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ABSTRACT 

State transportation agency spends millions of dollars annually to maintain and improve the service 

provided to the drivers in the highway rest areas. In order to collect traffic data in real-time, 

Researchers can use the vehicle data in the rest areas. Therefore, it is helpful immensely to update 

the existing safety policies in the rest areas. Transportation agencies don’t have any automated 

systems to perform “automatic” and “real-time” vehicle identification and classification in the 

highway rest areas. Motivated by a dire need to enhance and modernize the transportation system, 

we propose an advanced modular system that will integrate a smart sensor to extract a rest area 

traffic pattern in real-time. Currently, Caltrans collects traffic data from Automated Vehicle 

Classification (AVC) stations and also manual census collected in the specific locations. However, 

this technology is too expensive, time-consuming, and disruptive; therefore it has not been used 

widely in many different locations.  

 

In recent years, There have been many significant improvements in MEMS sensors domain with 

respect to size, cost and accuracy. Moreover, extreme miniaturization of RF transceivers and low 

power micro-controllers have motivated researchers to develop small and low power sensors and 

radio equipped modules. These sensors are gradually replacing traditional wired sensor systems. 

These modules which are often called “sensor mote” (size of a quarter) communicate with other 

sensor nodes and build an intelligent network of sensors. Because of the miniaturization and low 

power consumption, these sensor motes are extremely efficient due to their low power budget. We 

propose a wireless MEMS sensor based automatic vehicle classification and identification system 

for highways rest areas.  
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Our developed Automatic Vehicle Classification and Identification (AVCI) system consists of  two 

parts, AVCI sensor nodes containing magneto-resistive and accelerometer sensors. These sensors 

calculate speed and axles respectively. The next part, the system proposes a Access Point (AP) 

which collects data from sensor motes and  calculate speed, axles counts and then it classifies the 

collected data based on Federal Highway Administration (FHWA) 13-categories Scheme-F[5]. 

The AP includes a RF transceiver to communicate with the sensor motes and also a GPRS (General 

Packet Radio Service) shield to transmit aggregated traffic data to the county or regional traffic 

data collection center. 
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I.  SCOPE 
 

This research proposal targets the design of smart sensing system for real-time automatic traffic 

analysis of highway rest areas. We developed low-power sensing platforms, optimized power-saving 

algorithms, communications protocols, and machine-learning models to yield a novel and modular 

multi-nodal sensing systems that will help traffic analysis of highway rest areas efficiently. This could 

be a part of nationwide efforts of Intelligent Transportation Systems (ITS) for smart connected roads.  

To the best of our knowledge, Caltrans (or similar entity at nationwide) doesn’t have any installed 

ITS that can perform “automatic” and “real time” vehicle identification and classification for highway 

rest areas. Our proposed system will reveal high grained traffic data such that user will be able to 

know for “each” vehicle the time of entry and exit in the rest area and, it’s classification (based on 

axles). The developed smart sensing and data interpretation system will maintain small foot-print, 

significantly cost-effective (compare to existing available systems), and will be capable of automatic 

identifying and classifying each vehicle in high way rest area in real-time.   

 

II. INTRODUCTION  
 

Public rest areas located along highways throughout the United States that allow quick access and 

free 24-hour availability to basic amenities, such as parking and restrooms. Other amenities, such as 

vending machines, pay phones, picnic tables, and travel information, are also often available. Public 

rest areas are typically designed to serve the needs of a broad range of travelers, including 

vacation/recreational travelers, commercial vehicle operators, commuters, motorcyclists, bus tours, 

and others.  
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Beside passenger vehicles, rest area is also a safe legal truck parking place for the long-haul truck. 

Long-haul truck drivers are subject to hours-of-service regulations issued by the Federal Motor 

Carrier Safety Administration. These regulations govern the hours that truck drivers can drive during 

a consecutive shift. Current regulations mandate that truck drivers carrying freight are permitted to 

drive up to 11 hours following 10 off-duty [6]. While the rationale for mandating truck driver rest is 

well motivated and understood, the practicalities of truck drivers finding safe and legal locations to 

rest is a separate challenge. Along highways, truck stops, and public rest areas comprise the majority 

of spaces publicly available for a truck driver to use. These locations are limited in number and in 

size, and they are also spaced along the highway at distant intervals. If a truck driver, approaching the 

hours-of-service driving limit encounters a cluster of truck rest areas that are full, he or she is generally 

faced with the choice of driving some additional highway distance to the next available rest area or 

park illegally. Our designed system will be able to provide real time traffic classification for highway 

rest areas, hence transportation agency could publish this parking availability information in the road 

side variable electronic message board for truck (as well as passenger vehicle) drivers.   

 

The California SRRA (Safety Roadside Rest Area) system is an attractive and safe place where 

travelers restore their energy and driving alertness. Traveler convenience and comfort are the top 

priority of Caltrans SRRA system, but it serves more expansive goals that benefit the community and 

economy. The state of California has 87-unit SRRA system currently includes 4,378 parking spaces 

and was constructed between 1958 and 1984 [7]. More than 100 million visitors use it annually, with 

usage exceeding one million at each of 47 SRRA units, 2 million at each of seven SRRA units, and 

more than 3 million at each of two SRRA units. The two units that comprise the Aliso Creek SRRA 

in northern San Diego County together receive 6.4 million visitors each year. Current maintenance 

and operations expenditures for the SRRA system are approximately $0.13 per user visit, or $13 
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million annually [7]. Our developed AVCI system will help transportation agency to collect detailed 

traffic data from high way rest areas, and hence it will facilitate the policy maker to take better 

decisions to improve the uses of highway rest areas. Only in the state of California, our developed 

system could make impact highway rest areas uses of 100 million visitors yearly.    

 

III. METHODOLOGY 
 

Currently available traffic sensor systems such as: inductive loop, video, sonar, radar, magnetic, 

capacitive, PVDF wire, and pneumatic treadle, are costly and use electrical power from the power 

distribution network. Automatic Vehicle Classification (AVC) systems currently installed by Caltrans 

and others can cost nearly hundred thousand of dollars and require direct power supply from utility 

poles [8]. Regardless, in-pavement sensors are still popular, due to their accuracy, ability to provide 

direct information with very little ambiguity, ability to monitor road conditions (i.e. presence of ice), 

all while not requiring a human operator. Our developed approach will require the installation of a 

“quarter” sized sensor platform that includes a wireless transceiver module, sensors, a low power 

microcontroller, and other minor electronics modules. Furthermore, the sensors will communicate 

with Access Point (AP) wirelessly, therefore the need to cut into the pavement, as required in 

inductive loop approach, will no longer be necessary. The power savings in our developed method 

would be achieved at two levels, at the node level and the network level. At network level, energy 

savings can be achieved through an optimized balance of computation and communication to AP 

node, improved hardware design, and also by employing a power-aware communication protocol. At 

the node level, the sensor node can be operated at different power modes such as Low Power Mode 

(LPM) modes, also known as sleep mode, built into their microprocessor platform. In addition, node 

level power consumption can be optimized through reducing the active processing time. Such low 
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power operating modes can be easily controlled by interrupt-driven program flow. To comply with a 

stringent power budget, more savings can be achieved by adjusting the sampling rate on-the-fly.   

 

Figure 1: Automatic vehicle classification and identification system for highway rest areas 

  

3.1 System Architecture 

Our developed prototype of Automatic Vehicle Classification and Identification (AVCI) system 

includes two subsystems: AVCI sensors (consist of magnetometer and accelerometer sensors) and AP 

(algorithm modules for vehicle classification and identification). The AVCI system needs to be 

installed in entry and exit of the rest area as shown in Figure 1.  Magnetometer sensor detects magnetic 

(ferrous) metals which can identify vehicle presence. In our design, we will use two magnetometer 

sensors in a fixed distance so that we can accurately calculate vehicle presence and speed. On the 

other hand, accelerometers detect pavement vibration when a vehicle travels over their detection 

zones and it will be used for detecting vehicle axles.     



0 
 

 

Magnetometers sensor data changes in the magnetic field caused by a vehicle and it transmits the 

vehicle’s magnetic signatures to the AP (shown in Figure 2). The signatures are processed by the 

Vehicle Speed and Clustering Module (VSCM) running on the AP to calculate the speed and vehicle 

grouping. The accelerometers locate the axle peaks based on vibration data and send the peak location 

time to the AP. An application called Axle Count Detection Module(ACDM) performs peak clustering 

to group axle peaks from the same vehicle. Another application, called Vehicle Identification and 

Classification Module (VICM), combines output from VSCM and ACDM (vehicle length, number of 

axles and axle spacing between each axle pair) to perform classification and identification. Using a 

predefined vehicle classification scheme, the class of the vehicle will then be determined and logged. 

The most common classification scheme, the FHWA 13-categories Scheme F, will be used for this 

study [5]. The magnetometer sensors, accelerometer sensors, and AP will be time synchronized to 

within couple of microseconds. Consequently, even if sensors report their measurements 

asynchronously, the AP will align magnetometer readings with corresponding accelerometer 

readings. 
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Figure 2: Hardware and firmware components of AVCI 

 

IV. HARDWARE DEVELOPMENT 
In order to produce the desired performance and provide for a long endurance system, new hardware 

was designed to take account for the low power requirements of the project scope. While the new 

hardware uses the same processor and radio interface from the previous version, the CC430F5137, 

but switch out the old Honeywell magnetometer for a LIS3MDL magnetometer from 

STMicroelectronics. This new magnetometer has several benefits over the older sensor: uses SPI as 

opposed to I2C for lower power communication, uses less power during sampling, has a wider set of 

options for full scale range detection, and can generate interrupts when the magnetic field magnitude 

exceeds a programmable threshold, thereby allowing for the system to only sample from the device 

when a vehicle is nearby. Readings are updated by the magnetometer’s on-board controller in bulk 

and a data ready (#DRDY) signal is sent to the sensor node controller to indicate new data is available 

to be read. Magnetometer data is read over a 3-wire SPI bus. 
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Figure 2: A simplified Wireless Sensor Node block diagram of the hardware architecture 

 

 

 
Figure 3: Wireless Sensor node desinged for vehicle detection  
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The new design also switched out the chip antenna for a meandering PCB antenna as a feasibility 

approach to implement future cost reduction options, should it become necessary for a production 

version. This design still utilizes the 915MHz ISM frequency band. 

The sensor node uses a 10-pin, 1.27mm pitch header for programming and interfacing to a 

power analysis module, referred to as the Node Analyzer (NA), shown in Figure 5.  The NA is a 

custom designed power logging tool which allows for sensor power profiling. The NA contains a 

microcontroller that will be able to communication through a UART to the sensor node and put the 

sensor node into the commanded state so the power utilization might be read. The NA contains power 

monitoring circuitry as well as a digitally controlled, variable voltage regulator.  The power sourced 

from the NA is fed into the sensor node during operation while the power usage of the device is 

closely monitored via the NA.  

 

Figure 4: Node Analyzer (NA) 

To program the Sensor Node, MSP-FET, or MSP-FET430UIF is required as well as a programming 

adapter board designed to convert the programmer’s 14-pin, 2.54mm pitch header to the 10-pin, 
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1.27mm pitch header on the sensor node. Sensor nodes are programmed and debugged over the Spy-

Bi-Wire interface. The sensor node boards utilize the 10-pin header to reduce the overall sensor node 

size. The programming setup requires the use of an adapter board to convert the 14-pin, 2.54mm 

programmer header to the 10-pin, 1.27mm header used on the sensor node (shown in Figure 6). 

A. SENSOR NODE HARDWARE DESIGN  
 As described in the hardware architecture above, the block diagrams are shown here in a 

schematic format to provide detailed information of each components and circuitry used in the 

wireless sensor hardware. As shown in Figure 7, this schematic capture and PCB layout is done using 

the open source KiCad EDA software. 

 
 

 

Figure 5: Sensor node programming setup 
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B. HARDWARE COMPONENTS 
 The Wireless Sensor Node that we designed and tested for the vehicle classification algorithms 

is shown in Figure 4 and 7.  The following major components on the boards and its features are 

elaborated further in this section. 

 
Microcontroller – The CC430F5137 is SoC from Texas Instruments designed for low-power 

wireless communication applications with its built-in RF transceiver. It consists of two Universal 

Serial Communication Interfaces (USCI), where USCI-B0 is used for the SPI to interface to the 

magnetometer. In the schematic the SPI lines where mark as MAG_SDI, MAG_SDO, MAG_SCK, 

and MAG_CS, which stands for the magnetic sensor to the microcontroller with the corresponding 

description: Slave Data Input (SDI), Slave Data Output (SDO), Slave Clock (SCK), and the Chip 

Figure 6: PCB layout of the Wireless Sensor Node 
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Select (CS), respectively. These lines serve the data and configuration commands between the CC430 

microcontroller and the magnetometer. 

Magnetometer – the LSI3MDL is connected through the SPI lines. The sensor is capable of providing 

interrupt capability for when the magnetic field intensity changes beyond some determined threshold. 

The magnetometer is able to select a full-scale range of ±4/±8/±12/±16 gauss. 

Trigger Interrupt – 74LVC1G08 is an AND gate logic circuit which allows the processor to be 

configured to interrupt when both the magnetic field is above the interrupt threshold and there is data 

ready. 

Energy Harvesting Interface – is an input port for an energy harvesting power source beside the 

Lithium-based, 3.3V 1Ah CR2477 battery coin-cell. In this project, two MOSFETs are used for 

reverse polarity protection for both input power sources. 

DC-DC Converter – TPS62730 – is step-down DC-DC converter optimized for ultra-low power 

wireless applications. It has an input voltage range from 1.9VDC to 3.9VDC where in our case we 

convert the 3.6VDC to 2.1VDC. Also, the TPS62730 provides up to 100mA output current and allows 

the use of tiny and low cost chip inductors and capacitors to further reduce the size of the sensor node. 

Balance-Unbalance (Balun) – 0915BM15A0001 is a 915MHz impedance matching circuitry for RF 

transceiver of the CC430F5137 chip. It is connected in between the microprocessor chip’s RF front 

and the inductor-capacitor (LC) bandpass filter of the antenna. 

PCB-Antenna – the radio antenna is a PCB design, etched to the tracing on the PCB. This approach 

provided for a medium size antenna that fits perfectly on the 30mm x 30mm PCB and is low cost. 

This antenna design was based on the Evaluation Module (EM) board recommendation for 

868/915/955 MHz PCB spiral-type found in Application Note 058 from Texas Instruments. This 

approach allows for a reduce component count and serves as a feasibility study as an option for cost 

reduction. 
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Spy-Bi-Wire JTAG Protocol - is a serial communication protocol for programming and debugging 

firmware using Spy-Bi-Wire interface on the programmer. The pins from the microcontroller are then 

connected to the Molex 10-pin header for connection to the MSP-FET programmer. 

C. HARDWARE FOR POWER PROFILING 
 Another board that we developed is the Node Analyzer (shown in Figure 5 and 8), as discussed 

in the above section was used in order to determine the power consumption of the Wireless Sensor 

Node board in the actual implementation. The NA is composed of a “current sensor” that was used 

for monitoring the power consumption of the attached sensor node. The main idea of implementing 

low power profiling to the SN board is to be able to make sure the sensors can keep on running for 

years without replacing the battery. To realize this scenario, we developed this board - Node Analyzer 

board (NA), which is used to determine the power consumption of the SN board. The schematic of 

the Node Analyzer board is shown in Figure 8. 

D. NODE ANALYZER BOARD 
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The NA board is mainly composed of the following chips:  

ATMega328P: Microcontroller that reads the current consumed in the SN board through other 

component on the NA board which is the Current Sensor INA219 chip. It is also composed of a 

voltage regulator that provides the power to the SN board while under test. Also, a UART-to-USB 

chip FT320X is used to interface to a PC that runs the Node Analyzer Companion Software 

(NACS) that provides the control of the power profiling sequences and reads the log data to view the 

power consumption. The NA board is able to control and analyze the power profiling sequences of 

the SN board and to be able view the power consumption parameters while under test.  

UART communication: The UART connection to the node analyzer will enable for a set of 

commands. Some specific to the analyzer and some intended to be sent to the sensor nodes. The 

Figure 7: Schematic diagram of the Node Analyzer  
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profiles sent to the sensor nodes are static and arguments are not needed. Therefore, a single byte will 

be encoded to determine what operation to take. Commands for the analyzer are for power settings, 

or resets. The node analyzer will continuously send power information and a timestamp of the 

operation to the PC. There is a companion application that provides a GUI of this information. This 

data is the main advantage which will enable better refinement and iterations of device settings or 

algorithms. 

 

E. POWER PROFILING TASK 
 We have included here an example of a power profiling graph that could be applied to the 

Wireless Sensor Board which can be controlled by the Node Analyzer board. This power profile graph 

shown in Figure 9 indicates that when an interrupt from a vehicle passing over the Sensor Node, the 

SN starts to process the data, extract the features, perform the Decision-Tree algorithm, and transmit 

the result for about 0.001ms with a current consumption of 35mA to the receiver. Once the processing 

TX  = 
35mA 

Sleep 

TX 

Sleep 

10sec - Periodical / Interval Tasks 

0        
 

.001
 

10     10.001 20    20.001 
Sleep = 46uA 

RX =  
15m
A 
Standby=150u

 

TX 

Standby Standby 

RX RX 

Power Assuming 
 Vcc = 2.4V 

45mW 

8mW 

0.25mW 

INT INT INT 

Figure 8: Sample power profiling capture, denoting power consumption levels at various operating 
modes. 
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the transmission is done the Wireless Sensor Board goes back to Standby Mode or Sleep Mode, 

consuming approximately 156uA and 46uA, respectively, until the next interrupt occurs. While no 

interrupt occurs, the SN board will remain in a low-power mode, thus, consuming less power that 

would allow the battery to last for years without any replacement. 

V. VEHICLE CLASSIFICATION ALGORITHMS 
A. PREPROCESSING 

The preprocessing block generally performs two operations: calibration and dimensions 

modification. The calibration operation is not a part of the data flow and is usually done during the 

initial phases of a sensor’s installation and placement underneath the ground. The first task of 

calibration is to nullify the effects of the magnetic fields generated by the surroundings into which 

the node is embedded. 

This part of calibration is essential, as different locations will have different magnetic fields. 

Initially, the magnetometer is designed such that its base value (the value of the sensor under no load 

condition, or under ideal conditions, i.e. when no car is passing over it) always points to zero Gauss; 

when it is deployed underneath the surface of the Earth, however, the base value is altered due to the 

local presence and intensity of the Earth’s magnetic field. This change in the base value is irreversible 

and, moreover, the value of the change will vary by location. 

Therefore, setting the base value of the sensor to zero or to some constant will produce 

inconsistent measurements at different locations. Thus, calibration of the base value of a sensor is a 

significant factor in developing an efficient system because it allows for nullifying the impact of 

Earth’s Magnetic Field over the sensor. Once a base value corresponding to a sensor is obtained, the 

value is then normalized to zero in order to synchronize all the MLVC systems. 
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Figure 9 shows the normalization of various base values associated with various sensors placed 

at different locations of the earth. 

 
 

 
Figure 9: Conversion of raw base values into calibrated base values 

  

 
After calibrating and normalizing different base values for different sensors placed at various 

locations, preprocessing further determines a threshold value for each sensor. The threshold level is 

set so as to avoid false detection of vehicles, which is often caused by pedestrians or by metal objects 

lying over the ground in the range of a sensor. The logic behind this process is that the metallic 
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composition of a vehicle is higher than that of a person or other objects; thus, the threshold is set to 

trigger only for magnetic fields typical of a modern vehicle. The node is programmed in such a way 

that once a value higher (or lower in case of negative values) than this threshold value is received, it 

automatically opens a sample window that records all the values (magnetic signature) until the point 

where the value again becomes nearly equal to this threshold value and remains there for at least 10 

samples, as shown in Figure 10. For a given vehicle, an average of around 100 samples are obtained 

per vehicle axis per run. 

 

Figure 10: Detection window 

After calibration is performed and vehicle measurements are taken, the system performs the next 

phase of axis or dimensions modification. Axis modification is yet another important part of 

preprocessing, done to improve the accuracy of the algorithms. The inputs to the preprocessing block 

are the magnitudes of the values obtained along X, Y, and Z axes, while the outputs are along XY, 

XYZ, and Z axes, where: 
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The above conversion was necessary in order to maximize the sensor’s efficiency. The 

sensor is oriented in such a way that X and Y are at angle of 0 degrees relative to the ground and 

the Z axis is perpendicular to it, as shown in Figure 7. Normally the sensor is placed such that a 

vehicle should always approach it along the X-axis, as depicted in Figure 11, which means 

approaching perpendicular to both the Y- and Z-axis. But at times it could be possible that the 

sensor can be approached from the Y-axis or from both X and Y. The reasons behind this are that 

there could be a change in the orientation of the sensor due to human error or it could be possible 

that the sensor is placed at a road intersection where vehicles are moving at right angles to each 

other. This could degrade the overall efficiency of the algorithm, as we can then have two magnetic 

signatures of a single car with values along the X- and Y- axis interchanged because we have 

considered the X-axis as our default one. To avoid this potentiality, we combined X- and Y-axis 

values to obtain values that are orientation-independent. 
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Figure 11: Placement and orientation of the sensor 

Next, it is necessary to consider the other equation. Since the Z-axis is perpendicular to the 

ground, its values are almost unaffected by the orientation of the sensor. Because of this, we send 

the Z-axis values unaltered at the output of the preprocessing block. Still, a rare possibility for error 

exists, which can alter the Z-axis values. This could be seen in cases where the sensor is not properly 

aligned with the ground or in cases where the roads are more elevated on one side than on the other. 

In such situations, the sensor could be tilted and the Z-axis could make an acute or an obtuse angle 

with the ground instead of a right angle, thus resulting in a different magnetic signature than what is 

produced while the sensor is placed properly. Thus, we also provide the XYZ output so as to negate 

any possibility of error from misalignment. In all, then, the XY, XYZ, and Z values are fed to the 

feature extraction process to obtain features from the modified magnetic signature, which is 

discussed next. 
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B. FEATURE EXTRACTION 
The features are extracted from each one of the 30 runs of a vehicle and for each run a total 

of 32 features are extracted from the values along the XY, XYZ, and Z axes. Specifically, 11 of 

these features correspond to each of the XYZ-and the Z-axis, and 10 correspond to the XY- axis, 

from a single run of a vehicle. Table 1 illustrates each one of them. 
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A detailed description of all the features is as follows: 
 

1) Maximum 
 

The Maximum feature of XY, XYZ, and Z axis determines the maximum value along each 

dimension. The Max feature for each axis is represented as follows: 

 

where 100 corresponds to the total number of samples. 

2) Minimum 
 

The Minimum feature of XY, XYZ, and Z axis determines the minimum value along 

each dimension. The Min feature for each axis is represented as follows: 

 

where, i stands for the ith  sample and 100 signifies the total number of samples. 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = �� (𝑥𝑥𝑥𝑥−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥)2100
𝑖𝑖=1

100
            (3.12) 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = �� (𝑥𝑥𝑥𝑥𝑧𝑧𝑖𝑖−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥)2100
𝑖𝑖=1

100
     (3.13) 
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𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = �� (𝑧𝑧−𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧)2100
𝑖𝑖=1

100
                   (3.14) 

where, i stands for the ith  sample and 100 signifies the total number of samples. 

3) Variance 
 

Var stands for variance, which is equal to the square of standard deviation. It describes the 

level of variation from the mean value. It is represented as follows: 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 =
� (𝑥𝑥𝑦𝑦𝑖𝑖−𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥)2100

𝑖𝑖=1
100

  (3.15) 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 =
� (𝑥𝑥𝑦𝑦𝑦𝑦𝑖𝑖−𝑥𝑥𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2100

𝑖𝑖=1
100

        (3.16) 

𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 =
� (𝑧𝑧𝑖𝑖−𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2100

𝑖𝑖=1
100

                   (3.17) 

4) Ratio 

Ratio is one of the features most important to classification. There could be a case in which we 

have multiple different readings along the Z and XYZ axis for the same vehicle on  

different days, depending on the level of air inflated inside the tire of that vehicle, with a flat tire 

being the worst case scenario; such variations could be minor or potentially significant. We can 

analyze that our Max and Min features would fail in such a case. The Ratio feature works as a 

remedy to this problem. Ratio is expressed as the ratio of the maximum value to the minimum value. 

Thus, whatever the case, the ratio will remain constant throughout for a particular vehicle as the 

minimum and maximum values will increase or decrease by the same factor. Hence, this feature is 

a boon in vehicle classification along the Z and XYZ axis (the above problem will not affect XY 

axis). The feature is expressed as follows: 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

) (3.18) 
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𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = �𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

� (3.19) 

5) RMS 
RMS stands for root mean square and the feature is represented as follows: 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = �∑ 𝑥𝑥𝑥𝑥100
𝑖𝑖=1
100

    (3.20) 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = �∑ 𝑥𝑥𝑥𝑥100
𝑖𝑖=1 𝑧𝑧
100

   (3.21) 

𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = �∑ 𝑧𝑧100
𝑖𝑖=1
100

         (3.22) 

where, i stands for the ith  sample and 100 signifies the total number of samples. 
6) P2P 

 

P2P stands for peak to peak. It represents the range of a graph by calculating the 

difference between the highest peak and the lowest peak. The P2P feature along each axis is 

represented as follows: 

𝑥𝑥𝑦𝑦𝑦𝑦2𝑝𝑝 = 𝑥𝑥𝑦𝑦𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑥𝑥𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 (3.23) 
 

𝑥𝑥𝑦𝑦𝑧𝑧𝑝𝑝2𝑝𝑝 = 𝑥𝑥𝑦𝑦𝑧𝑧𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑥𝑥𝑦𝑦𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛 (3.24) 

 
𝑧𝑧𝑝𝑝2𝑝𝑝 = 𝑧𝑧𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛 (3.25) 

 
7) P2PRMS 

 
Peak to Peak RMS is defined as the ratio of the maximum amplitude among all the peak 

values to the RMS value. It is represented as follows: 
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8) Kurtosis 

 
Kurtosis is the measure of sharpness of the curve at the mean. It is important in that it provides us 

with the level of density of the values around the mean for each axis in a magnetic signature. Kurtosis 

is an important and useful feature for the classification of vehicles. Kurtosis  

is represented as follows: 

 
where, i stands for ith  sample and 100 corresponds to the total number of samples. 
9) Skewness 

 
The skewness is the measure of the asymmetry of a curve around the center. It helps us to analyze 

the measure of left leaning or right leaning of the curve from the center. This feature, together with 

kurtosis, serves as an excellent solution for classifying various types of vehicles. 

The skewness is represented as follows: 
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 where, i stands for the ith  sample and 100 signifies the total number of samples. 

Approximately 32 features are extracted from a single run of a vehicle, and 30 runs are performed per 

vehicle. Through this process, approximately 960 features were obtained for each of our 6 tested cars; 

on a whole, then, 5,760 features were obtained. All of the features associated with a given run are 

concatenated together to form a list of the run. Several such lists belonging to all the vehicles under 

test are then concatenated to form a dataset. The dataset also includes a one-to-one mapping between 

each run and the class to which it belongs. Therefore, the information about the class of vehicle is also 

preserved in the dataset. This large dataset is then shuffled by applying a randomized function to it. 

Even after the randomization is performed, one-to-one mapping remains preserved; this is to say that 

no harm is done to the dataset while randomizing it. Next, the dataset is divided into two different sub-

sets, one of which contains 66% of the data for training purposes, the other contains the remaining data 

for testing purposes. 

C. MACHINE LEARNING ALGORITHMS 
 

 The concept of machine learning is analogous to that of learning in the human mind. Many of 

us have heard the saying, “practice makes perfect,” but perhaps only a few have thought about the 

logic behind it. By performing the same task again and again, one trains one’s mind, each time, to 

perform the same task more efficiently in the future. The same is the case with a machine learning 
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algorithm. In order to obtain good results from a system or an algorithm, we have to first train it to 

accomplish its task; that is what machine learning is all about. 

In this section, we will discuss two machine learning algorithms: CART and multi-layer 

perceptron. CART can be used alone for classification, while Multi-Layer Perceptron (MLP) is used 

alongside CART; this is because the multi-layer perceptron is incapable of performing feature 

reduction, which CART can easily do. We will now describe the capabilities of each algorithm, 

beginning with CART. 

1)  CART 
 

CART stands for Classification And Regression Tree. Generally, two different types of decision 

trees are formed in CART: the first is for classification and is known as CART classifier; the second 

is for regression and is known as CART regression. In this thesis, we only employ the use of CART 

classifier, which, as shown in Figure 13, is a decision tree starting from the root node on the top and 

growing towards the final outcome–i.e. leaves. A decision tree is generally a flowchart (an upside-

down tree) consisting of several conditional checks (if-else statements), represented as nodes at each 

level of the tree. Each node gives rise to two child nodes, as shown in Figure 12, and thus divides the 

whole dataset into several subsets until a pure subset is obtained. This pure subset leads towards the 

final product (leaves), which contain class-related information. 
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Figure 12: CART classifier 

 
 

As we already know, we have a data set for training that has a one-to-one mapping between 

the runs and their associated vehicle’s class. Next, we further divide the training set into two 

different sub-sets: one (x) containing all the runs and the other (y) containing the class related 

information while preserving the mapping. Once the subset formation is done, we use these two 

sub-sets as inputs to generate a decision tree by using a tree constructor function, which is expressed 

as follows: 

𝐷𝐷𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒𝑒𝑒. 𝑓𝑓𝑖𝑖𝑡𝑡(𝑥𝑥, 𝑦𝑦) 

This function acts upon both sets simultaneously and extracts all the features from all the 

runs to construct a tree, while the class subset is used to form leaves. One of the advantages of 
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the CART classifier, and the reason we are using it in this thesis, is that it does not include all the 

features to create a decision tree. Rather, it performs feature reduction and chooses only those 

features that vary by a significant amount among all the vehicles under test, while trashing the rest. 

This feature of the CART classifier makes it highly efficient and accurate. The formation and 

operations of the decision tree can be better understood by referring to Figure 13. 

 

Figure 13: Formation of decision tree 
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As the figure shows, the tree starts with a root node. This node comprises a conditional check on a 

feature (p2prms), which varies the most out of the lot and, therefore, has the caliber to successfully 

differentiate one or more classes of vehicles from the rest. The root node gives rise to two child 

(terminal) nodes that consist of the same, or two different, features (one for each node) that vary 

less than did the one in the parent node, but more than in the remaining others. This process of tree-

flourishing and node-construction goes on and on, until we reach the leaves or the final products of 

classification (vehicle’s class) which are Sedan, Hatchback, and Truck. The level of impurity in the 

tree (represented by a factor called gini) decreases as we propagate from the root node out towards 

the leaves, with gini being the highest at the root node and approximately zero at the leaves. Hence, 

it can be analyzed that there is always a single root node in one decision tree that divides the whole 

dataset into two subsets. Following the root node, there are multiple levels of terminal nodes, with 

each level consisting of nodes made from features that vary more than the ones that are at a lower 

level and, hence, contributing to the formation of a tree. 

Once an efficient tree is created, we test its efficiency by feeding the testing dataset into the 

algorithm. Like the training data set, the testing data set is also divided into two subsets, but only 

the sub-set associated with runs is applied at the input of the algorithm, while the class- related one 

is used for verification. While testing, the run sub-set is applied sequentially at the input of the 

already-trained tree–i.e. only one run at a time is applied to the input, which is then acted upon by 

the algorithm in order to determine its class. The next run is only applied when the class for the 

previous one is determined. Therefore, sequentially over time we obtain a subset of predicted 

classes at the output, which is then compared with the subset of the already known classes to obtain 

the score and, hence, the efficiency of the algorithm. 
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Decision trees are effective in classification but are often affected by overfitting and pruning. These 

factors can degrade performance. Overfitting occurs when a tree is fed with a larger amount of data 

than what is actually required for construction; when this phenomenon occurs, noise and 

unnecessary features are also used to construct the tree, which degrades its performance. The one 

and only remedy to overcome overfitting is pruning, which means reducing the dataset as per the 

tree’s requirements. Pruning is generally done manually and could result in loss of ability to detect 

certain relevant features. Therefore, a decision tree can only support a specific amount of data, and 

anything larger could reduce its efficiency. Thus, the above theory tells us that CART Classifier’s 

usage should be limited to small- and moderately- sized datasets only. Therefore, we use a better 

and a different type of algorithm to deal with larger datasets. This algorithm is discussed next. 

2)  MLP 
 

Where classification of vehicles is concerned, one of the most efficient and widely-used 

algorithms is MLP. The concept behind the formation of a MLP is derived from the function of the 

human brain. The brain is made up of billions of neurons, each working as an individual processing 

unit and contributing in decision-making processes for the entire brain–i.e. to take certain actions 

based on the inputs received from the senses. As shown in Figure 15, a multilayer perceptron 

operates similarly. It consists of several interconnected perceptrons as its basic building blocks, 

each performing only a small portion of the overall processing involved in a major task and, hence, 

contributing moderately towards the final output. In addition to its structure and basis in neural 

networks, there is yet another important feature of multi-layer perceptron, known as Error 

Backward Propagation (EBP). EBP has empowered multi-layer perceptron to outperform several 

similar algorithms and is the reason for its use in this thesis. 

The concept of EBP will be discussed later in this section. 
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Figure 14: Overview of the structure of an MLP. 

 
As we have already discussed, a multi-layer perceptron is formed by linking several 

individual perceptrons. We will now discuss individual perceptrons before returning to further 

explore multi-layer perceptrons. A perceptron, sometimes also called an artificial neuron, shown 

in Figure 15, is a small processing unit that is efficient enough to independently classify objects 

according to the inputs received. 

 
  

Figure 15: Diagram of a perceptron. 

In order to perform classification, a perceptron initially takes in multiple inputs, then 

processes them with a couple of inherent functions and finally delivers an output (i.e., performs 
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classification) based on the values obtained from these functions. Each input is fed (or connected) 

to the perceptron through a single weighted connection (or a link). The name “weighted 

connection” is derived from the fact that each connection has a weight (or link cost) associated 

with it. 

After obtaining inputs, the perceptron employs its first inherent function into application 

and calculates a weighted sum of all the inputs received. While calculating the weighted sum, a 

bias input is also included, whose value is always equal to 1. The bias is used because the weighted 

input connections fed into the perceptron do not cover all the possible values of inputs; that is, the 

weights are of no use if all the inputs are zero. Thus, in order to accommodate this possibility, a 

bias is used. The whole concept revolves around the equation of a straight line, which is: 

𝑌𝑌 = 𝑚𝑚 × 𝑋𝑋 + 𝑏𝑏    (4.1) 

Or in our case: 

Y = (𝑋𝑋𝑖𝑖 × 𝑚𝑚𝑖𝑖) + b   (4.2) 

The weighted sum is expressed as follows: 

𝑊𝑊𝑋𝑋 (𝑋𝑋𝑖𝑖 × 𝑊𝑊𝑖𝑖) +Bias × 𝑊𝑊𝐵𝐵  (4.3) 

where, WX is the weighted sum of all the inputs (X), Xi signifies the ith input, Wi represents the cost 

or weight associated with the connection between the ith  input and the perceptron, Bias represents 

the bias input and WB represents the cost associated with the connection of Bias. 

 If we compare the above two equations, it can be seen that Wi  signifies 𝑚𝑚𝑖𝑖and (Bias × 
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B1) signifies b. Hence, it can be seen from the equation that, if all the values of X are zero, there 

is no significance of any m in the equation, so a bias is needed to stabilize the equation and, 

moreover, to stabilize the algorithm as a whole. 

 Once a weighted sum is obtained, the perceptron performs its second inherent function. This 

function, called the activation function or decision-making function, is applied over the recently-

derived weighted sum to obtain a value. The activation function generally used is a sigmoid 

function. A sigmoid function is used because of its ability to scale down (normalize) any given 

value to a value within a range of 0 to 1, as depicted in Figure 12. Scaling down of values always 

enhances the efficiency of an algorithm; hence, a sigmoid function seems to be an optimal choice 

for the activation function. The sigmoid function is expressed as follows: 

𝑆𝑆(𝑊𝑊𝑋𝑋) = 1
1+𝑒𝑒−𝑊𝑊𝑋𝑋

    (4.4) 

VI. CONCLUSIONS 
 

This project’s findings provide an excellent reason to consider the in-node MLVC system for 

identifying and classifying traffic in highway rest area. Our developed Automatic Vehicle 

Classification and Identification (AVCI) system could be an excellent solution for collecting data 

from highway rest areas to improve its uses. AVCI sensor nodes which contain magneto-resistive  

and accelerometer sensors for calculating speed and axles respectively. The Access Point (AP) 

which collects filtered sensor data from sensor motes to calculate speed, axles count also classify 

them based on Federal Highway Administration (FHWA)\. The AP contains RF transceiver to 

communicate with sensor motes and a GPRS (General Packet Radio Service) shield to send 

aggregated traffic data to the county or regional traffic data collection center. 

. 
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