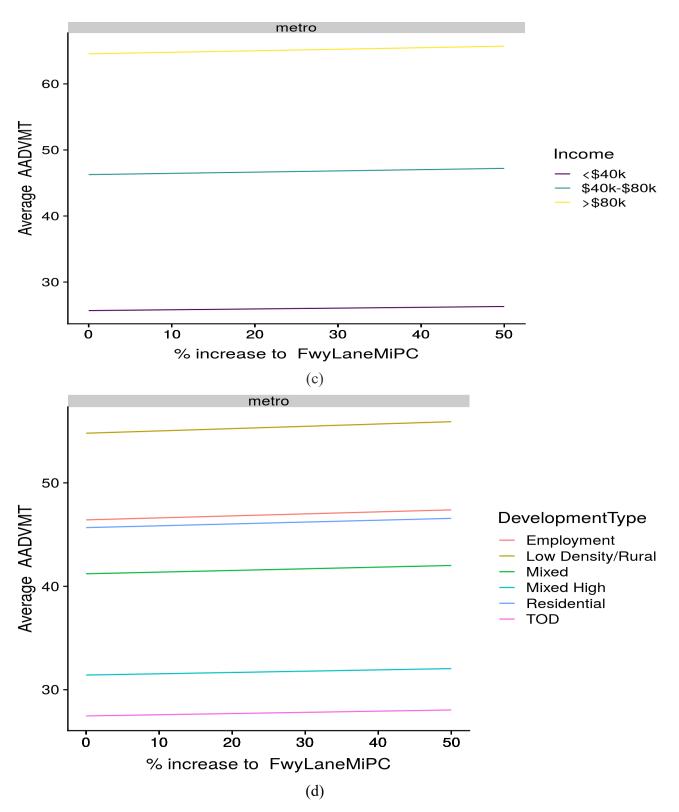

Figure 4.2 Elasticities of AADVMT with respect to household income: overall (a), segmented by density (b), income (c) and development type (d)

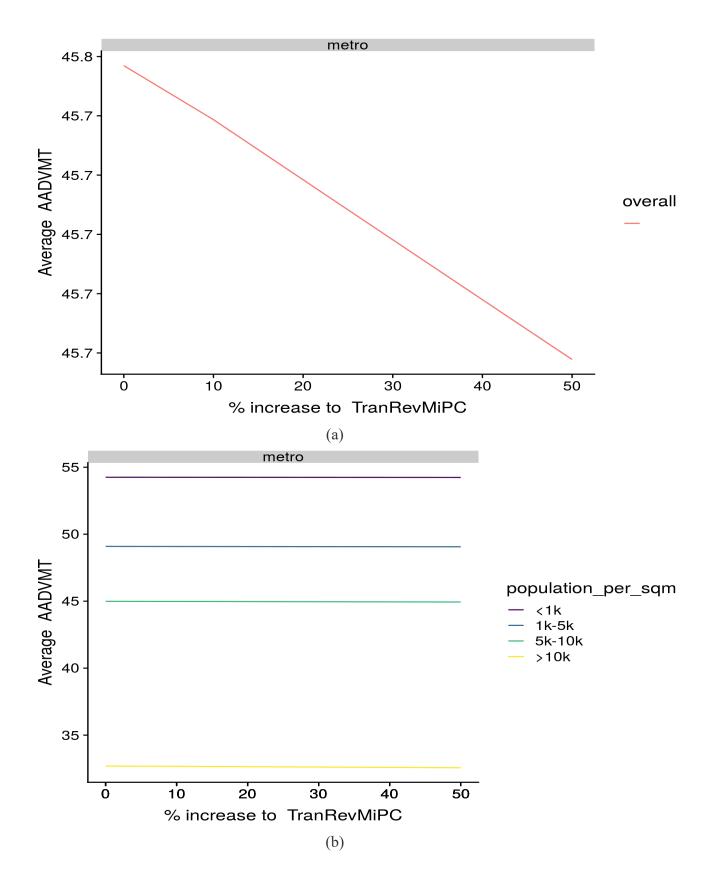
4.2.1.3 Freeway Supply Sensitivity

Also, corroborating previous research and Brian's finding, the elasticities to freeway supply is positive but small (Table 4.3 and Figure 4.3), mostly because most places in the US already have good mobility by vehicle, additional freeways lead households to drive slightly more miles.

			•		ΔΑΑ	DVMT	wrt A Fy	wyLaneN	AiPC	
metro	Category	n	AADVMT		+10%	+20%	+30%	+40%	+50%	
			Overa	11						
metro		66669	45.7		0.180	0.362	0.544	0.725	0.909	
population_per_sqm metro <1k 6700 54.3 0.237 0.474 0.712 0.952 1.192										
metro <1k									1.192	
metro	1k-5k	36154	49.1		0.197	0.394	0.592	0.790	0.989	
metro	5k-10k	16752	45.0		0.171	0.343	0.515	0.688	0.861	
metro	>10k	7063	32.7		0.120	0.246	0.372	0.493	0.619	
Income										
metro	<\$40k	24391	25.7		0.122	0.245	0.370	0.493	0.618	
metro	\$40k-\$80k	20864	46.3		0.187	0.375	0.563	0.752	0.942	
metro	>\$80k	21414	64.6		0.231	0.463	0.695	0.928	1.162	
			Developmen	<u>t</u> T	уре	-	-	-		
metro	Employment	12117	46.4		0.193	0.386	0.580	0.775	0.970	
metro	Low Density/Rural	6506	54.8		0.221	0.443	0.666	0.890	1.114	
metro	Mixed	3770	41.2		0.160	0.320	0.480	0.641	0.803	
metro	Mixed High	931	31.4		0.124	0.249	0.374	0.500	0.625	
metro	Residential	42829	45.7		0.177	0.356	0.535	0.714	0.894	
metro	TOD	516	27.5		0.115	0.230	0.345	0.461	0.577	

Table 4.3 Elasticities of AADVMT with Respect to Freeway Lane Miles per Capita




Figure 4.3 Elasticities of AADVMT with respect to freeway lane miles per capita: overall (a), segmented by density (b), income (c) and development type (d)

4.2.1.4 Transit Supply Sensitivity

As expected, transit supply (transit revenue miles per capita) has negative elasticities to AADVMT (Table 4.4 and Figure 4.4), which are in line with Brian's numbers. And elasticities are larger for dense areas and for TODs.

	Table 4.4 Elasticities of AAD (1911 with Respect to Transit Revenue wites per Capita											
Δ AADVMT wrt Δ TranRevMiPC												
Category	n	AADVMT		+10%	+20%	+30%	+40%	+50%				
Overall												
	66669	45.7		-0.009	-0.019	-0.029	-0.039	-0.050				
population_per_sqm												
metro <1k 6700 54.3 -0.003 -0.006 -0.009 -0.012												
1k-5k	36154	49.1		-0.006	-0.011	-0.017	-0.023	-0.029				
5k-10k	16752	45.0		-0.011	-0.021	-0.032	-0.042	-0.053				
>10k	7063	32.7		-0.022	-0.048	-0.075	-0.101	-0.127				
Income												
<\$40k	24391	25.7		-0.006	-0.014	-0.022	-0.029	-0.037				
\$40k-\$80k	20864	46.3		-0.010	-0.019	-0.029	-0.039	-0.049				
>\$80k	21414	64.6		-0.013	-0.025	-0.038	-0.051	-0.063				
		Developmen	htΤ	уре								
Employment	12117	46.4		-0.009	-0.018	-0.026	-0.035	-0.044				
Low Density/Rural	6506	54.8		-0.001	-0.003	-0.004	-0.005	-0.007				
Mixed	3770	41.2		-0.021	-0.043	-0.064	-0.085	-0.106				
Mixed High	931	31.4		-0.019	-0.038	-0.056	-0.075	-0.094				
Residential	42829	45.7		-0.007	-0.016	-0.024	-0.033	-0.042				
TOD	516	27.5		-0.101	-0.201	-0.301	-0.400	-0.499				
	<1k 1k-5k 5k-10k >10k <\$40k \$40k-\$80k >\$80k Employment Low Density/Rural Mixed Mixed High Residential	<1k 666669 1k-5k 36154 5k-10k 16752 >10k 7063 <\$40k 24391 \$40k-\$80k 20864 >\$80k 21414 Employment 12117 Low Density/Rural 6506 Mixed 3770 Mixed High 931 Residential 42829	Overal 66669 45.7 population_p <1k 6700 54.3 1k-5k 36154 49.1 5k-10k 16752 45.0 >10k 7063 32.7 Incom <\$40k 24391 25.7 \$40k-\$80k 20864 46.3 >\$80k 21414 64.6 Development 12117 46.4 Low Density/Rural 6506 54.8 Mixed 3770 41.2 Mixed High 931 31.4 Residential 42829 45.7	Overall 66669 45.7 population_per <1k 6700 1k-5k 36154 1k-5k 36154 1k-5k 36154 5k-10k 16752 >10k 7063 32.7 Income <\$40k 24391 25.7 Income <\$40k-\$80k 20864 20864 46.3 >\$80k 21414 64.6 DevelopmentT Employment 12117 46.4 Iow Density/Rural 6506 54.8 Mixed 3770 41.2 Mixed High 931 31.4 Residential 42829	CategorynAADVMT+10%Overall6666945.7-0.009population_per sqm<1k670054.3-0.0031k-5k3615449.1-0.0065k-10k1675245.0-0.011>10k706332.7-0.022Income<\$40k2439125.7-0.006\$40k-\$80k2086446.3-0.010>\$80k2141464.6-0.013Development TypeEmployment1211746.4-0.009Low Density/Rural650654.8-0.001Mixed377041.2-0.021Mixed High93131.4-0.019Residential4282945.7-0.007	CategorynAADVMT+10%+20%OverallOverall6666945.7-0.009-0.019population_per sqm<1k670054.3-0.003-0.0061k-5k3615449.1-0.006-0.0115k-10k1675245.0-0.011-0.021>10k706332.7-0.022-0.048Income<\$40k2439125.7-0.006-0.014\$40k-\$80k2086446.3-0.010-0.019>\$80k2141464.6-0.013-0.025Development TypeEmployment1211746.4-0.009-0.018Low Density/Rural650654.8-0.001-0.003Mixed377041.2-0.021-0.043Mixed High93131.4-0.007-0.016	CategorynAADVMT+10%+20%+30%Overall6666945.7-0.009-0.019-0.029population persqm<1k670054.3-0.003-0.006-0.0091k-5k3615449.1-0.006-0.011-0.0175k-10k1675245.0-0.011-0.021-0.032>10k706332.7-0.022-0.048-0.075Income<\$40k2439125.7-0.006-0.014-0.022\$40k-\$80k2086446.3-0.010-0.019-0.029>\$80k2141464.6-0.013-0.025-0.038Development TypeEmployment1211746.4-0.009-0.018-0.026Low Density/Rural650654.8-0.001-0.003-0.004Mixed377041.2-0.021-0.043-0.056Residential4282945.7-0.007-0.016-0.024	CategorynAADVMT+10%+20%+30%+40%Overall6666945.7-0.009-0.019-0.029-0.039population per sqm<1k670054.3-0.003-0.006-0.009-0.0121k-5k3615449.1-0.006-0.011-0.017-0.0235k-10k1675245.0-0.011-0.021-0.032-0.042>10k706332.7-0.022-0.048-0.075-0.101Income<\$40k2439125.7-0.006-0.014-0.022-0.039\$40k-\$80k2086446.3-0.010-0.019-0.029-0.039>\$80k2141464.6-0.013-0.025-0.038-0.051Development TypeEmployment1211746.4-0.009-0.018-0.026-0.035Low Density/Rural650654.8-0.001-0.033-0.064-0.085Mixed377041.2-0.021-0.043-0.064-0.085Mixed High93131.4-0.019-0.038-0.056-0.075Residential4282945.7-0.007-0.016-0.024-0.033				

 Table 4.4 Elasticities of AADVMT with Respect to Transit Revenue Miles per Capita

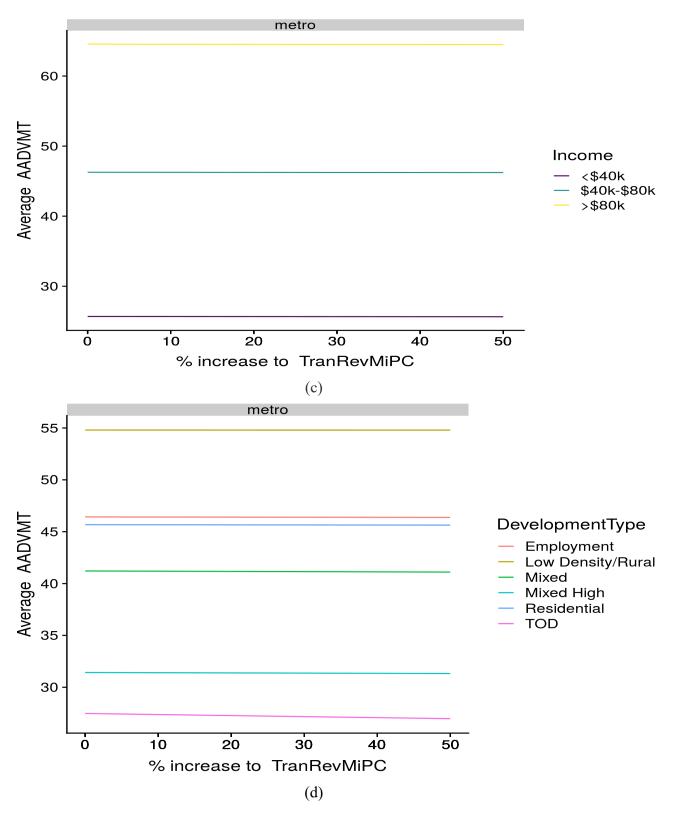


Figure 4.4 Elasticities of AADVMT with respect to transit revenue miles per capita: overall (a), segmented by density (b), income (c) and development type (d)

4.2.2 Bike PMT

The specification for the Bike PMT model is available in Chapter 3 Bike PMT Model Specification.

4.2.2.1 Population Density (D1B) Sensitivity

The elasticity estimates of bike person miles traveled per household with respect to population density (D1B) is negative due to the negative D1B coefficient in the model specification. Alternative model specifications have been tested with other density variables (D1C - job density, D1D - activity density) and interactions with D2 variables, the negative coefficient has been persistent.

The elasticities are the largest for the densest (>10,000 persons/sq mile) non-metro areas, with density increases 50%, the bike PMT more than doubled for households living in these areas.

			•		DID	Δ BikePMT wrt Δ D1B					
metro	Category	n	BikePMT	+	-10%	+20%	+30%	+40%	+50%		
		I	Overa	all							
metro		66669	0.1896		0.002	-0.004	-0.005	-0.007	-0.008		
non_metro		53859	0.1623	0.	.013	0.038	0.085	0.169	0.317		
			population_	per_s	sqm						
metro	<1k	6700	0.1670		.000	0.000	-0.001	-0.001	-0.001		
metro	1k-5k	36154	0.1784	-(0.001	-0.002	-0.002	-0.003	-0.004		
metro	5k-10k	16752	0.1968	-(0.002	-0.003	-0.005	-0.007	-0.008		
metro	>10k	7063	0.2287	-(0.007	-0.013	-0.019	-0.024	-0.030		
non_metro	<1k	39696	0.1409	0.	.000	0.000	0.000	0.000	0.000		
non_metro	1k-5k	12572	0.1714	0.	.001	0.002	0.003	0.004	0.005		
non_metro	5k-10k	1387	0.2385	0.	.006	0.012	0.018	0.025	0.032		
non_metro	>10k	204	3.6614	3.	.748	11.042	24.660	49.248	92.599		
			Incon	ne							
metro	<\$40k	24391	0.1198	-(0.001	-0.002	-0.003	-0.005	-0.006		
metro	\$40k-\$80k	20864	0.1720	-(0.001	-0.003	-0.004	-0.005	-0.007		
metro	>\$80k	21414	0.2605	-(0.003	-0.005	-0.008	-0.010	-0.012		
non_metro	<\$40k	23436	0.1647	0.	.031	0.091	0.204	0.407	0.764		
non_metro	\$40k-\$80k	17640	0.1555	0.	.001	0.001	0.002	0.003	0.004		
non_metro	>\$80k	12783	0.1674	0.	.001	0.001	0.002	0.003	0.003		
			Developme	ntTy	ре						
metro	Employment	12117	0.1726	-(0.001	-0.003	-0.004	-0.005	-0.007		
metro	Low Density/Rural	6506	0.1786	0	.000	0.000	-0.001	-0.001	-0.001		
metro	Mixed	3770	0.2024	-(0.003	-0.006	-0.009	-0.011	-0.014		
metro	Mixed High	931	0.1819	-(0.004	-0.008	-0.012	-0.016	-0.019		
metro	Residential	42829	0.1852	-(0.001	-0.003	-0.004	-0.005	-0.007		
metro	TOD	516	0.8774	-(0.044	-0.085	-0.122	-0.157	-0.188		
non_metro	Employment	10073	0.1575	0.	.000	0.000	-0.001	-0.001	-0.001		
non_metro	Low Density/Rural	32352	0.1592	0	.021	0.062	0.139	0.277	0.520		
non_metro	Mixed	160	0.1438	0.	.000	0.000	0.000	0.000	0.000		
non_metro	Mixed High	8	0.1207	0.	.000	0.001	0.001	0.002	0.002		
non_metro	Residential	11261	0.1756	0	.002	0.004	0.007	0.009	0.012		
non metro	TOD	5	0.0958	0.	.000	-0.001	-0.001	-0.001	-0.002		

4.2.2.2 Household AADVMT Sensitivity

To capture the relationship between driving and usage of other modes, we include AADVMT in models of non-driving modes. Bike PMT consistently has a negative elasticity to AADVMT with relatively little variations across segments.

<u>I able</u>	Table 4.6 Elasticities of Bike PMT with Respect to AADVMT Δ BikePMT wrt Δ AADVMT												
	Cata	_		Δ BikePMT wrt Δ AADVMT +10% +20% +30% +40% +50%									
metro	Category	n	BikePMT	+10%	+20%	+30%	+40%	+50%					
metro		66669	Overall 0.1896	-0.001	-0.002	-0.003	-0.004	-0.005					
non metro		53859	0.1623	-0.001	-0.002	-0.007	-0.004	-0.003					
<u> </u>				sqm	0.001	0.007	0.009	0.011					
metro	<1k	6700	0.1670	-0.001	-0.002	-0.003	-0.004	-0.006					
metro	1k-5k	36154	0.1784	-0.001	-0.002	-0.003	-0.004	-0.005					
metro	5k-10k	16752	0.1968	-0.001	-0.002	-0.003	-0.004	-0.005					
metro	>10k	7063	0.2287	-0.001	-0.002	-0.003	-0.004	-0.005					
non_metro	<1k	39696	0.1409	-0.002	-0.004	-0.006	-0.008	-0.010					
non_metro	1k-5k	12572	0.1714	-0.002	-0.004	-0.007	-0.009	-0.011					
non_metro	5k-10k	1387	0.2385	-0.003	-0.006	-0.009	-0.011	-0.014					
non_metro	>10k	204	3.6614	-0.014	-0.027	-0.041	-0.054	-0.068					
			Income		1	•		.					
metro	<\$40k	24391	0.1198	0.000	-0.001	-0.001	-0.002	-0.002					
metro	\$40k-\$80k	20864	0.1720	-0.001	-0.002	-0.003	-0.004	-0.005					
metro	>\$80k	21414	0.2605	-0.002	-0.003	-0.005	-0.006	-0.008					
non metro	<\$40k	23436	0.1647	-0.001	-0.003	-0.004	-0.006	-0.007					
non_metro	\$40k-\$80k	17640	0.1555	-0.002	-0.005	-0.007	-0.009	-0.012					
non_metro	>\$80k	12783	0.1674	-0.003	-0.006	-0.009	-0.012	-0.015					
	1		Development [*]										
metro	Employment	12117	0.1726	-0.001	-0.002	-0.003	-0.004	-0.005					
metro	Low Density/Rural	6506	0.1786	-0.001	-0.002	-0.004	-0.005	-0.006					
metro	Mixed	3770	0.2024	-0.001	-0.002	-0.003	-0.004	-0.005					
metro	Mixed High	931	0.1819	-0.001	-0.002	-0.002	-0.003	-0.004					
metro	Residential	42829	0.1852	-0.001	-0.002	-0.003	-0.004	-0.005					
metro	TOD	516	0.8774	-0.002	-0.005	-0.007	-0.010	-0.012					
non_metro	Employment	10073	0.1575	-0.002	-0.004	-0.006	-0.008	-0.010					
non_metro	Low Density/Rural	32352	0.1592	-0.002	-0.004	-0.007	-0.009	-0.011					
non_metro	Mixed	160	0.1438	-0.002	-0.004	-0.005	-0.007	-0.009					
non_metro	Mixed High	8	0.1207	-0.001	-0.002	-0.003	-0.004	-0.004					
non_metro	Residential	11261	0.1756	-0.002	-0.005	-0.007	-0.009	-0.011					
non_metro	TOD	5	0.0958	-0.001	-0.001	-0.002	-0.002	-0.002					

Table 4.6 Elasticities of Bike PMT with Respect to AADVMT

4.2.2.3 Household Income Sensitivity

Bike PMT has a small and positive elasticity to household income.

I able 4.	7 Elasticities of Bike P	'MT with	n Respect to	Ho							
		1		$\Delta BikePMT wrt \Delta income$							
metro	Category	n	BikePMT		+10%	+20%	+30%	+40%	+50%		
	1		overall		0.000	0.000	0.000	0.000	0.000		
metro		66669	0.1896		0.000	0.000	0.000	0.000	0.000		
non_metro		53859	0.1623		0.000	0.000	0.000	0.000	0.000		
			lation_per_s	qn		0.000	0.000	0.000	0.000		
metro	<1k	6700	0.1670		0.000	0.000	0.000	0.000	0.000		
metro	1k-5k	36154	0.1784		0.000	0.000	0.000	0.000	0.000		
metro	5k-10k	16752	0.1968		0.000	0.000	0.000	0.000	0.000		
metro	>10k	7063	0.2287		0.000	0.000	0.000	0.000	0.000		
non_metro	<1k	39696	0.1409		0.000	0.000	0.000	0.000	0.000		
non_metro	1k-5k	12572	0.1714		0.000	0.000	0.000	0.000	0.000		
non_metro	5k-10k	1387	0.2385		0.000	0.000	0.000	0.000	0.000		
non_metro	>10k	204	3.6614		0.000	0.000	0.000	0.000	0.000		
metro	<\$40k	24391	0.1198		0.000	0.000	0.000	0.000	0.000		
metro	\$40k-\$80k	20864	0.1720		0.000	0.000	0.000	0.000	0.000		
metro	>\$80k	21414	0.2605		0.000	0.000	0.000	0.000	0.000		
non_metro	<\$40k	23436	0.1647		0.000	0.000	0.000	0.000	0.000		
non_metro	\$40k-\$80k	17640	0.1555		0.000	0.000	0.000	0.000	0.000		
non_metro	>\$80k	12783	0.1674		0.000	0.000	0.000	0.000	0.000		
		Dev	elopmentTy	pe							
metro	Employment	12117	0.1726		0.000	0.000	0.000	0.000	0.000		
metro	Low Density/Rural	6506	0.1786		0.000	0.000	0.000	0.000	0.000		
metro	Mixed	3770	0.2024		0.000	0.000	0.000	0.000	0.000		
metro	Mixed High	931	0.1819		0.000	0.000	0.000	0.000	0.000		
metro	Residential	42829	0.1852		0.000	0.000	0.000	0.000	0.000		
metro	TOD	516	0.8774		0.000	0.000	0.000	0.000	0.000		
non_metro	Employment	10073	0.1575		0.000	0.000	0.000	0.000	0.000		
non_metro	Low Density/Rural	32352	0.1592		0.000	0.000	0.000	0.000	0.000		
non_metro	Mixed	160	0.1438		0.000	0.000	0.000	0.000	0.000		
non_metro	Mixed High	8	0.1207		0.000	0.000	0.000	0.000	0.000		
non_metro	Residential	11261	0.1756		0.000	0.000	0.000	0.000	0.000		
non_metro	TOD	5	0.0958		0.000	0.000	0.000	0.000	0.000		

	Table 4.7 Elasticities of Bik	e PMT with Respect to	Household Income
--	-------------------------------	-----------------------	-------------------------

4.2.2.4 Freeway Supply Sensitivity

					Δ Bi	kePMT	wrt A Fv	vyLaneN	liPC		
metro	Category	n	BikePMT		+10%	+20%	+30%	+40%	+50%		
	overall										
metro		66669	0.190		-0.009	-0.018	-0.026	-0.033	-0.041		
population_per_sqm											
metro	<1k		-0.009	-0.017	-0.024	-0.031	-0.038				
metro	1k-5k	36154	0.178		-0.009	-0.017	-0.025	-0.032	-0.039		
metro	5k-10k	16752	0.197		-0.009	-0.018	-0.026	-0.034	-0.041		
metro	>10k	7063	0.229		-0.010	-0.020	-0.030	-0.039	-0.047		
Income											
metro	<\$40k	24391	0.120		-0.006	-0.011	-0.016	-0.021	-0.025		
metro	\$40k-\$80k	20864	0.172		-0.008	-0.016	-0.023	-0.030	-0.037		
metro	>\$80k	21414	0.261		-0.012	-0.024	-0.035	-0.046	-0.056		
]	Developmen	tΤ	уре						
metro	Employment	12117	0.173		-0.008	-0.016	-0.024	-0.031	-0.038		
metro	Low Density/Rural	6506	0.179		-0.009	-0.017	-0.025	-0.032	-0.039		
metro	Mixed	3770	0.202		-0.009	-0.018	-0.027	-0.035	-0.043		
metro	Mixed High	931	0.182		-0.008	-0.016	-0.024	-0.031	-0.037		
metro	Residential	42829	0.185		-0.009	-0.017	-0.025	-0.033	-0.040		
metro	TOD	516	0.877		-0.039	-0.076	-0.111	-0.145	-0.177		

 Table 4.8 Elasticities of Bike PMT with Respect to Freeway Lane Miles per Capita

4.2.2.5 Transit Supply Sensitivity

Table 4.9 Elasticities of Bike PMT with Respect to Transit Revenue Miles p	oer Car	oita
--	---------	------

					Δ Bi	kePMT	wrt Δ Ti	ranRevN	/iPC		
metro	Category	n	BikePMT		+10%	+20%	+30%	+40%	+50%		
	overall										
metro		66669	0.190		0.005	0.015	0.032	0.066	0.130		
	population_per_sqm										
metro	<1k		-0.001	-0.002	-0.002	-0.003	-0.004				
metro	1k-5k	36154	0.178		0.001	0.003	0.007	0.014	0.028		
metro	5k-10k	16752	0.197		0.001	0.002	0.003	0.005	0.008		
metro	>10k	7063	0.229		0.036	0.100	0.219	0.444	0.882		
Income											
metro	<\$40k	24391	0.120		0.003	0.008	0.016	0.029	0.053		
metro	\$40k-\$80k	20864	0.172		0.001	0.002	0.005	0.008	0.013		
metro	>\$80k	21414	0.261		0.011	0.031	0.070	0.144	0.291		
		-	Developmen	tΤ	уре						
metro	Employment	12117	0.173		0.000	0.000	0.000	0.001	0.001		
metro	Low Density/Rural	6506	0.179		-0.001	-0.002	-0.003	-0.005	-0.006		
metro	Mixed	3770	0.202		0.004	0.008	0.013	0.020	0.027		
metro	Mixed High	931	0.182		0.002	0.004	0.006	0.008	0.010		
metro	Residential	42829	0.185		0.001	0.003	0.005	0.008	0.014		
metro	TOD	516	0.877		0.517	1.483	3.330	6.920	13.977		

4.2.3 Transit PMT

The specification for the Transit PMT model is available in Chapter 3 Transit PMT Model Specification.

4.2.3.1 Population Density (D1B) Sensitivity

Table 4.10 Elasticities of Transit PMT with Respect to D1B

1 401	e 4.10 Elasticities of		with Kespe			sitPMT v	vrt A D11	3		
metro	Category	n	TransitPMT		+10%	+20%	+30%	+40%	+50%	
			Overall			I	I			
metro		66669	1.362		0.013	0.025	0.038	0.051	0.064	
non_metro		53859	1.776		-0.014	-0.027	-0.040	-0.053	-0.065	
	I	r r	opulation per	sq	m					
metro	<1k	6700	1.151		0.001	0.002	0.003	0.004	0.005	
metro	1k-5k	36154	1.217		0.005	0.009	0.014	0.019	0.023	
metro	5k-10k	16752	1.242		0.009	0.019	0.029	0.038	0.048	
metro	>10k	7063	2.314		0.057	0.115	0.173	0.232	0.291	
non_metro	<1k	39696	1.977		-0.006	-0.012	-0.017	-0.023	-0.029	
non_metro	1k-5k	12572	1.266		-0.035	-0.068	-0.101	-0.133	-0.163	
non_metro	5k-10k	1387	0.718		-0.054	-0.104	-0.150	-0.193	-0.232	
non_metro	>10k	204	0.185		-0.027	-0.050	-0.069	-0.086	-0.100	
Income										
metro	<\$40k	24391	0.876		0.010	0.020	0.030	0.040	0.051	
metro	\$40k-\$80k	20864	1.237		0.012	0.023	0.035	0.047	0.059	
metro	>\$80k	21414	1.857		0.016	0.031	0.047	0.062	0.078	
non_metro	<\$40k	23436	1.207		-0.009	-0.018	-0.026	-0.035	-0.043	
non_metro	\$40k-\$80k	17640	1.951		-0.014	-0.029	-0.042	-0.055	-0.068	
non_metro	>\$80k	12783	2.487		-0.021	-0.040	-0.060	-0.079	-0.097	
		_	DevelopmentTy	yp	e	-	-	-	-	
metro	Employment	12117	1.409		0.009	0.019	0.029	0.039	0.049	
metro	Low Density/Rural	6506	1.159		0.002	0.003	0.005	0.006	0.008	
metro	Mixed	3770	1.464		0.019	0.039	0.059	0.080	0.100	
metro	Mixed High	931	2.434		0.086	0.171	0.255	0.338	0.421	
metro	Residential	42829	1.319		0.011	0.023	0.035	0.046	0.058	
metro	TOD	516	3.157		0.087	0.174	0.262	0.350	0.440	
non_metro	Employment	10073	1.565		-0.019	-0.038	-0.056	-0.074	-0.091	
non_metro	Low Density/Rural	32352	1.982		-0.006	-0.013	-0.019	-0.025	-0.031	
non_metro	Mixed	160	0.641		-0.029	-0.055	-0.081	-0.104	-0.126	
non_metro	Mixed High	8	0.272		-0.010	-0.020	-0.029	-0.038	-0.046	
non_metro	Residential	11261	1.378		-0.031	-0.060	-0.088	-0.115	-0.141	
non_metro	TOD	5	0.171		-0.012	-0.024	-0.034	-0.043	-0.051	

Table 4.11 Elasticities of Transit PMT with Respect to AADVMT											
					A Trans	sitPMT w	rt Δ AAD	VMT			
metro	Category	n	TransitPMT		+10%	+20%	+30%	+40%	+50%		
			Overal				•				
metro		66669	1.362		-0.043	-0.085	-0.125	-0.164	-0.201		
non_metro		53859	1.776		0.037	0.074	0.113	0.153	0.194		
			population_po	er_	sqm						
metro	<1k	6700	1.151		-0.047	-0.091	-0.134	-0.174	-0.213		
metro	1k-5k	36154	1.217		-0.043	-0.085	-0.125	-0.163	-0.200		
metro	5k-10k	16752	1.242		-0.040	-0.079	-0.116	-0.152	-0.187		
metro	>10k	7063	2.314		-0.048	-0.095	-0.140	-0.185	-0.228		
non_metro	<1k	39696	1.977		0.042	0.085	0.129	0.174	0.221		
non_metro	1k-5k	12572	1.266		0.024	0.048	0.073	0.099	0.126		
non_metro	5k-10k	1387	0.718		0.013	0.026	0.040	0.054	0.068		
non_metro	>10k	204	0.185		0.003	0.006	0.008	0.011	0.014		
Income											
metro	<\$40k	24391	0.876		-0.020	-0.039	-0.057	-0.075	-0.093		
metro	\$40k-\$80k	20864	1.237		-0.038	-0.075	-0.110	-0.144	-0.176		
metro	>\$80k	21414	1.857		-0.067	-0.131	-0.193	-0.252	-0.308		
non_metro	<\$40k	23436	1.207		0.020	0.040	0.061	0.082	0.104		
non_metro	\$40k-\$80k	17640	1.951		0.040	0.082	0.124	0.168	0.212		
non_metro	>\$80k	12783	2.487		0.060	0.122	0.187	0.253	0.321		
			Developmen	tTy	ype						
metro	Employment	12117	1.409		-0.046	-0.091	-0.134	-0.175	-0.215		
metro	Low	6506	1.159		-0.048	-0.094	-0.137	-0.179	-0.219		
	Density/Rural										
metro	Mixed	3770	1.464		-0.040	-0.079	-0.117	-0.154	-0.189		
metro	Mixed High	931	2.434		-0.039	-0.078	-0.115	-0.152	-0.187		
metro	Residential	42829	1.319		-0.042	-0.083	-0.122	-0.160	-0.196		
metro	TOD	516	3.157		-0.048	-0.096	-0.142	-0.187	-0.232		
non_metro	Employment	10073	1.565		0.031	0.062	0.094	0.128	0.162		
non_metro	Low	32352	1.982		0.042	0.086	0.131	0.177	0.224		
	Density/Rural										
non_metro	Mixed	160	0.641		0.011	0.022	0.033	0.045	0.057		
non_metro	Mixed High	8	0.272		0.003	0.006	0.009	0.012	0.015		
non_metro	Residential	11261	1.378		0.026	0.053	0.081	0.109	0.139		
non_metro	TOD	5	0.171		0.001	0.002	0.004	0.005	0.006		

4.2.3.2 Household AADVMT Sensitivitiy

Table 4 11 Flasticities of Transit PMT with Respect to AADVMT

4.2.3.3 Household Income Sensitivity

	TIL Elasticitics of 1		•		t Δ incom	ie						
metro	Category	n	TransitPMT	+10%	+20%	+30%	+40%	+50%				
		•	overall		l .	•						
metro		66669	1.362	0.000	0.000	0.000	0.000	0.000				
non_metro		53859	1.776	0.000	0.000	0.000	0.000	0.000				
		рор	ulation_per_sqn	1								
metro	<1k	6700	1.151	0.000	0.000	0.000	0.000	0.000				
metro	1k-5k	36154	1.217	0.000	0.000	0.000	0.000	0.000				
metro	5k-10k	16752	1.242	0.000	0.000	0.000	0.000	0.000				
metro	>10k	7063	2.314	0.000	0.000	0.000	0.000	0.000				
non_metro	<1k	39696	1.977	0.000	0.000	0.000	0.000	0.000				
non metro	1k-5k	12572	1.266	0.000	0.000	0.000	0.000	0.000				
non_metro	5k-10k	1387	0.718	0.000	0.000	0.000	0.000	0.000				
non_metro	>10k	204	0.185	0.000	0.000	0.000	0.000	0.000				
Income												
metro	<\$40k	24391	0.876	0.000	0.000	0.000	0.000	0.000				
metro	\$40k-\$80k	20864	1.237	0.000	0.000	0.000	0.000	0.000				
metro	>\$80k	21414	1.857	0.000	0.000	0.000	0.000	0.000				
non_metro	<\$40k	23436	1.207	0.000	0.000	0.000	0.000	0.000				
non_metro	\$40k-\$80k	17640	1.951	0.000	0.000	0.000	0.000	0.000				
non_metro	>\$80k	12783	2.487	0.000	0.000	0.000	0.000	0.000				
			velopmentType									
metro	Employment	12117	1.409	0.000	0.000	0.000	0.000	0.000				
metro	Low Density/Rural	6506	1.159	0.000	0.000	0.000	0.000	0.000				
metro	Mixed	3770	1.464	0.000	0.000	0.000	0.000	0.000				
metro	Mixed High	931	2.434	0.000	0.000	0.000	0.000	0.000				
metro	Residential	42829	1.319	0.000	0.000	0.000	0.000	0.000				
metro	TOD	516	3.157	0.000	0.000	0.000	0.000	0.000				
non_metro	Employment	10073	1.565	0.000	0.000	0.000	0.000	0.000				
non_metro	Low Density/Rural	32352	1.982	0.000	0.000	0.000	0.000	0.000				
non_metro	Mixed	160	0.641	0.000	0.000	0.000	0.000	0.000				
non_metro	Mixed High	8	0.272	0.000	0.000	0.000	0.000	0.000				
non_metro	Residential	11261	1.378	0.000	0.000	0.000	0.000	0.000				
non_metro	TOD	5	0.171	0.000	0.000	0.000	0.000	0.000				

Table 4.12 Elasticities of Transit PMT with Respect to Household Income

4.2.3.4 Freeway Supply Sensitivity

					Δ Tran	sitPMT	wrt Δ Fy	wyLaneN	MiPC					
metro	Category	n	TransitPMT		+10%	+20%	+30%	+40%	+50%					
	-		overall			-	-	-						
metro		66669	1.362		-0.032	-0.062	-0.092	-0.121	-0.150					
	population_per_sqm													
metro	<1k	6700	1.151		-0.030	-0.059	-0.086	-0.114	-0.140					
metro	1k-5k	36154	1.217		-0.030	-0.059	-0.086	-0.114	-0.140					
metro	5k-10k	16752	1.242		-0.029	-0.056	-0.084	-0.110	-0.136					
metro	>10k	7063	2.314		-0.047	-0.092	-0.137	-0.181	-0.224					
	Income													
metro	<\$40k	24391	0.876		-0.020	-0.040	-0.060	-0.079	-0.097					
metro	\$40k-\$80k	20864	1.237		-0.029	-0.057	-0.085	-0.111	-0.137					
metro	>\$80k	21414	1.857		-0.043	-0.084	-0.125	-0.164	-0.203					
			Development	Тy	vpe									
metro	Employment	12117	1.409		-0.033	-0.066	-0.098	-0.128	-0.158					
metro	Low Density/Rural	6506	1.159		-0.029	-0.057	-0.085	-0.112	-0.138					
metro	Mixed	3770	1.464		-0.033	-0.066	-0.098	-0.129	-0.159					
metro	Mixed High	931	2.434		-0.048	-0.095	-0.141	-0.187	-0.231					
metro	Residential	42829	1.319		-0.030	-0.060	-0.089	-0.117	-0.144					
metro	TOD	516	3.157		-0.070	-0.137	-0.204	-0.268	-0.332					

Table 4.13 Elasticities of Transit PMT with Respect to Freeway Lane Miles per Capita

4.2.3.5 Transit Supply Sensitivity

Table 4.14 Elasticities of Transit PMT with Respect to Transit Revenue Miles per Capita

					Δ TransitPMT wrt Δ TranRev								
metro	Category	n	TransitPMT		+10%	+20%	+30%	+40%	+50%				
			overall										
metro		66669	1.362		0.091	0.188	0.292	0.404	0.522				
	population_per_sqm												
metro	<1k	6700	1.151		0.069	0.143	0.223	0.309	0.400				
metro	1k-5k	36154	1.217		0.070	0.145	0.225	0.311	0.401				
metro	5k-10k	16752	1.242		0.079	0.163	0.252	0.348	0.450				
metro	>10k	7063	2.314		0.211	0.439	0.683	0.945	1.224				
	Income												
metro	<\$40k	24391	0.876		0.055	0.115	0.178	0.247	0.320				
metro	\$40k-\$80k	20864	1.237		0.079	0.163	0.254	0.351	0.454				
metro	>\$80k	21414	1.857		0.130	0.269	0.417	0.575	0.742				
		Ι	DevelopmentTy	pe									
metro	Employment	12117	1.409		0.094	0.195	0.304	0.420	0.543				
metro	Low Density/Rural	6506	1.159		0.065	0.133	0.207	0.286	0.370				
metro	Mixed	3770	1.464		0.104	0.216	0.336	0.464	0.601				
metro	Mixed High	931	2.434		0.176	0.362	0.559	0.767	0.987				
metro	Residential	42829	1.319		0.088	0.182	0.282	0.390	0.504				
metro	TOD	516	3.157		0.289	0.596	0.920	1.261	1.619				

4.2.4 Walk PMT

The specification for the Walk PMT model is available in Chapter 3 Walk PMT Model Specification.

4.2.4.1 Population Density (D1B) Sensitivity

Table 4.15 Elasticities of Walk PMT with Respect to D1B

	ie Liustenies of wa		k		Δ WalkPMT wrt Δ AADVMT					
metro	Category	n	WalkPMT		+10%	+20%	+30%	+40%	+50%	
			overall							
metro		66669	0.596		-0.003	-0.006	-0.009	-0.013	-0.016	
non_metro		53859	0.397		0.001	0.003	0.004	0.006	0.007	
	1		opulation_pe	er_s						
metro	<1k	6700	0.473		-0.004	-0.008	-0.011	-0.015	-0.019	
metro	1k-5k	36154	0.521		-0.003	-0.007	-0.010	-0.014	-0.017	
metro	5k-10k	16752	0.626		-0.003	-0.006	-0.009	-0.013	-0.016	
metro	>10k	7063	0.887		-0.002	-0.003	-0.005	-0.007	-0.009	
non_metro	<1k	39696	0.387		0.001	0.003	0.004	0.006	0.007	
non_metro	1k-5k	12572	0.409		0.001	0.003	0.004	0.005	0.007	
non_metro	5k-10k	1387	0.566		0.002	0.004	0.006	0.008	0.011	
non_metro	>10k	204	0.642		0.002	0.003	0.005	0.007	0.009	
			Income							
metro	<\$40k	24391	0.491		-0.002	-0.004	-0.006	-0.008	-0.010	
metro	\$40k-\$80k	20864	0.567		-0.003	-0.006	-0.009	-0.012	-0.015	
metro	>\$80k	21414	0.705		-0.004	-0.008	-0.012	-0.017	-0.021	
non_metro	<\$40k	23436	0.311		0.001	0.001	0.002	0.003	0.004	
non_metro	\$40k-\$80k	17640	0.420		0.002	0.003	0.005	0.006	0.008	
non_metro	>\$80k	12783	0.512		0.002	0.005	0.007	0.010	0.013	
			Development	tTy				-		
metro	Employment	12117	0.549		-0.003	-0.006	-0.010	-0.013	-0.016	
metro	Low Density/Rural	6506	0.499		-0.004	-0.008	-0.012	-0.016	-0.020	
metro	Mixed	3770	0.663		-0.003	-0.005	-0.008	-0.011	-0.014	
metro	Mixed High	931	0.972		-0.001	-0.002	-0.002	-0.003	-0.004	
metro	Residential	42829	0.596		-0.003	-0.006	-0.010	-0.013	-0.016	
metro	TOD	516	1.248		0.001	0.002	0.003	0.005	0.006	
non_metro	Employment	10073	0.398		0.001	0.003	0.004	0.005	0.007	
non_metro	Low Density/Rural	32352	0.387		0.001	0.003	0.004	0.006	0.007	
non_metro	Mixed	160	0.502		0.002	0.004	0.006	0.008	0.010	
non_metro	Mixed High	8	1.038		0.002	0.004	0.006	0.008	0.010	
non_metro	Residential	11261	0.425		0.001	0.003	0.004	0.006	0.007	
non_metro	TOD	5	1.204		0.002	0.003	0.005	0.007	0.009	

4.2.4.2 Household Income Sensitivity

1 auto	e 4.10 Elasticities of	vaik i iv	II with Kespe	eci	Δ WalkPMT wrt Δ income							
matua	Catagowy		WalkPMT		+10%	+20%	+30%	<u>+40%</u>	e +50%			
metro	Category	n	overall		+10%	+20%	+30%	+40%	+50%			
metro		66669	0.596		0.000	0.000	0.000	0.000	0.000			
non metro		53859	0.390		0.000	0.000	0.000	0.000	0.000			
<u>non_metro</u>			oulation per	60		0.011	0.010	0.021	0.025			
metro	<1k	6700	0.473	эч	0.000	0.000	0.000	0.000	0.000			
metro	1k-5k	36154	0.521		0.000	0.000	0.000	0.000	0.000			
metro	5k-10k	16752	0.626		0.000	0.000	0.000	0.000	0.000			
metro	>10k	7063	0.887		0.000	0.000	0.000	0.000	0.000			
non metro	<1k	39696	0.387		0.000	0.000	0.000	0.000	0.000			
non metro	1k-5k	12572	0.409		0.000	0.011	0.016	0.020	0.025			
non metro	5k-10k	1387	0.566		0.007	0.014	0.021	0.027	0.032			
non metro	>10k	204	0.642		0.008	0.016	0.023	0.029	0.035			
	1011		Income		01000	01010	0.020	0.022	01000			
metro	<\$40k	24391	0.491		0.000	0.000	0.000	0.000	0.000			
metro	\$40k-\$80k	20864	0.567		0.000	0.000	0.000	0.000	0.000			
metro	>\$80k	21414	0.705		0.000	0.000	0.000	0.000	0.000			
non metro	<\$40k	23436	0.311		0.005	0.009	0.013	0.017	0.021			
non metro	\$40k-\$80k	17640	0.420		0.006	0.012	0.017	0.022	0.026			
non metro	>\$80k	12783	0.512		0.007	0.013	0.019	0.025	0.030			
		D	evelopmentTy	yp	e							
metro	Employment	12117	0.549		0.000	0.000	0.000	0.000	0.000			
metro	Low Density/Rural	6506	0.499		0.000	0.000	0.000	0.000	0.000			
metro	Mixed	3770	0.663		0.000	0.000	0.000	0.000	0.000			
metro	Mixed High	931	0.972		0.000	0.000	0.000	0.000	0.000			
metro	Residential	42829	0.596		0.000	0.000	0.000	0.000	0.000			
metro	TOD	516	1.248		0.000	0.000	0.000	0.000	0.000			
non_metro	Employment	10073	0.398		0.006	0.011	0.016	0.021	0.025			
non_metro	Low Density/Rural	32352	0.387		0.006	0.011	0.016	0.020	0.025			
non_metro	Mixed	160	0.502		0.007	0.013	0.019	0.025	0.030			
non_metro	Mixed High	8	1.038		0.011	0.022	0.031	0.040	0.049			
<u>non_metro</u>	Residential	11261	0.425		0.006	0.012	0.017	0.021	0.026			
non_metro	TOD	5	1.204		0.010	0.018	0.026	0.034	0.041			

Table 4.16 Elasticities of Walk PMT with Respect to Household Income

4.2.4.3 Freeway Supply Sensitivity

					Δ WalkPMT wrt Δ FwyLaneMiPC									
metro	Category	n	WalkPMT		+10%	+20%	+30%	+40%	+50%					
			overal	1				-						
metro		66669	0.596		-0.003	-0.005	-0.008	-0.011	-0.013					
	population_per_sqm													
metro	<1k	6700	0.473		-0.002	-0.005	-0.007	-0.009	-0.011					
metro	1k-5k	36154	0.521		-0.002	-0.005	-0.007	-0.009	-0.012					
metro	5k-10k	16752	0.626		-0.003	-0.006	-0.008	-0.011	-0.014					
metro	>10k	7063	0.887		-0.004	-0.008	-0.012	-0.015	-0.019					
	Income													
metro	<\$40k	24391	0.491		-0.002	-0.004	-0.006	-0.008	-0.010					
metro	\$40k-\$80k	20864	0.567		-0.003	-0.005	-0.007	-0.010	-0.012					
metro	>\$80k	21414	0.705		-0.003	-0.007	-0.010	-0.013	-0.016					
			Developmer	ıtT	ype									
metro	Employment	12117	0.549		-0.002	-0.005	-0.007	-0.010	-0.012					
metro	Low Density/Rural	6506	0.499		-0.002	-0.005	-0.007	-0.009	-0.011					
metro	Mixed	3770	0.663		-0.003	-0.006	-0.008	-0.011	-0.014					
metro	Mixed High	931	0.972		-0.004	-0.008	-0.012	-0.017	-0.021					
metro	Residential	42829	0.596		-0.003	-0.005	-0.008	-0.011	-0.013					
metro	TOD	516	1.248		-0.006	-0.012	-0.017	-0.023	-0.029					

Table 4.17 Elasticities of Walk PMT with Respect to Freeway Lane Miles per Capita

4.2.4.4 Transit Supply Sensitivity

					ΔWa	alkPMT	wrt ΔT	ranRevN	MiPC					
metro	Category	n	WalkPMT		+10%	+20%	+30%	+40%	+50%					
			overall											
metro		66669	0.596		0.009	0.018	0.027	0.036	0.045					
	population_per_sqm													
metro	<1k	6700	0.473		0.007	0.013	0.020	0.027	0.034					
metro	1k-5k	36154	0.521		0.007	0.015	0.022	0.029	0.037					
metro	5k-10k	16752	0.626		0.009	0.018	0.028	0.037	0.046					
metro	>10k	7063	0.887		0.015	0.031	0.046	0.062	0.077					
	Income													
metro	<\$40k	24391	0.491		0.007	0.015	0.022	0.029	0.037					
metro	\$40k-\$80k	20864	0.567		0.008	0.017	0.025	0.034	0.042					
metro	>\$80k	21414	0.705		0.011	0.021	0.032	0.043	0.053					
		-	Development	Ту	ре									
metro	Employment	12117	0.549		0.008	0.017	0.025	0.034	0.042					
metro	Low Density/Rural	6506	0.499		0.007	0.014	0.021	0.028	0.035					
metro	Mixed	3770	0.663		0.010	0.020	0.030	0.040	0.051					
metro	Mixed High	931	0.972		0.012	0.024	0.036	0.048	0.059					
metro	Residential	42829	0.596		0.009	0.018	0.027	0.036	0.045					
metro	TOD	516	1.248		0.015	0.030	0.044	0.059	0.074					

4.3 PHASE II

The models (AADVMT model, trip frequency model and person mile traveled model for bike, walk, and transit) are applied to RVMPO data using the VisionEval framework with RSPM/VisionEval synthesized households and supplemental block group built environment level inputs. Below are the prediction outputs from the new models and RSPM, and the comparison with OHAS (weighted averages).

4.3.1 Predictions from the New Models

					Trips				РМТ			
Category	n	AADVMT		Bike Trips	Walk Trips	Transit Trips		Bike PMT	Walk PMT	Transit PMT		
		•			Overall							
RVMPO	74045	41.800		0.146	0.891	0.144		0.290	0.578	0.751		
	DevelopmentType											
Rural	6476	49.200		0.158	0.754	0.134		0.294	0.513	0.816		
Urban	67569	41.100		0.145	0.905	0.145		0.290	0.584	0.745		
					Income							
<\$40k	31432	25.100		0.124	0.762	0.180		0.167	0.482	0.676		
\$40k-\$80k	18071	43.800		0.149	0.907	0.125		0.288	0.586	0.754		
>\$80k	24542	61.800		0.172	1.045	0.111		0.449	0.694	0.844		
				Populati	on per Squ	are Mile						
<1k	19126	42.300		0.143	0.710	0.133		0.249	0.476	0.739		
1k-5k	35477	42.300		0.144	0.898	0.141		0.294	0.579	0.753		
5k-10k	18211	40.700		0.151	1.071	0.157		0.327	0.682	0.757		
>10k	1231	36.900		0.157	0.876	0.202		0.258	0.575	0.792		

Table 4.19 VETravelDemandMM Predictions

4.3.2 RSPM Predictions

				Trips									
Category	n	DVMT		BikeTrips	WalkTrips	TransitTrips							
				Overall		·							
RVMPO	74045	52.400		0.092	0.690	0.037							
DevelopmentType													
Rural	6676	65.400		0.088	0.741	0.023							
Urban	67369	51.200		0.092	0.685	0.038							
				Income									
<\$40 k	31791	34.700		0.090	0.604	0.053							
\$40k-\$80k	17852	56.200		0.090	0.645	0.023							
>\$80k	24402	72.800		0.095	0.834	0.026							
		Populat	tior	1 per Square	e Mile								
<1k	19208	57.400		0.087	0.598	0.022							
1k-5k	34215	54.300		0.093	0.704	0.035							
5k-10k	19384	45.900		0.094	0.752	0.050							
>10k	1238	29.200		0.103	0.751	0.108							

Table 4.20 RSPM Predictions

4.3.3 OHAS Observations

Those are the weighted average trip and person mile traveled per household by mode from the 2012 Oregon Household Activity Survey for RVMPO

				Trips			PMT					
Category	n	DVMT	Bike Trips	Walk Trips	Transit Trips	Bike PMT	Walk PMT	Transit PMT				
			Ov	erall	· · · · ·		·					
RVMPO	931	36.700	0.232	0.870	0.094	0.395	0.276	0.538				
	DevelopmentType											
Rural	81	50.200	0.159	0.435	0.008	0.210	0.137	0.042				
Urban	850	35.700	0.237	0.901	0.100	0.408	0.286	0.573				
			Inc	ome								
<\$40k	367	27.200	0.138	0.798	0.144	0.164	0.222	0.762				
\$40k-\$80k	329	39.100	0.455	0.777	0.014	0.763	0.313	0.050				
>\$80k	235	53.900	0.072	1.186	0.114	0.300	0.336	0.845				
		P	opulation pe	er Square	Mile							
<1k	226	40.800	0.079	0.510	0.037	0.270	0.135	0.013				
1k-5k	460	37.100	0.361	0.891	0.084	0.595	0.304	0.495				
5k-10k	232	32.800	0.167	1.036	0.145	0.222	0.310	0.979				
>10k	13	43.500	0.000	1.408	0.076	0.000	0.528	0.055				

Table 4.21 OHAS Observations

4.3.4 Comparison of Spatial Distribution (Census Tract)

4.3.4.1 VMT

The spatial distribution of (weighted) average VMT from the observed OHAS data is very noisy due to small sample size per census tract (min=4, mean=25.861, and max=81). It is also different in what is predicted. The new VETravelDemandMM module predicts Annual Average Daily VMT (AADVMT) for households, the RSPM simulates AADVMT from household DVMT predictions, while OHAS reports household VMT on the day of the survey. The RSPM predictions are higher than the AADVMT predictions from VETravelDemandMM.

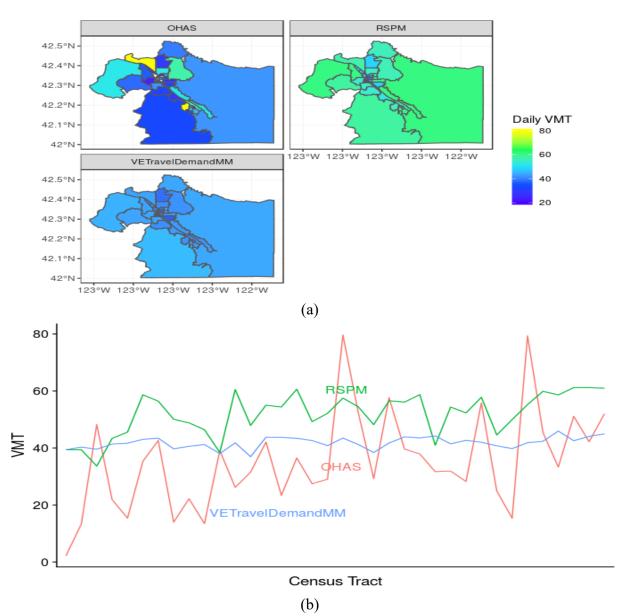


Figure 4.5 Maps (a) and line chart (b) of VMT by Census Tract from RSPM, VETravelDemand, and OHAS

4.3.4.2 Bike Trips and PMT

Similar to VMT, the spatial distribution of (weighted) average bike trips and PMT from the observed OHAS data is very noisy. The VETravelDemandMM has larger predictions than RSPM for all tracts, even though the magnitude of the difference is small.

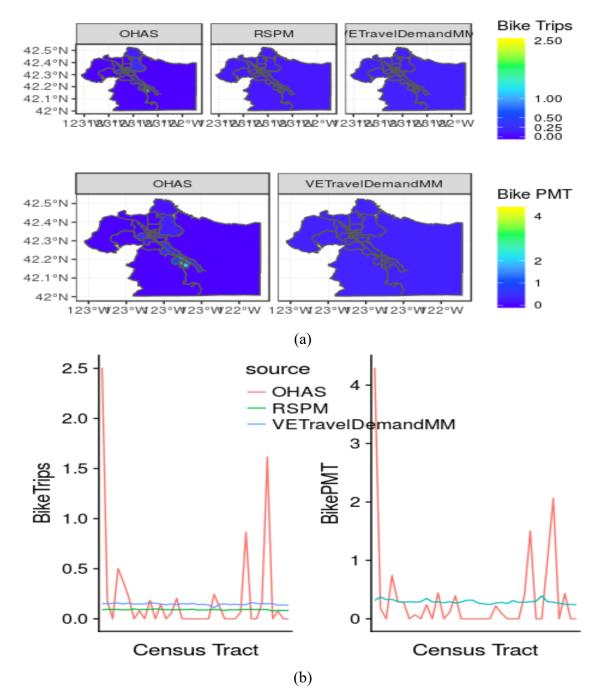


Figure 4.6 Maps (a) and line chart (b) of bike trips and PMT by Census Tract from RSPM, VETravelDemand, and OHAS

4.3.4.3 Walk Trips and PMT

The spatial distribution of (weighted) average walk trips and PMT from the observed OHAS data is again very noisy. The VETravelDemandMM has slightly larger predictions than RSPM for all tracts. The VETravelDemandMM successfully predicts tracts with higher observed walk trips and PMT, even though the magnitude differs.

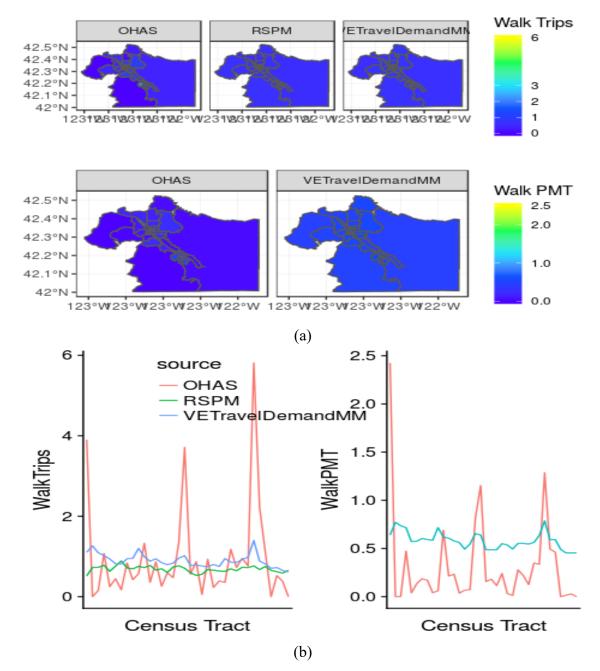


Figure 4.7 Maps (a) and line chart (b) of walk trips and PMT by Census Tract from RSPM, VETravelDemand, and OHAS

4.3.4.4 Transhit Trips and PMT

There is a large number of tracts without any observed transit trips or PMT from the observed OHAS data, which seems reasonable as not all tracts have transit service in Rogue Valley. However, neither the VETravelDemandMM nor the RSPM is able to replicate this pattern as variables for transit supply are not used in the prediction. The VETravelDemandMM predicts slightly larger quantity than RSPM for all tracts with little variation across census tracts.

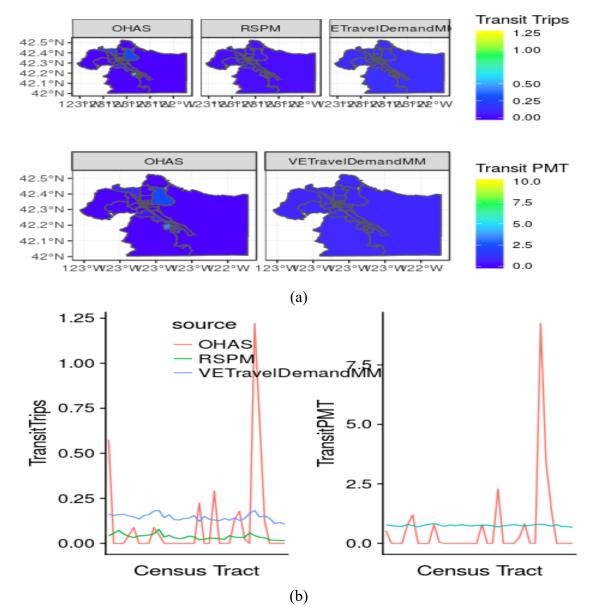


Figure 4.8 Maps (a) and line chart (b) of transit trip and PMT by Census Tract from RSPM, VETravelDemand, and OHAS

4.4 PHASE III

All modules in the VETravelDemandMM R package have been tested to work with <u>the develop</u> <u>branch of VisionEval</u> using <u>the RVMPO data</u>. Automated testing (continuous integration) have been put in place to make sure the code/package passes all tests and is in working condition with the latest version of VisionEval all the time. And if anything breaks automated tests, authors of the packages will be notified through email (see also Task 3).

5.0 VETRAVELDEMANDMM MODULE ACCEPTANCE REVIEW

This chapter is adapted from the vignette in the VETravelDemandMM package documenting responses to <u>VisionEval Contribution Review Criteria</u> for the VETravelDemandMM module.

5.1 CONTRIBUTION REVIEW CRITERIA

1. Does it contain all the elements that are required by the VisionEval <u>system</u> <u>specifications</u>?

As a module for VisionEval and a standard R package, this package/module conforms to the recommendations in <u>Section 8 Module</u>, in terms of both required elements and the directories and files layout. The only directory included in the package but not appearing in the recommendation is data-raw. Here we follow Hadley Wickham's recommendation in his <u>R</u> <u>packages</u>: "Often, the data you include in data/ is a cleaned up version of raw data you've gathered from elsewhere. I highly recommend taking the time to include the code used to do this in the source version of your package [... and] put this code in data-raw/". The scripts in data-raw are the code used to estimate all models and save estimation results into the data directory.

2. Why is it better, and/or different than <u>existing modules</u>? Does it do good science and provide documentation justifying this claim? Is it consistent with good practice in strategic modeling? How might it overlap with existing modules?

The primary objectives of the module are to better represent multi-modal travel in models for strategic planning and to update models with the latest and best data available. In addition to these two primary objectives, the module uses rigorous selection and benchmarking of different model structures in choosing the model structure and takes advantage of R infrastructure and new packages. Justification and objectives can be found in these project reports:

- SPR 788 Project Report for Task 2 Model Design and Estimation Report
- <u>SPR 788 Project Report for Task 3 VETravelDemand (VisionEval Travel Demand) Implementation</u>
- SPR 788 Project Report for Task 4 Model Testing
- 3. Is the module documentation complete? Does it include documentation of model estimation, algorithms, and instructions for using?

There are documents of the module in various forms:

• Manual for each of the R functions in the module;

- Vignettes (including this document) that provide a long-form document of the package;
- Code and comments for estimation scripts
- Project reports and manuscripts under review, linked in the Introduction vignette
- 4. If the module allows the estimation of regional parameters, does it provide default data, does it have clear documentation of what the estimation data needs to be and how it is to be formatted and does it include proper data specifications to ensure that the user's input data are correct?

This module provides default model parameters estimated with US nationwide data, and it is also possible to re-estimate model parameters with region-specific data. The main estimation data are drawn from two external data package (<u>NHTS2009</u> and <u>SLD</u>, documented therein) and data-raw/LoadDataforEstimation.R joins data from different data sources and creates a single household data frame for estimation. Data-raw/LoadDataforEstimation.R provides code and comments needed to replace the estimation data with region-specific data.

Since the model estimation does not use VisionEval specification, there is little check on data quality except for a few informational prints out in the script.

5. Is it based on geographic definitions that are consistent with the model system definitions?

The module uses two geographies: Bzone (block-group) and Marea (region/UZA), which are consistent with the model system definitions.

6. Does the module compute quickly enough and provide documentation justifying this claim?

The tests running all 6 models in the module using Rogue Valley data take between 1 minute to 1 minute and 30 seconds across different builds on Travis CI (See <u>https://travis-ci.org/cities-lab/VETravelDemandMM/builds</u>), on average 10 - 15 seconds per model, which is almost the same as the GreenSTEP/RSPM VETravelDemand module (<u>https://travis-ci.org/gregorbj/VisionEval/builds</u>).

7. Does it include all source files and data? If a contributed module does not include all source data, it should include a minimal example data file for testing and so it is clear what data structure is needed to run the module. It should also include clear instructions on how to fetch the data and/or a clear explanation of why non-included data is confidential and contact information for data owners.

Except for the confidential residential block group information for households in NHTS, all data and code are included in the package or in another open source (data) packages (NHTS2009 and SLD).

8. Does the module only call R code and packages that work on all operating systems? If the code includes any non-R code (e.g. FORTRAN, C++) will that code compile on all operating systems?

The module only includes R code and should work on all operating systems.

9. Is it licensed with the VisionEval license that allows the code to be freely distributed and modified and includes attribution so that the 'provenance' of the code can be tracked?

The package is licensed with the same Apache 2.0 license as VisionEval. A LICENSE file is added to the package directory.

10. Does it only interact with the computing environment by returning a properly structured list to the framework (i.e. it does not modify the global environment, does not read or write files, and only calls framework functions that are allowed)?

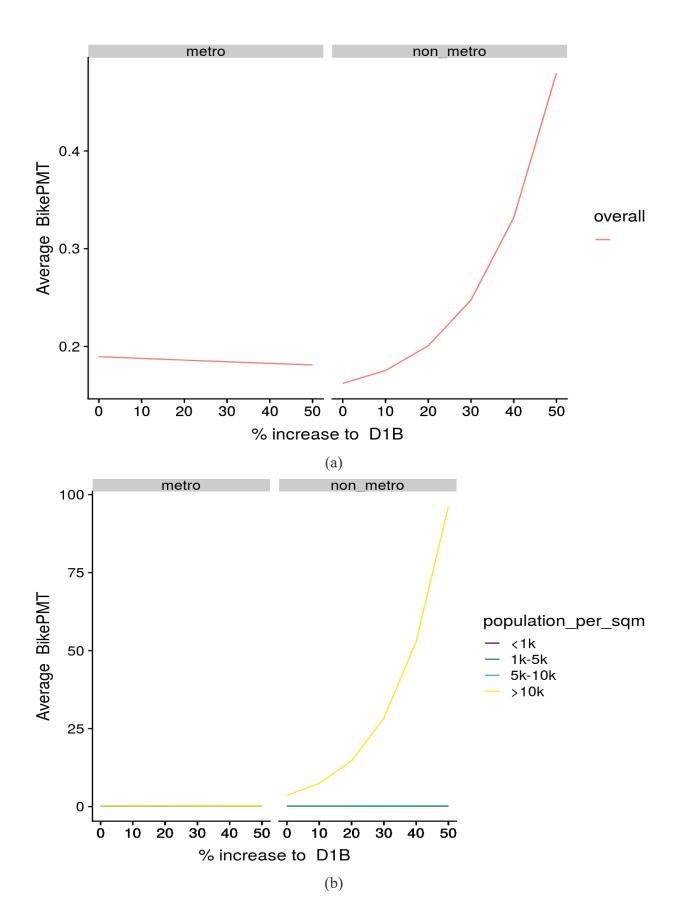
Primary functions of the module are implemented in R/Predict*.R. The development of the package follows the VisionEval system design guide and the template module and only calls framework functions and a few internal helper functions. The module does not modify the global environment or read/write files when running as a VisionEval module.

11. Does it include regression tests to enable checking that consistent results will be returned when updates are made to the framework and/or R programming environment?

checkModuleOutputs provided by testModule checks outputs against the specification of each model in automated tests of the package.

12. Does it include sufficient test coverage and test data? Does it pass the <u>'testModule'</u> test which validates that it will run correctly in the model system?

Automated tests including devtools. Check (), installation testing, and test runs of models in the module with VisionEval::testModule () are in place with <u>Travis-CI</u>. All tests pass in the current and recent builds.


6.0 **REFERENCES**

- Cervero, Robert. (1996). Mixed land-uses and commuting: evidence from the American housing survey. *Transportation Research Part A: Policy and Practice 30* (5): 361–77. doi:10.1016/0965-8564(95)00033-X.
- Cervero, Robert & Duncan, Michael. (2003). Walking, bicycling, and urban landscapes: evidence from the San Francisco Bay Area. *American Journal of Public Health* 93 (9): 1478–83.
- Cervero, Robert & Kockelman, Kara. (1997). Travel demand and the 3Ds: Density, diversity, and design. *Transportation Research Part D: Transport and Environment* 2 (3): 199–219. doi:10.1016/S1361-9209(97)00009-6.
- Clifton, Kelly J. & Gregor, Brian J. (2012). Development of decision tool for strategies to reduce greenhouse gas emissions: Role of national household travel survey data in GreenSTEP model development. *Transportation Research Record*, 2291, 124–34.
- Ewing, Reid, & Cervero, Robert. (2001). Travel and the built environment: A Synthesis. *Transportation Research Record*, 1780, 87-113. doi:<u>10.3141/1780-10</u>.
- Ewing, Reid, & Cervero, Robert. (2010) Travel and the built environment: A meta-analysis. Journal of the American Planning Association 76 (3). doi:10.1080/01944361003766766.
- Ewing, R. H., Schroeer, W., & Greene, W. (2004). School location and student travel analysis of factors affecting mode choice. *Transportation Research Record*, 1895, 55–63.
- Gehrke, S. R., & Clifton, K. J. (2016). Toward a spatial-temporal measure of land-use mix. *Journal of Transport and Land Use, 9,* 1, 171-186. doi:<u>10.5198/jtlu.2015.725</u>.
- Golob, T. F., & University of California, Irvine. (1989). *The dynamics of household travel time expenditures and car ownership decisions*. Irvine, Calif: University of California, Institute of Transportation Studies.
- Goodwin, P. B. (1981). The Usefulness of Travel Budgets. *Transportation Research Part A: General 15*(1): 97–106. doi:10.1016/0191-2607(83)90019-5.
- Gregor, Brian & Oregon, P.E. (2010). GreenSTEP: Greenhouse Gas Statewide Transportation Emissions Planning Model.
- Gunn, Hugh F. (1981). Travel budgets A review of evidence and modelling implications. *Transportation Research Part A: General, 15*(1), 7-23. doi:<u>10.1016/0191-</u>2607(83)90012-2.

- Hamre, Andrea, & Ralph Buehler. (2014). Commuter Mode Choice and Free Car Parking, Public Transportation Benefits, Showers/Lockers, and Bike Parking at Work: Evidence from the Washington, DC Region. *Journal of Public Transportation 17*, 2, 67-91. https://www.nctr.usf.edu/wp-content/uploads/2014/07/JPT17.2 Hamre.pdf.
- Heinen, E., van, W. B., & Maat, K. (2010). Commuting by Bicycle: An Overview of the Literature. *Transport Reviews, 30,* 1, 59-96. doi:10.1080/01441640903187001.
- Hensher, D. A., & Ton, T. T. (2000). A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice. *Transportation Research*. *Part E, Logistics and Transportation Review, 36E,* 3, 155–172. doi:<u>10.1016/S1366-5545(99)00030-7</u>.
- Hess, Daniel Baldwin. (2001). Effect of Free Parking on Commuter Mode Choice: Evidence from Travel Diary Data. *Transportation Research Record*, 1753, 35–42. doi: <u>10.3141/1753-05</u>
- Moeckel, Rolf. (2016). Constraints in household relocation: Modeling land-use/transport interactions that respect time and monetary budgets. *Journal of Transport and Land Use*. doi:10.5198/jtlu.2015.810.
- Mokhtarian, P. L., & Chen, C. (2004). TTB or not TTB, that is the question: A review and analysis of the empirical literature on travel time (and money) budgets. *Transportation Research Part A: Policy and Practice 38A*, 643–75. doi:<u>10.1016/j.tra.2003.12.004</u>.
- Plaut, P. O. (2005). Non-motorized commuting in the US. *Transportation Research Part D: Transport and Environment, 10,* 5, 347-356. doi:<u>10.1016/j.trd.2005.04.002</u>.
- Ramsey, K., & Bell, A. (2014). *Smart Location Database Version 2.0 User Guide* (Publication). Washington, D.C.: United States Environmental Protection Agency. Retrieved from https://www.epa.gov/sites/production/files/2014-03/documents/sld_userguide.pdf.
- Rodriguez, D. A., & Joo, J. (2004). The relationship between non-motorized mode choice and the local physical environment. *Transportation Research Part D Transport and Environment, 9, 2, 151-173. doi:<u>10.1016/j.trd.2003.11.001</u>.*
- Schwanen, T., & Mokhtarian, P. L. (2005). What affects commute mode choice: neighborhood physical structure or preferences toward neighborhoods? *Journal of Transport Geography*, 13, 1, 83-99. doi:<u>10.1016/j.jtrangeo.2004.11.001</u>.
- Singleton, P. A., & Wang, L. (2014). Safety and Security in Discretionary Travel Decision Making. Transportation Research Record: Journal of the Transportation Research Board, 2430(1), 47-58. doi:10.3141/2430-06
- Srinivasan, S., & Ferreira, J. (2002). Travel behavior at the household level: Understanding linkages with residential choice. *Transportation Research. Part D, Transport and Environment*, 3, 225-242. doi:10.1016/S1361-9209(01)00021-9.

- Tanner, J. C. (1981). Expenditure of time and money on travel. *Transportation Research Part A: General 15*, 1, 25–38. doi:<u>10.1016/0191-2607(83)90013-4</u>.
- Train, K., & McFadden, D. (1978). The goods/leisure tradeoff and disaggregate work trip mode choice models. *Transportation Research*, *12*, 5, 349-353. doi:<u>10.1016/0041-1647(78)90011-4</u>.
- United States. (2014). *Consumer expenditure survey*. Washington, D.C: Bureau of Labor Statistics. Retrieved from <u>https://www.bls.gov/opub/reports/consumer-expenditures/2014/home.htm</u>.
- United States. (2009). *National household travel survey (NHTS)*. Washington, D.C: U.S. Dept. of Transportation, Federal Highway Administration, Office of Highway Policy Information. Retrieved from https://nhts.ornl.gov.
- Whitfield, G. P., Paul, P., & Wendel, A. M. (2015). Active Transportation Surveillance United States, 1999-2012. Morbidity and Mortality Weekly Report. Surveillance Summaries 64, 7, 1-17. doi:10.15585/mmwr.ss6407a1
- Zahavi, Y. (1974). *Traveltime budgets and mobility in urban areas*. Tel-Aviv: publisher not identified.
- Zahavi, Y., & Ryan, J. (1980). *Stability of Travel Components over Time* (pp. 19-26, Publication No. 750). Washington, D.C.: National Academy of Sciences. Retrieved from https://trid.trb.org/view.aspx?id=1263835

APPENDIX A: ADDITIONAL FIGURES FOR MODEL TESTING

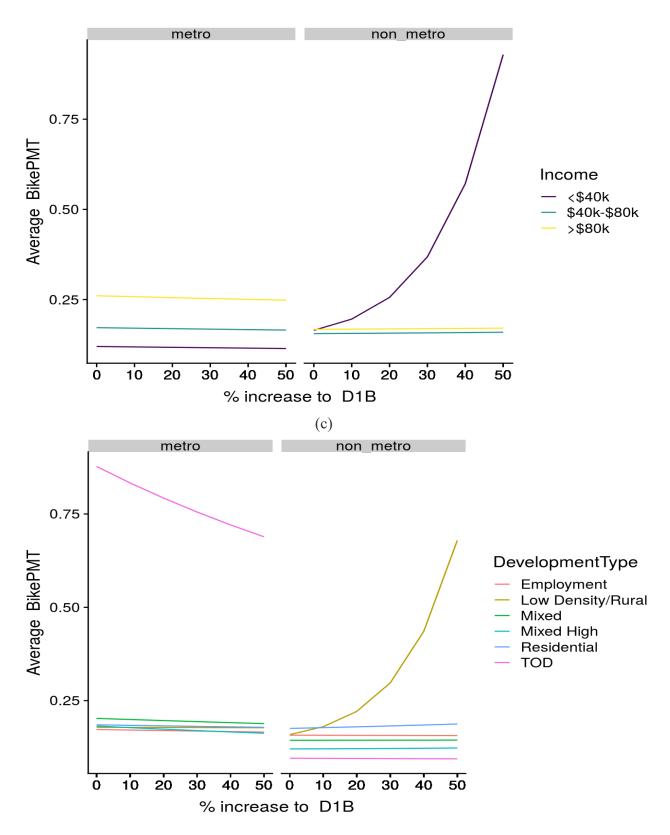
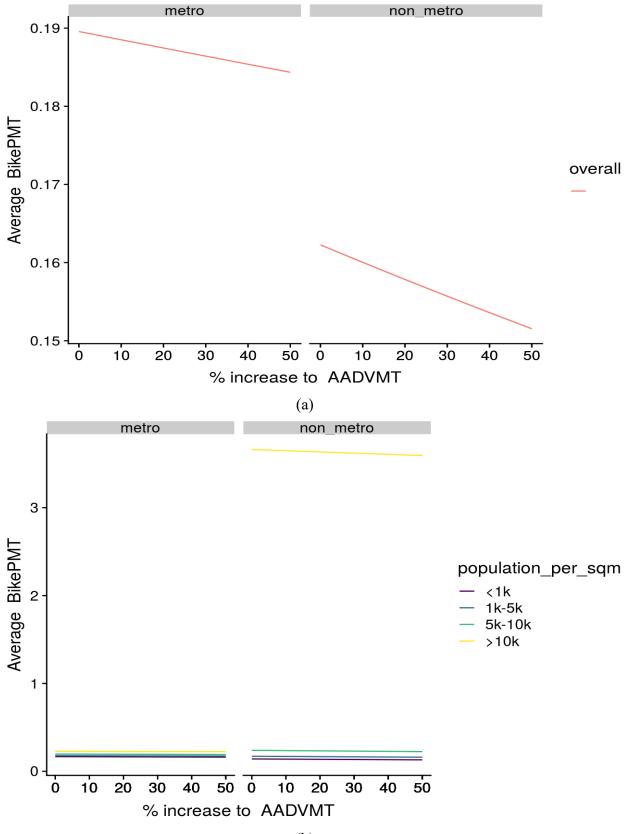



Figure A.1 Elasticities of biking PMT with respect to D1B: overall (a), segmented by density (b), income (c) and development type (d)

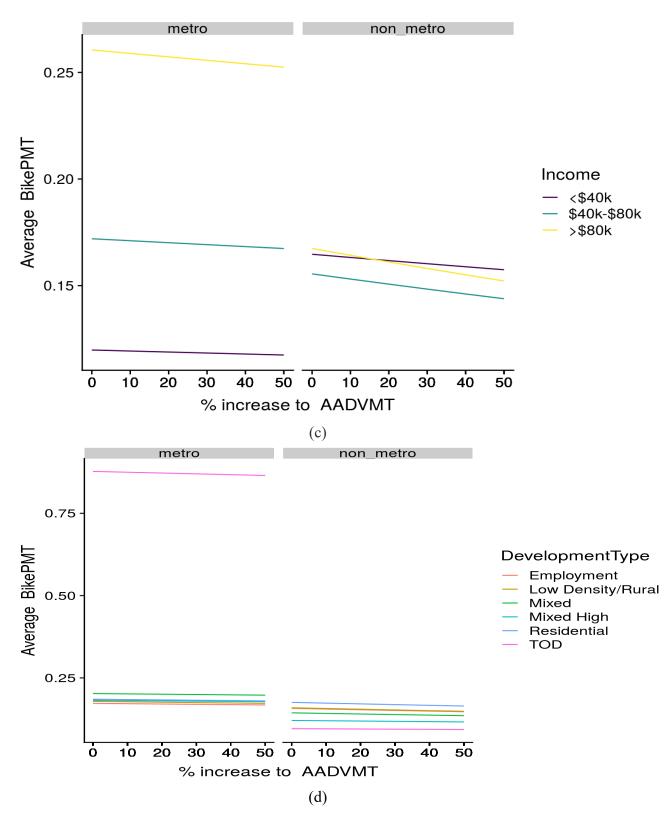
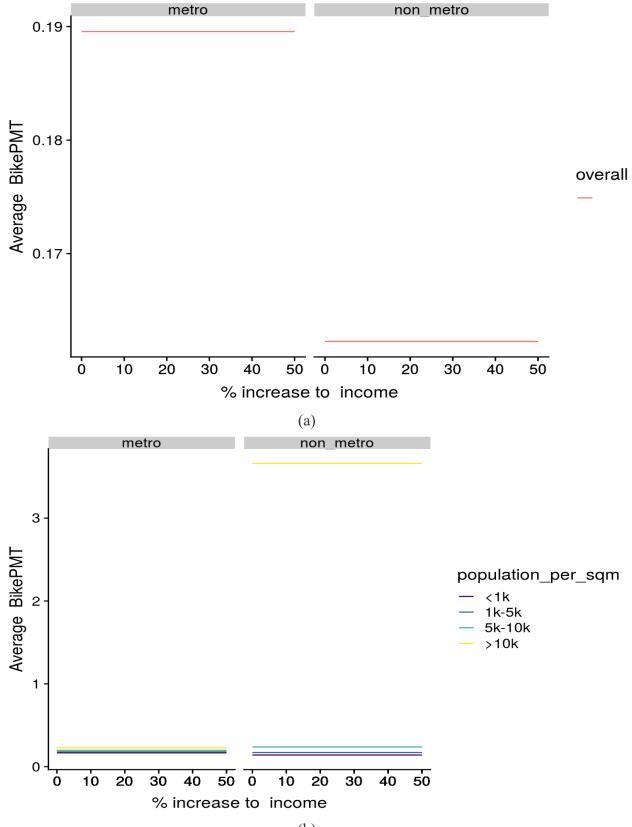



Figure A.2 Elasticities of biking PMT with respect to AADVMT: overall (a), segmented by density (b), income (c) and development type (d)

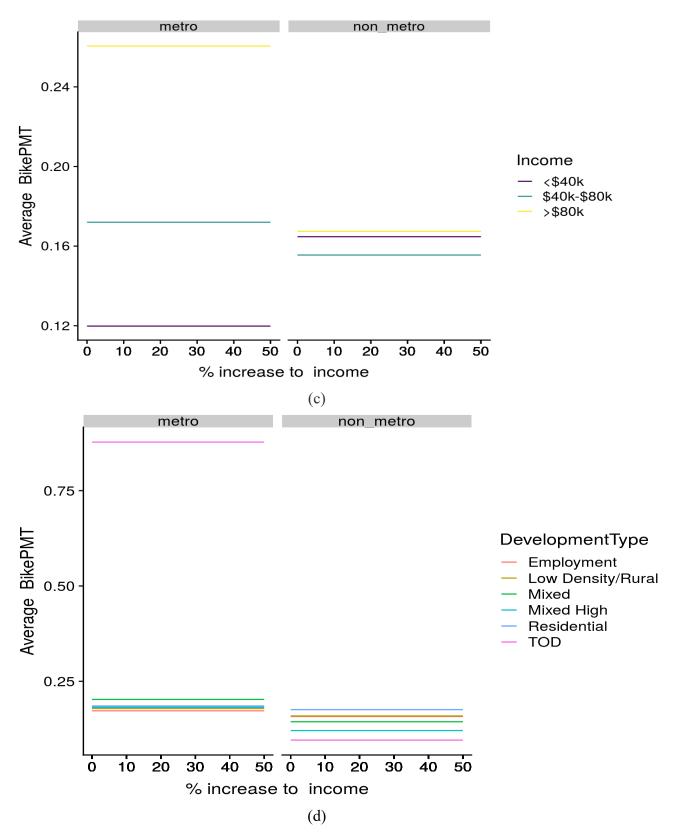
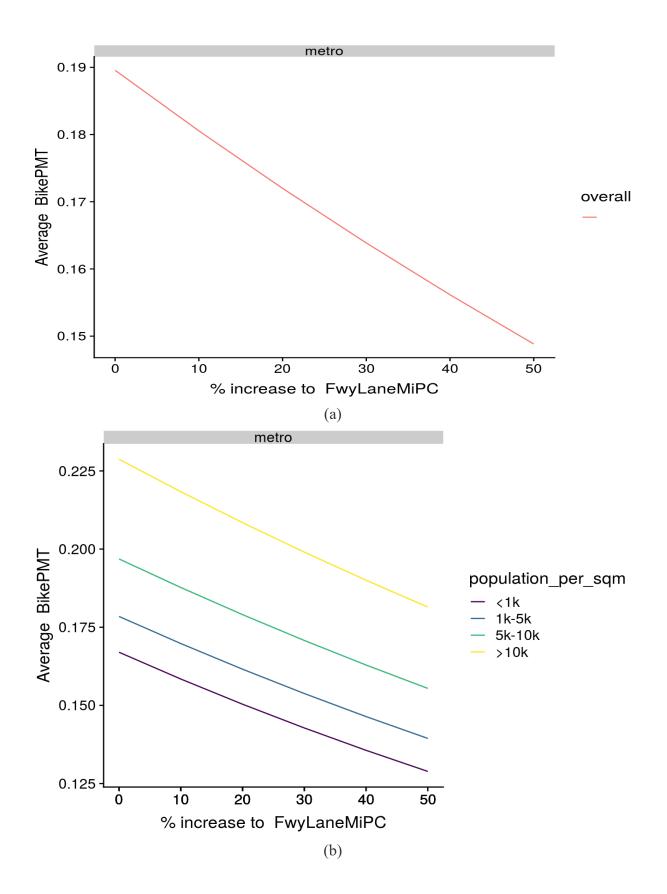



Figure A.3 Elasticities of biking PMT with respect to household income: overall (a), segmented by density (b), income (c) and development type (d)

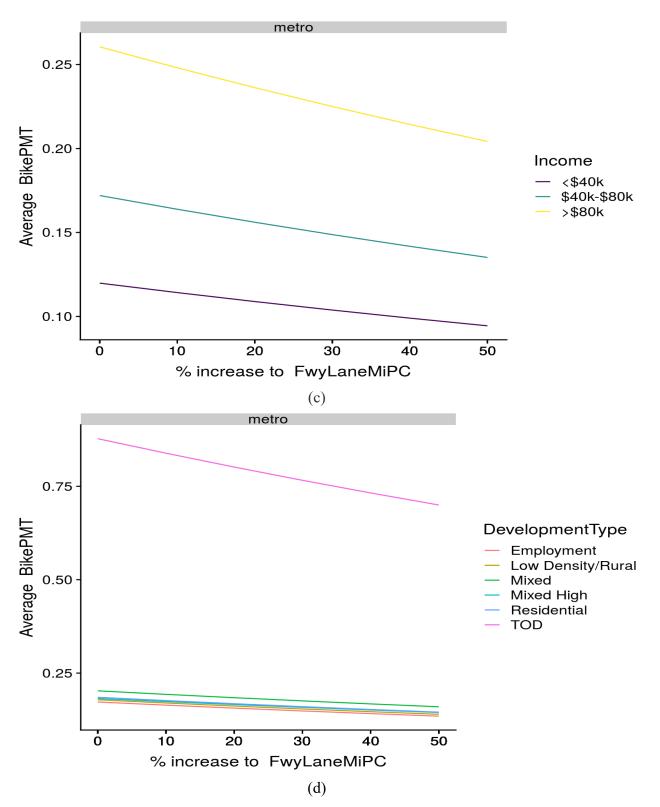
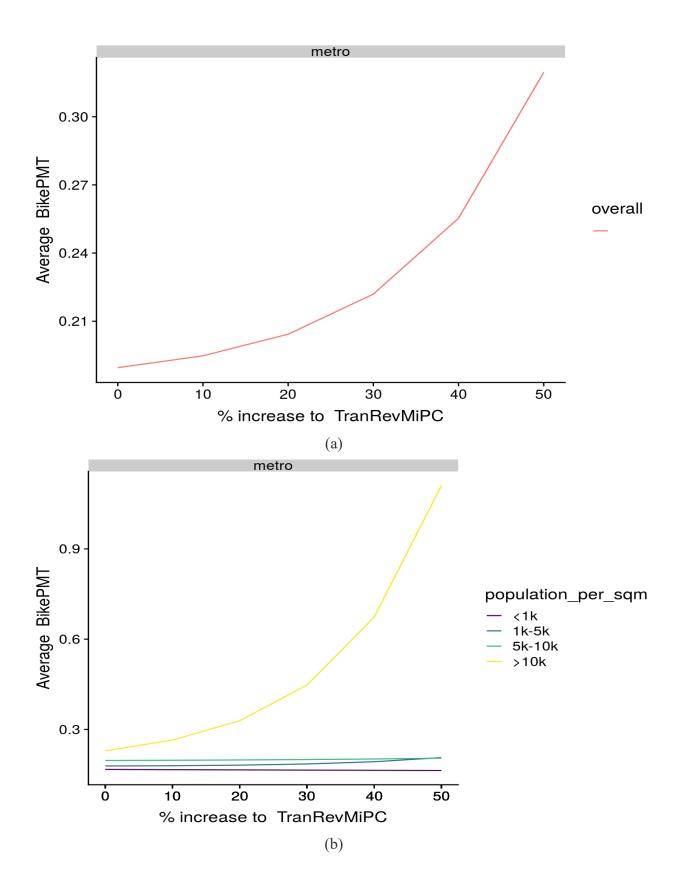



Figure A.4 Elasticities of biking PMT with respect to Freeway lane miles per capita: overall (a), segmented by density (b), income (c) and development type (d)

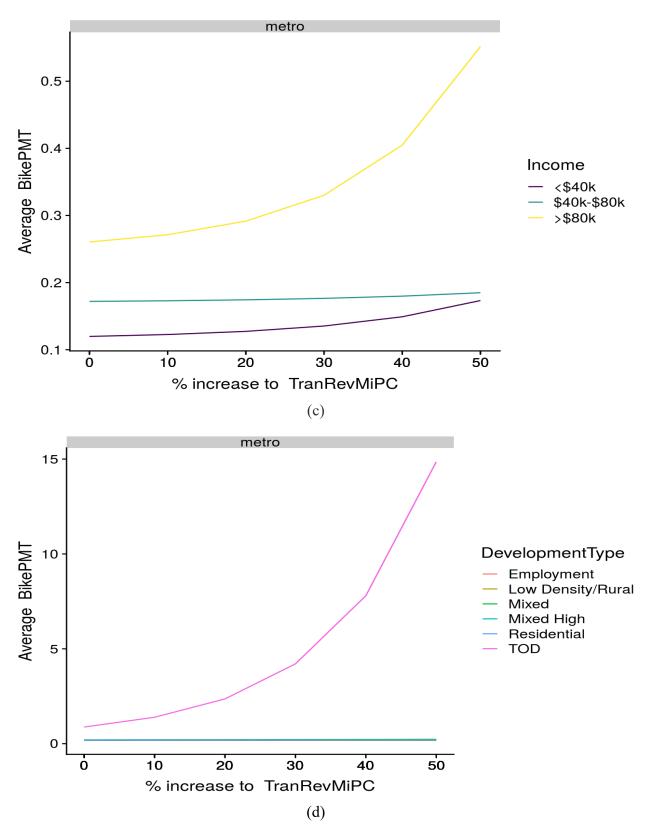
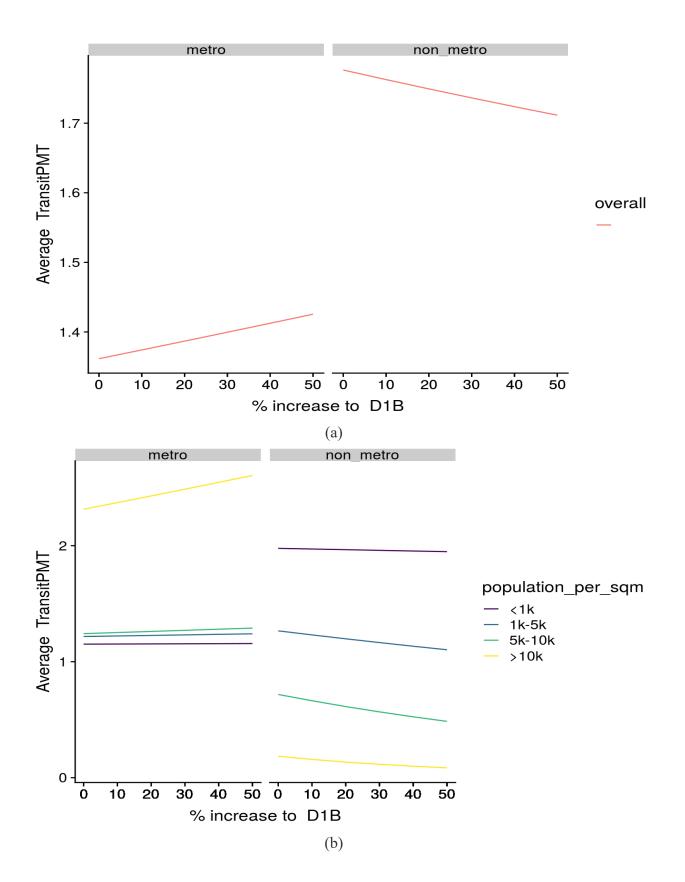



Figure A.5 Elasticities of biking PMT with respect to transit revenue miles per capita: overall (a), segmented by density (b), income (c) and development type (d)

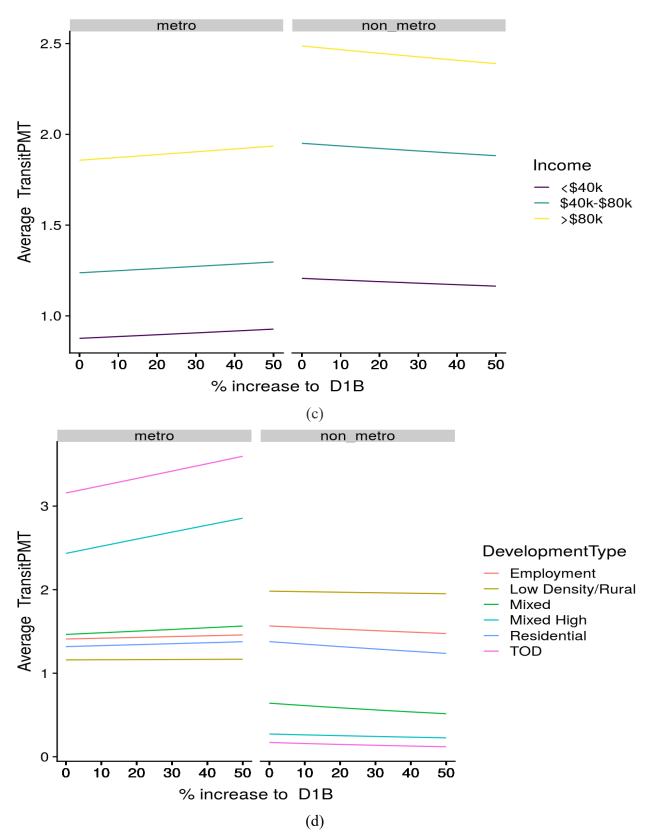
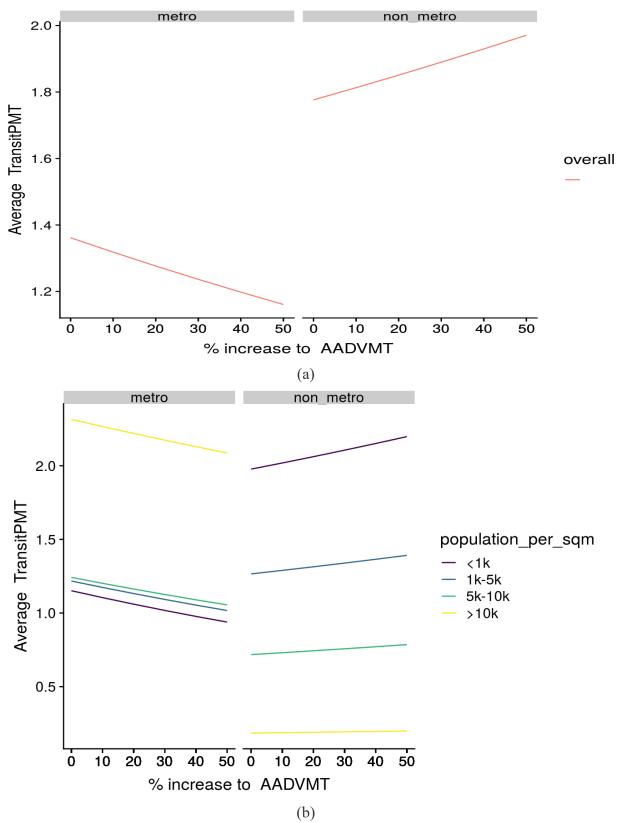



Figure A.5 Elasticities of transit PMT with respect to D1B: overall (a), segmented by density (b), income (c) and development type (d)

(0)

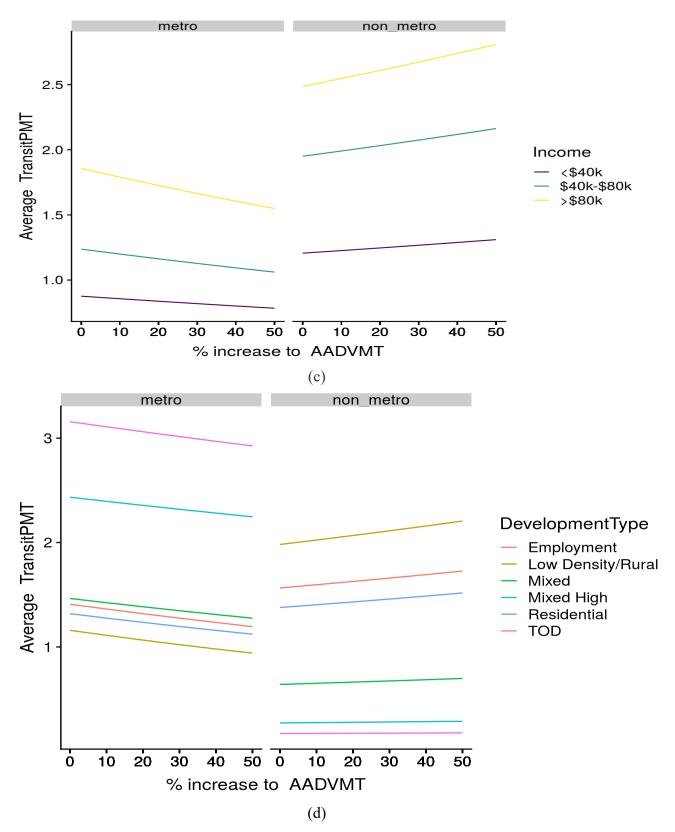
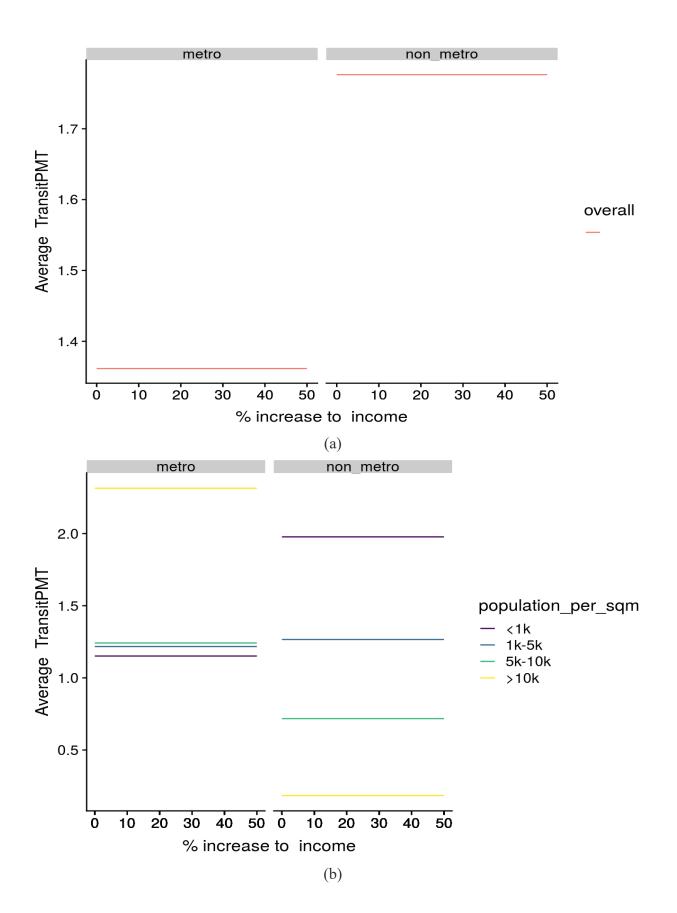



Figure A.6 Elasticities of transit PMT with respect to AADVMT: overall (a), segmented by density (b), income (c) and development type (d)

A-15

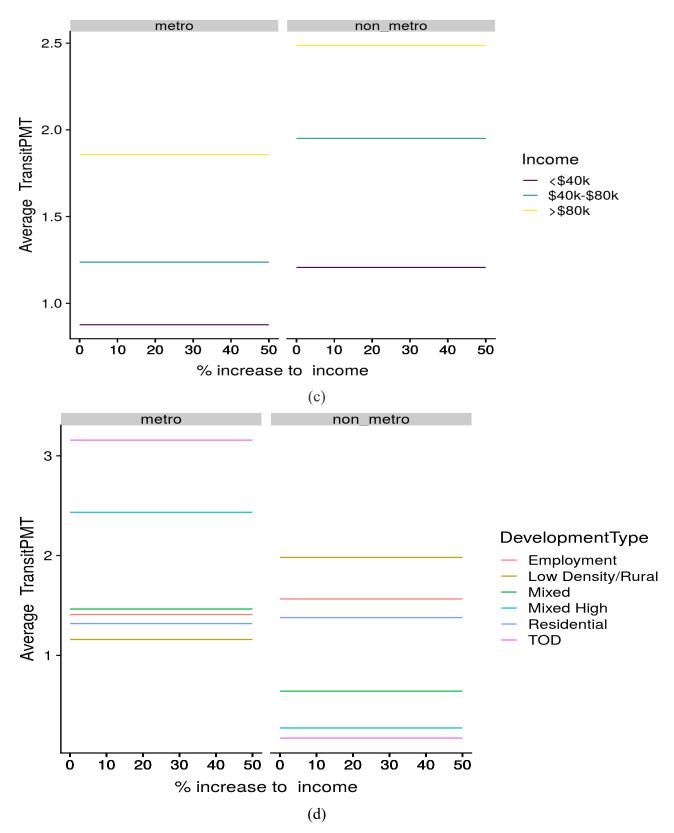
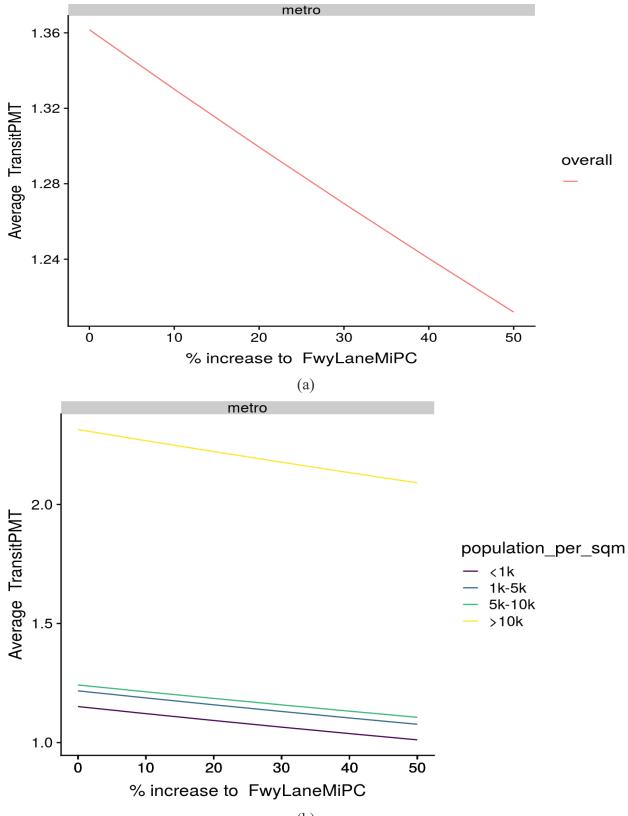
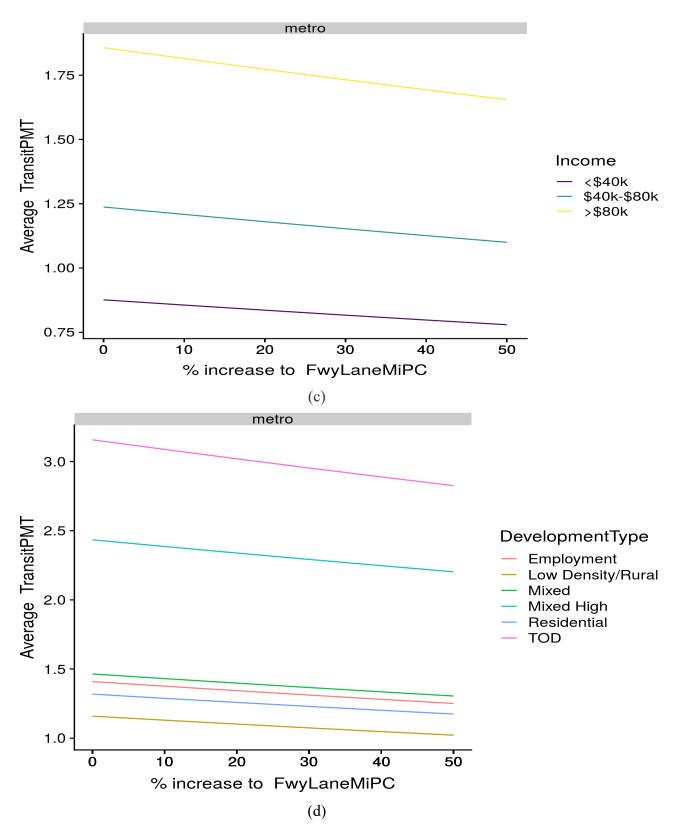
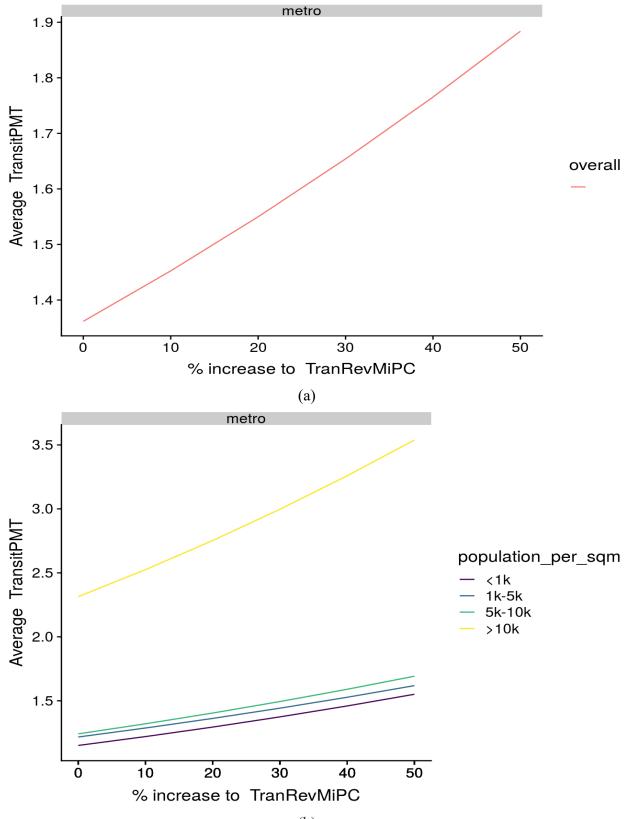





Figure A.7 Elasticities of transit PMT with respect to household income: overall (a), segmented by density (b), income (c) and development type (d)

FigureA.8 Elasticities of transit PMT with respect to freeway lane mile per capita: overall (a), segmented by density (b), income (c) and development type (d)

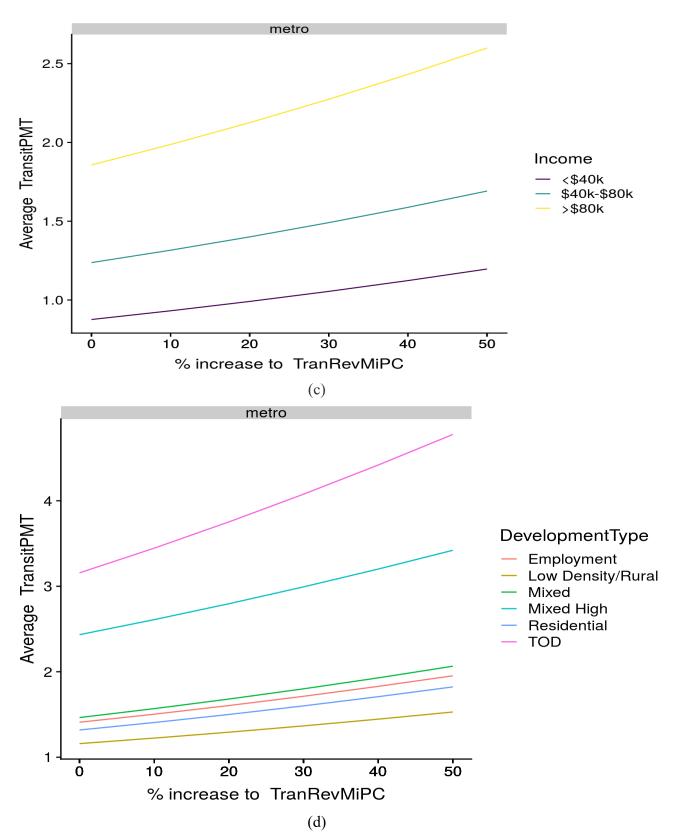
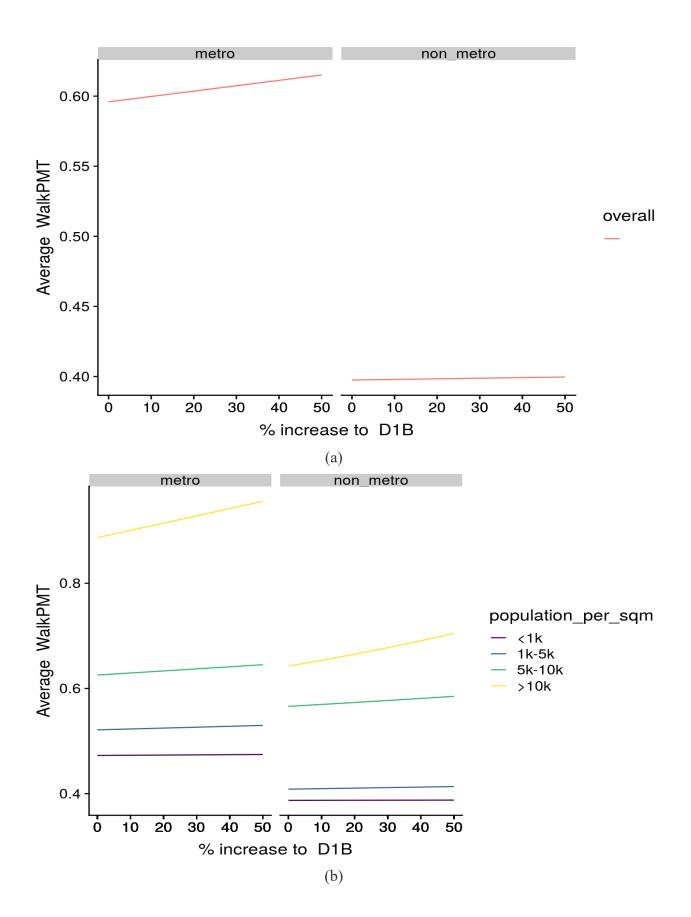



Figure A.9 Elasticities of transit PMT with respect to transit revenue miles per capita: overall (a), segmented by density (b), income (c) and development type (d)

A-21

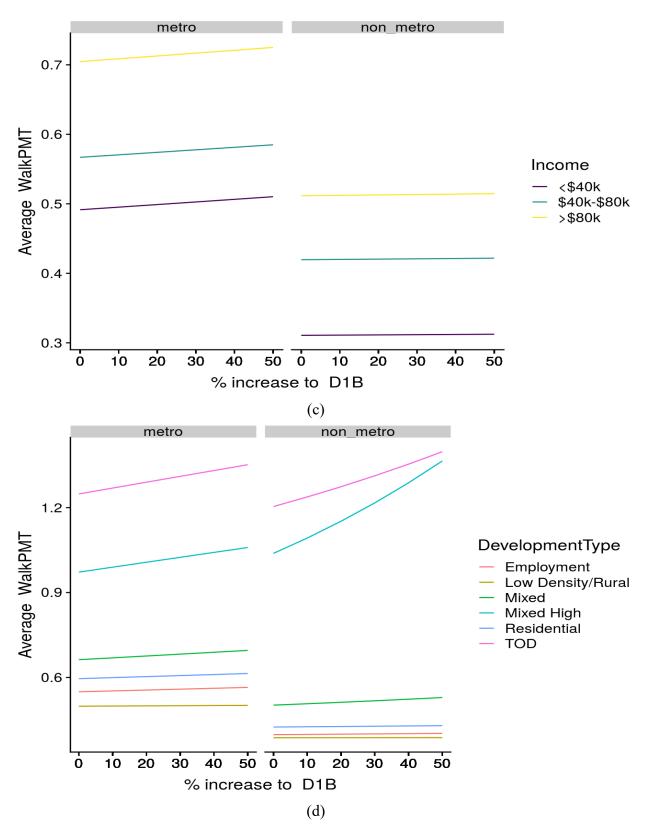
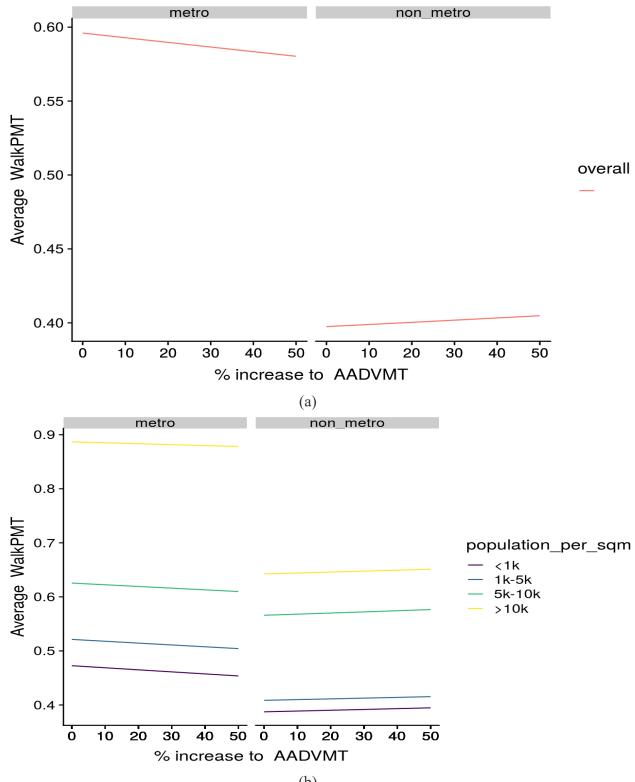



Figure A.10 Elasticities of walking PMT with respect to D1B: overall (a), segmented by density (b), income (c) and development type (d)

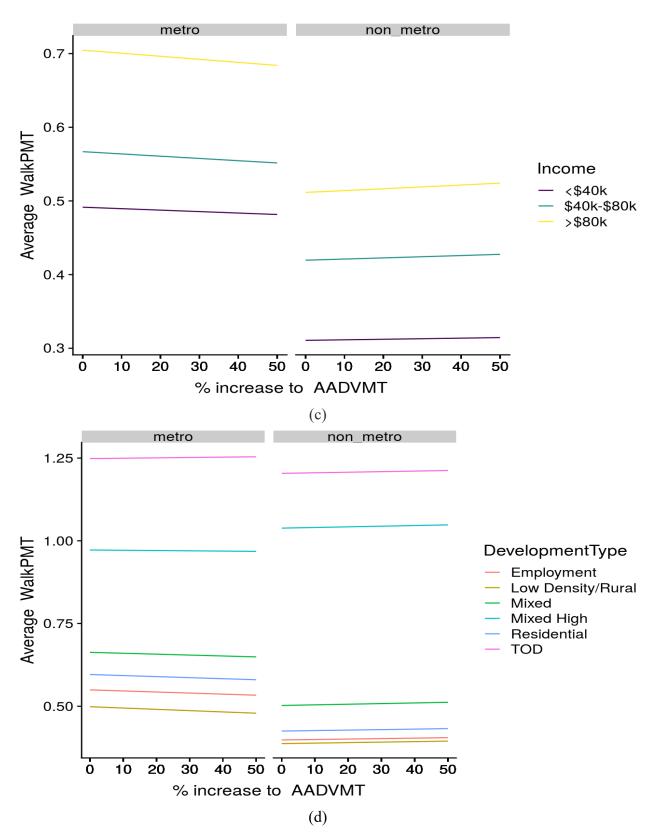
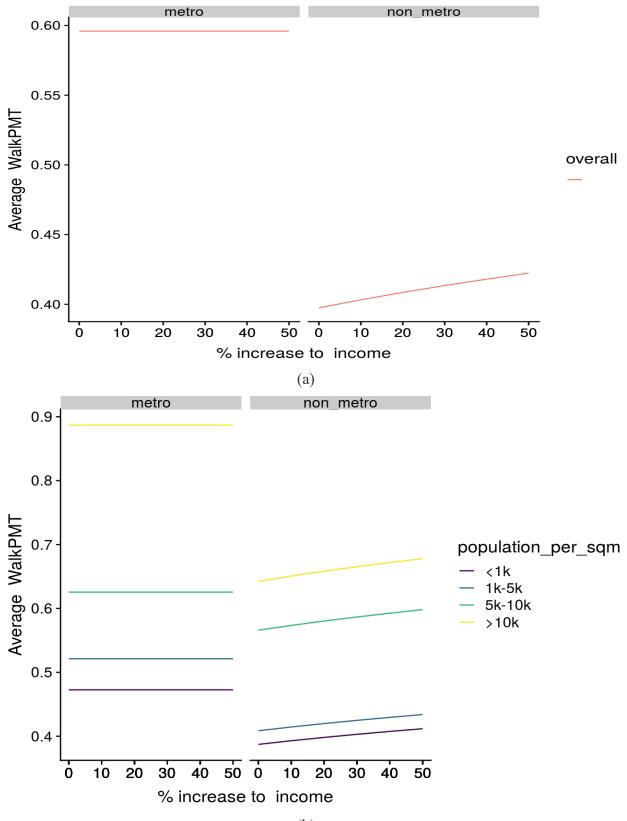



Figure A.11 Elasticities of walking PMT with respect to AADVMT: overall (a), segmented by density (b), income (c) and development type (d)

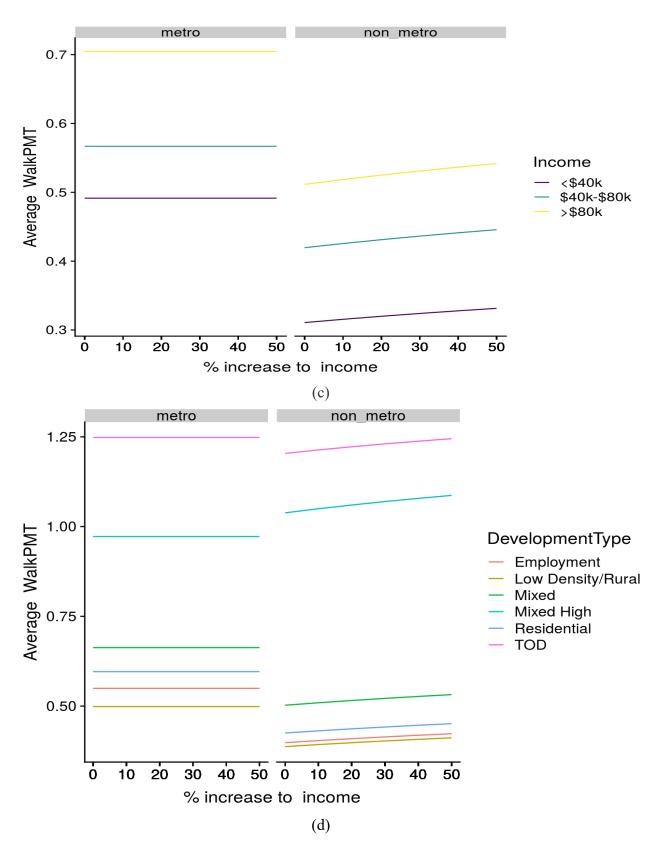
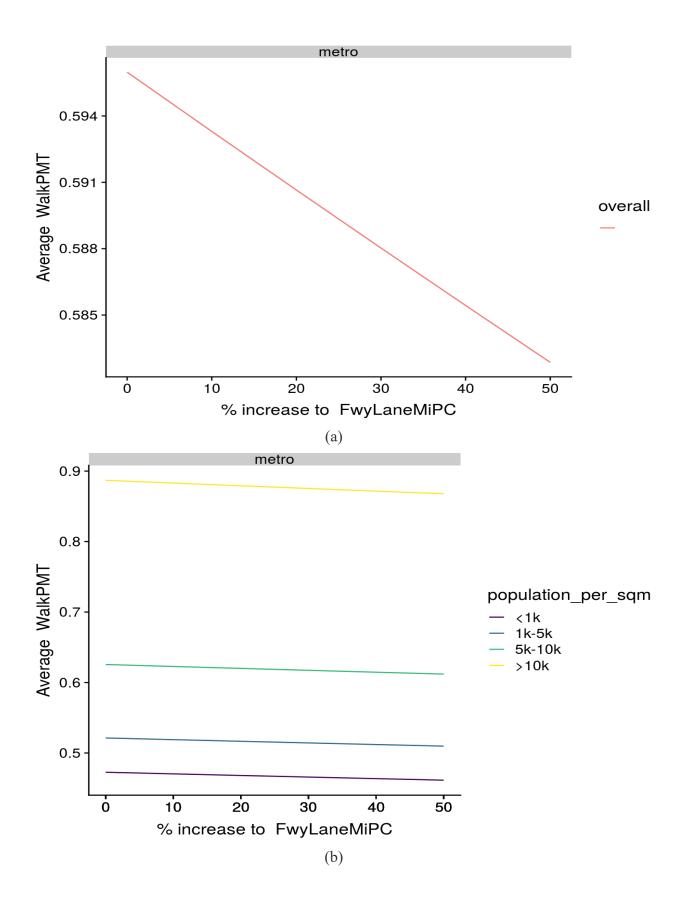



Figure A.12 Elasticities of walking PMT with respect to household income: overall (a), segmented by density (b), income (c) and development type (d)

A-27

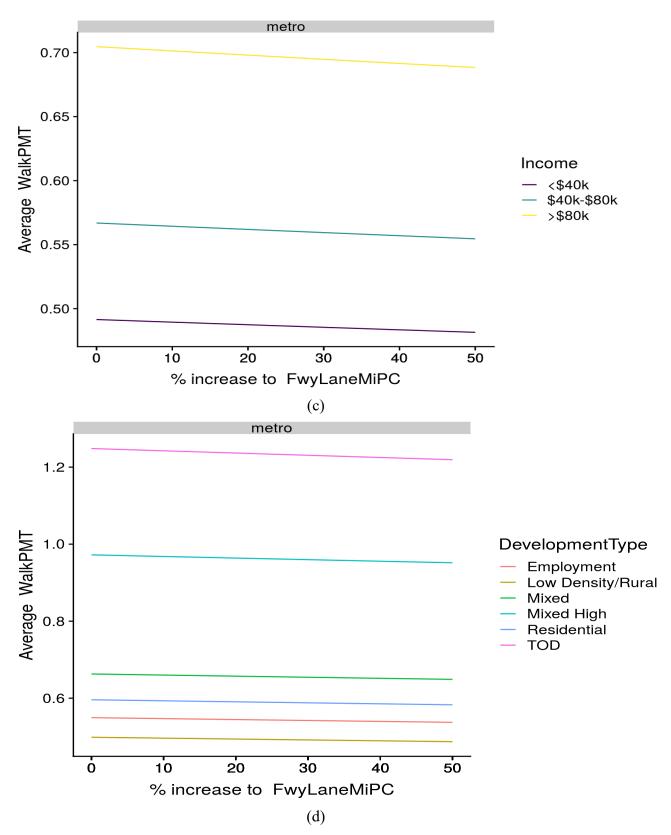
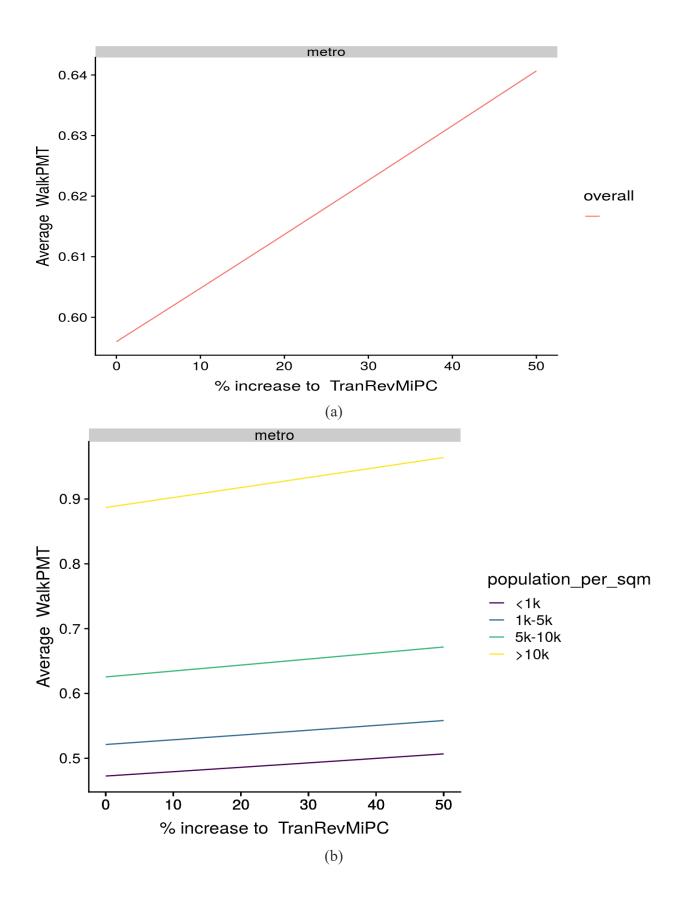



Figure A.13 Elasticities of walking PMT with respect to freeway lane miles per capita: overall (a), segmented by density (b), income (c) and development type (d)

A-29

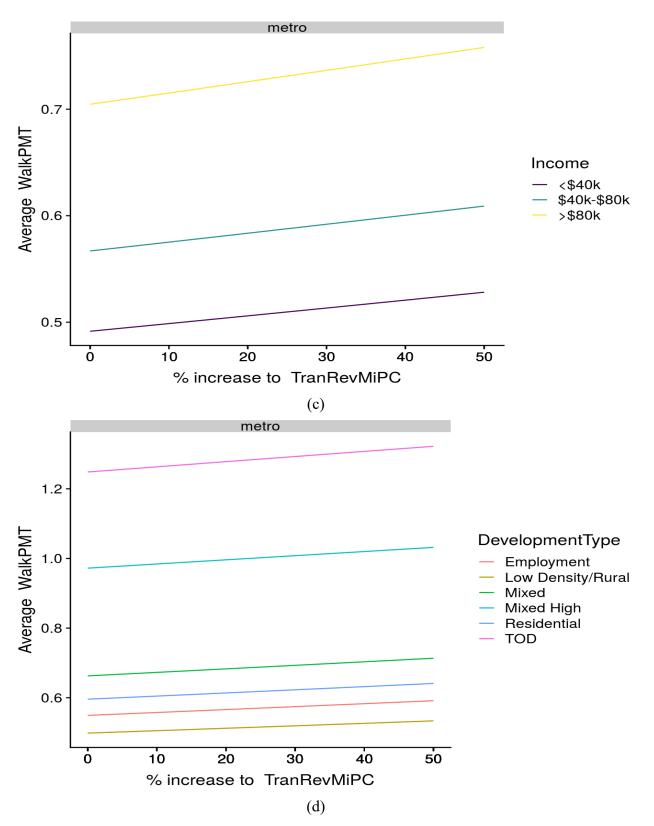


Figure A.14 Elasticities of walking PMT with respect to transit revenue miles per capita: overall (a), segmented by density (b), income (c) and development type (d)

APPENDIX B: RESPONSES TO VETRAVELDEMANDMM CONTRIBUTION REVIEW FEEDBACK

This appendix is adapted from <u>responses to VETravelDemandMM Contribution Review</u> <u>Feedback</u>.

1. Travis returns a bunch of R package warnings that should be addressed, such as 'DoPredictions: no visible binding for global variable 'model'.

Fixed with commit 24502591e49646a936e0accdd6132c5698060a1e.

2. The dependent data packages (NHTS2009 and SLD) should be submitted.

They will be included in a new/separate pull request after this PR is merged.

3. The overall VE project Travis.yaml script should be updated to include the new module and dependent packages in the automatic testing.

Done with commit e643502731e0d26f4fe3ddeefbfd97005c3c8c33

4. The estimation methods should be revised to follow VE conventions. Some of these suggested revisions need to be discussed with the project team since we're still figuring out how we all work together and incorporate additions.

The variable names in estimation code in data-raw/ have been revised to follow VE conventions in **commit 1b498d5760fac88c383705fd1c7c4bbf04a58080**. There may be other places that I am happy to work with the review team and incorporate any appropriate changes.

5. update Travis automated testing script to test the new package

Done with commit e643502731e0d26f4fe3ddeefbfd97005c3c8c33

6. Revise the documentation/software to let the user know that the NHTS2009, SLD, confidential data for estimation, and estimation script are exceptions to the guidelines for various reasons.

A Data section is added to the Introduction vignette describing the data sources and the fact that confidential NTHS information is not included in the package in <u>commit</u> <u>6da6125cd696b17cc43302ee2a7df2899f0af871</u>.

7. add proof of ODOT release of ownership

Need Tara and Tony's help here.

8. vignette and/or cheat sheet summarizing estimated functions and dependent variables

A Variables Used in Models subsection is added to the "Introduction to VETravelDemandMM" linking to Tara's cheat sheet <u>commit 6da6125cd696b17cc43302ee2a7df2899f0af871</u>.

9. For the software revisions, I recommend splitting any functions which alter the VE framework (the 'helper functions') as a separate pull request, as Brian Gregor mentioned.

I believe there is some confusion here - there is no function in the package that alters the VE framework. We did talk about some functions that are potentially helpful/useful to other packages, which may be better living upstream in the VE framework code. However, we didn't decide where it should be. These functions are all in R/DoPredictions.R (and, potentially, data-raw/EstModels.R), which could be easily moved to another place once we decide it. I am not sure it needs to be a separate pull request. Again I am happy to work with the review team and incorporate any appropriate changes.

- 10. The documentation is really quite thorough, and the inclusion of the submitted manuscript (while I haven't read it) seems like an excellent addition.
- 11. I do have one minor comment about the documentation that I noticed in the Overview document of the package: The transit and walk TRFL models are called with the function R/PredictTransitTFL.R, not R/PredictTransitPMT.R (similar for the walk models).

Fixed with commit 9232f91bbb47dfa10b2569623c997fd79bb5562f

APPENDIX C: VETRAVELDEMANDMM (VISIONEVAL TRAVEL DEMAND) IMPLEMENTATION

This appendix is adapted from documents for the VETravelDemandMM package implemented for VisionEval, which is being committed to VisionEval framework (https://github.com/gregorbj/VisionEval/pull/130).

OVERVIEW

The VETravelDemandMM module is an R package that implements a module for <u>the VisionEval</u> <u>framework</u> to simulate multi-modal travel demand for individual households including - Annual Average Daily VMT (AADVMT) - Transit trips and PMT - Biking trips and PMT - Walking trips and PMT

It supersedes the Daily VMT and non-driving trips models in RSPM/GreenSTEP (and reimplemented for VisionEval as <u>the VETravelDemand module</u>).

The motivations for developing the new package include better policy sensitivities for nondriving modes and taking advantage of newer and better data sources available since the implementation of the RSPM/GreenSTEP model.

Better Representation of Multi-Modal Travel

Since the primary focus of GreenSTEP is green-house gas emission, its travel demand module has a minimum representation of non-driving modes. As more non-driving travel and its associated benefits attract more attention from the public and policy-makers, there is need to understand the key drivers of multi-modal transportation choice and how non-driving travel responds to policies and investment decisions and to develop models that better represent the multi-modal travel for strategic planning. This module is developed in response to this demand.

Updating Models with the Latest and Best Data Available

The current implementation of the travel demand module uses for model estimation the latest 2009 NHTS data joined with EPA's Smart Location Database (SLD) for built environment information, the National Transit Database (NTD) for region-level transit supply, and HPMS for the region-level road network. Access to the confidential block group of household's residential location allow these nationwide datasets to be joined at a very high resolution. In addition, to refresh the model estimation with the latest nationwide datasets, this new data provide a rich set of high-resolution built environment variables (the SLD includes more than a hundred block group-level built environment measures covering most of US).

Since 2009 NHTS has Annual VMT data for most households surveyed (more than half of them missing in NHTS2001), we took advantage of the data and modeled the AADVMT for households, instead of VMT from the survey day used in GreenSTEP.

Rigorous Benchmark and Selection of Different Model Structures

There are various model structures used in the research literature to model non-driving travel. We reviewed the various model structures and used theoretical vigorousness and cross-validation to benchmark and select model structures.

Taking advantage of the R infrastructure and new packages

The current implementation of the module takes advantage of the tidyverse suite of R packages, in particular, dplyr, for efficiency, concision and code readability. It also uses the purr package for functional programming where feasible. Comparing with RSPM/GreenSTEP, the package uses model objects and method dispatch for predict calls, which eliminates the need to implement different model structures in the package.

METHODS AND MODEL STRUCTURE

Here is a summary of existing and selected model structures:

- GreenSTEP Daily VMT (DVMT) Models (2-step models)
 - 1. binomial logit ZeroDVMT
 - 2. power-transformed linear regression of DVMT (for DVMT > 0)
- AADVMT Model for Annual Average Daily VMT (AADVMT)
 - 1. power-transformed linear regression of AADVMT
- TFL models for non-driving modes (2-step models)
 - 1. hurdle model of trip frequencies by modes (transit, walk, and bike)
 - 2. power-transformed linear regression of average trip length
- Daily person mile traveled (PMT) by (non-driving) modes models
 - 1. hurdle models of DPMT by modes (transit, walk, and bike)

Technical details of the model structures can be found in the estimation script for the corresponding model in data-raw. The actual functions doing the prediction for the module in R is model structure-agnostic - it is determined by the model objects saved in the model data frame in the data directory.

Variables Used in Models

<u>A Cheat Sheet</u> created by Tara Weidner summarizes the estimated functions, independent and dependent variables in each model.

DATA

This module provides default model parameters estimated with US nationwide data, and it is also possible to re-estimate model parameters with region-specific data. The main estimation data are drawn from two external data package (<u>NHTS2009</u> and <u>SLD</u>, documented therein, (the plan is to commit them to the VisionEval repository) and data-raw/LoadDataforEstimation.R joins data

from different data sources and creates a single household data frame for estimation. Dataraw/LoadDataforEstimation.R provides code and comments needed to replace the estimation data with region-specific data. However, since the residential block group information for households in the 2009 NHTS (essentially providing an additional block group id column to the households data frame and allowing NHTS to be joined with SLD) used in the estimation of the nationwide models is confidential and cannot be shared, users will not be able to directly run the estimation scripts in data-raw.

USAGE

Installation

The package can be installed from github using the <u>devtools package</u>:

```
devtools::install_github("gregorbj/VisionEval/sources/modules/VE
TravelDemandMM@develop")
# OR
devtools::install_github("cities-lab/VETravelDemandMM")
```

Model Prediction

As a VisionEval module, the package provides 9 functions (in an R directory) that predict a range of travel outcomes for driving and non-driving modes:

- AADVMT (Annual Average Daily VMT): R/PredictAADVMT.R
- Bike PMT (Person miles travelled): R/PredictBikePMT.R
- Bike TFL (Trip frequencies and length): R/PredictBikeTFL.R
- Transit PMT: R/PredictTransitPMT.R
- Transit TFL: R/PredictTransitTFL.R
- Walk PMT: R/PredictWalkPMT.R
- Walk TFL: R/PredictWalkTFL.R

To use modules in the package with the default parameters, a user will add modules to visioneval::runModule:

#' @source \url{https://github.com/gregorbj/VisionEval/blob/9869
880c26802b57447c87c8e7a317df89171498/sources/models/VERSPM/Test1
/run_model.R}

library(visioneval)

#Initialize model

#-----

```
initializeModel(
  ParamDir = "defs",
 RunParamFile = "run parameters.json",
  GeoFile = "geo.csv",
 ModelParamFile = "model parameters.json",
 LoadDatastore = FALSE,
 DatastoreName = NULL,
 SaveDatastore = TRUE
  )
#Run all demo module for all years
#-----
for(Year in getYears()) {
  runModule(ModuleName = "CreateHouseholds",
            PackageName = "VESimHouseholds",
            RunFor = "AllYears",
            RunYear = Year)
  runModule(ModuleName = "PredictWorkers",
            PackageName = "VESimHouseholds",
            RunFor = "AllYears",
RunYear = Year)
  runModule(ModuleName = "AssignLifeCycle",
            PackageName = "VESimHouseholds",
            RunFor = "AllYears",
            RunYear = Year)
  runModule(ModuleName = "PredictIncome",
            PackageName = "VESimHouseholds",
            RunFor = "AllYears",
            RunYear = Year)
  runModule(ModuleName = "PredictHousing",
            PackageName = "VESimHouseholds",
            RunFor = "AllYears",
            RunYear = Year)
  runModule(ModuleName = "LocateHouseholds",
            PackageName = "VELandUse",
            RunFor = "AllYears",
            RunYear = Year)
  runModule(ModuleName = "LocateEmployment",
            PackageName = "VELandUse",
            RunFor = "AllYears",
            RunYear = Year)
  runModule(ModuleName = "AssignDevTypes",
            PackageName = "VELandUse",
            RunFor = "AllYears",
            RunYear = Year)
  runModule(ModuleName = "Calculate4DMeasures",
```

```
PackageName = "VELandUse",
          RunFor = "AllYears",
          RunYear = Year)
runModule(ModuleName = "CalculateUrbanMixMeasure",
          PackageName = "VELandUse",
          RunFor = "AllYears",
          RunYear = Year)
runModule(ModuleName = "AssignTransitService",
          PackageName = "VETransportSupply",
          RunFor = "AllYears",
          RunYear = Year)
runModule (ModuleName = "AssignRoadMiles",
          PackageName = "VETransportSupply",
          RunFor = "AllYears",
          RunYear = Year)
runModule(ModuleName = "AssignVehicleOwnership",
          PackageName = "VEVehicleOwnership",
          RunFor = "AllYears",
          RunYear = Year)
runModule(ModuleName = "PredictVehicles",
          PackageName = "VETravelDemandMM",
          RunFor = "AllYears",
          RunYear = Year)
runModule(ModuleName = "PredictDrivers",
          PackageName = "VETravelDemandMM",
          RunFor = "AllYears",
          RunYear = Year)
runModule (ModuleName = "PredictAADVMT",
          PackageName = "VETravelDemandMM",
          RunFor = "AllYears",
          RunYear = Year)
runModule(ModuleName = "PredictBikePMT",
          PackageName = "VETravelDemandMM",
          RunFor = "AllYears",
          RunYear = Year)
runModule(ModuleName = "PredictWalkPMT",
          PackageName = "VETravelDemandMM",
          RunFor = "AllYears",
          RunYear = Year)
runModule (ModuleName = "PredictTransitPMT",
          PackageName = "VETravelDemandMM",
          RunFor = "AllYears",
          RunYear = Year)
```

Model Estimation

If a user needs to replace the default model parameters and/or structures, they will use the scripts in data-raw, following these steps:

1. Prepare data

Replace data-raw/LoadDataforModelEst.R with their own script that loads and processes their own household data frame. The variables used in the current estimation are documented in the comments of data-raw/LoadDataforModelEst.R. Users can add, remove, or replace most of the variables.

2. Customize model formula

Edit the corresponding model estimation script in data-raw/ to customize model formula for re-estimation. For example, if a user wants to re-estimate the AADVMT model, s/he would edit data-raw/AADVMTModel_df.R. Before modifying the formula, replace the line in the script source ("data-raw/LoadDataforModelEst.R") with your own script created in step 1.

The estimation script uses the standard R model formula to specify models. Users can change the independent variables, the transformation of dependent variables, even model structure (model type) by modifying the formula.

It is also possible (and recommended if the re-estimation is a specific region) to change the segmentation scheme. Most models in the package use metro status to segment data and estimate different models for each segment. The user can replace "metro" with any other desired variable for segmentation. If no model segmentation is needed, see data-raw/DriversModel_df.R and data-raw/VehiclesModel_df.R for examples of disabling segmentation.

3. Re-estimate and save estimation results

After modifying the model formula, save the script and source it in RStudio (recommended) or an R console. This should re-estimate the model with the new formula and save the estimation results to data/. It is likely to take many iterations and troubleshooting before the model formula is ideal.

4. Modify prediction specification

Once an ideal model formula is found and estimation results saved to data/, the user needs to edit the specifications in the R/Predict*.R script corresponding to the model being modified to be consistent with the model formula.

5. Rebuild and reinstall the package

Finally, the package is ready for **Build and Reload**. Once the Build and Reload finishes successfully, the re-estimated module to ready to use with visioneval::runModule (see section above).

CODE REPOSITORY AND AUTOMATED TESTS

The source code of the VETravelDemandMM package is available on GitHub: <u>https://github.com/cities-lab/VETravelDemandMM</u>

Automated tests of the package including:

- package check with devtools::check(),
- package build and installation with R CMD INSTALL, and
- package tests in tests/scripts/test.R (with Rogue Valley data).

The automated tests are handled by <u>Travis-CI</u> and the current status of automated tests for the package is <u>automatically</u> updated.

ADDITIONAL DOUMENTS

Results based on research for the SPR 788 project was presented at the TRB annual meeting:

Wang, Liming, Brian Gregor, Huajie Yang, Tara Weidner, and Tony Knudson, Regional Strategic Planning Model and the Development of a Multi-modal Travel Demand Module, Proceedings of the 97th Annual Meeting of Transportation Research Board, Washington, DC. January 7-11, 2018

A manuscript is currently under review for Journal of Transport and Land Use: - <u>Development of</u> <u>a Multi-modal Travel Demand Module for the Regional Strategic Planning Model (manuscript</u> <u>under review)</u>

A paper on the VETravelDemandMM package, as a part of the VisionEval session, is accepted for presentation at TRB's Innovations in Travel Modeling conference in Atlanta, GA in June 2018.