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A B S T R A C T

Reliability-based optimization (RBO) is crucial for identifying optimal risk-informed decisions for designing
and operating engineering systems. However, its computation remains challenging as it requires a concurrent
task of optimization and reliability analysis. Moreover, computation becomes even more complicated when
considering performance of a general system, whose failure event is represented as a link-set of cut-sets.
This is because even when component events have smooth and convex limit-state functions, the system limit-
state function has neither property, except in trivial cases. To address the challenge, this study develops an
efficient algorithm to solve RBO problems of general system events. We employ the buffered optimization
and reliability method (BORM), which utilizes, instead of the conventional failure probability definition, the
buffered failure probability. The proposed algorithm solves a sequence of difference-of-convex RBO models
iteratively by employing a proximal bundle method. For demonstration, we design various numerical examples
with increasing complexity that include up to 10,062 cut-sets, which are solved by the proposed algorithm
within a reasonable computational time with high accuracy. We also demonstrate the algorithm’s robustness
by performing extensive parametric studies.
1. Introduction

To secure disaster resilience of a community, it is crucial to make
optimal decisions when designing and operating engineering systems
(e.g., structural systems, infrastructures, and mechanical systems) and
these decisions should account appropriately for hazard risks. This can
be done by performing reliability-based optimization (RBO), where a
design cost is minimized while satisfying reliability constraints
[1,2]. A common, reasonable way to define such reliability constraints
is to constrain a failure probability under a target level. However, such
a combined task of probabilistic analysis and optimization makes RBO
problems theoretically and computationally challenging. Moreover,
RBO problems become even more challenging when an event of interest
is a system event, whose performance is determined by joint perfor-
mance of multiple component events. Nonetheless, to enable accurate
decision-making, it is critical to consider interdependent component
events simultaneously [3,4].

To formulate and solve an RBO problem, one needs to not only
represent a system failure probability as a function of design variables,
but also compute (sub)gradients of such function. However, comput-
ing (sub)gradients is often challenging (or even impossible) since the
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conventional definition of failure probability involves discontinuous
0–1 expressions. To address this issue, various methods have been
proposed to approximate the function of a failure probability. One
of the most common approaches is to find the most probable point
(MPP) in a failure domain and utilize it to approximate a failure
probability. For example, an MPP can be used to apply the first- or
second-order reliability method (FORM or SORM) which fit the func-
tion of a failure probability using polynomial functions [5]. Another
successful approaches are performance measure approach (PMA) [6]
and sequential optimization and reliability assessment (SORA) [7],
which use MPP(s) to define reliability constraints with quantile values
instead of failure probabilities. Despite their long-standing successful
history, using MPPs still poses several challenges. It requires one to
project original distributions into a standard normal space, which often
becomes challenging for high-dimensional or non-standard distribu-
tions. Also, the implementation can become complicated if the failure
domain is disconnected and there are multiple MPPs.

Various RBO methods are developed to replace failure probability
by alternative metrics such as reliability index, which is referred to as
reliability index approach (RIA) [8–10], or failure rate [11]. While they
vailable online 21 April 2023
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can effectively capture essential properties of failure probability, there
is still a fundamental limitation that optimization is not performed
directly on failure probability and may lead to suboptimal solutions.
Other successful approach is to perform directional sampling [12] or
importance sampling (IS) [13] so that gradients of failure probability
can be obtained as a by-product of reliability analysis. However, de-
ciding optimal sampling directions or IS density becomes difficult as
dimensionality of a distribution increases.

To address complexity of a system function, surrogate models can
be employed to approximate the surface of a function, whose ex-
ample models include kriging [14–16], co-kriging [17], parametric
functions [2], polytope [18], or hyperplanes [19]. While they have been
successfully applied to an extensive range of system types, surrogate
modeling often becomes inefficient with high-dimensional probability
distributions. In addition, some methods require a surrogate model
for the limit-state function of each component event, which makes
it arduous to handle a large number of component events. Meta-
heuristic optimization algorithms can be an effective solution to over-
come intractability of RBO problems, which include genetic algorithms
[20,21], particle swarm optimization algorithms [22], or a variation of
Markov Chain Monte Carlo simulation [23]. However, as a trade-off
of their general applicability, these algorithms have weaker mathemat-
ical justifications and often result in higher computational cost than
gradient-based algorithms.

To overcome aforementioned limitations, a promising approach is
to directly utilize realizations of random variables, i.e., samples or
data points. This strategy exempts us from deriving problem-specific
formulas. It enables data-driven optimization, which is particularly
favored when underlying parametric distributions of given data are
unknown. Moreover, if one can directly use Monte Carlo Simulation
(MCS) samples, high-dimensional distributions or a large number of
cut sets are no longer an issue. However, the definition of failure
probability makes it challenging to handle realizations during optimiza-
tion. This is because a sample is assigned either 1 or 0 depending on
whether it lies in the failure domain or not. Such binary assignment
lacks gradient information. This makes it difficult to employ efficient
gradient-based optimization algorithms [24]. Although [25] proposed
formulations to calculate such gradients, some restrictive conditions
are necessary (e.g., random variables follow the multivariate normal
distribution or transformation thereof). The challenge can be addressed
by utilizing, instead of the conventional failure probability, the buffered
failure probability [26–29]. This way of defining reliability permits
(sub)gradient information even in a data-driven setting [28]. Motivated
by this fact, [27] proposed the buffered optimization and reliability
method (BORM), which enables efficient data-driven optimization of
reliability. It is noted that the use of the buffered failure probability
still closely aligns with the risk management aimed by the conventional
failure probability as the two failure probabilities have strongly positive
correlations [27].

General systems are often represented as a series system of multiple
parallel systems or equivalently, a link-set of cut-sets. This repre-
sentation is useful since it can cover any system type. However, it
also highlights the challenges associated with optimization of general
systems: A system event tends to have a nonsmooth and nonconvex
limit-state function with respect to design variables even when com-
ponent events have smooth and convex limit-state functions [26]. This
effect is unavoidable because the limit-state function of a system event
is represented as a max–min function of the limit-state functions of
omponent events.

Motivated by the challenge mentioned above, this study proposes
novel algorithm for reliability-based optimization that is particu-

arly specialized to handle general systems. To this end, we leverage
ORM that makes handling a max–min function more manageable
ecause it avoids the 0–1 discontinuity caused by failure probability
ormulations. In contrast to [27], however, which considers a ‘‘sys-
2

em’’ consisting of a single component, the proposed algorithm can f
handle general systems. Since the algorithm addresses system relia-
ility optimization using BORM, it is named S-BORM. The S-BORM

algorithm solves subproblems that are formulated by BORM and uses
data or sample points to estimate the buffered failure probability. The
subproblems fall into the class of difference-of-convex optimization
problems [30] and are handled by the difference-of-convex bundle
method of [31]. As we show in the following discussions, the difference-
of-convex representation of subproblems can be derived by adaptively
linearizing limit-state functions at a current solution candidate. We
further enhance computational efficiency by employing an active-set
strategy, which significantly reduces the number of samples (or data
points) that need to be considered in each iteration. S-BORM has
rigorous convergence properties: for limit-state functions that are linear
in the decision variables, the algorithm can only converge to critical
points. We design three numerical examples with increasing complexity
to demonstrate that the algorithm works practically well for both linear
and nonlinear limit-state functions. In addition, we perform extensive
parametric test, which shows the robustness of the algorithm. The S-
BORM algorithm is developed as a Matlab-based function applicable
for customized problems, which is available at https://github.com/
jieunbyun/sborm.

The paper is organized as follows. Section 2 illustrates background
theories related to developing the S-BORM algorithm. The algorithm is
proposed in Section 3. Performance of the algorithm is thoroughly in-
vestigated by three numerical examples in Section 4, various parametric
studies in Section 5, and further extensions of examples in Section 6.
Concluding remarks are presented in Section 7. More technical details
can be found in Appendix.

2. Background

2.1. General system events and reliability-based optimization

A failure event of a general system is represented as a series system
of parallel systems of component failure events, or equivalently, a
link-set of cut-sets, i.e.,

𝐸sys =
𝐾
⋃

𝑘=1

⋂

𝑞∈Q𝑘

𝐸𝑞 , (1)

where 𝐸sys and 𝐸𝑞 (𝑞 ∈ Q𝑘, 𝑘 = 1,… , 𝐾) refer to the failure event of a
system and component 𝑞, respectively. To determine whether a system
or component event 𝐸 is either failure or survival, a limit-state function
𝑔(𝒙,𝑽 ) can be used to account for performance of the corresponding
system or component. The function depends on design variables 𝒙 =
(𝑥1,… , 𝑥𝐷) and random vector 𝑽 = (𝑉1,… , 𝑉𝑀 ). A realization 𝒗 of 𝑽 is
considered a failure if 𝑔(𝒙, 𝒗) > 0 and a survival, otherwise.1 Thereby,
the definition of a system failure event in (1) can be represented in
terms of limit-state functions as

𝑔sys(𝒙, 𝒗) = max
𝑘=1,…,𝐾

min
𝑞∈Q𝑘

𝑔𝑞(𝒙, 𝒗), (2)

where 𝑔sys(𝒙, 𝒗) and 𝑔𝑞(𝒙, 𝒗) denote the limit-state function of a system
and a component, respectively.

The most common formulation of reliability-based optimization is
to minimize design cost 𝑐(𝒙) while satisfying a reliability constraint
(i.e., system failure probability be less than a target value 𝑝𝑡𝑓 ):

min
𝒙∈X

𝑐(𝒙) (3a)

subject to 𝑝(𝒙) ≤ 𝑝𝑡𝑓 , (3b)

where X denotes a constraint set, and the conventional failure proba-
bility is defined as

𝑝(𝒙) = 𝑃 [𝑔sys(𝒙,𝑽 ) > 0]. (4)

1 If necessary, one can reverse the definition of failure and survival (i.e., a
ailure event if 𝑔(𝒙, 𝒗) < 0) by reversing the sign of limit-state functions.

https://github.com/jieunbyun/sborm
https://github.com/jieunbyun/sborm
https://github.com/jieunbyun/sborm
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Alternatively, the reliability constraint (3b) can be represented in terms
of a quantile: 𝑝(𝒙) ≤ 𝑝𝑡𝑓 if and only if 𝑞1−𝑝𝑡𝑓 (𝒙) ≤ 0, where 𝑞𝛼(𝒙) is the

-quantile of 𝑔sys(𝒙,𝑽 ). Thus, (3) is equivalent to the problem

min
𝒙∈X

𝑐(𝒙) (5a)

ubject to 𝑞1−𝑝𝑡𝑓 (𝒙) ≤ 0. (5b)

It is noted that solving (3) and (5) requires an accessible expression
or the reliability constraints (3b) and (5b). However, for general
ystems, deriving such an analytical formula is usually impossible. In
uch case, the failure probability in (4) can be estimated by realizations
f 𝑽 (i.e., samples or data points), 𝒗1,… , 𝒗𝑁 , leading to the formula

𝑝̂(𝒙) =
𝑁
∑

𝑛=1
𝑝𝑛 ⋅ I[𝑔sys(𝒙, 𝒗𝑛) > 0], (6)

here 𝑝̂(𝒙) is the estimated failure probability given 𝒙, and 𝑝𝑛 is a prob-
bility or weight of realization 𝒗𝑛.2 The Heaviside function I[⋅] takes
alue 1 if the given statement is true and 0, otherwise. When replacing
n (3) the probability 𝑝(𝒙) by 𝑝̂(𝒙), however, the Heaviside function
n (6) greatly complicates computation because it lacks (sub)gradient
nformation. The gradient is not defined for 𝒙 when there is some 𝑛
eading to 𝑔sys(𝒙, 𝒗𝑛) = 0 and remains 0 at all other values.

.2. Buffered optimization and reliability method

The paper [27] recently proposed a framework for reliability-
ased optimization, namely buffered optimization and reliability method
BORM). Being traced back to [26], BORM replaces the failure proba-
ility in (3b) by the buffered failure probability. While details can be
ound in the references, this section presents a brief illustration that is
irectly related to the following discussions.

The two failure probabilities are distinguished by how the threshold
alue of limit-state functions is defined to determine a failure event.
ccording to the conventional probability, this threshold is fixed at 0.

n contrast, the buffered probability defines such threshold as a quantile
alue whose associated superquantile is 0. In more detail, consider a
andom variable 𝑌 and its CDF 𝐹𝑌 (𝑦). Then, the 𝛼-quantile of 𝑌 , 𝑞𝛼 is

defined as

𝑞𝛼 = 𝐹−1
𝑌 (𝛼)

provided that 𝐹𝑌 is strictly increasing; a similar definition holds in
general. The 𝛼-superquantile, denoted by 𝑞𝛼 , is defined as the average
value of 𝑌 beyond 𝑞𝛼 , i.e.,3

̄𝛼 = 𝑞𝛼 +
1

1 − 𝛼
E[max{𝑌 − 𝑞𝛼 , 0}].

inally, the buffered failure probability 𝑝̄𝑓 of the event 𝑌 > 0 is defined
s

𝑝̄𝑓 = 1 − 𝛼̄0,

here 𝛼̄0 is the probability that gives a zero superquantile, i.e., 𝑞𝛼̄0 = 0.
These definitions motivate the shift from the RBO problem (3) to

he problem

min
𝒙∈X

𝑐(𝒙) (7a)

ubject to 𝑝̄(𝒙) ≤ 𝑝̄𝑡𝑓 , (7b)

here 𝑝̄(𝒙) is the buffered failure probability of the event 𝑔sys(𝒙,𝑽 ) > 0
nd 𝑝̄𝑡𝑓 is a threshold. We note that 𝑝̄(𝒙) ≥ 𝑝(𝒙) so that the buffered

2 For example, if 𝒗1,… , 𝒗𝑁 are generated by Monte Carlo simulation (MCS),
𝑝𝑛 = 1∕𝑁 for all 𝑛.

3 If 𝑌 is continuously distributed, then 𝑞𝛼 is equivalent to the conditional
mean E[𝑌 |𝑌 ≥ 𝑞 ].
3

𝛼

failure probability always bounds the conventional failure probability
conservatively [26]. The new formulation facilitates a data-driven set-
ting with 𝑽 replaced by the outcomes 𝒗1,… , 𝒗𝑁 . In this case, (7) can
be reformulated as

min
𝒙∈X,𝛾∈R

𝑐(𝒙) (8a)

subject to 𝛾 + 1
𝑝̄𝑡𝑓

𝑁
∑

𝑛=1
𝑝𝑛 max{0, 𝑔sys(𝒙, 𝒗𝑛) − 𝛾} ≤ 0, (8b)

where 𝛾 is an additional real-valued design variable, which at optimal-
ity specifies the (1 − 𝑝̄𝑡𝑓 )-quantile value of 𝑔sys(𝒙,𝑽 ). It is noted that
since 𝛾 appears in a well-structured manner, it does not increase the
computational complexity of the optimization problem. The complexity
is also not affected by the maximum operation in the constraint (8b)
as it can be reformulated to retain convexity and/or smoothness of
the functions within the curly brackets (detailed illustrations can be
found in [26]). Accordingly, optimization complexity is governed by
X, 𝑐(𝒙), 𝑔sys(𝒙, 𝒗𝑛), and sample size 𝑁 . For instance, if these functions
re convex and X is a convex set, the problem becomes convex and is
hus easily solvable using standard algorithms should 𝑁 be of moderate
ize. In such a convex setting, if instead 𝑁 is too large (say 𝑁 ≥ 104),
hen the problem can be efficiently solved by nonlinearly-constrained
onvex bundle methods such as the one proposed in [32]. Even when
he functions are neither linear nor convex, the gradients of component
imit-state functions 𝑔𝑞(𝒙, 𝒗𝑛) can be used for optimization algorithms,
hich greatly facilitates implementation as we see below.

The buffered failure probability is always greater than or equal to
he conventional failure probability as it defines a threshold value of
ailure domain more conservatively [26]. Nonetheless, the two prob-
bilities are closely related as both represent the probability of the
orst events (i.e., failure events). This is confirmed by [27] which

howed that the two probabilities have strongly positive correlations,
.e., the greater one of the probabilities, the greater the other one.
ccordingly, when target failure probabilities are properly scaled, the

wo probabilities lead to similar optimization results in most cases [27].
till, minor differences in optimal solutions may arise as the buffered
ailure probability places more emphasis on tail behavior.

. Proposed reliability-based optimization of general system
vents: S-BORM algorithm

.1. Key ideas

To develop an efficient optimization scheme that can handle general
ystems, we introduce four ideas for solving the data-driven RBO prob-
em (8) in settings of general systems. First, the reliability constraint
8b) is penalized and moved to the objective function. Second, we
inearize the limit-state functions with respect to decision variables,
daptively at the current candidate solution. Such a linearization is
ecessary because although random variables are taken into account
y MCS samples, limit-state functions remain (in most cases) non-
inear with respect to decision variables, precluding thus an explicit
ifference-of-convex decomposition of the objective function. Third, we
eformulate the now modified objective as a difference-of-convex func-
ion, which produces a subproblem solvable by the difference-of-convex
undle method of [31]. Fourth, we improve computational efficiency
urther by employing an active-set strategy. That is, at each iteration
f optimization, the algorithm considers only a subset of samples that
re within or close enough to failure domains at a current solution,
.e., the samples with the highest limit-state function values. This is
ecause each sample becomes a constraint, which leads to a significant
umber of constraints and, thereby, slows down optimization. Another
dvantage is that gradients need to be computed only for those selected
onstraints, which greatly reduces computational cost as computing
radients is often more expensive than computing function values.
ince the number of failure events are in general very small, this
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strategy greatly facilitates computation. More details about active-set
strategies are available in [27]. We name the proposed approach the
S-BORM algorithm as it is designed to handle system events.

Our approach follows the standard path consisting of replacing a dif-
ficult problem with a sequence of simpler subproblems and/or models.
However, our pathway is distinguished from what is largely considered
in the optimization literature, where the subproblems typically have
easily obtainable solutions via quadratic or convex optimization. We
utilize more complex subproblems, which appears necessary to capture
the max–min formula (2) for the system limit-state function. In turn,
this requires us to adopt more advanced subroutines for solving the
subproblems. Specifically, we leverage Algorithm 1 in [31]. The next
subsections discuss the S-BORM algorithm in detail.

3.2. Linearization of limit-state functions for difference-of-convex decom-
position

We introduce mild conditions on RBO problems: X is a polyhedral
et and 𝑐(𝒙) as well as 𝑔𝑞(𝒙, 𝒗𝑛) are smooth (in 𝒙) with Lipschitz
ontinuous gradients on X. These conditions should hold for many
ractical problems. It is noted that convexity is not assumed for either
ost function or limit-state functions.

By recalling (2), the optimization problem (8) takes the form

min
𝒙∈X,𝛾∈R

𝑐(𝒙) (9a)

ubject to 𝛾 + 1
𝑝̄𝑡𝑓

𝑁
∑

𝑛=1
𝑝𝑛 max{0, max

𝑘∈1,…,𝐾
min
𝑞∈Q𝑘

𝑔𝑞(𝒙, 𝒗𝑛) − 𝛾} ≤ 0. (9b)

e penalize the reliability constraint: for 𝜃 ∈ (0,∞), the optimization
roblem becomes

min
𝒙∈X,𝛾∈R

𝐹 (𝒙, 𝛾; 𝜃), with 𝐹 (𝒙, 𝛾; 𝜃) ∶= 𝑐(𝒙)

+ 𝜃max
{

0, 𝛾 + 1
𝑝̄𝑡𝑓

∑

𝑛∈N̂

𝑝𝑛 max
{

0, max
𝑘=1,…,𝐾

min
𝑞∈Q𝑘

𝑔𝑞(𝒙, 𝒗𝑛) − 𝛾
}

}

.
(10)

Above, an active-set strategy is assumed, i.e., the problem considers
only active samples 𝒗𝑛 with 𝑛 ∈ N̂ ⊂ {1,… , 𝑁}. The problem is further
approximated by linearizing each 𝑔𝑞(𝒙, 𝒗𝑛) at a candidate solution 𝒙̂𝜈 :

min
𝒙∈X,𝛾∈R

𝐹 𝜈 (𝒙, 𝛾; 𝜃, 𝒙̂𝜈 ), (11)

where

𝐹 𝜈(𝒙, 𝛾; 𝜃, 𝒙̂𝜈 ) ∶= 𝑐(𝒙) + 𝜃max
{

0, 𝛾 + 1
𝑝̄𝑡𝑓

∑

𝑛∈N̂

𝑝𝑛

× max
{

0, max
𝑘∈1,…,𝐾

min
𝑞∈Q𝑘

𝑔𝑞(𝒙̂𝜈 , 𝒗𝑛) + ⟨∇𝑔𝑞(𝒙̂𝜈 , 𝒗𝑛),𝒙 − 𝒙̂𝜈⟩ − 𝛾
}

}

.

(12)

The function 𝐹 𝜈 can be written as a difference-of-convex function,
.e., a convex function minus another convex function. We derive the
pecific formula in an extended arXiv report [33]. Thus, (11) is a
ubproblem that can be addressed by Algorithm 1 in [31]. The S-BORM
lgorithm solves such subproblems, with slight adjustments, repeatedly
s described next.

.3. S-BORM algorithm

Based on the derivation in Section 3.2 and [33], we now present
he S-BORM algorithm.
S-BORM Algorithm:
Data Given an initial point 𝒙0 ∈ X, samples {𝒗1,… , 𝒗𝑁}, and a

parameter 𝛾0, choose algorithm parameters 𝜃 > 0, 𝜃max > 𝜃,
𝜆 > 0, 𝜔 ≥ 1, 𝜅 ∈ (0, 1), and tol.

Step 0 Set 𝜈 = 0 and 𝒙̂𝜈 = 𝒙0, 𝛾̂𝜈 = 𝛾0, 𝜃𝜈 = 𝜃, 𝜆𝜈 = 𝜆.
Step 1 Evaluate 𝑔sys(𝒙̂𝜈 , 𝒗1),… , 𝑔sys(𝒙̂𝜈 , 𝒗𝑁 ) and obtain an index

set of active samples, N̂𝜈 ⊂ {1,… , 𝑁}, with the ⌈𝜔𝑁𝑝̄𝑡𝑓 ⌉
̂ 𝜈
4

greatest values of 𝑔sys(𝒙 , 𝒗𝑛), 𝑛 = 1,… , 𝑁 .
Step 2 Compute ∇𝑔𝑞(𝒙̂𝜈 , 𝒗𝑛) and 𝑔𝑞(𝒙̂𝜈 , 𝒗𝑛) for all 𝑞 ∈ Q𝑘, 𝑘 =
1,… , 𝐾 and 𝑛 ∈ N̂𝜈 .

Step 3 Let 𝐹 𝜈 as in (12) and solve the subproblem

min
𝒙∈X,𝛾∈R

𝐹 𝜈 (𝒙, 𝛾; 𝜃𝜈 , 𝒙̂𝜈 ) + 𝜆𝜈

2
‖𝒙 − 𝒙̂𝜈‖22 +

𝜆𝜈

2
(𝛾 − 𝛾̂𝜈)2 (13)

and obtain a point (𝒙𝜈+1, 𝛾𝜈+1) using [31, Alg. 1] with
initial point (𝒙̂𝜈 , 𝛾̂𝜈 ). If ‖‖

‖

𝒙𝜈+1 − 𝒙̂𝜈‖‖
‖

2

2
+ (𝛾𝜈+1 − 𝛾̂𝜈)2 ≤ 𝚝𝚘𝚕,

stop and return (𝒙̂𝜈 , 𝛾̂𝜈 ) as a potential solution. Else, go to
Step 4.

Step 4 With 𝐹 from (10), define the predicted decrease as

𝜁𝜈 ∶= 𝐹 (𝒙̂𝜈 , 𝛾̂𝜈 ; 𝜃𝜈 )−𝐹 𝜈 (𝒙𝜈+1, 𝛾𝜈+1; 𝜃𝜈 , 𝒙̂𝜈 )−𝜆𝜈

2
‖𝒙𝜈+1−𝒙̂𝜈‖22−

𝜆𝜈

2
(𝛾𝜈+1−𝛾̂𝜈 )2.

If 𝐹 (𝒙𝜈+1, 𝛾𝜈+1; 𝜃𝜈) ≤ 𝐹 (𝒙̂𝜈 , 𝛾̂𝜈 ; 𝜃𝜈 )−𝜅𝜁𝜈 , declare a Serious
Step:

(𝒙̂𝜈+1, 𝛾̂𝜈+1) ∶= (𝒙𝜈+1, 𝛾𝜈+1) and 𝜆𝜈+1 ∶= 𝜆𝜈 .

Else, declare a Null Step:

(𝒙̂𝜈+1, 𝛾̂𝜈+1) ∶= (𝒙̂𝜈 , 𝛾̂𝜈) and 𝜆𝜈+1 ∶= 2𝜆𝜈 .

Step 5 Set 𝜃𝜈+1 ∶= min{1.5𝜃𝜈 , 𝜃max}. Replace 𝜈 by 𝜈 +1 and go to
Step 1 if Serious Step or Step 3 if Null Step.

The procedure of the algorithm is as follows. Step 1 evaluates
imit-state functions with a current candidate solution 𝒙̂𝜈 and sorts
ut active samples N̂. Since there are 𝑁𝑝̄𝑡𝑓 samples of system failure
hen a failure probability constraint is satisfied, the size of N̂ is set
s ⌈𝜔𝑁𝑝̄𝑡𝑓 ⌉ with a parameter 𝜔 ≥ 1. Then, in Step 2, the limit-
tate functions in the penalized problem (10) are linearized to define

subproblem. Step 3 defines the next iterate as a solution of the
ubproblem.4 If the new iterate is close enough to a current candidate
olution, the algorithm is terminated. Otherwise, in Step 4, a descent
est is carried out to ensure that the algorithm makes progress in each
erious step. If the new iterates lead to satisfactory decrease in the
bjective function, this update is considered a Serious Step: the new
terate becomes the current candidate solution. Otherwise, it is a Null
tep: the candidate solution does not change, and the parameter 𝜆𝜈 is
ncreased to force the next iterate to be closer to the previous point
̂𝜈 . At the end of each iteration, in Step 5, 𝜃𝜈 that penalizes violating
eliability constraints is increased. Thereby, solutions can be gradually
udged towards sufficient reliability.

The proposed algorithm has three major parameters: the two
enalty terms 𝜆 and 𝜃 and the ratio of active samples, 𝜔. The default
alues of these parameters are proposed as 𝜆 = 0.01, 𝜃 = 1, 𝜃max = 105

nd 𝜔 = 2, which are also used in the following examples. Other
inor parameters are 𝜅 and tol; 𝜅 decides the criterion whether to

ccept a new candidate solution, and tol is the stopping threshold of
uclidean distance between the candidate solution and the new iterate.
efault values of both parameters are proposed as 0.01. It is noted

hat these parameters have little influence on optimization results as
emonstrated in Section 5, where we show robustness of the proposed
lgorithm by performing parametric study under various settings.

. Numerical examples

.1. Experiment settings

We design three numerical examples to demonstrate how the S-
ORM algorithm provides an efficient and accessible means to solve
roblems that have been considered challenging. The first two ex-
mples are structural systems. A common way to define failure of a
tructural system is to identify multiple failure modes. Then, a system

4 It suffices for the solution to be a critical point of the subproblem.
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Fig. 1. Example cantilever beam-bar system.
Source: Figure recreated from [36].

failure is defined as occurrence of any of the failure modes. However,
because of computational difficulty, failure modes are often handled
separately by each being assigned a target failure probability [15,27].
In contrast, the S-BORM algorithm handles system failure without
simplification.

The third example investigates the issue of identifying optimal
allocations of testing time across components from the perspective of
system reliability. This requires us to combine reliability optimization
with reliability growth models (RGMs). Although the issue has been
investigated from various aspects (e.g., identification of most critical
components [34] or adaptive testing strategies [35]), this example is
the first attempt to perform optimization within the context of a general
system.

Algorithm parameters are set as the default values proposed in
Section 3.3. For all problems, initial solutions are set as the midpoint of
upper and lower bounds of design variables. The target buffered failure
probability is 𝑝̄𝑡𝑓 = 1⋅10−3, and the target coefficient of variance (c.o.v.)
is 𝛿𝑡 = 0.05. This leads to the number of samples, (1 − 𝑝̄𝑡𝑓 )∕(𝑝̄

𝑡
𝑓 ⋅ (𝛿𝑡)2) =

399,600 [27]. Then, with the default parameter 𝜔 = 2, the number of
active samples becomes ⌈2 ⋅ 399,600 ⋅ 10−3⌉ = 800. For computation, a
personal desktop is used with processor 11th Gen Intel® CoreTM i7 and
RAM 16.0 GB.

4.2. Design of cantilever beam-bar system

This example investigates an optimal design of a cantilever beam-
bar system illustrated in Fig. 1. The system consists of an ideally plastic
cantilever beam of moment capacity 𝑀 and length 2𝐿 = 2 ⋅ 5, which is
propped by an ideally rigid-brittle bar of strength 𝑇 [36]. The structure
is subjected to load 𝑃 that is applied on the middle of the bar. Load 𝑃
is a random variable following the normal distribution with mean 𝜇𝑃 =
150 and standard deviation 𝜎𝑃 = 30. Moment 𝑀 and strength 𝑇 are also
normal random variables with mean 𝜇𝑀 and 𝜇𝑇 and standard deviation
𝜎𝑀 = 300 and 𝜎𝑇 = 20, respectively. In this example, we optimize two
design variables 𝑥1 = 𝜇𝑀 ∈ [500, 1500] and 𝑥2 = 𝜇𝑇 ∈ [50, 150]. The
cost function is 𝑐(𝑥) = 2𝑥1 + 𝑥2.

As seen from [36], we identify six limit-state functions such that

𝑔1(𝒙, 𝒗) = −(𝑥2 + 𝑣2 − 5𝑣3∕16),

𝑔2(𝒙, 𝒗) = −(𝑥1 + 𝑣1 − 𝐿𝑣3),

𝑔3(𝒙, 𝒗) = −(𝑥1 + 𝑣1 − 3𝐿𝑣3∕8),

𝑔4(𝒙, 𝒗) = −(𝑥1 + 𝑣1 − 𝐿𝑣3∕3),

𝑔5(𝒙, 𝒗) = −(𝑥1 + 𝑣1 + 2𝐿 ⋅ (𝑥2 + 𝑣2) − 𝐿𝑣3),

(14)

where 𝑣1 and 𝑣2 are realizations of the normal distribution with zero
mean and standard deviation 𝜎𝑀 and 𝜎𝑇 , respectively; and 𝑣3 is a
realization of 𝑃 . It is noted that 𝑣1 and 𝑣2 denote deviations of 𝑀 and
𝑇 from their means 𝑥1 and 𝑥2, respectively. The system event consists
of three cut-sets such that 𝐸 = 𝐸 𝐸 ∪ 𝐸 𝐸 ∪ 𝐸 𝐸 .
5

system 1 2 3 4 3 5
Fig. 2. Example truss structure system.

Using the S-BORM algorithm, the computed solution is (𝑥1, 𝑥2) =
(1297, 150.0), resulting in estimated buffered failure probability ̂̄𝑝𝑓 =
9.985 ⋅ 10−4 and cost 2743. For comparison, a grid search is performed
by discretizing each variable into 100 intervals, which leads to 10.1
and 1.01 spacing for 𝑥1 and 𝑥2, respectively. The search identifies the
best point as (1298, 149.0) leading to cost 2745, ̂̄𝑝𝑓 = 9.935 ⋅ 10−4,
and 𝑝̂𝑓 = 2.653 ⋅ 10−4. This agrees with the solution computed by
the proposed algorithm. On the other hand, using the grid search
results, we compare the computed solution with the one obtained
with the conventional failure probability. By setting the target failure
probability as 𝑝𝑡𝑓 = 2.653 ⋅ 10−4, we obtain solution (1298, 135.9) with
cost 2732, ̂̄𝑝𝑓 = 12.21 ⋅ 10−4, and 𝑝̂𝑓 = 2.678 ⋅ 10−4. As the two solutions
are similar especially in regard to the costs, the result confirms the
similarity in optimal solutions between the two failure probabilities.
The minor difference between the two solutions is expected as discussed
in Section 2.2.

The optimization requires a marginal computational efforts taking
0.1 s. It runs 7 outer loops and 7 rounds of gradient evaluations,
which implies that only 7 evaluations of limit-state functions are made
for each sample and 7 gradient evaluations are made for each active
sample. A summary of the results can be found in Table 1.

4.3. Design of indeterminate truss bridge system

Consider the truss bridge structure in Fig. 2. The structure consists
of 10 members with strength 𝑅𝑖, 𝑖 = 1,… , 10, which are independent
normal random variables with mean 𝜇𝑅 = 276 and standard deviation
𝜎𝑅 = 13.8. The parameters of member lengths are set as 𝐻 = 1.6 and
𝐿 = 2. The truss structure is subjected to load 𝑃 exerted on nodes 1
and 2, which follows the normal distribution with mean 𝜇𝑃 = 190 and
standard deviation 𝜎𝑃 = 19. Then, the design variables are cross-section
areas of the members. To reflect the practical aspect of construction, the
members are grouped into four sets {1, 2, 9, 10}, {3, 8}, {4, 7}, and {5, 6}.
Within a group, members have the same cross-section area, which is
represented by a design variable 𝑥𝑑 ∈ [1, 2], 𝑑 = 1,… , 4. The cost
function is the total volume of the members, i.e., 𝑐(𝒙) = ∑10

𝑞=1 𝑙𝑞 ⋅ 𝑥𝑑(𝑞),
where 𝑙𝑞 is the length of member 𝑞, and 𝑑(𝑞) denotes the index of the
group that member 𝑞 belongs to, e.g., 𝑑(1) = 1 and 𝑑(3) = 2.

The system failure is defined as an occurrence of structural in-
stability, which can be identified by performing a sequence of linear
analyses. For example, a linear analysis is performed with member 1
removed; then, since this leads to a singular matrix of member forces,
member 1 constitutes a failure mode. Another example is that, while
a failure of member 3 does not lead to a singular matrix, a following
failure of member 7 does. This concludes a failure mode consisting of
member 3 and member 7. Such failure of member 𝑞 at failure mode 𝑘
can be represented by a limit-state function

𝑔𝑘𝑞(𝒙, 𝒗) = 𝑣0 ⋅ 𝛿𝑘𝑞 − 𝑥𝑑(𝑞) ⋅ 𝑣𝑞 , (15)

where 𝑣0 is a realization of 𝑃 ; 𝛿𝑘𝑞 is the force experienced by member
𝑞 in failure mode 𝑘 when a unit force is applied to nodes 1 and 2; and
𝑣𝑞 , 𝑞 = 1,… , 10, is a realization of 𝑅𝑞 . It is noted that 𝛿𝑘𝑞 for member
𝑞 varies depending on failure mode 𝑘 (e.g., member 7 experiences



Reliability Engineering and System Safety 236 (2023) 109314J.-E. Byun et al.
Fig. 3. Example electrical system.
Source: Figure recreated from [37].

different forces between when all members are in place and when
member 3 is removed).

For this structure, 108 failure modes are identified. Then, each
failure mode can be represented as a cut-set, whereby the system event
is defined as a link-set of those cut-sets, i.e.,

𝐸sys =
108
⋃

𝑘=1

⋂

𝑞∈Q𝑘

𝐸𝑘𝑞 ,

where Q𝑘 denotes the index set of members that constitute a failure
mode 𝑘.

As summarized in Table 1, a solution is obtained as (1.586, 1.000,
1.459, 1.000) with cost 28.63, ̂̄𝑝𝑓 = 9.735 ⋅ 10−4, and 𝑝̂𝑓 = 3.654 ⋅ 10−4.
The optimization takes 13.6 s with 3 rounds of outer loops and 3 rounds
of gradient evaluations.

4.4. Testing time allocation on electrical components

Consider the two transmission-line electrical substation system in
Fig. 3 [37]. The system consists of 12 components, which either fail or
survive. Then, system failure is defined as a disconnection between the
input and output nodes. Each component type is under a test phase,
and we aim to find an optimal allocation of testing time over the
component types. There are 6 component types, i.e., disconnect switch
(DS), circuit breaker (CB), power transformer (PT), drawout breaker
(DB), tie breaker (TB), and feeder breaker (FB), and their testing time
is denoted by design variables 𝑥1,… , 𝑥6, respectively. We assume that
their reliability growth follows the non-homogeneous Poisson process
(NHPP) RGM [38], by which the fault rate of component 𝑞 of type 𝑑(𝑞),
𝑞 = 1,… , 12 is defined as

𝜆𝑞(𝑥𝑑(𝑞)) =
𝛼𝛽

exp(𝛽𝑥𝑑(𝑞))
, (16)

where the parameters are set as 𝛼 = 9 and 𝛽 = 2. The cost function is
the total testing time, i.e., 𝑐(𝑥) = ∑4

𝑑=1 𝑥𝑑 . On the other hand, for each
component 𝑞, the limit-state function is defined as

𝑔𝑞(𝑥𝑑(𝑞), 𝑣𝑞) = 𝛥𝑇 −
−ln𝑣𝑞

𝜆𝑞(𝑥𝑑(𝑞))

= 𝛥𝑇 + ln𝑣𝑞 ⋅
exp(𝛽𝑥𝑑(𝑞))

𝛼𝛽
,

(17)

where 𝛥𝑇 = 365 is the target operation time, and 𝜉𝑞 , 𝑞 = 1,… , 12, is
a realization of the uniform distribution 𝑈 [0, 1]. The system consists of
25 minimum cut sets {(1, 2), (4, 5), (4, 7), (4, 9), (5, 6), (6, 7), (6, 9),
(5, 8), (7, 8), (8, 9), (11, 12), (1, 3, 5), (1, 3, 7), (1, 3, 9), (2, 3, 4), (2,
3, 6), (2, 3, 8), (4, 10, 12), (6, 10, 12), (8, 10, 12), (5, 10, 11), (7, 10,
11), (9, 10, 11), (1, 3, 10, 12), (2, 3, 10, 11)} [37].

As summarized in Table 1, a solution is computed as (7.017, 7.047,
7.095, 7.024, 1.000, 7.016) with cost 36.20, ̂̄𝑝𝑓 = 9.635 ⋅ 10−4, and
𝑝̂𝑓 = 4.179 ⋅ 10−4. Since all component types are assigned an identical
RGM, difference in testing time arises solely from varying topological
importance. The optimization takes 2.83 s with 10 rounds of evalua-
tions of limit-state functions and 10 rounds of gradient evaluations of
active samples.
6

5. Parametric test of the proposed algorithm

5.1. Algorithm parameters

While default values of the algorithm parameters are proposed in
Section 4.1, we test the robustness of the algorithm by running opti-
mization with their values changed for the three examples in Sections
4.2, 4.3, and 4.4. First, experiments are performed by changing 𝜆 to
0.005, 0.02, 0.04, 0.08, and 1. The results are summarized in Table 2.
As illustrated in the table, the parameter does not cause notable differ-
ences. In all of the three examples, the computation time remains stable
taking less than 1 min. Also, for other results including the number
of outer loops and gradient evaluations, cost, ̂̄𝑝𝑓 , and 𝑝̂𝑓 , highest and
lowest values all remain very close. Similarly, 𝜃 is changed to 0.25, 0.5,
2, 4, and 8. Table 3 summarizes the highest and lowest values of various
results. Again, the results do not show notable variances. Finally, 𝜔 is
tested with values 1.2, 1.5, 2, 3, and 5, as illustrated in Table 4. This
parameter also does not lead to meaningful differences.

Although the parameters are found to have insignificant influences,
there are still marginal variances in computation time and quality of so-
lutions (i.e., the cheapest solution that satisfies reliability constraints).
Numerical experiments suggest that the proposed default values show
the most stable performance. Nevertheless, one may alter their values
to fit the characteristics of a given problem. For example, one may
increase 𝜆 if solutions are too slow to converge, jumping between
distant regions. The parameter 𝜃 can be increased if the algorithm finds
it hard to satisfy reliability constraints. The parameter 𝜔 needs to be
increased if active sets change wildly as an optimal solution is updated,
or decreased if evaluation of limit-state functions is costly.

5.2. Target buffered failure probability

To test its stability to the magnitude of target buffered failure
probability (i.e., 𝑝̄𝑡𝑓 ), the algorithm is tested with target values 1 ⋅ 10−2

and 1 ⋅10−4. The optimization results are summarized in Table 5. In the
table, comparisons are made in parentheses with the results in Table 1
with target probability 1 ⋅10−3. As expected, in all examples, the cost of
obtained solutions increases with a higher 𝑝̄𝑡𝑓 . It is noted that computing
time and the number of iterations remain stable, while the estimated
buffered failure probabilities remain close but lower than the target
values. This demonstrates the robustness of the algorithm with respect
to the level of 𝑝̄𝑡𝑓 .

5.3. Initial points

Since problems of interest are nonconvex, the quality of computed
solutions is most dependent on initial points. To test this, for each
example, 100 experiments are performed with different initial points
sampled by Latin hypercube sampling. The best solutions of each
example, i.e., the solution that satisfies reliability constraints and incur
the lowest cost, are summarized in Table 6. By considering a solution
the best if it yields a cost less than 3% higher than the lowest obtained
value, it is observed that 100%, 46%, and 7% of the initial points lead
to one of the best solutions in the first, second, and third examples,
respectively. This suggests that the third example has in particular
multiple local optima. It is noted that the results in Table 1, which are
obtained with initial solutions as a midpoint of the lower and upper
bounds, are all one of the best obtained solutions.

Nonetheless, it is unavoidable to fall in local solutions as non-
convexity is highly likely for most practical problems. Therefore, we
strongly suggest to try multiple initializations to ensure the quality of
an obtained solution. The proposed algorithm is advantageous to this
end owing to its computational efficiency as demonstrated by various
tests illustrated above.
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Table 1
Optimization results of three numerical examples.

Sec. Time (s) No. of outer loops
(function calls)a

No. of serious steps
(gradient calls)b

Computed solution Cost ̂̄𝑝𝑓 (⋅10−4) 𝑝̂𝑓 (⋅10−4)

4.2 0.136 7
(2,797,200)

7
(5600)

(1297, 150.0) 2743 9.985 2.678

4.3 13.6 3
(1,198,800)

3
(2400)

(1.586, 1.000,
1.459, 1.000)

28.63 9.735 3.654

4.4 2.83 10
(3,996,000)

10
(8000)

(7.017, 7.047,
7.095, 7.024,
1.000, 7.016)

36.20 9.860 4.429

a(No. of outer loops)⋅(No. of samples) = (Total evaluation number of limit-state functions).
b(No. of serious steps)⋅(No. of active samples) = (Total evaluation number of limit-state function gradients).
Table 2
Optimization results obtained by different parameters 𝜆 = 0.005, 0.01, 0.02, 0.04, 0.08, and 1.
Sec. Time (s) No. of outer loops No. of serious steps Cost ̂̄𝑝𝑓 (⋅10−4) 𝑝̂𝑓 (⋅10−4)

4.2

Highest 0.73
(𝜆 = 1)

26
(𝜆 = 1)

26
(𝜆 = 1)

2743
(𝜆 = 0.005)

9.985
(all 𝜆)

3.103
(𝜆 = 1)

Lowest 0.14
(𝜆 = 0.01)

7
(𝜆 = 0.01)

7
(𝜆 = 0.01)

2718
(𝜆 = 0.04)

9.985
(all 𝜆)

2.678
(𝜆 = 0.005)

4.3

Highest 55
(𝜆 = 1)

4
(𝜆 = 0.05)

4
(𝜆 = 0.05)

29.35
(𝜆 = 0.04)

9.760
(𝜆 = 1)

3.754
(𝜆 = 1)

Lowest 19
(𝜆 = 0.01)

2
(𝜆 = 1)

2
(𝜆 = 1)

28.63
(𝜆 = 0.01)

8.834
(𝜆 = 0.08)

3.353
(𝜆 = 0.005)

4.4

Highest 4.9
(𝜆 = 1)

10
(all 𝜆)

10
(all 𝜆)

36.78
(𝜆 = 1)

9.960
(𝜆 = 0.08)

4.354
(𝜆 = 0.08)

Lowest 2.1
(𝜆 = 0.08)

10
(all 𝜆)

10
(all 𝜆)

36.14
(𝜆 = 0.08)

9.635
(𝜆 = 0.04)

4.304
(𝜆 = 0.04)
Table 3
Optimization results obtained by different parameters 𝜃 = 0.25, 0.5, 1, 2, 4, and 8.
Sec. Time (s) No. of outer loops No. of serious steps Cost ̂̄𝑝𝑓 (⋅10−4) 𝑝̂𝑓 (⋅10−4)

4.2

Highest 0.21
(𝜃 = 0.05)

12
(𝜃 = 0.25)

10
(𝜃 = 0.5)

2743
(𝜃 = 0.25)

9.985
(all 𝜃)

3.128
(𝜃 = 8)

Lowest 0.14
(𝜃 = 1)

3
(𝜃 = 4)

3
(𝜃 = 4)

2718
(𝜃 = 4)

9.985
(all 𝜃)

2.678
(𝜃 = 0.25)

4.3

Highest 51
(𝜃 = 0.5)

4
(𝜃 = 0.25)

3
(𝜃 = 8)

28.82
(𝜃 = 2)

9.960
(𝜃 = 2)

3.879
(𝜃 = 2)

Lowest 19
(𝜃 = 1)

2
(𝜃 = 2)

2
(𝜃 = 2)

28.61
(𝜃 = 8)

7.432
(𝜃 = 4)

2.928
(𝜃 = 4)

4.4

Highest 2.2
(𝜃 = 2)

10
(all 𝜃)

10
(all 𝜃)

39.21
(𝜃 = 8)

9.910
(𝜃 = 2)

4.455
(𝜃 = 2)

Lowest 2.1
(𝜃 = 4)

10
(all 𝜃)

10
(all 𝜃)

36.15
(𝜃 = 4)

9.735
(𝜃 = 0.25)

4.204
(𝜃 = 0.25)
Table 4
Optimization results obtained by different parameters 𝜔 = 1.2, 1.5, 2, 3, and 5.
Sec. Time (s) No. of outer loops No. of serious steps Cost ̂̄𝑝𝑓 (⋅10−4) 𝑝̂𝑓 (⋅10−4)

4.2

Highest 0.40
(𝜔 = 5)

10
(𝜔 = 1.2)

7
(𝜔 = 2)

2743
(𝜔 = 1.2)

9.985
(all 𝜔)

3.05
(𝜔 = 5)

Lowest 0.14
(𝜔 = 1.2)

8
(𝜔 = 5)

6
(𝜔 = 1.2)

2718
(𝜔 = 3)

9.985
(all 𝜔)

2.678
(𝜔 = 2)

4.3

Highest 42
(𝜔 = 1.2)

6
(𝜔 = 1.5)

5
(𝜔 = 1.5)

29.29
(𝜔 = 3)

9.860
(𝜔 = 1.2)

3.779
(𝜔 = 1.2)

Lowest 19
(𝜔 = 2)

2
(𝜔 = 1.2)

2
(𝜔 = 1.2)

28.61
(𝜔 = 1.2)

8.684
(𝜔 = 1.5)

3.353
(𝜔 = 3)

4.4

Highest 5.13
(𝜔 = 5)

10
(all 𝜔)

10
(all 𝜔)

38.39
(𝜔 = 5)

9.860
(𝜔 = 2)

4.330
(𝜔 = 2)

Lowest 1.4
(𝜔 = 1.2)

10
(all 𝜔)

10
(all 𝜔)

36.06
(𝜔 = 1.5)

9.585
(𝜔 = 1.5)

4.054
(𝜔 = 1.5)
7
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Table 5
Optimization results obtained by different target values of buffered failure probability (in parentheses, comparisons are made with results in Table 1.).
𝑝̄𝑡𝑓 = 0.1 ⋅ 10−2

Sec. Time (s) No. of outer loops No. of serious steps Computed solution Cost ̂̄𝑝𝑓 𝑝̂𝑓
4.2 0.131

(−0.00527)
8
(+1)

8
(+1)

(1092, 150.0) 2334
(−409.3)

9.975 ⋅ 10−3 3.030 ⋅ 10−3

4.3 40.4
(+26.8)

2
(−1)

2
(−1)

(1.501, 1.090,
1.338, 1.000)

27.73
(−0.6300)

9.015 ⋅ 10−3 3.636 ⋅ 10−3

4.4 3.21
(+0.387)

6
(−4)

6
(−4)

(6.435, 6.435,
6.435, 6.435,
2.218, 6.435)

34.39
(−1.809)

9.949 ⋅ 10−3 4.268 ⋅ 10−3

𝑝̄𝑡𝑓 = 0.1 ⋅ 10−4

4.2 0.561
(+0.425)

7
(+0)

7
(+0)

(1471, 150.0) 3091
(+348.2)

9.976 ⋅ 10−5 3.100 ⋅ 10−5

4.3 32.8
(+19.2)

3
(+0)

3
(+0)

(1.668, 1.000,
1.765, 1.000)

29.72
(+1.090)

9.801 ⋅ 10−5 3.300 ⋅ 10−5

4.4 5.80
(+2.98)

8
(−2)

8
(−2)

(7.615, 7.616,
7.617, 7.616,
1.000, 7.616)

39.08
(+2.881)

9.801 ⋅ 10−5 4.350 ⋅ 10−5
Table 6
Optimization results with varying initial solutions.

Sec. Best optimal solutiona Cost ̂̄𝑝𝑓 (⋅10−4) 𝑝̂𝑓 (⋅10−4) Ratio of best solutionsb

4.2 (1257, 150.0) 2709 9.960 3.203 100%
4.3 (1.581, 1.000, 1.443, 1.000) 28.52 9.835 3.679 46%
4.4 (7.215, 6.896, 7.391, 7.391, 1.000, 6.906) 36.80 6.857 3.053 7%

aThe feasible solution leading to the lowest cost.
bFeasible solutions leading to a cost less than 3% higher than the lowest one.
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. Further extension of numerical examples

In this section, the S-BORM algorithm is further demonstrated by
nvestigating variations of each of the numerical examples in Section 4.

e investigate two aspects: (1) handling non-normal distributions and
2) handling large-scale systems, i.e., a large number of variables and
ut sets. To this end, we modify the first two examples to have non-
ormal distributions (Sections 6.1 and 6.2) and enlarge the system size
f the third example (Section 6.3).

To ensure the quality of the obtained solutions, in Section 6.1, an
btained solution is compared with the one obtained by a grid search.
n Sections 6.2 and 6.3, since the problem size is too large to perform
grid search, we perform 30 runs of optimization with different initial
oints as recommended in Section 5.3. The initial points are randomly
enerated by Latin hypercube sampling.

.1. Cantilever beam-bar system with truncated normal distributions

From the example in Section 4.2, we modify the distributions of
and 𝑇 to truncated normal distributions by a range of ±2𝜎, while

heir means and standard deviations have the same values. All other
efinitions also remain the same. Then, the only required change
or implementation is that now 𝑣1 and 𝑣2 in (14) are realizations of

the normal distribution with zero mean and truncated by the range
[−2𝜎𝑀 , 2𝜎𝑀 ] and [−2𝜎𝑇 , 2𝜎𝑇 ], respectively.

The S-BORM algorithm returns a solution computed as (𝑥1, 𝑥2) =
923.7, 119.9), which is cheaper than the solution in Section 4.2 because
f the reduced variations in 𝑀 and 𝑇 . The solution leads to estimated
uffered failure probability ̂̄𝑝𝑓 = 9.985 ⋅ 10−4, cost 1967, and 𝑝̂𝑓 =
.629 ⋅ 10−4. This also agrees with the result obtained by a grid search,
hich is obtained as (924.2, 119.7) with cost 1968, ̂̄𝑝𝑓 = 9.835⋅10−4. On

he other hand, by setting a target failure probability 𝑝𝑡𝑓 = 3.629 ⋅ 10−4,
e obtain from grid search an optimal solution (924.2, 115.6) with cost
964, ̂̄𝑝𝑓 = 11.11 ⋅ 10−4, and 𝑝̂𝑓 = 3.604 ⋅ 10−4. This shows that the two
ailure probabilities lead to similar optimal solutions. The details of the
esult is summarized in Table 7. The computational cost remains similar
8

o the original setting, taking less than 1 s for computation. [
.2. Truss bridge system with Weibull and lognormal distributions

From the example in Section 4.3, we modify the distributions of
𝑞 , 𝑞 = 1,… , 10, and 𝑃 : 𝑅𝑞 follows the lognormal distribution with
ean 𝜇𝑅 = 276 and standard deviation 𝜎𝑅 = 13.8 (i.e., the same mean

nd standard deviation as in the original example); and 𝑃 follows the
eibull distribution with scale parameter 77.5 and shape parameter

.5 (this leads 𝑃 to have mean 70 and standard deviation 47.5). For
mplementation, this only changes that 𝑣0 and 𝑣𝑞 in (15) become
ealizations of the modified distributions of 𝑃 and 𝑅𝑞 , respectively.

As summarized in Table 7, the best solution among 30 obtained
olutions is (1.863, 1.071, 1.657, 1.008) with cost 32.22, ̂̄𝑝𝑓 = 9.885 ⋅
0−4, and 𝑝̂𝑓 = 3.629 ⋅ 10−4, which is obtained from an initial point
1.998, 1.146, 1.902, 1.673). Is is noted that, compared to the original
etting in Section 4.3, the increased variance of 𝑃 results in a more
xpensive solution even though its mean is much lower.

.3. Large-scale power network

This section investigates the power network in Fig. 4, which has
een adopted and modified from [39]. The optimization task remains
he same as in Section 4.4, i.e., allocation of testing time is optimized
ver 6 component types. The system has three input points and one
utput point, and system failure is defined as disconnection of the
utput point from all of the input points. The system consists of 70
omponents (i.e., there are 70 limit-state functions 𝑔𝑞 , 𝑞 = 1,… , 70,
efined as in Section 4.4), whose component types are as illustrated in
ig. 4. Their fault rates 𝜆𝑞 and limit-state functions 𝑔𝑞 , 𝑞 = 1,… , 70 are
efined as in (16) and (17), respectively.

To facilitate obtaining cut-sets, components are divided into 16
upercomponents as marked by square brackets in the figure. In terms
f the supercomponents, 36 cut sets are obtained as {([10], [12]),
[15], [16]), ([5], [6], [16]), ([8], [9], [15]), ([10], [11], [15]), ([11],
12], [16]), ([4], [6], [13], [16]), ([5], [6], [8], [9]), ([5], [6], [10],
11]), ([7], [8], [14], [15]), ([8], [9], [11], [12]), ([1], [2], [7], [8],
15]), ([1], [3], [4], [6], [16]), ([4], [6], [8], [9], [13]), ([4], [6], [10],
11], [13]), ([5], [6], [7], [8], [14]), ([7], [8], [11], [12], [14]), ([1],
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Fig. 4. Example power network.
Source: Adopted and modified
from [39].
Table 7
Optimization results of variations of three numerical examples.

Sec. Time (s) No. of outer loops
(function calls)a

No. of serious steps
(gradient calls)b

Computed solution Cost ̂̄𝑝𝑓 (⋅10−4) 𝑝̂𝑓 (⋅10−4)

6.1 0.220 7
(2,797,200)

6
(4800)

(923.7, 119.9) 1967 9.985 3.629

6.2 8.83 2
(799,200)

2
(1600)

(1.863, 1.071,
1.657, 1.008)

32.22 9.885 3.629

6.3 4996 5
(1,998,000)

4
(3200)

(9.304, 9.321,
1.000, 9.812,
1.000, 9.337)

39.77 8.058 4.279

a(No. of outer loops)⋅(No. of samples) = (Total evaluation number of limit-state functions).
b(No. of serious steps)⋅(No. of active samples) = (Total evaluation number of limit-state function gradients).
[2], [5], [6], [7], [8]), ([1], [2], [7], [8], [11], [12]), ([1], [3], [4], [6],
[8], [9]), ([1], [3], [4], [6], [10], [11]), ([2], [3], [4], [6], [7], [8]),
([2], [3], [4], [6], [14], [16]), ([2], [3], [7], [8], [13], [15]), ([4], [6],
[7], [8], [13], [14]), ([1], [2], [4], [6], [7], [8], [13]), ([1], [3], [4],
[6], [7], [8], [14]), ([2], [3], [4], [5], [7], [8], [15]), ([2], [3], [4],
[6], [7], [8], [9]), ([2], [3], [4], [6], [7], [9], [16]), ([2], [3], [4], [6],
[8], [9], [14]), ([2], [3], [4], [6], [10], [11], [14]), ([2], [3], [5], [6],
[7], [8], [13]), ([2], [3], [7], [8], [11], [12], [13]), ([2], [3], [4], [5],
[7], [8], [11], [12]), ([2], [3], [4], [6], [7], [9], [10], [11])}.5 Then,
the cut sets of the original components can be obtained by taking the
union of those cut sets of the supercomponents. For example, the first
cut set ([10], [12]) results in 16 cut sets such that (56, 62), (56, 63),
(56, 64), (56, 70), (57, 62), (57, 63), (57, 64), (57, 70), (58, 62), (58,

5 The cut sets have been obtained following similar steps explained in [39].
9

63), (58, 64), (58, 70), (68, 62), (68, 63), (68, 64), and (56, 70).6 Such
process leads to around 1.91 ⋅ 106 cut sets. For computational purpose,
we consider cut sets with a number of components equal to or less
than 5, which leaves 10,062 cut sets (corresponding to the first 17
cut sets of supercomponents). This does not undermine the validity of
optimization results since the more the components in a cut set, the
lower probability the cut has and, therefore, less influences on a system
failure probability.

As summarized in Table 7, the best solution among the 30 obtained
solutions is (9.304, 9.321, 1.000, 9.812, 1.000, 9.337) with cost 39.77,
̂̄𝑝𝑓 = 8.058 ⋅ 10−4, and 𝑝𝑓 = 4.279 ⋅ 10−4. This solution is obtained
from an initial point (9.631, 9.876, 1.766, 4.627, 7.155, 3.932). The
optimization takes 4996 s, which is much longer than for the original

6 Note that supercomponent [10] consists of components 56, 57, 58, and
68, and [12] of 62, 63, 64, and 70.
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setting in Section 4.4 owing to the increased number of random vari-
ables and cut sets. On the other hand, there is no increase in the number
of evaluations of limit-state functions and their gradients as there are
5 and 4 rounds, respectively.

7. Conclusions

This study proposes an efficient algorithm for reliability-based op-
timization (RBO), particularly for general system events that are rep-
resented as a link-set of cut-sets. To handle such general systems,
we evaluate system reliability by realizations of random variables
(i.e., samples or data points) instead of analytical calculation that
requires problem-specific formulas. This can be done by employing the
buffered optimization and reliability method (BORM) that replaces the
conventional failure probability by the buffered failure probability. We
call it the S-BORM algorithm.

The S-BORM algorithm efficiently solves RBO problems of general
systems by leveraging four ideas. First, a reliability constraint is penal-
ized and moved to the objective function. Second, limit-state functions
are linearized adaptively at a current solution. Third, the modified
objective function is reformulated as a difference-of-convex function
so that its optimization can be solved by a difference-of-convex bundle
method. Fourth, an active-set strategy is employed, which enables us to
consider only a small subset of samples that are within or close enough
to failure domains. We do not assume convexity either for cost function
or for limit-state functions. This makes the S-BORM algorithm applica-
ble for a wide class of systems. Although such minimal assumptions
make it difficult (if not impossible) to theoretically guarantee global
optimality and convergence, we provide justifications of the proposed
approach (see the Appendix and the companion report [33] for more
details) and empirical demonstrations by presenting newly designed
numerical examples. Examples include complex and large-scale systems
such as a power network with 70 random variables and 10,062 cut
sets and combined with reliability growth models. We show that the
S-BORM algorithm provides a handy means to solve these complex
problems. Moreover, extensive parametric investigations show that the
algorithm remains insensitive to algorithm parameter values and the
magnitude of target failure probability.

Utilizing realizations of random variables greatly facilitates general
applications as it eliminates the need for problem-specific derivations
and enables non-parametric analysis. By leveraging such advantages,
we develop a Matlab-based tool, which is available at https://github.
com/jieunbyun/sborm. To run the algorithm, users only need to pro-
vide general information, i.e., cost functions and limit-state functions
(including their gradients) and realizations of random variables. Mean-
while, this underlines a distinct potential of the BORM for further
development of general software tools of reliability-based optimiza-
tion. This is advantageous considering barriers of implementing RBO
algorithms, which often require a high level of knowledge and engi-
neering. Promising topics for being combined with such data-driven
optimization include surrogate models, real-time data, and sequential
decision-making.
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Appendix. Algorithmic justifications

The function 𝐹 𝜈 (𝒙, 𝛾; 𝜃𝜈 , 𝒙̂𝜈), appearing in Step 3 of the algorithm,
an be written as the difference of two convex functions as required
y [31, Alg. 1]; the specific formula is given in an extended arXiv
eport [33]. For limit-state functions that are linear in 𝒙, S-BORM
onverges to critical points as defined in [33]. Further motivation for
he algorithm follows below.

Generally, 𝐹 𝜈(𝒙, 𝛾; 𝜃𝜈 , 𝒙̂𝜈 ) is an approximation of the actual function
(𝒙, 𝛾; 𝜃𝜈 ) but it becomes exact at the current point 𝒙̂𝜈 , i.e.,
𝜈 (𝒙̂𝜈 , 𝛾; 𝜃𝜈 , 𝒙̂𝜈 ) = 𝐹 (𝒙̂𝜈 , 𝛾; 𝜃𝜈 ), ∀ 𝛾.

herefore, since (𝒙̂𝜈 , 𝛾̂𝜈 ) is feasible to the subproblem of Step 3, we have
hat
𝜈 (𝒙𝜈+1, 𝛾𝜈+1; 𝜃𝜈 , 𝒙̂𝜈 ) + 𝜆𝜈

2
‖𝒙𝜈+1 − 𝒙̂𝜈‖22 +

𝜆𝜈

2
(𝛾𝜈+1 − 𝛾̂𝜈 )2

≤ 𝐹 𝜈 (𝒙̂𝜈 , 𝛾̂𝜈 ; 𝜃𝜈 , 𝒙̂𝜈 ) = 𝐹 (𝒙̂𝜈 , 𝛾̂𝜈 ; 𝜃𝜈 ).

his means that the predicted decrease 𝜁𝜈 is non-negative and S-BORM
s a descent method in this sense.

If Step 3 produces (𝒙𝜈+1, 𝛾𝜈+1) = (𝒙̂𝜈 , 𝛾̂𝜈 ), then one can show that
his point is critical for the penalized and linearized problem (11) (with
= 𝜃𝜈 and 𝒙̂ = 𝒙̂𝜈). A similar conclusion appears to hold more generally

oo. Suppose that 𝚝𝚘𝚕 = 0 and consider two cases.

. The algorithm produces only finitely many serious steps followed by an
nfinite sequence of null steps. Then, (𝒙̂𝜈 , 𝛾̂𝜈 ) equals some fixed point
𝒙̂, 𝛾̂) for all 𝜈 after the last serious step. Furthermore, the linearization
f limit-state functions are fixed for these iterations. The S-BORM
lgorithm therefore reduces to a penalized approach for solving

min
𝒙∈X,𝛾∈R

𝑐(𝒙) (A.1a)

ubject to 𝛾 + 1
𝑝̄𝑡𝑓

𝑁
∑

𝑛=1
𝑝𝑛 max

{

0, max
𝑘∈1,…,𝐾

min
𝑞∈Q𝑘

𝑔𝑞(𝒙̂, 𝒗𝑛)

+ ⟨∇𝑔𝑞(𝒙̂, 𝒗𝑛),𝒙 − 𝒙̂⟩ − 𝛾
}

≤ 0. (A.1b)

As the penalized parameter becomes 𝜃max after finitely many steps,
the iterates produced by Step 3 converges to (𝒙̂, 𝛾̂) as 𝜆𝜈 increases
indefinitely and the value 𝐹 𝜈 (𝒙, 𝛾; 𝜃max, 𝒙̂) given in (12) does not change
because both the penalization parameter and the current solution
andidate are fixed for all 𝜈 large enough). This argument suggests

that (𝒙̂, 𝛾̂) is a critical point for the linearized problem. The theory of
exact penalty functions asserts that if a condition on the constraint of
(A.1) exists, and 𝜃max is greater than the largest optimal dual variable
associated with this constraint, then solutions of the penalized problem
(11) are solutions of (A.1); see, e.g., [40,41] and [24, Proposition 6.13].

https://github.com/jieunbyun/sborm
https://github.com/jieunbyun/sborm
https://github.com/jieunbyun/sborm
https://github.com/jieunbyun/sborm
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2. The algorithm produces infinitely many serious steps. Again, recall that
the penalty parameter becomes 𝜃max after finitely many iterations. In
this case, as already argued, the descent test ensures that the sequence
of function values is non-increasing:

𝐹 (𝒙̂𝜈+1, 𝛾̂𝜈+1; 𝜃max) ≤ 𝐹 (𝒙̂𝜈 , 𝛾̂𝜈 ; 𝜃max) − 𝜅𝜁𝜈 , with 𝜁𝜈 given in Step 4.

ith the mild assumption that 𝐹 (⋅, ⋅; 𝜃max) has bounded level sets, a
imple recursive argument (the telescope sum) on the above inequality
hows that 𝜁𝜈 → 0 and one can argue that any cluster point of
he sequence of serious steps {(𝒙̂𝜈 , 𝛾̂𝜈 )} is critical for the penalized
roblem (11). Once again, the penalization arguments concerning (11)
nd (A.1) apply.

ummary. The above arguments tell us that S-BORM always terminates
fter finitely many steps provided that 𝚝𝚘𝚕 > 0. When 𝚝𝚘𝚕 = 0 and the
imit-state functions are linear in 𝒙, then the algorithm is guaranteed to
onverge to a critical point. For more general limit-state functions, the
iscussion on the asymptotic behavior of the algorithm suggests that
he approach computes a critical point for the linearized problem (A.1),
ith 𝒙̂ being the 𝑥-part of the last serious step, or an arbitrary cluster
oint (if any) of {𝒙̂𝜈}∞𝜈=1. A full mathematical argument is beyond the
cope of the present paper.
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