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A multi-view automatic table tennis
umpiring framework

Patrick Wong1 , Hnin Myint1, Laurence Dooley1

and Adrian Hopgood2

Abstract
This paper presents a low-cost, portable, multi-view table tennis umpiring framework, as a viable alternative to the cur-
rent expensive systems which are almost exclusively restricted to elite professional sports. Table tennis has been
selected as the sport to evaluate this framework primarily because it comprises many different complex match elements,
including the service, return and rally elements, which are governed by a strict set of regulations which need to be
umpired. The aim is to develop novel methods to analyse and judge the legality of such key match facets, with ball detec-
tion and tracking in video frames being integral to reliably and accurately determining the ball’s position and flight path
during rallies. While a low-cost option is attractive and offers several benefits, it is a technically challenging problem due
to the small number and generally low-resolution cameras that are used. A novel multi-view camera setup and multi-
agent system (MAS) framework is presented, which comprises computationally lightweight agents which detect and track
the table tennis ball, create a 3D representation of the flight path of the ball, predict the ball’s trajectory, and identify and
analyse key facets in a table tennis rally. The MAS correctly detects all state transitions in seven test table tennis
sequences with minimal latency and while the processing rate of a standard computer may be unable to analyse long ral-
lies in real time, the potential of running the MAS on a parallel architecture is a propitious alternative. The MAS is also
scalable, enabling additional camera pairs to be deployed to achieve enhanced accuracy and coverage. The framework
affords the potential to reform the way matches are umpired, especially for amateur players, providing an economic and
objective manner of dispute resolution, while the multi-view facility is extendible to other relevant ball-based sports.
The ball flight path analysis mechanism can be exploited as a valuable training tool for skill development.
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Introduction

Background

In recent times, the role of computer vision in identify-
ing and understanding events happening in digital
images and videos has grown dramatically. Due to its
rich potential in many different areas, computer vision
has been utilised in pattern recognition, medical ima-
ging, security surveillance, three-dimensional (3D)
reconstruction and robotic applications. The develop-
ment of computer vision has made it feasible to detect
and track target objects, with many sports increasingly
considering this technology for verification purposes in
key umpiring decisions. One of the main controversies
surrounding contemporary sports competitions are
incorrect decisions made by match officials.1

To assist human umpires in making more accurate
decisions, there has been a growing trend to employ
vision-based systems for reviewing problematic officiat-
ing decisions at a range of professional sporting events
such as the Wimbledon Tennis Championships and
English Premier League football matches. Likewise,
researchers are exploring computer vision technologies
to develop game highlight detection algorithms and
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virtual replay systems. Examples include determining
whether a target object is inside or outside of the play-
ing area such as Hawkeye,2 the close-up view of a
player after a goal3 or showing the trajectory of the ball
on a virtual court by rendering the graphics of the
ball’s motion.4 This technology not only supports
human umpires but provides proof of their decision-
making and reduces the likelihood of mistakes.

Despite offering significant advantages, existing sys-
tems2–4 have struggled to meet ever-growing demands
in terms of high deployment costs, complex installation
and limited functionality. Moreover, automatic umpir-
ing of an entire match in a real match setting has not
been achieved, which provided the motivation behind
this project. Furthermore, existing systems2–4 are too
expensive and inflexible for lower-tier, amateur sport-
ing communities to embrace, so a cost-effective, easy-
to-operate automated umpiring system is a very desir-
able objective.

Table tennis umpiring

Table tennis is an Olympic sport with millions of play-
ers worldwide. It is governed by the International Table
Tennis Federation (ITTF) and the official rules are
specified in the ITTF handbook.5 It has many complex
match elements, including the service, returns, rallies
and faults. The ball travels at high speed and its view
can be occluded by the players and other match objects.
These factors collectively make umpiring difficult even
for a well-trained human official and it is this context
that makes table tennis an excellent sport for testing
and challenging an automatic umpiring system.

To develop an effective, low-cost automatic umpir-
ing system presents several key technical challenges to
overcome, including:

� Accurately tracking a table tennis ball is a difficult
task due to its small size and background complex-
ity of match scenes.

� The ball often travels at high speed.6 The effect on
the captured image of the ball is shape distortion,
allied with object blurring and colour deviation
caused by light-level changes between frames in fast
sequences, and occlusion by the players or their
rackets.

� While a low-cost option has benefits, it is techni-
cally more challenging due to limited hardware and
generally low video resolutions used.

� Umpiring a complete rally is a very complex task
and requires many concomitant decisions, so the
demand for timely and accurate observations of
rallies imposed by the table tennis rules is exacting.
To fulfil these requirements, the processing analysis
must be expedited and consistently reliable judge-
ments rapidly generated.

� Some match elements are very difficult to judge.
For example, whether the ball touches the net, hits
the edge of the playing surface (legal), or the other

side of the table edge (a foul). These kinds of judge-
ments are problematic even for professionally
trained umpires.7

� Determining a fault in a rally is also difficult because
there are many different fault categories such as
double bouncing, a return not bouncing on the cor-
rect side of the table, and the ball hitting the floor.

This research is motivated by the availability of advanced
computer vision technologies and artificial intelligence
(AI) tools, which can aid in developing algorithms more
efficiently. Exploring these useful technologies and devel-
oping a strategic methodology to effectively identify the
state of a rally for match umpiring were the main motiva-
tions behind this research. The aim is to develop a frame-
work that can be used for automatic umpiring in ball-
based sports, using table tennis as the testing ground. The
focus is on developing techniques and implementing algo-
rithms rather than building a complete system. To make
the system accessible to amateur players, the system is
aimed to be low-cost, portable, and straightforward to
both calibrate and install.

In the next section, relevant literature on object track-
ing and umpiring tools are reviewed, while the proposed
multi-view ball tracking system is explained in the section
entitled Multi-view ball tracking system. Experimental
test results are critically evaluated in the section named
Experimental results, while the future work and some
concluding remarks are made in the Constraints and
future work and Conclusion sections respectively.

Literature review

While there is a large corpus of work on object tracking
techniques that produce satisfactory results, they are
generally both object and application-specific, therefore
this literature survey will focus on tracking a table ten-
nis ball. Two previous studies for ball tracking for
umpiring purposes have been proposed by Wong and
Dooley7 and Byrd.8 The two-pass colour thresholding
(CT) technique7 identified the ball from real match
scenes, and while satisfactory results were achieved, it
only covered the service component of a rally during
which the ball does not travel at high speed. In contrast,
the automated scoring system proposed by Byrd8 tracks
the table tennis ball in real-time and relates to the table
and net to determine when a point is scored. However,
the setting for Byrd’s work is an artificial laboratory
environment where the ball is painted neon green
against a uniformly black background. Such a contrived
environment significantly reduces the ball detection
challenge, but it contravenes the laws applicable to table
tennis tournaments which mandate the ball colour can
only be matte white or orange.9 Other table tennis balls
tracking studies10–14 have focused on robots playing
table tennis. The sampled points method proposed by
Zhang et al.10 aimed to recover pixels unintentionally
lost during the adjacent frame differencing process.
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Although experimental results revealed promising ball
detection performance, background pixels were some-
times incorrectly classified as belonging to the ball,
which degraded the overall detection accuracy. In con-
trast, Liu et al.11 attempted to improve the tracking per-
formance by employing an iterative dynamic window
tracking method. Despite the system being able to con-
sistently track the ball, the resulting computational time
complexity incurred was mitigated against real-time
operation. An alternative approach to ball tracking
involved a multi-view scheme with an aerodynamic
model of the ball’s 3D flight path,12 which has been
improved by Bao et al.13 by means of a bouncing
model, which took into consideration the bouncing
characteristic of the ball. While some degree of improve-
ment in the tracking of a table tennis ball was achieved,
the test video sequences used comprised relatively sim-
ple backgrounds, which were not typical of real match
scenes, where the view can become occluded by the
players against complex backgrounds where ball mer-
ging can occur. Moreover, in the dual-camera based 3D
trajectory reconstruction algorithm, it was critical that
both cameras detected the ball at the same time to reli-
ably calculate the 3D position of the ball. This con-
straint means the 3D position of the ball cannot be
determined when one of the cameras fails to detect the
ball. In addition, a vision system using multiple cameras
must simultaneously process frames from different
views, thus incurring a heavy overhead which impacts
the system’s performance. Machine learning has also
been considered for table tennis ball tracking.14 Instead
of using a physical model to predict the ball trajectory
for a playing robot, artificial neural networks (ANNs)
were trained using 200 real-world trajectories as training
data. The ANN trajectory predictor produced a mean
error of 39.6mm, which is analogous to the diameter of
a table tennis ball, and while this level of error is accep-
table for applications such as playing robots, it is not
sufficiently accurate for umpiring purposes.

In summary, no existing solution addresses the chal-
lenges of ball tracking in a full match rally, which is an
essential requirement in the context of an automatic
umpiring system. Furthermore, current solutions are heav-
ily reliant on the availability of aerial views of the scene,
which renders the ball against a generally simple back-
ground that is, a uniform-coloured table and floor.10–14

Obtaining aerial views is not always feasible as most table
tennis tournaments take place at multi-purpose sport
venues and fixing cameras to the ceiling or high wall is
not practical. To address this significant gamut of chal-
lenges, this paper investigates the development of a novel
portable multi-view ball tracking system design using
multiple agents that can accurately manage difficult and
diverse ball detection scenarios in real match scenes.

Multi-view ball tracking system

A multi-view ball tracking system has been developed
as the testbed for the automatic umpiring framework.

This section discusses the setup of the experiment envi-
ronment, the ball detection and tracking algorithms,
the table tennis rally analysing method and the multi-
agent system adopted for automating the umpiring of
rallies.

With the aim of developing a cost-effective system,
the video cameras chosen needed to be low-cost but
able to capture video at high enough frame rate and of
sufficient resolution and clarity. A preliminary study
showed that the ball can be detected from videos of
table tennis rallies captured at 300 frames per second
(fps) and of a resolution of 5123 384pixels.7 The
Casio EX-F1 digital camera (Casio Computer Co.,
Ltd, Tokyo, Japan) was thus chosen based on these
requirements. To balance between cost and available
views, four cameras were employed to provide either
four single views or two stereo views of the court where
the table tennis table is located (table has the dimen-
sions of 12m3 6m).

Camera placement and calibration

Tracking a table tennis ball in a real match scene is chal-
lenging because the ball is small, fast moving and its view
can be obscured. The image of the ball can also become
distorted or darkened if the video is captured with inap-
propriate aperture size and shutter speed, and the range
of these parameters is limited by the camera specifica-
tions. Environmental factors such as uneven illumination,
confusing background objects, spectators’ movements
and reflective table surface further compound the ball
detection process. Figure 1 shows some examples of the
ball in these challenging detection situations.

A further limitation is that table tennis tournaments
usually take place in multi-purpose halls preventing the
installation of aerial-view cameras. To address these
challenges, the ball tracking system should be able to
monitor the ball using multiple cameras so that when
the ball is undetectable in one view, it can still be reli-
ably detected in another. To achieve this goal, a novel
multi-view camera arrangement is presented, which is
illustrated in Figure 2. The system comprises four high
speed cameras positioned at the first and third quarter
length along the table length. Each camera monitors
two thirds the length of the table, rather than the entire
table because this configuration allows the cameras to
be placed relatively close to the table to obtain a better
view. Each camera has both an opposite facing and
adjacent partner, for example, Cam 2 and Cam 3 are
opposite and adjacent to Cam 1 respectively. The oppo-
site facing cameras work together to tackle the occlu-
sion problem, while the side pair monitors the whole
length of the table together, with the views overlap at
the middle, where the net is located.

To track the ball for umpiring purposes, the 3D
real-world coordinates of the object must be derived
from the two-dimensional (2D) images captured by the
cameras. This particular camera arrangement affords
two options for deriving the 3D ball position. When

Wong et al. 3



the ball is in a position where the pair of opposite fac-
ing cameras can view it, the ball coordinates are calcu-
lated using the image positions of the ball detected by
this pair. Figure 3 shows the aerial view of an opposite
facing camera pair, which allows the X- and Z- coordi-
nates to be calculated.

Let the principal point of Cam 1 (C1) be the origin.
The X- and Z-coordinates can be calculated using the
following relationships:

tanðu1Þ ¼
ðx1 � W

2 Þ
f

¼ X

Z1
ð1Þ

tanðu2Þ ¼
ðW2 � x2Þ

f
¼ X

Z2
ð2Þ

T ¼ Z1 +Z2 ¼
X

tanðu1Þ
+

X

tanðu2Þ
ð3Þ

X ¼ T
tanðu1Þtanðu2Þ

tanðu1Þ+ tanðu2Þ

� �
ð4Þ

As the Y-coordinate is not visible in the aerial view, the
side view of the camera configuration (Y against Z
axes) was drawn and shown in Figure 4.

The Y-coordinate can then be calculated using:

tanðu3Þ ¼
ðH2 � y1Þ

f
¼ Y

Z1
ð5Þ

tanðu4Þ ¼
ðH2 � y2Þ

f
¼ Y

Z2
ð6Þ

T ¼ Z1 +Z2 ¼
Y

tanðu3Þ
+

Y

tanðu4Þ
ð7Þ

Y ¼ T
tanðu3Þtanðu4Þ

tanðu3Þ+ tanðu4Þ

� �
ð8Þ

However, if the ball cannot be detected by one of the
cameras in the pair, the other camera in the pair can
attempt to work with its side partner to derive the real-
world coordinate using the geometry calculation, as
shown in Figure 5 (aerial view). Based on similar trian-
gles, the Z-coordinates are then calculated by:

Figure 2. Multi-view cameras configuration.

Blurry ball, caused by a low camera 

shutter speed

The ball is partially occluded by the 

player’s hand

Uneven illumination causes the 

bottom part of the ball to be darker 

than the top side

The ball “merges” with background 

objects, which have the same colour 

as the ball

Reflection of the ball appears on the 

table

Multiple moving objects (ball and 

spectators)

Figure 1. Example images of the ball in challenging detection situations.
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T

Z
¼

T� ðxl � w
2Þ � ðw2 � xrÞ

Z� f
ð9Þ

Z ¼ Tf

xl � xr
¼ Tf

d
ð10Þ

and the X-coordinate is determined from:

ðxl � w
2Þ

f
¼ X1

Z
ð11Þ

X1 ¼
zðxl � w

2Þ
f

ð12Þ

The Y-coordinate can be calculated by looking at the
side view (Y against Z axis) of the cameras, as shown
in Figure 6, and applying equations (13) and (14).

Y

Z
¼

H
2 � y

f
ð13Þ

Y ¼
ZðH2 � yÞ

f
ð14Þ

Figure 3. Aerial view of the opposite facing camera pair.
P: Ball’s position in real-world; T: Distance between two cameras; X: X

coordinate of the ball; Z1: Z coordinate of the ball; f: Focal length of the

cameras; w: Width of the image plane; x1: Image position of the ball on

C1; x2: Image position of the ball on C2.

Figure 4. Side view of the opposite facing camera pair.
Y: Y coordinate of the ball; H: Height of the image plane; y1: Image

position of the ball on C1; y2: Image position of the ball on C2.

Figure 5. Aerial view of the side-by-side camera pair.

Figure 6. Side view of the side-by-side camera pair.
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To determine the accuracy of the detection system, a set
of reference points, known as the real-world object coor-
dinates, were used as the ground-truth for comparative
evaluation. The ground truth was constructed by care-
fully calibrating a double-sided checkerboard at various
marked locations on the table during filming, as shown
in Figure 7. The checkerboard had four rows and five
columns of identical sized black squares distributed
evenly upon a white board, so the position of each cor-
ner is known a priori. The distance between the checker-
board and the principal point of Cam 1 (used as the
origin) was carefully calibrated at each marked loca-
tion, so the 3D coordinates of all corners of the check-
erboard were calculated. Apart from the checkerboard
corners, both the table corners, and tips of the net poles
at both sides were used to synthesise the ground truth,
which comprised a total of 288 reference points.

A verification test was performed by manually iden-
tifying the image positions of the reference points in the
images captured by the opposite facing cameras pair
and calculating their 3D coordinates using equations
(1) through (8). The results revealed that the average
Euclidean distance between the 3D coordinates of the
measured reference points and those calculated by the
system was 4.8 cm, which is larger than the diameter of
the ball and this difference is too high for the proposed
umpiring purpose. The Euclidean distances varied non-
linearly with respect to the distance between the refer-
ence points and origin. This discrepancy was mainly
due to the misalignment between the opposite facing
and side-by-side cameras, measuring error, and inaccu-
rate image positions of the reference points. As each
camera has up to six degrees of freedom (X-, Y-, Z-
translation, pitch, roll and yaw), it is very difficult to
achieve perfect alignment, while the spatial resolution
of these cameras is also low (512 3 384pixels). To
reduce this discrepancy, a corrective error compensa-
tion model was constructed that takes the calculated
coordinate to generate an estimated error vector (E) for
that coordinate, using equation (15). By subtracting the

error vector from the calculated coordinate, a more
accurate coordinate value is then obtained.

E x; y; zð Þ ¼ F x; y; zð Þi;G x; y; zð Þj;H x; y; zð Þk ð15Þ

where E(x, y, z) is the 3D error vector, F(x,y,z),
G(x,y,z), H(x,y,z) are functions determining the magni-
tudes of the i, j, k components respectively, and (x, y,
z) is the calculated coordinate of a reference point.

Because the error is non-linear, F(x,y,z), G(x,y,z),
H(x,y,z) were defined as quadratic surfaces, as shown
in equations (16) through (18) where an, bn, cn, dn, en,
fn, gn, hn, in, and jn are coefficients of the surfaces, for
n= 1, 2 and 3.

F x; y; zð Þ ¼ a1x
2 + b1y

2 + c1z
2 + d1xy+ e1xz

+ f1yz+ g1x+ h1y+ i1z+ j1
ð16Þ

G x; y; zð Þ ¼ a2x
2 + b2y

2 + c2z
2 + d2xy+ e2xz+ f2yz

+ g2x+ h2y+ i2z+ j2

ð17Þ

H x; y; zð Þ ¼ a3x
2 + b3y

2 + c3z
2 + d3xy+ e3xz+ f3yz

+ g3x+ h3y+ i3z+ j3

ð18Þ

To determine the coefficients for the quadratic surfaces,
the multivariate polynomial regression15 was used. To
prevent overfitting, a small subset of 32 reference points
was randomly selected from the ground truth as train-
ing data, with 45 ‘unseen’ points chosen for validation.
Figure 8(a) shows the 45 uncorrected calculated (red)
and expected (blue) coordinates of the reference points,
while Figure 8(b) shows the corrected coordinates of
the reference points after error compensation. It is evi-
dent the calculated and expected positions are much
closer. When the error compensation model was tested
on the full dataset, the average Euclidean distance was
0.1 cm, compared with 4.8 cm when the model was not
applied, which represents a significant improvement in
accuracy.

Using this novel camera arrangement, a large area
can be covered by relatively few cameras, though one
drawback is the detected image position of the ball
from each camera is needed before the 3D ball coordi-
nates can be computed. This requirement means each
camera must inform either the other cameras or a cen-
tral server of its detected ball position. Furthermore, as
each camera only monitors two thirds of the table
length, it needs to efficiently work with its side partner
to monitor the whole table. A restriction of this camera
arrangement arises when the ball is at or near the verti-
cal plane that joins the principal points of the two
opposite facing cameras, the 3D coordinates of the ball
cannot be derived because when u1= 0� in equation
(1), Z becomes infinite. When this situation occurs, the

Figure 7. An upright double-sided checkerboard was used for
creating reference points.
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3D ball coordinates must be derived using the juxta-
posed camera pair. To address this shortcoming, a
multi-agent system (MAS) was designed to control and
manage the data flow, with a detailed discussion on the
Multi-agent system sub-section.

Ball detection algorithm

To resolve these challenges, a ball detecting method
was developed using a combination of segmentation,
feature-based detection, and motion modelling as
explained by Myint et al.16,17 A precis of the detection
method is now presented in Figure 9, conceptualising
the main constituent elements.

Second-order motion model (SOMM). The ball detection
algorithm predicts the ball location and uses this infor-
mation to guide the ball detection. The predicted ball
position is calculated based on the SOMM, by:

Pn ¼
C1

Bn�1 + vnDt
Bn�1 + vnDt+

1
2 an Dt2

8<
:

if n ¼ 1 or 2
if n ¼ 3
if n. 3

ð19Þ

where Pn is the predicted ball position at nth frame and
C1 is the centre of the ball in the first frame and is given
by the user. Bn�1 is the detected ball position in the pre-
vious frame, vn is the velocity at frame n, Dt is the time
difference between the two frames in which the ball is
successfully detected and an is the acceleration at frame
n. The velocity vn and acceleration an are calculated by
dividing Dt from the change in position and velocity
respectively between the two immediately previous
frames in which the ball was detected successfully.

While this model is generally reliable, the predicted
position can be ambiguous if the detected position was
incorrect in the previous frame(s). To avoid error

propagation, the predicted position is corrected if its
value is significantly different from the centre of the
object deemed the most likely the ball. This technique
is explained in more depth in the Feature based detec-
tion sub-section.

Segmentation. An adaptive colour thresholding and
motion detection (ACTMD) method has been devel-
oped to segment objects within the region of interest
(ROI) where the ball is predicted, with the square area
of the ROI maintained as twice the diameter of the ball
to minimise the computational cost. If the ball is not
detected within a frame, the ROI is then enlarged to
increase the probability of ball detection.

Figure 8. Expected and calculated 3D coordinates of the reference points: (a) uncorrected expected and calculated reference
points and (b) corrected expected and calculated reference points.

Figure 9. Ball detection algorithm.
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ACTMD firstly attempts to segment the ball using
the background subtraction technique, but if a ball is
undetected (i.e. no moving object appears within the
frame), it attempts segmentation using the colour
thresholding method. Once a ball is detected, the col-
our value of the detected ball is used to update the
threshold value to improve the colour thresholding
performance.

Given the complexity of a match scene, multiple
objects are often segmented by ACTMD because it is
likely multiple objects are moving or have a similar col-
our in the ROI. To determine which object is the ball,
each is evaluated using features of the ball, such as col-
our, predicted position of the ball centre, and diameter.

Feature based detection. After segmentation, the Feature
Based Detection (FBD) algorithm determines which
segmented object is most likely the ball (OMLB) by
checking for both the object nearest the predicted ball
position and whether its contour encloses the predicted
ball position. The object that fulfils both criteria is
labelled the OMLB.

FBD subsequently determines the ball centre and
radius by finding a circle that best fits the contour of
OMLB and is nearest to the predicted ball position. A
modified Hough transform algorithm is used to gener-
ate a set of circles that fit fully or partially to the
OMLB contour, and the circle with the smallest
Euclidean distance from the predicted ball position and
whose radius matches the expected value is designated
as the detected ball.

If only one object is segmented and there is a signifi-
cant distance variation from the predicted ball position,
this result can indicate an unreliable predicted ball posi-
tion. The segmented object is then deemed to be the
OMLB, and the predicted ball position is updated using
the centre value of the OMLB.

Rally analysis

A table tennis rally starts from the instant a player
serves the ball and ends when a fault occurs. In simple
terms, a rally consists of a service and a play compo-
nent. During the service, the player needs to firstly place
the ball on their fully opened and stationary palm, then
project the ball upward vertically for at least 16 cm and
the server can only strike the ball when the ball is fall-
ing; then the ball needs to bounce on the serving play-
er’s court once, cross over the net and bounce on the
receiver’s court. The receiver needs to return the ball to
the server’s court before the ball touches their own
court again. The play will continue until a fault occurs,
which is when the above conditions are not met, for
example, the ball bounces on one player’s court twice
or does not reach the opponent’s court. The full laws of
table tennis can be found in the International Table
Tennis Federation’s Law of Table Tennis.9

To automatically umpire a table tennis rally, a state-
machine has been designed comprising 14 possible
states covering a typical rally, namely:

State 1: Ball on palm
State 2: Ball leaves palm and rises up
State 3: Ball reaches its peak
State 4: Ball is falling
State 5: Ball is initially struck by the server
State 6: Ball initially bounces on the server side
State 7: Ball crosses over the net (server to receiver)
State 8: Ball bounces on the receiver court
State 9: Ball is struck by the receiver
State 10: Ball crosses over the net (receiver to server)
State 11: Ball bounces on the server side
State 12: Ball is struck by the server
State 13: Ball touches the net
State 14: Net ball

During a rally, the states can transit in a variety of
ways. Figure 10 illustrates the possible state transitions
during a legal rally, with the numbered blue circles indi-
cating different states, and the red circles representing
fault states.

Multi-agent system

To enable table tennis rallies to be analysed automati-
cally, a MAS was designed to manage and control the
data flow, comprising five different agents. A schematic
diagram showing their relationship is displayed in
Figure 11. Each agent performs a specialist task and
because the MAS has a parallel architecture, the work-
load can be intelligently distributed to a network of
computers such that the overall system performance
and reliability is enhanced. The respective roles of the
five virtual agents are explained in detail in the follow-
ing 5 sub-sections.

Ball detection agent. The Ball Detection Agent (BDA)
has responsibility for detecting and tracking the ball
allied with determining the 3D ball position from the
images captured by the camera pairs under its control.
It detects the 2D screen position of the ball from each
camera and then derives the 3D ball position which is
transmitted to the Multi-View Correction Agent
(MVCA). For a four-camera system, two BDAs are
therefore needed. The BDA also provides supplemen-
tary information such as the current frame number,
ball radius, and the detection confidence value to the
MVCA agent for further analysis. As the MAS is
designed to be scalable, it can support multiple BDAs,
so if another pair of cameras are available, the system
can be readily extended.

Multi-view correction agent. The Multi-View Correction
Agent (MVCA) controls the BDAs by requesting or
sending information and commands to them. At the
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start of each rally, the MVCA instructs all BDAs to
report the ball position they have detected. If the ball is
visible in a BDA’s view, it returns the ball position.
Otherwise, it reports ‘No Ball’ and hibernates. Because
the MVCA maintains successive ball positions, it can
predict the trajectory of the ball for each BDA, so the
MVCA can monitor the consistency of the ball’s 3D
position between multiple BDAs and estimate the most
likely ball position. When the MVCA receives ball
positions from a BDA, it compares the reported posi-
tion with its predicted ball position. If the difference is
greater than the acceptable error, the MVCA will
recognise that an incorrect ball location is given by a
camera. For this scenario, the MVCA can estimate
what the ball position would be and forwards this ball
position to the BDA that manages that camera view
for correction. After the correction, the MVCA sends
the ball positions from all BDAs to the TCA.

Trajectory construction agent. When the Trajectory
Construction Agent (TCA) receives the ball position
from the BDAs via the MVCA, it constructs the com-
plete trajectory of the ball across the whole table, as
one BDA only monitors two-thirds of the length of the
table. If the ball is in an overlapping area between two
BDAs, the TCA will receive ball positions from two
BDAs which are monitoring the same area at the same
time. If the ball positions between the two BDAs are

not in agreement, the TCA chooses the ball position of
the BDA based on their historical detection perfor-
mance. In case a BDA cannot detect the ball for any
reason, the TCA can provide the approximate 3D ball
location based on a priori knowledge of previous suc-
cessful detections. To prevent any misalignment errors
occurring while the ball is crossing from one visible
region to another, the TCA smooths the whole trajec-
tory using a running average error before sending the
results to the FDA for further analysis.

Feature detection agent. The Feature Detection Agent
(FDA) detects triggers for changing from one state to
another. It analyses the X, Y, and Z components of the
ball’s 3D trajectory. It considers, for example, whether
the horizontal displacement (X) or vertical height (Y)
or the depth (Z) are increasing or decreasing, and
whether there is a sudden change of velocity, accelera-
tion, or the direction of travel. This analysis of changes
means the FDA can detect when the ball gets struck
(sudden change of acceleration), bounces on the table
(the Y component change direction), crosses over the
net (X passes the net position and Y is higher than the
net height) or touches the net (X is at net position and
Y is smaller the height of the net). To evaluate the cor-
rect ball height during the service phase of a rally, the
FDA also checks the height of the ball rise and whether
the ball is struck above the table. Moreover, the FDA

Figure 10. States of a table tennis rally.
Where U, F, H, M, S, and D, are the fault states, defined as: U: Ball served under the level of the playing surface; F: Ball served in front of the end line;

H: Ball rise is not high enough; M: Ball bounced multiple times; S: Skip a state (play out of order); D: Disappear from the view (implying the ball drops

on the floor); � Start of the rally; �N End of the rally or exit with fault.
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analyses whether the ball is travelling within or outside
of the playing surface. As a result, the FDA can pro-
vide the SDA with what, where and when events occur.

State detection agent. The State Detection Agent (SDA)
manages the state machine for table tennis rallies. It
keeps track of the state of a table tennis rally and
updates the state based on the information provided by
the FDA and the previous state of the rally, as dis-
cussed in the Feature detection agent section. The SDA
also checks and decides when a fault occurs and identi-
fies the fault type. For example, if the current state is 4
Fall (the ball is falling during service), and the FDA
informs the SDA the ball has been struck and the direc-
tion of travel is from the server to the receiver. This
communication will trigger the SDA to change the cur-
rent state to 5 Server Strike, as shown in Figure 10.

Experimental results

The MAS was built using the Java Agent DEvelopment
Framework (JADE), which complies with the de facto
standard set by the Foundation for Intelligent Physical
Agents (FIPA). It was chosen because it is an open-
source, platform-independent and widely used agent
framework.18 The detection algorithm was written in
C++ and adopted the Open Computer Vision
(OpenCV) library because C++codes are very efficient
and OpenCV provides a comprehensive set of image-
processing functions. An inter-process communication
mechanism, Pipe, was used to connect the C++ and
Java programmes together. All experiments were con-
ducted on a computer with an Intel� Core� i7 CPU @
2.80GHz.

To critically evaluate the performance of the MAS
umpiring system, seven real match test video sequences
were applied, each of which covered a range of state
transitions and fault conditions occurring during ral-
lies. Table 1 summarises the varying characteristics and
rally ending conditions which governed each sequence.

Each sequence was manually analysed by a table
tennis expert to determine when each state transition
occurs, and the outcome of this investigation helped
frame the ground truth used for comparison. Column
two of Table 1 displays the state transitions determined
by the domain expert.

Figure 12 shows screenshots of the four views cap-
tured by the four cameras and the flight paths (red) of
the ball over the whole sequence superimposed on each
screenshot. The flight path is constructed using the his-
torical positions of the ball detected by the MAS umpir-
ing system.

Figure 13 shows a 3D plot of the historical detected
ball positions of Sequence 1 with annotations. The
sequence goes through the following state transitions,
from the right hand side: 5 (strike by server) ! 6
(bounce on server side) ! 7 (cross over the net from
server) ! 8 (bounce on receiver side) ! 9 (struck by
receiver) ! 10 (cross over the net from receiver) ! 11
(bounce on server side) ! 12 (struck by server) ! 7
(cross over the net from server)! 8 (bounce on receiver
side) ! M (fault: multiple bounces). These state transi-
tions match exactly the ground truth of Sequence 1.

Figure 14 shows the plots of state transitions
detected by the umpiring system (red) the ground truth
(blue). The detected state transitions match the ground
truth exactly, but there are small lags at States 8, 9, 11,
and 12.

Table 2 shows the comparison of state transitions
between the ground truth and the MAS umpiring system
for each test sequence. For all test sequences, the MAS
umpiring system correctly detected all state transitions
with 100% accuracy, although there was occasionally a
detection lag of up to 15 frames (50ms). The average lag

Figure 11. Relationships between various agents.
Where: BDA 1, BDA 2: Ball Detection Agents; MVCA: Multi-View

Correction Agent; TCA: Trajectory Construction Agent; FDA 1, FDA 2:

Feature Detection Agent; SDA: State Detection Agent.

Camera 2
Camera 4

Camera 1 Camera 3

Figure 12. The flight path of the ball.
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across all the test sequences was three frames (or 10ms)
because of the overhead incurred by the FDA in analys-
ing several consecutive frames to detect key features.
This relatively small lag time is, however, not significant
in terms of umpiring decision requirements which must
be made within a 1 second time window.

Overall, the ball detection algorithm took between 5
and 10ms to process a single video frame of spatial res-
olution 512 3 368 pixels, so at a frame rate of 300 fps it
took between 1.5 and 3 s to process 1 s of video. This
processing rate is not fast enough for real-time analysis
of long rallies, but because the MAS has a parallel

architecture, it allows the system to be run on a net-
work of computers, and thus increase the processing
rate of detection. The corollary is that the overall cost
of the system would correspondingly increase.

Constraints and future work

While the new MAS umpiring system has encoura-
gingly demonstrated its ability to correctly judge the
legality of typical table tennis rallies, two key system
performance constraints need to be acknowledged.
These are discussed below.

Table 2. Performance evaluation.

Seq. Transition of States

Ground Truth MAS umpiring system Average lag (frames)

1 5!6!7!8!9!10!11!12
!7!8!M

5!6!7!8!9!10!11!12
!7!8!M

2

2 4!5!6!7!8!9!10!11!12
!7!8!9!10!11!U

4!5!6!7!8!9!10!11!12
!7!8!9!10!11!U

4

3 6!7!8!9!10!11!12!7!8
!9!10!11!12!7!8!9!10
!11!12!M

6!7!8!9!10!11!12!7!8
!9!10!11!12!7!8!9!10
!11!12!M

2

4 5!6!7!8!9!10!D 5!6!7!8!9!10!D 3

5 5!6!7!8!10!U 5!6!7!8!10!U 2

6 1!2!3!4!5!6!7!8!9
!10!D

1!2!3!4!5!6!7!8!9
!10!D

2

7 5!6!7!8!9!10!11!12
!7!8!9!10!11!M

5!6!7!8!9!10!11!12
!7!8!9!10!11!M

4

Table 1. Characteristics of test sequences.

Seq. State transitions Characteristic Rally ends due to

1 5!6!7!8!9!10!11
!12!7!8!M

- Hits the net
- Cross over the net

M: Double Bounces

2 4!5!6!7!8!9!10!11!12!7
!8!9!10!11!U

- Drop below the table and
disappear from all views

U: Under table
D: Disappear

3 6!7!8!9!10!11!12!7!8!9!10
!11!12!7!8!9!10!11!12!M

- Long rally
- Double bounces

M: Multiple Bounces

4 5!6!7!8!9!10!D - Without bouncing on the receiver side
- It goes over and disappeared

O: Over Edge line
D: Disappear

5 5!6!7!8!10!U - Receiver misses the ball S: Skip a state
U: Under table

6 1!2!3!4!5!6!7
!8!9!10!D

- Ball partially occluded at service
- The ball touches the corner of the table
- Drop below the table and disappear from all views

U: Under table
D: Disappear

7 5!6!7!8!9!10!11
!12!7!8!9!10!11!M

- Complicated background
- The ball hits the net
- The ball crosses over the net and bounces

multiple times on the table

M: Multiple Bounces
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Viewing angle

The current camera arrangement means that viewing
angles limit the visible area to 1.5m above and 0.5m
below the table and though the ball will mainly travel
within this space in a typical rally, it is feasible the ball’s
position may move outside this space. When movement
outside the cameras viewing area occurs, the system
monitors the area of capture for up to 2 seconds waiting
for the ball to return into view, and if it does not, then
the system assumes the ball has dropped to the floor and
a fault is registered. It is recognised this conclusion is not
ideal because it is possible the ball reaches a very high
point from which it takes more than 2 seconds for the
ball to return into view. One solution is to position the
cameras further away from the table increasing the moni-
tored space, though this arrangement would make the
image of ball smaller and thereby more difficult to detect
and track. An alternative option is to deploy more cam-
eras to broaden the monitored space, though this pro-
posed setup commensurately impacts the cost and
processing overheads.

Edge ball

The current MAS framework is not sufficiently accurate
in detecting edge balls, which occasionally occur when a

ball touches the edge of the playing surface of the table,
which is deemed a legal feature in a rally. If an edge ball
results in the ball bouncing upwards, the MAS detects this
feature and deems the rally is at a state of bouncing on
the table (State 8 or 11 in Figure 10). However, there are
no edge ball states in the existing suite of test sequences,
so this scenario has not been experimentally tested. If an
edge ball touches the table edge very thinly and does not
bounce upwards, then the system can wrongly identify
this action as a no bounce fault state. To resolve this
anomaly, one solution is to attach audio microphones to
the rear of a playing surface and incorporate an acoustic
ball detection agent in the MAS. The sound of the ball
bouncing on the playing surface and either hitting or
touching an edge are subtly different, therefore an ANN
can be trained to discriminate the differences between
their respective audio signals and this information can be
combined with the ball position data to improve the
detection performance of the system for this scenario.

Conclusion

This paper has presented a novel Multi-Agent System
(MAS) umpiring framework that can analyse a table
tennis rally in real match scenarios, with complex back-
grounds and challenging ball detection conditions.
Using an innovative portable camera arrangement, the
system employs a minimal number of cameras to cover
a large area, while achieving effective redundancy.
Despite the innate challenges in perfectly aligning the
cameras, an error compensating model has effectively
calibrated the MAS, while a state machine has been
developed to represent all possible states in table tennis
rallies. The MAS umpiring system has been critically
evaluated on seven test video sequences covering a
range of different real match scenarios and was able to
successfully detect all state transitions in the sequences
incurring minimal latency.

These promising results indicate that the system can
umpire table tennis rallies in real matches. The scalable
feature of the MAS means that more camera pairs can
be added to the system if higher ball detection accuracy
or monitoring a larger court should be desired. With the

Figure 14. State transitions comparison.

Figure 13. Joint 3D trajectory of the ball.

12 Proc IMechE Part P: J Sports Engineering and Technology 00(0)



cost of miniature computer and camera systems, such as
the Raspberry Pi, becoming affordable, a low-cost MAS
umpiring system is achievable based on this framework.
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