
Towards a Unified Language for Card Game Design
Riemer van Rozen

rozen@cwi.nl
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Anders Bouwer
a.j.bouwer@hva.nl

AUAS
Amsterdam, The Netherlands

Karel Millenaar
k.millenaar@hva.nl

FourceLabs and AUAS
Amsterdam, The Netherlands

ABSTRACT
Card game creation is a powerful tool for game design.Using playing
cards, game designers can rapidly prototype and iteratively playtest
a game’s core mechanisms to explore alternatives and improve the
gameplay. However, this process is time-consuming, imprecise and
challenging to steer and focus. We aim to empower designers with
solutions that automate game design processes. In particular, we
study to what extent a unified game design language can offer the-
oretical foundations, systematic techniques and practical solutions.

We propose a novel approach towards a solution that leverages
the expressive power of playing cards. Initially focusing on well-
known card games, we illustrate the steps for creating CardScript,
a formal language and toolkit that supports game design processes.

The approach also has the potential to impact a wider research
area. When fully developed, a unified language with a common
tool set can enable reuse, and eventually support joint research
agendas. We start the discussion by highlighting perspectives that
relate open challenges to opportunities for future collaboration.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Integrated and visual development environments; • Applied
computing → Computer games.

KEYWORDS
game design, design tools, domain-specific languages
ACM Reference Format:
Riemer van Rozen, Anders Bouwer, and Karel Millenaar. 2023. Towards a
Unified Language for Card Game Design. In Foundations of Digital Games
2023 (FDG 2023), April 12–14, 2023, Lisbon, Portugal. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3582437.3587185

1 INTRODUCTION
Card games provide powerful metaphors for rules of play. For game
designers, rapid prototyping and effective playtesting are crucial for
timely results [19, 21]. Many designers carry a prototyping kit with
game pieces, dice, chips or a card deck. Using playing cards, they
can rapidly create “cardboard prototypes”, abstract crude game
representations for playtesting core mechanisms at a table in a
mediated setting [10]. This practice has proven incredibly effective
for flexibly changing the rules and rapidly improving the gameplay.

This work is licensed under a Creative Commons Attribution International
4.0 License.

FDG 2023, April 12–14, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9855-8/23/04.
https://doi.org/10.1145/3582437.3587185

Automated Game Design (AGD) studies how to empower game
designers with languages, techniques and tools that automate and
speed up iterative game design processes [6, 25]. Various solutions
have been proposed to help designers improve a game’s parts, e.g.,
game mechanics, levels, missions, storylines and virtual worlds.

AGD has compelling benefits. Formalizing game systems enables
designers to analyze rules, test behaviors, and simulate strategies
with mathematical precision. Mixed-initiative approaches leverage
state-of-the-art algorithms to help explore design spaces, generate
content, and automate balancing, fine-tuning and playtesting [22].

However, AGD is no silver bullet for better games. Cardboard pro-
totypes and digital prototypes are usually nothing alike. Translating
game designs into working game systems is complex. Unfortunately,
formal notations can be difficult to learn and hard to master. As
a result, design intent may be lost in translation. Many game- or
genre-specific solutions have a narrow focus and cannot easily be
reused [25]. Reusable gameplay engines, e.g., for Machinations [27]
or PuzzleScript [14], are still rare. Instead, designers need a general
language for creating prototypes. They require reusable tools with
recognizable interfaces for analyzing the impact each change has
on communication, interaction dynamics and player experiences.

We propose a novel approach to AGD that leverages the expres-
sive power of playing cards. To bring the benefits of cardboard
prototyping to digital prototyping, and vice versa, we break with
the tradition that one should precede the other, and instead aim
to integrate the two. We have conducted design research in order
to investigate how this can be achieved. Based on promising re-
sults from a Gaming Fieldlab project described in Section 2, we
envision a tool set for card game design built on top of a visual
Domain-Specific Language (DSL) for card games.

Section 3 describes a structured approach towards a common
CardScript. We illustrate the necessary steps using well-known
card games. We formulate preliminary requirements for a toolkit,
explain how to characterize the problem space, and identify key
technical challenges. The initial version of CardScript is textual and
expresses card decks, table arrangements and rules.We demonstrate
its feasibility by automating one facet, namely card deck generation.

The approach also has the potential to impact a wider research
area. We invite discussion and feedback on how common tool sets
can enable reuse, and ultimately support joint research agendas. To
start the discussion, in Section 4, we highlight distinct perspectives
that relate open challenges to opportunities for future collaboration.

2 GAMING FIELDLAB
We have collaborated with industry partners in several pilot studies
and a gaming fieldlab on digital card game design1. This has resulted
in several promising tool prototypes. Two are visual tools, shown in
Figure 5, for editing card decks and designing rules [5]. Another tool
1DGA Fieldlab on Digital Card Game Design – https://cardgamedesign.github.io

https://orcid.org/0000-0002-3834-682X
https://orcid.org/0009-0002-0339-5231
https://orcid.org/0000-0001-7758-0021
https://doi.org/10.1145/3582437.3587185
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3582437.3587185
https://cardgamedesign.github.io
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582437.3587185&domain=pdf&date_stamp=2023-04-12


FDG 2023, April 12–14, 2023, Lisbon, Portugal van Rozen, et al.

Figure 1: Demo of the Card Game Tool by Buitink [5]

enables formalizing designs of collaborative games such as Hanabi,
and helps in analyzing specifications by using simple metrics [24].
In meetings and workshops with Dutch indie game developers, we
have obtained valuable feedback on presentations, demos, and tests.
We report our experiences, starting with the following insights.

Designers create card games for a variety of reasons, some to
publish, others to balance real-time RPGs. Visual interfaces are
appreciated, but textual rule notations quickly become too complex.
To avoid visual clutter, tools require modules and ways to hide and
show them. Unfortunately, without a reusable semantics we cannot
easily build on, extend or improve any of these tools. As a result,
we cannot yet translate or reuse the game designs either.
To address these issues, we envision a set of complementary and

compatible design tools built on a platform-independent card game
formalism. Therefore, we take a step back from the more complex
examples and initially focus on shedding andmatching games. Next,
we describe a structured approach towards a common solution.

3 TOWARDS CARDSCRIPT
We describe an approach and initial steps towards a practical so-
lution named CardScript, a so-called Domain-Specific Language
(DSL). A DSL is an executable specification language that offers
domain experts a notation with improved expressive power over a
restricted domain, in this case card games. This approach originates
in the field of Software Engineering. We apply well-known techn-
ques and use language workbench Rascal in its construction [8, 12].
First, we analyze the requirements of the DSL and its tools.

3.1 Requirements
Game designers are the main stakeholders and intended users. In
vivid discussions we have obtained feedback and criticism that have
contributed to the following preliminary set of requirements.

3.1.1 Card decks and table arrangements. Prototyping and playtest-
ing usually happen at a table in a mediated setting. Designers author
playing cards in a digital drawing tool. However, due to frequent
changes to the symbols, this process costs too much time. They
require a means to simplify and speed up the following activities:

R1 Express card decks, dimensions, symbols and layout.
R2 Describe table arrangements with piles, seats and locations.
R3 Modify multiple cards at once, procedurally.
R4 Store and load card deck designs digitally.
R5 Print out cards on paper for cutting cards manually.

3.1.2 Rules and moves. Prototyping revolves around improving
the rules to explore gameplay. Designers need a formal notation
that permits automating game design with the following activities:

♦

♦ ♦

♣

♣ ♣

♠

♠

♠

,

,

,

(a) First player’s hand

♣

♣ ♣

♠

♠ ♠

♦

♦

♦

♥

♥

♥

♥

♥

♥

discard

(b) Second player’s hand (c) Empty pile

Figure 2: Simplified Old Maid: game state after dealing cards

R6 Express rules that determine how players can move cards
between piles, including player hands and piles on the table.

R7 Place conditions on rules that limit when moves can happen.
R8 Express scoring mechanisms and win conditions that at-

tribute value to symbols, actions and results.
R9 Express game phases that scope rules for dealing, playing

and exchanging cards, passing turns and scoring.
R10 Document the rules in tutorials and visual manuals.

3.1.3 Gameplay scenarios. In playtesting sessions, designers an-
alyze if gameplay scenarios, i.e. sequences of player actions, lead
to desirable player experiences. Designers need ways to prevent
wasting time on poor quality designs. Instead of using spreadsheets
for making analyses, they need appropriate visualizations and play-
centric tools that support the following activities:
R11 Record and replay gameplay scenarios step-by-step with

events, player actions and game states.
R13 Run specifications as programs, play them alone or together.
R14 Explore design alternatives, including what-if scenarios.
R15 Identify undesirable scenarios and poorly balanced play

quickly, before wasting time on playtesting bad designs.
R16 Simulate playtest scenarios in automated playtesting, in or-

der to learn if desirable dynamic sequences happen.
R17 Balance and fine-tune competing strategies, deck building.
R18 Alternate flexibly between activities and visual perspectives.
R19 Identify patterns that help speed up making changes.
R20 Apply patterns to introduce quantifiable effects.
R21 Obtain immediate feedback, live, with every design change.
Ultimately, designers need tools that seamlessly integrate physi-

cal and digital prototyping, e.g., using e-ink cards, augmented- or
virtual reality. Next, we illustrate how to analyze problem domains.

3.2 Domain Analysis
We perform a focused domain analysis that compares the structure
of shedding and matching card games such as Uno, Go Fish and
Old Maid. In particular, we analyze the facets of card decks, table
arrangements and moves. The result is a preliminary domain model,
a visual dictionary that relates elements that physically exist in the
real world to abstract concepts that capture essential properties [13].

This paper uses a simplified design of Old Maid as an illustrative
example. Figure 2 shows an example of a game state after dealing.
Each turn, a player picks a card whose symbols are hidden from
their opponent’s hand. Players discard pairs of cards with matching
symbols. The objective is not ending up with the Old Maid (,).

Figure 4 shows a partial domain model consisting of three UML
class diagrams that relate the most important concepts we identify.
Classes, shown as rectangles, signify named concepts. Associa-
tions between them, shown as lines, can be read in both directions,



Towards a Unified Language for Card Game Design FDG 2023, April 12–14, 2023, Lisbon, Portugal

1 deck OldMaidDeck {
2 dimension suit = [♦,♥,♣,♠,,];
3 type SimpleType (suit) {
4 top left = text(small(suit));
5 center = text(huge(suit));
6 bottom right = text(small(suit));
7 }
8 cards myCards of SimpleType
9 where [suit∗2, ,∗1];
10 }

(a) Generative deck design

1 design SimplifiedOldMaid {
2 decks OldMaidDeck ∗ 1;
3 table { seats = 2; pile discarded; }
4 role dealer;
5 role player { hidden hand h; }
6 rules {
7 rule exchange (player p1, ...) {
8 move c1 from p1.h to p2.h and
9 move c2 from p2.h to p1.h; }
10 ... } }

(b) Table arrangement, one rule

Figure 3: CardScript specifying Simplified Old Maid

although names appearing nearby indicate a preferred reading di-
rection (▸). Multiplicities appearing at each end indicate how many
instances participate: one (omitted), one or more (1..*) or more (*).

First, we relate noteworthy concepts of card decks in Figure 4a.
Cards are two-sided rectangular cardboard pieces with rounded
edges, usually sized 64 x 89 mm. Cards contain symbols whose
meaning is significant to how games are played. Each card has a
card type that determines how these symbols appear on its face.
Card types can have multiple dimensions of alternative symbols.
Together cards can form decks, which can be reused.

Next, we analyze concepts of table arrangements, summarized
in Figure 4b. Players occupy a seat at the table. Cards are arranged
in piles on the table or in a player’s hand. Each pile has an ori-
entation and an arrangement, which determine a card’s visibility
and placement in the pile (abstracted away here). Finally, Figure 4c
shows gameplay concepts. A collection of rules determines how
each player can move a card from one pile to another.

For conciseness, we have to stop here. This preliminary domain
model is sufficient to illustrate the approach. However, it still ab-
stracts away many details. In previous design research iterations,
tools have addressed additional facets [5, 24]. For instance, a player
usually doubles as dealer in an initial game phase. For now, we also
omit the back of cards, currency, scoring, win conditions, game
phases, and the constraints rules place on moves. Future iterations
can again gradually widen the scope of the analysis.

3.3 Technical Challenges
To realize the requirements of Section 3.1, we formulate technical
challenges on developing an engine and tools for CardScript.

3.3.1 CardScript Engine. For creating a reusable engine, the fol-
lowing challenges need to be addressed with a set of components.

T1 CardScript. Textual DSL, exchange, storage format (R4) for
expressing a) card decks (R1, R3); b) table arrangements (R2);
c) rules (R6, R7); d) scoring (R8); and e) game phases (R9).

T2 Engine. Engine for executing DSL programs consisting of
a) abstract syntax; b) an interpreter; and c) formal semantics
for analyses with mathematical precision (R1–R21).

T3 Type checker. Analyzer for raising quality, checking con-
text constraints and resolving names (R1–R3, R6–R9).

T4 Event log. DSL, exchange, storage format for expressing,
recording and replaying dynamic interaction sequences (R11).

3.3.2 Tool set. We envision an extensible tool set for CardScript.
T5 Authoring tool. An interactive environment that integrates

textual/visual notations, syntax highlighting, type checking.

Design

Deck Card CardType

Symbol Dimension
1..*

1..* *
◀ Shapes

1..* ▼ Appears on
*

* ▼ Spans

*
◀ Contains

(a) Class diagram describing card decks

Design Table

Pile Place

Seat

PlayerOccupies ▶ 0..1
hand

◀ Has▼ Arranges * ▲ Occupies

Offers ▶
1..*

(b) Class diagram describing table arrangements

Design

Rule

Game Player

Pile

Move

Card

◀ Enacts

*

*
◀ Plays

*

1..*
◀ Applies

* * ◀ Makes
*

◀ Contains

*

1..*

▼ Targets*
▼ Sources

*▼ Moves *

(c) Class diagram describing rules and moves

Figure 4: Partial domain model of card game designs

T6 Play simulator. A visual simulator that can load and run
game descriptions in single- or multi-player mode (R13, R14),
and record/replay playtraces, i.e. interaction sequences (R11).

T7 Card deck generator. Tool that generates card decks and
PDFs for printing the cards on A4 paper (R3, R5).

Of course, this list is still incomplete. In Section 4, we also reflect
on teaching, documentation, pattern catalogues, and automated
playtesting. Next, we describe progress on the engine (T1–T3) and
a deck generator (T7), which shows that the approach is feasible.

3.4 Card Deck Generator
As an example, we concisely describe the design of a card deck
generator. Instead of authoring playing cards by hand, CardScript
allows designers to specify the properties of cards that the tool
generates automatically. CardScript expresses collections of cards
as the n-ary Cartesian product of the symbols appearing on them.
We design the necessary components, including a type checker, and
explain the textual syntax and the run-time data types.

3.4.1 Syntax. We create a textual syntax for CardScript, illustrated
by the Simplified Old Maid example. The design of its deck, shown
in Figure 3a, has only one dimension, the suit. The symbols are {♦,
♥,♣, ♠} and the old maid {,} (line 2). On each card, its symbol
appears on the top left, center and bottom right (lines 3–6). The deck
consists of generated cards myCards with two cards of each symbol,
but only one old maid (line 8–9). Figure 3b shows the arrangement
and illustrates a rule that lets players exchange cards (lines 7–9).

3.4.2 Engine. Based on our domain analysis of Section 3.2, we
create a metamodel of the abstract syntax in Figure 5. Although
the class diagrams of Figures 4a and 5 look very similar, there
are several important differences. The classes represent software
objects instead of real world ones, and associations are navigable
in one direction only. Two added classes, Decl and Mult, represent
the name and type of the card set, and how often symbols of its
card type appear in the Cartesian product of the set.

3.4.3 Implementation. We implement the tool prototype using
Rascal [12]. The tool counts only 430 source lines of code, and its
sources are available on GitHub [26]. Generated PDFs of Old Maid
and a classic French Deck appear in supplementary material.



FDG 2023, April 12–14, 2023, Lisbon, Portugal van Rozen, et al.

Design
– name: String

Deck
– name: String

Card

Decl
– name: String

Mult
– text: String
– symbol: Symbol
– amount: int

CardType
– name: String

Symbol
– text: String

Dimension
– name: String

decks
*

/cards
*

type

*symbols *dims

*

symbols

decls

*

type
/cards

*

filters
*

types *dims

*

Figure 5: Meta-model of procedurally generated card decks

4 DISCUSSION
We have proposed a structured approach towards a unified game de-
sign language that arises from collaboration with industry partners.
Our preliminary results have not yet been thoroughly validated.
However, we have demonstrated the approach is feasible, and our
progress already includes useful insights, analyses and artifacts.

4.1 Challenges and Opportunities
Requirements for game design tools have also been described in
relatedwork [1, 17]. In order to identify common goals and needs for
a unified game design language, we discuss additional perspectives
that relate open challenges to opportunities for future research.

4.1.1 Automated playtesting. Analzing the qualities of dynamic
interaction sequences is necessary for automated playtesting, bal-
ancing, and fine-tuning. Many algorithms have been created and
adapted for playing card games, e.g., Poker [4], Hanabi [7] and
HearthStone [11]. The challenge is applying algorithms to assess
the qualities of other games too, e.g., as done in Recycled [2]. Card-
Script serves to study general, compatible and reusable solutions.

4.1.2 General Gameplaying. Conversely, games have been stud-
ied as algorithmic challenges, e.g., in general game playing. Game
Description Languages (GDLs) describe game-based challenges
as a testbed for AI, e.g., Ludii [18], the Video Game Description
Language (VGDL) [20], and the Card Game Description language
(CGDL) [9]. Competitions serve to compare how well algorithms
perform [15]. CardScript’s goals coincide with even more demand-
ing challenges and real-world conditions. Organizers can further
raise the difficulty by dynamically changing the rules during play.

4.1.3 Education. Digital games have been used to teach program-
ming, computer science and game design. Educators use mods
as examples that can be studied, adjusted and shared, e.g., with
Scratch [23]. Card games are especially well suited as a subject
of study, even for teaching young children [16]. CardScript can
be developed as an educational instrument. Coinciding challenges
include creating coding environments for studying game design,
documenting designs, creating manuals, and learning how to code.

4.1.4 Bodies of knowledge. Researchers have created catalogues
describing ontologies [28] and gameplay design patterns [3] to per-
form critical analyses and accumulate game design lore. However,
bodies of knowledge usually omit working examples of source code
that exemplify how to create mechanisms and how to reproduce
dynamic interaction sequences. CardScript can serve this purpose.
By adding working examples, researchers can construct annotated

source code repositories. These repositories support empirical stud-
ies, e.g., for mining patterns and identifying best practices.

5 CONCLUSION
In this paper, we have made a case for a unified language for game
design. We have proposed an approach that leverages playing cards,
and described how CardScript and a reusable toolkit can be cre-
ated. We invite feedback and discussion on its requirement and our
progress in order to identify common objectives and next steps.

ACKNOWLEDGMENTS
We thank the DGA and CLICKNL for funding this work. We thank
CodeGlue for their continued collaboration, and the workshop
participants for their input and feedback. We thank the reviewers,
Paul Klint and Daria Polak for their feedback on this paper.

REFERENCES
[1] Marcos S. O. Almeida and Flávio S. C. da Silva. 2013. Requirements for Game

Design Tools. In SBGAMES 2013. SBGames.
[2] Connor Bell and Mark Goadrich. 2016. Automated Playtesting with RECYCLEd

CARDSTOCK. Game & Puzzle Design 2, 1 (2016).
[3] Staffan Björk, Sus Lundgren, and Jussi Holopainen. 2003. Game Design Patterns.

In Digital Games Research Conference 2003.
[4] Noam Brown and Tuomas Sandholm. 2019. Superhuman AI for Multiplayer

Poker. Science 365, 6456 (2019).
[5] Midas Buitink. 2020. Card Game Toolkit. Bachelor’s Thesis. AUAS.
[6] Michael Cook. 2020. Software Engineering for Automated Game Design. In IEEE

Conference on Games, CoG 2020. IEEE.
[7] Markus Eger, Chris Martens, and Marcela Alfaro Cordoba. 2017. An Intentional

AI for Hanabi. In Computational Intelligence and Games, CIG 2017. IEEE.
[8] Sebastian Erdweg, Tijs van der Storm, et al. 2013. The State of the Art in Language

Workbenches. In Software Language Engineering (LNCS, Vol. 8225). Springer.
[9] José María Font, Tobias Mahlmann, et al. 2013. A Card Game Description Lan-

guage. In EvoApplications 2013 (LNCS, Vol. 7835). Springer.
[10] Tracy Fullerton. 2014. Game Design Workshop. CRC press.
[11] Pablo García-Sánchez et al. 2018. Automated Playtesting in Collectible Card

Games using Evolutionary Algorithms: A Case Study in Hearthstone. Knowl.
Based Syst. 153 (2018).

[12] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. EASYMeta-programming
with Rascal. In GTTSE 2009 (LNCS, Vol. 6491). Springer.

[13] Craig Larman. 2012. Applying UML and Patterns: An Introduction to Object
Oriented Analysis and Design and Interative Development. Pearson Education.

[14] Stephen Lavelle. 2015. PuzzleScript. https://github.com/increpare/PuzzleScript
Online puzzle design language and game engine, Last visited January 10th 2023.

[15] Diego Perez Liebana, Spyridon Samothrakis, et al. 2016. The 2014 General Video
Game Playing Competition. IEEE Trans. Comput. Intell. AI Games 8, 3 (2016).

[16] Emanuela Marchetti and Andrea Valente. 2015. Learning via Game Design: From
Digital to Card Games and Back Again. El. Journal of E-learning 13, 3 (2015).

[17] Nathan Partlan, Erica Kleinman, et al. 2021. Design-Driven Requirements for
Computationally Co-Creative Game AI Design Tools. In FDG’21. ACM.

[18] Éric Piette, Dennis J. N. J. Soemers, et al. 2020. Ludii - The Ludemic General Game
System. In European Conference on Artificial Intelligence, Vol. 325. IOS Press.

[19] Katie Salen and Eric Zimmerman. 2003. Rules of Play. MIT press.
[20] Tom Schaul. 2014. An Extensible Description Language for Video Games. IEEE

Trans. Comput. Intell. AI Games 6, 4 (2014), 325–331.
[21] Jesse Schell. 2008. The Art of Game Design: A Book of Lenses (1st ed.). CRC press.
[22] Gillian Smith, Jim Whitehead, and Michael Mateas. 2011. Tanagra: Reactive

Planning and Constraint Solving for Mixed-Initiative Level Design. IEEE Trans.
Comput. Intell. AI Games 3, 3 (2011).

[23] Damla Topalli and Nergiz Ercil Cagiltay. 2018. Improving Programming Skills
in Engineering Education through Problem-Based Game Projects with Scratch.
Computers & Education 120 (May 2018).

[24] Andrea van den Hooff. 2019. Researching Hanabi with CardScript: Analysing the
Rules of Collaborative Card Games. Master’s thesis. University of Amsterdam.

[25] Riemer van Rozen. 2020. Languages of Games and Play: A Systematic Mapping
Study. Comput. Surveys 53, 6 (Dec. 2020).

[26] Riemer van Rozen. 2023. Deck Generator. https://github.com/vrozen/CardScript/
[27] Riemer van Rozen and Joris Dormans. 2014. Adapting Game Mechanics with

Micro-Machinations. In Foundations of Digital Games, FDG 2014. SASDG.
[28] José P. Zagal, Michael Mateas, et al. 2005. Towards an Ontological Language for

Game Analysis. In Digital Games Research Conference 2005, DIGRA 2005.

https://github.com/increpare/PuzzleScript
https://github.com/vrozen/CardScript/

	Abstract
	1 Introduction
	2 Gaming Fieldlab
	3 Towards CardScript
	3.1 Requirements
	3.2 Domain Analysis
	3.3 Technical Challenges
	3.4 Card Deck Generator

	4 Discussion
	4.1 Challenges and Opportunities

	5 Conclusion
	Acknowledgments
	References

