
Citation: Moawad, Y.;

Vanderbauwhede, W.; Steijl, R.

Quantum Circuit-Width Reduction

through Parameterisation and

Specialisation. Algorithms 2023, 16,

241. https://doi.org/10.3390/

a16050241

Academic Editor: Frank Werner

Received: 27 February 2023

Revised: 17 April 2023

Accepted: 21 April 2023

Published: 5 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Quantum Circuit-Width Reduction through Parameterisation
and Specialisation
Youssef Moawad 1 , Wim Vanderbauwhede 1 and René Steijl 2,*

1 School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
2 James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
* Correspondence: rene.steijl@glasgow.ac.uk

Abstract: As quantum computing technology continues to develop, the need for research into
novel quantum algorithms is growing. However, such algorithms cannot yet be reliably tested on
actual quantum hardware, which is still limited in several ways, including qubit coherence times,
connectivity, and available qubits. To facilitate the development of novel algorithms despite this,
simulators on classical computing systems are used to verify the correctness of an algorithm, and
study its behaviour under different error models. In general, this involves operating on a memory
space that grows exponentially with the number of qubits. In this work, we introduce quantum circuit
transformations that allow for the construction of parameterised circuits for quantum algorithms.
The parameterised circuits are in an ideal form to be processed by quantum compilation tools, such
that the circuit can be partially evaluated prior to simulation, and a smaller specialised circuit can
be constructed by eliminating fixed input qubits. We show significant reduction in the number of
qubits for various quantum arithmetic circuits. Divide-by-n-bits quantum integer dividers are used
as an example demonstration. It is shown that the complexity reduces from 4n + 2 to 3n + 2 qubits
in the specialised versions. For quantum algorithms involving divide-by-8 arithmetic operations, a
reduction by 28 = 256 in required memory is achieved for classical simulation, reducing the memory
required from 137 GB to 0.53 GB.

Keywords: quantum computing; quantum circuit model; circuit transformation; circuit width
reduction; memory reduction; circuit parameterisation

1. Introduction

In recent years, research in Quantum Computing (QC) [1] has developed into a large-
scale global activity aimed at creating ever more capable quantum computing hardware, as
well as quantum computing applications, with the potential to revolutionise computational
science. Despite this progress, current and near-future quantum computers (commonly
referred to as Noisy Intermediate-Scale Quantum (NISQ)-era quantum computers [2]) are
still limited in their capability. Realising the potential of quantum computers requires that
certain features of quantum mechanics not available in classical computing are exploited.
The potential computational benefit of quantum computers relies on information being
processed while encoded in a coherent quantum state in the qubit register. In NISQ-era
hardware, information is encoded in a relatively small number of qubits, with limited
connectivity between qubits and a limited extent of quantum error correction techniques.
Quantum error correction is needed to maintain this coherent state for a sufficiently long
time so that meaningful computations can be performed. Recently, quantum computers
with O(100) ‘noisy’ qubits (e.g., prone to significant quantum errors and decoherence)
have been realised [3]. This is projected to grow to O(104) or O(105) [4] in the coming
decade. This way, future quantum hardware with more fault-tolerance can be built, where
the quantum error correction is used on the many implemented qubits to create O(100)
fault-tolerant or ‘functional qubits’ (as termed by IBM).

Algorithms 2023, 16, 241. https://doi.org/10.3390/a16050241 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16050241
https://doi.org/10.3390/a16050241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7292-9172
https://orcid.org/0000-0001-6768-0037
https://orcid.org/0000-0002-1872-8687
https://doi.org/10.3390/a16050241
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16050241?type=check_update&version=1

Algorithms 2023, 16, 241 2 of 33

In addition to the challenges involved in realising quantum hardware, it is also clear
that major challenges exist in devising suitable applications and algorithms for quantum
computers. Theoretical aspects of quantum algorithms, as well as the implementation in
terms of quantum circuits represent major research areas.

A key role in developing quantum algorithms and their realisation on quantum
hardware is played by quantum computing simulation on classical computing hardware.
Applications requiring a number of qubits not yet available on hardware can be evaluated
provided sufficient classical computing resources are available. This type of simulation
also allows to evaluate for example the performance and reliability of an algorithm in the
presence of simulated quantum errors.

As reviewed later this section, the representation in a classical simulation of a coherent
quantum state involving n qubits in its most general form requires 2n degrees of freedom.
This characteristic forms a key aspect of the huge potential of quantum computers (“ex-
ponential speed-ups”). At the same time, it means that even for relatively small quantum
computer applications, the classical computing resources required for simulation become
excessive. For illustration, the Intel Quantum Simulator [5] was demonstrated recently for
simulations using 42 qubits on a state-of-the-art supercomputing facility.

Reducing the computational cost of simulating quantum circuits on classical hardware
forms the main motivation of the present investigation. Specifically, the present work
introduces transformations to quantum algorithms represented in terms of a quantum
circuit, leading to more compact representations involving fewer qubits and, thus, reduced
storage needs for the simulation.

Quantum circuit transformation methods represent a broad and active research area.
One type of transformations map quantum circuits to specific quantum hardware. In the
quantum circuit model (detailed later), quantum algorithms can be expressed in terms
of quantum gate operations, such that all qubits can access all other qubits. For more
limited connectivity in specific hardware configurations, a transformation of the circuit
representation is then required. Childs et al. [6] present a recent review of such transforma-
tions. Another type of transformations, closer related to the present work, involves circuit
transformation aimed at facilitating classical simulation on large-scale distributed memory
computing facilities. Graph-based transformation techniques have been introduced by
a range of researchers to achieve a reduction in memory requirements. Boixo et al. [7],
Chen et al. [8], and Schutski et al. [9] employ a tensor network-based approach, while Ped-
nault et al. [10] use an undirected graph model. Further transformation methods presented
in the literature include the circuit partitioning scheme described by Chen et al. [11] and
the implicit decomposition technique described by Li et al. [12], transforming the origi-
nal circuit into multiple, smaller transformed circuits so that communication in parallel
simulations on classical computers could be reduced.

The quantum circuit transformations introduced in this work are mainly aimed at
facilitating simulating quantum circuits on classical computers. Additionally, the intro-
duced transformation can be used in quantum hardware realisations, where the qubit
count reduction can be used to facilitate realisation of circuits that would not fit without
the transformations introduced here. It is important to note that the output of the pro-
posed transformation involves gate operations with multiple control qubits (as detailed
later). Therefore, a subsequent transpilation step accounting for available native gates
and qubit connectivity of target quantum hardware is required for quantum hardware
realisations. For quantum circuit simulation on classical hardware, a similar transpilation
step is often required for applications where the impact of (modelled) quantum gate errors
is investigated. In the transpilation step, a well-considered trade-off between quantum
circuit width and quantum circuit depth is required to avoid undoing the circuit width
reduction achieved by the quantum circuit transformations introduced here. If IBM quan-
tum hardware is used in realisation, the transformation step in IBM Qiskit [13] would be
performed after the transformations proposed here. Beyond IBM’s Qiskit, several other
tools exist that were designed to facilitate the specification and transformation of quantum

Algorithms 2023, 16, 241 3 of 33

circuits, e.g., Quipper [14], OpenQASM 3 [15,16], Xanadu’s Strawberry Fields [17], Penny-
Lane [18], and Microsoft Q# [19]. Xanadu’s tools primarily focus on Quantum Machine
Learning and compilation to photonic quantum computers; OpenQASM is an effort to
standardise quantum circuit specification. While the circuit specification and manipulation
techniques provided by Qiskit, Quipper, and Microsoft Q# are similar to those provided
by our toolchain, these tools were developed for more general circuit transformations and
do not provide a similar functionality in terms of static analysis to achieve circuit width
reduction of parameterised quantum arithmetic circuits.

The transformations introduced in this work rely on the concept of identifying qubits
in the circuit that can be specialised to a constant value, i.e., |0〉 or |1〉, as explained later.
If the identified qubit only acts as control qubit in the quantum gate operations in the circuit,
then two independent circuits (with one fewer qubit) can be defined for both choices of the
specialised qubit. This approach works independent of the application domain for which
the considered quantum circuit was developed, and was used in a different context in the
works on circuit partitioning [11] and circuit decomposition [12], as mentioned previously.
The second concept on which the transformations introduced in this work rely involves ex-
ploiting application domain knowledge to facilitate the identification of qubits suitable for
specialisation. As explained later in this section, a wide range of practically important quan-
tum algorithms exist where quantum arithmetic occurs as part of the larger computation.
This includes the famous Shor algorithm for integer factorization [20]. In typical quantum
circuit implementations of arithmetic operations, the identification of qubits suitable for
the specialisation outlined above is a challenging task as a result of qubits acting repeatedly
as control, as well as target qubit in gate operations. However, in reversible arithmetic
operations, half of the input qubits will have an unchanged state upon completion of the
computation. This domain-specific feature motivated the development of transformations
of arithmetic circuits to a parameterised form such that qubit specialisation can be automated
in a quantum computing toolchain. This second aspect of the introduced quantum circuit
transformations involving parameterisation of circuits represents the main novelty of the
present work. Despite this use of domain specific knowledge, it is shown that the approach
is still general enough for a wide range of quantum algorithms in the field of computational
science and engineering.

In a broader context, it can be noted that program transformation algorithms are
essential constituents of modern compilers for classical languages [21–24]. These are used
to optimise the instructions corresponding to the original source code of a program to,
e.g., minimise register use, instruction count or run time, or make optimal use of features,
such as vector operations. Thus, the current work can be considered as extending the
concept of program transformations to the field of quantum computing. The specific
transformations presented are quantum circuit substitutions that allow static analysis
tools to easily specialise circuits for fixed inputs, reducing the quantum circuit width
(qubit count).

Our main motivation for reducing the number of required qubits is to reduce the
classical computing resources. However, the introduced transformations can also be used
to create smaller circuits for proof-of-concept demonstrations on near-future quantum hard-
ware, and would be an integral part of any future compiler for mature quantum computers.

The rest of this section presents a brief review of quantum computing concepts,
provides context in terms of the type of quantum algorithms our transformations introduced
are aimed at, and presents the primary contributions of this work.

1.1. Brief Review of Quantum Computing Essentials

In this section, some core concepts of quantum computing that are particularly relevant
to this work are reviewed. A full treatment can be found in [1].

Algorithms 2023, 16, 241 4 of 33

1.1.1. Qubit Representation and Manipulation

In quantum computing, qubits are the units of information that can be manipulated.
Using the Dirac notation, a single qubit can be described by two complex probability
amplitudes

|q〉 = a|0〉+ b|1〉 ; |a|2 + |b|2 = 1 (1)

such that |a|2 is the probability of finding the qubit in state |0〉 and |b|2 is the probability
of finding the qubit in state |1〉. We can compose a system with two qubits by taking the
tensor product of the qubits’ state vectors

|q0|q1〉 = |q0〉 ⊗ |q1〉 = a0a1|00〉+ a0b1|01〉+ b0a1|10〉+ b0b1|11〉 (2)

showing that in this case 4 complex amplitudes define the quantum state |q0|q1〉 where
|00〉, |01〉, |10〉, and |11〉 represent the four computational basis states. This concept can be
extended to n qubits, such that the quantum wave function, |Ψ〉 is defined by 2n complex
amplitudes

|Ψ〉 =
2n−1

∑
k=0

Ck|k〉 (3)

where |k〉 represent the 2n computational basis states, with the integer value of k obtained
from the binary representation of the n qubits. Another way of interpreting this is that a
system of n qubits forms a 2n-dimensional Hilbert space. In quantum mechanics, operations
performed on the quantum state are represented by unitary Hermitian matrices. In the
quantum circuit model, discussed in next section, these unitary operations are performed
by quantum gates.

1.1.2. Quantum Circuit Model

The quantum circuit model is widely used in Quantum Computing to represent
quantum algorithms as a series of “quantum gate” operations acting on one or more qubits.
Each of the qubits is represented by a horizontal solid line in quantum circuit diagrams,
with a vertical arrangement of the multiple qubits in the register. The number of qubits
and, therefore, the number of parallel lines defines the circuit width. Quantum gates are
designed to either work on a single qubit (“single-qubit gates”) or work on multiple qubits
simultaneously (“multi-qubit gates”). The quantum computation progresses step-by-step in
the horizontal direction, starting from the initial qubit register state defined on the left-hand
side. The diagram in the left-hand side of Figure 1 shows a simple two-qubit quantum
circuit with a single two-qubit gate acting on the state of qubits |q1|q0〉. The example
shows a controlled-NOT (CNOT) operation, where the NOT (also termed X in quantum
computing) is performed on qubit |q0〉 conditional on qubit |q1〉 = |1〉. This operation

represent a single time instance. The X gate (X ≡
[

0 1
1 0

]
) has the effect of flipping a qubit

in the computational basis, such that X|0〉 = |1〉, X|1〉 = |0〉, by swapping of the qubit’s
probability amplitudes. This is the analogue of the classical NOT gate. In more complex
circuits, a series of such quantum gate operations is performed step-by-step. For illustration,
the right-hand side of Figure 1 shows how a general single-qubit gate G with a negative
control (here |q1〉 = |0〉) can be implemented using a sequence of three gate operations.
The number of time slices required to run the circuit (i.e., circuit slices with gates that affect
mutually exclusive qubits) defines the circuit depth. Since a quantum circuit is composed
of unitary operations, every quantum circuit has an inverse. The inverse of a quantum
circuit can simply be composed of the inverse of all its constituent quantum gates, applied
in reverse order. The operation of applying the inverse of a circuit after “moving” useful
data from the circuit is common in quantum computing, and is termed uncomputation. This
is typically used to return qubits allocated to create workspace to their initial state, so that
these can be re-used in subsequent parts of the circuit.

Algorithms 2023, 16, 241 5 of 33

|q1〉 |q1〉

|q0〉 |q1〉 ⊕ |q0〉

|q1〉

|q0〉 G
≡

|q1〉

|q0〉 G

Figure 1. Illustration of simple two-qubit quantum circuits.

The quantum circuits considered in the current work typically involve tens or hun-
dreds of qubits, with a quantum circuit depth of tens to thousands of gate operation
steps. Simulating quantum circuits with this number of qubits clearly represents a major
computational challenge.

1.2. Context of Present Work

In recent years, significant research efforts have focused on developing quantum
algorithms for computational engineering applications, including fluid dynamics, with the
aim of achieving significant quantum speed-up. A promising line of investigation in the
context of computational fluid dynamics focuses on developing quantum circuit implemen-
tations of lattice-based models of a range of problems [25–31]. A quantum algorithm for
the collisionless Boltzmann equation and its application to rarefied supersonic flows was
presented by Todorova and Steijl [25,26]. Budinski [27] introduced a quantum algorithm
for the linear advection–diffusion equation based on the Lattice Boltzmann method. In this
work and in the work of Todorova and Steijl [25], particle distribution functions defined
in each of the lattice sites on the considered regular lattice move to a neighbouring site
during subsequent time steps. The quantum circuit implementation of this step shows
strong similarity with quantum modulo adders. Therefore, it can be expected that the
transformations introduced here can also be extended to this type of circuits. In the Lattice
Boltzmann method, a collision term appears on the right-hand side of the equation and
its non-linearity for the Navier–Stokes equations in fluid dynamics was considered by
Steijl [29] using quantum floating-point arithmetic and using Carleman linearisation in
the work of Itani and Succi [28]. In the context of the Lattice Boltzmann method for fluid
dynamics, in Moawad et al. [30] the authors presented quantum circuit implementations of
non-linear one-dimensional models. More recently, the quantum circuit implementation of
multi-dimensional non-linear lattice models was presented by one of the authors [31]. Both
these works employed an application-specific floating-point representation with reduced
precision relative to the IEEE-754 single-precision standard [32]. A key feature of this
ongoing work on quantum circuit implementation of lattice modelling is the reliance on
a range of quantum arithmetic operations. An illustrative example is shown in Figure 2
where for a fixed-point definition of velocities u and v in a two-dimensional problem,
the quantity u2 + v2 (i.e., directly related to kinetic energy) is evaluated using a shift-and-
add based approach to sum contributions from u and v into the output register defining
u2 + v2. The quantum circuit shown in Figure 2 is based on the more complex circuits
shown in Steijl [31] that involve floating-point operations. For the current work, the mod-
ified 4-qubit full adders FAu and FAv are of particular interest. Specifically, for larger
fixed-point data representations with an increased number of qubits, it is clear that the
quantum circuit width often exceeds the size that can be routinely simulated using a full
state vector Quantum Circuit Simulator (as discussed in more detail in Section 3). In the
ongoing development of quantum algorithms for lattice-based modeling, but also many fur-
ther quantum algorithms employing similar quantum arithmetic operations, the quantum
circuit width is often a limiting factor. This means that for quantum algorithms involving
quantum arithmetic operations, the introduction of circuit-width reduction steps on the
circuit performing quantum arithmetic operations would facilitate the classical simulation
of larger circuits, as well as a wider range of quantum algorithms.

Algorithms 2023, 16, 241 6 of 33

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|ek5〉 = |0〉

FAu FAv

Sh

FAu FAv

Sh

|ek7〉

|ek4〉 = |0〉 |ek6〉
|qu3〉 |qu3〉
|qv3〉 |qv3〉

|ek3〉 = |0〉 |ek5〉
|qu2〉 |qu2〉
|qv2〉 |qv2〉

|ek2〉 = |0〉 |ek4〉
|qu1〉 |qu1〉
|qv1〉 |qv1〉

|ek1〉 = |0〉 |ek3〉
|qu0〉 |qu0〉
|qv0〉 |qv0〉

|ek0〉 = |0〉 |ek2〉

|c〉 = |0〉 |c〉 = |0〉

|ek8〉 = |0〉 |ek1〉
|ek7〉 = |0〉 |ek0〉

|ek6〉 = |0〉 |ek8〉

|anc〉 = |0〉 |anc〉 = |0〉

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|ek7〉

FAu FAv

Sh

FAu FAv

|ek8〉

|ek6〉 |ek7〉
|qu3〉 |qu3〉
|qv3〉 |qv3〉
|ek5〉 |ek6〉
|qu2〉 |qu2〉
|qv2〉 |qv2〉
|ek4〉 |ek5〉
|qu1〉 |qu1〉
|qv1〉 |qv1〉
|ek3〉 |ek4〉
|qu0〉 |qu0〉
|qv0〉 |qv0〉
|ek2〉 |ek3〉

|c〉 = |0〉 |c〉 = |0〉

|ek1〉 |ek2〉
|ek0〉 |ek1〉

|ek8〉 |ek0〉

|anc〉 = |0〉 |anc〉 = |0〉

Figure 2. Quantum circuit design for evaluation of u2 + v2 based on 4-qubit fixed-point representation
of velocities u (defined by |qu3|qu2|qu1|qu0〉) and v (defined by |qv3|qv2|qv1|qv0〉). Upon completion
on right-hand side of circuit, the kinetic energy is represented by 9 qubits |ek8|ek7| . . . |ek0〉. FAu and
FAv are modified 4-qubit full adders and Sh performs incremental shifts on output register.

1.3. Exemplar Circuit: Integer Divider

Figure 3 shows a top-level representation of a quantum integer divider as an illustrative
example and as the target application in this work. The design shown performs a 4-step
long division to create a 4-qubit quotient |out3|out2|out1|out0〉 from a dividend defined
by a 7-qubit register and a divisor defined by a 4-qubit register |q3d|q2d|q1d|q0d〉. The
7-qubit dividend register comprises the original 4-qubit representation of the dividend
|q3i|q2i|q1i|q0i〉 extended by three qubits in state |0〉, i.e., |qin2|qin1|qin0〉. This integer
divider can for example be used in fixed-point arithmetic, or as part of a floating-point
divider. The key building blocks of this quantum circuit are the Comparator (indicated by
C in Figure 3) and its uncomputation (termed U(C) in Figure 3), as well as the controlled

Algorithms 2023, 16, 241 7 of 33

Subtractor operations. As can be seen, once the 4-qubit register |out3|out2|out1|out0〉 is
defined, the controlled subtractions are uncomputed using controlled add (Add in Figure 3)
circuits to restore all qubits to their original state, except the four qubits defining desired
output. Possible quantum circuit implementations of these operations are detailed in
Figure 4, where the comparator is based on the subtractor circuits proposed by Xia et al. [33].

|out3〉 = |0〉

|out2〉 = |0〉

|out1〉 = |0〉

|out0〉 = |0〉

|q4d〉 = |0〉

Sub

|test〉 = |0〉

C U(C)

Sub

Add

|q3d〉

C U(C)

Sub

Add

|q3i〉

C U(C)

Add

|q2d〉

C U(C)

|q2i〉

|q1d〉

|q1i〉

|q0d〉

|q0i〉

|c〉 = |0〉

|qin2〉 = |0〉

|qin1〉 = |0〉

|qin0〉 = |0〉

Figure 3. Quantum integer divider: top-level overview of quantum circuit implementation of
quantum integer division. Example shown for 4-qubit representation of dividend, divisor, and output.

C

|test〉 = |0〉

|q3d〉

|q3i〉

|q2d〉

|q2i〉

|q1d〉

|q1i〉

|q0d〉

|q0i〉

|c〉 = |0〉

Sub

|q4d〉 = |0〉

MAJ UMA|test〉 = |0〉

|q3d〉

MAJ UMA|q3i〉

|q2d〉

MAJ UMA|q2i〉

|q1d〉

MAJ UMA|q1i〉

|q0d〉

MAJ UMA|q0i〉

|c〉 = |0〉

Figure 4. Quantum integer divider: quantum circuit implementation of comparator C and subtractor
Sub. Example shown for 4-qubit representation of dividend, divisor, and output. Sub-circuits on left-
and right-hand side perform transforms to/from 2’s complement for divisor qubits.

Algorithms 2023, 16, 241 8 of 33

The design and quantum circuit implementation of quantum comparators has been
investigated in detail in the past decade [33–36]. Often, this work was conducted in the
context of quantum image processing, where the comparator circuits were employed in
image binarisation. The circuits take as input two multi-qubit registers defining integers
a and b in binary representation. For use in quantum long-division only a < b or a ≥ b
need to be identified, while some of the comparator designs also separate a = b and a > b.
The work of Xia et al. al. [33] includes a brief review of past work on quantum comparators.
The type of quantum comparator circuits introduced by Xia et al. [33] is well-suited to the
requirements of the present work since it involves a minimum number of auxiliary qubits.
It was also recently used in the work of Yuan et al. [37], where the design of a fault-tolerant
implementation of quantum divider was considered.

It should be noted that the quantum circuit transformation steps demonstrated here
using the quantum integer divider target a wider range of quantum arithmetic operations
and should, therefore, benefit a significant research community working on quantum
arithmetic circuits and their application within more complex algorithms. From the quan-
tum computing literature, it is clear that work on quantum arithmetic circuits remains an
active area of research, even after two decades of work. Relating to the example shown
in Figure 2 for a quantum circuit used for evaluation of kinetic energy in fixed-point
representation in a two-dimensional lattice-based model, work on the development of
efficient quantum multipliers constitutes significant ongoing activity [38–40]. Recent work
on improved quantum circuits for addition and subtraction often focuses on fault-tolerant
implementations, e.g., Orts et al. [41] propose three fault-tolerant carry look-ahead adders
that improve the cost in terms of quantum gates and qubits relative to previous works.
Recently, a quantum circuit design for single-precision floating-point division was pre-
sented by Gayathri et al. [42]. Their emphasis was on creating resource estimates in terms of
number of qubits required, as well as circuit depth. This type of research work could benefit
from the quantum circuit transformation introduced here as it facilitates more efficient
classical simulations of the circuits.

1.4. Contributions of This Work

The main novelty and contributions of the presented work can be summarized as
follows:

• Demonstration of quantum circuit width reduction transformations based on Cir-
cuit Parameterisation and Qubit Specialisation for quantum algorithms performing
arithmetic operations as part of the computational work;

• Demonstration of the derivation steps used in creating parameterised quantum cir-
cuits for quantum arithmetic. The formulation in parameterised form for a quantum
comparator and a quantum subtractor are detailed. To the best of the authors’ knowl-
edge, these parameterised circuits have not been considered in the literature before.
The derivations detailed here also show how similar parameterisation can be applied
to a wider range of arithmetic circuits;

• Analysis of the quantum circuit design of integer dividers in terms of suitability for
the proposed quantum circuit width transformations;

• Demonstration how for the quantum divider exemplar the pre-computed and verified
comparator and subtractor circuits in parameterised form can be imported into the
complete quantum circuit implementation, followed by the automated selection of
qubits suitable for specialisation and the automated specialisation for different user-
defined inputs;

• Analysis in terms of circuit complexity of specialised quantum integer divider circuits
as obtained from the transformation techniques introduced. The correctness of the
circuits is verified using a quantum circuit simulator.

Algorithms 2023, 16, 241 9 of 33

The rest of this manuscript is structured as follows. Section 2 presents the two main
types of data encoding techniques used in quantum information processing. Section 3
discusses key aspects of simulation of quantum circuits on a classical computer. The key
concepts introduced in this work are outlined in Section 4. Section 5 describes the derivation
of the parameterised comparator and its specialised forms. Section 6 then details the
parameterised subtractor circuits. Section 7 describes the design and quantum circuit
implementation of quantum integer dividers. The quantum circuit toolchain employed
in this work is described in Section 8. Section 9 demonstrates the implementation of
the divider in the presented toolchain and describes its specialisation and verification.
The results of using the toolchain to reduce the divider are presented. Finally, Section 10
presents the conclusions and suggestions for future work.

2. Data Encoding in Quantum Information

The quantum circuit transformation approaches introduced here were designed to
reduce quantum circuits performing quantum arithmetic operations. In the intended
application, the quantum circuit considered represents a larger, and more general quantum
algorithm were the arithmetic represents a part of the computational work. Quantum
arithmetic operations typically rely on a specific type of data encoding. To explain this
further, the two main data encoding approaches used in quantum information processing
are summarized here.

In amplitude-based encoding , a vector of normalised complex data (of size up to
N = 2n) is encoded into the amplitudes, Ck in Equation (3). This encoding technique
is the most widely used encoding technique in quantum algorithms since it creates the
most direct means of taking advantage of quantum parallelism (i.e., exponential growth
of number of degrees of freedom with linear increase in the number of qubits). For this
type of data encoding, the most widely used quantum circuit simulation approach on
classical computers is full state vector simulation, where the 2n complex amplitudes are
all stored and the gate operations in a considered circuit lead to step-by-step modifications
of these amplitudes.

In the present work, the focus is on the alternative approach termed computational-
basis encoding. In this data encoding approach, the quantum algorithm is designed such
that at initialisation only the complex amplitude of a single computational basis state has
non-zero amplitude. After completion of the quantum algorithm the output is represented
similarly by a single non-zero amplitude for one of the quantum basis states. For quantum
algorithms employing the computational basis encoding a few important observations
relevant to the present work can be made:

• The motivation for this type of encoding is typically performing quantum arithmetic
operations;

• To maintain the property that only a single computational basis state has a non-zero
amplitude throughout the computation, the gates in the Quantum Circuit model
are limited to quantum equivalents of logic gates (e.g., X as equivalent of NOT and
Toffoli as doubly-controlled NOT). By doing so, the quantum circuit can efficiently be
simulated on a classical computer using a logic-based simulator. In such a simulator,
n classical bits suffice to represent the state of n qubits. Then, the controlled logic gate
operations conditionally flip states between 0 and 1;

• If quantum arithmetic operations are implemented in the quantum circuit model
based on the Quantum Fourier Transform [43,44], then efficient simulation using
classical logic-based simulation is not possible, since the QFT in the case of quantum
arithmetic circuits temporarily moves the encoding approach to amplitude-based
encoding, before finally returning an output in computational basis encoding.

Since the circuit transformation approaches introduced here target quantum arithmetic
operations, key aspects of computational basis encoding were used in creating these trans-
formation steps. Specifically, identifying qubits that throughout a quantum computation
are guaranteed to remain in either state |0〉 or |1〉 relies on this type of encoding throughout

Algorithms 2023, 16, 241 10 of 33

the computation or at least for the considered part of the algorithm performing arithmetic
operations. For more general algorithms using amplitude encoding the transformation
approaches introduced cannot be employed.

Relating to the use of the transformation approaches in quantum algorithm develop-
ment process, the following observations need to be made:

• The quantum arithmetic operations in circuit using computational basis encoding
considered here can be efficiently simulated on a classical computer using a logic
based simulator—these circuits act as classical reversible circuits when not used as
part of a larger quantum algorithm;

• As arithmetic blocks which operate in the computational basis are often parts of larger
quantum algorithms, quantum circuit simulations often require a full-state vector
simulation approach;

• For quantum circuit simulations where the effect of (modeled) quantum errors are
included, the full-state vector simulation approach is generally required even for algo-
rithms operating entirely (through computation) with computational basis encoding.

Because of the essential role played by full-state vector simulation, this aspect of
quantum algorithm analysis is considered in more detail in the following section.

3. Quantum Circuit Simulation

In this section, the full-state vector simulation of quantum circuits is considered in
more detail. As mentioned in Section 1.1, the quantum state of n qubits in a qubit register
is defined by 2n complex amplitudes defining the quantum wave function. In a full-
state vector quantum circuit simulator, the 2n complex numbers are all stored in memory
irrespective of the amplitude. Specifically, in cases where many of the amplitudes are
zero, the potential savings offered by only storing non-zero amplitudes are not employed.
During the evolution of the quantum state in the considered quantum computation, some
or even all amplitudes will change in time, complicating approaches where only non-zero
amplitudes are stored.

In general, to simulate the operation of a quantum gate on a full state vector, the entire
memory space needs to be accessed. The access pattern depends on the index of the gate’s
target qubit in the quantum register. This index t is 0 for the least significant qubit in the
indexing used (at the bottom of quantum circuit diagrams), while t = n− 1 for the most
significant qubit (at the top of quantum circuit diagrams). The memory space is accessed
in pairs, where the stride between the pair elements is 2t, for target t. Each pair is then
updated by direct matrix-vector multiplication by the gate’s 2× 2 matrix. As an example of
the computational work involved in quantum circuit simulation, consider the application

of a general gate, G =

[
a b
c d

]
, where a, b, c, d ∈ C, on the most-significant qubit. If the

initial quantum state is defined by |Ψ〉0 and the state after applying the gate by |Ψ〉1 then

|Ψ〉1 =
2n

∑
k=0

C(1)
k |k〉 (4)

where complex amplitudes C(1)
k are related to previous amplitudes C(0)

k as

C(1)
k = aC(0)

k + bC(0)
k+2t (5)

C(1)
k+2t = cC(0)

k + dC(0)
k+2t

for k ∈ [0, 2n−1 − 1]. The indexing of the amplitudes in Equation (5) shows that the
simulation of gate operations in the quantum circuit model typically involves large memory
strides. For the application of a gate on the qubit that represents the most-significant bit in
terms of indexing, this stride equals half the state-vector length, i.e., 2n−1. In an application

Algorithms 2023, 16, 241 11 of 33

of a gate on the qubit representing the least-significant bit in the indexing, the stride in
memory reduces to 1.

4. Discussion of Key Concepts

A key aspect of the quantum circuit transformations presented in this work involves
reducing the number of qubits by redefining the circuit for specific states of one or more
qubits. To illustrate this concept, consider the reduction of a 3-qubit modulo adder. Figure 5
illustrates the step-by-step specialisation of the ripple-carry 3-qubit modulo adder for the
specific case |a2|a1|a0〉 = |101〉. In terms of 2’s complement representation, this modulo
adder can then be used to subtract 3 from a positive integer represented in binary by
2 qubits |b1|b0〉. In the modulo adder, this input is set as |b2|b1|b0〉 with |b2〉 = |0〉.

Initial 3-qubit Modulo Adder (Step 0)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|a2〉 = |1〉

|b2〉

|a1〉 = |0〉

|b1〉

|a0〉 = |1〉

|b0〉

|c〉 = |0〉

Step 1 Step 2

.

.

.

.

.

.

.

|a2〉 = |1〉

|b2〉

|a1〉 = |0〉

|b1〉

|a0〉 = |1〉

|b0〉

|c〉 = |0〉

Step 3 Step 4 Step 5

.

.

.

.

.

.

.

|a2〉 = |1〉

|b2〉

|a1〉 = |0〉

|b1〉

|a0〉 = |1〉

|b0〉

|c〉 = |0〉

Step 6 Step 7

.

.

.

.

.

.

.

|a2〉 = |1〉

|b2〉

|a1〉 = |0〉

|b1〉

|a0〉 = |1〉

|b0〉

|c〉 = |0〉

Figure 5. Specialised modulo 3-qubit modulo adders. Example shown for |a2|a1|a0〉 = |101〉. Can be
used to subtract 3 from integer defined by binary representation of |b2|b1|b0〉.

In Figure 5, ‘Step 0’ shows the Cuccaro-type modulo adder [45] with the MAJ (Ma-
jority) and UMA (UnMajority and Add) blocks expanded. The 3-qubit modulo adder
in its unmodified form employs three MAJ blocks on the left-hand side of the circuit
shown, and three UMA blocks on the right-hand side. The steps shown in the figure are
described here:

Algorithms 2023, 16, 241 12 of 33

• Step 1 : For the three most-significant qubits |a2|r2|a1〉 at the top of the circuit, the gate
operations in the neighbouring MAJ and UMA blocks partially cancel out. Specifically,
only two CNOTs remain. The CNOT with |a2〉 as control and |b2〉 target can then be
reduced to a NOT on |b2〉 since in the specialisation shown |a2〉 = |1〉.

• Step 2: |a1〉 = |0〉 is accounted for by removing the three CNOTs where |a1〉 acts as
control.

• Step 3: The actions on |a1〉 can be removed by replacing the two Toffoli gates that
conditionally change |a1〉 = |0〉 into state |1〉 and the CNOT gate with |b2〉 as target,
by a single Toffoli gate with |b2〉 as target and with the same control qubits as the
replaced Toffoli gates.

• Step 4: |a0〉 = |1〉 is accounted for first by replacing three CNOTs by three NOTs.
• Step 5: The three NOTs resulting from the previous step are then accounted for by

modifying the control in two Toffoli gates with |a0〉 as target.
• Step 6: |c〉 = |0〉 is accounted for by removing |c〉 as control from the two Toffoli gates

with |b0〉 as target and removing the CNOT with |b0〉 as target.
• Step 7: The actions on |a0〉 are removed by removing the remaining two CNOTs with

|a0〉 acting as target. The resulting circuit has no gate operations on the qubits used
for specialisation and so this is the final reduced form of the circuit for these values of
the specialisation qubits (|a2|a1|a0〉).

4.1. Issue with Reduction-by-Specialisation

For the example application involving a quantum integer divider, an important part
of the quantum arithmetic operations perform controlled subtractions during each of the
long-division steps. Assuming an example 4-qubit divisor is represented in 2’s complement
representation by the qubits |q4d′|q3d′|q2d′|q1d′|q0d′〉, the subtraction is assumed to be
carried out by a 5-qubit ripple-carry modulo adder, as shown in the top half of Figure 6.
To achieve quantum circuit width reduction, the proposed transformation techniques aim to
eliminate one or more of the divisor qubits (in 2’s complement representation). The qubits
defining the dividend are to be left unchanged, as explained later. As an illustration of a
reduced circuit, the bottom half of Figure 6 shows the transformed ripple-carry modulo
adder when the three most-significant divisor qubits, i.e., |q4d′|q3d′|q2d′〉, specialised to a
state of |101〉. This specialisation followed similar steps to those outlined previously for the
3-qubit modulo adder in Figure 5. However, this reduction-by-specialisation as shown here
is challenging to automate by a quantum circuit transformation tool. A key part of this
challenge is that the states of the ‘constant’ qubits (i.e., those for which circuit is specialised)
can temporarily change during the quantum computation. This challenge to automating
the reduction-by-specialisation transformations as illustrated in Figures 5 and 6 extends
to more general quantum arithmetic circuit implementations where similar ripple-carry
based addition or subtraction is performed, e.g., circuits where controlled additions are
used in multiplications.

4.2. Our Approach: Reduction by Parameterisation

Based on this observed challenge in automating the reduction to the reduced circuit
shown in bottom half of Figure 6, an alternative approach is proposed here.

• First, the original quantum circuit implementation shown in the top half of Figure 6
is replaced with a parameterised subtractor circuit; this causes one of the inputs to
the subtractor to be only used as controls and the states of its qubits will remain static
throughout the entire subtractor.

• Then a choice is made for the input values of the static qubits and a smaller specialised
circuit can be constructed for this choice of input during the static analysis step.

In the present work, it is assumed that quantum circuits are defined using an em-
bedded Domain Specific Language (eDSL), where the information related to the intended
replacement will be provided by higher-order functions in the eDSL (i.e., functions on cir-
cuits, rather than functions on qubits). However, the proposed transformation approach is

Algorithms 2023, 16, 241 13 of 33

more general. It can also be applied to quantum computing tool chains that feature a static-
analysis capability, while employing an alternative approach to specifying quantum circuits.
In QC research, OpenQASM [15] is widely used to specify quantum circuits. The transfor-
mation approach could, e.g., be embedded in a pre-processing step where directives added
to the OpenQASM specification of the quantum circuit inform the interpreter to replace the
original block of gate operations with those representing the parameterised circuit.

|q4d′〉 = |1〉

MAJ UMA|test〉 = |0〉

|q3d′〉

MAJ UMA|q3i〉

|q2d′〉

MAJ UMA|q2i〉

|q1d′〉

MAJ UMA|q1i〉

|q0d′〉

MAJ UMA|q0i〉

|c〉 = |0〉

⇓
|test〉

|q3i〉

|q2i〉

|q1d′〉

|q1i〉

|q0d′〉

|q0i〉

|c〉 = |0〉

Figure 6. Illustration of reduction operation on divisor qubits in subtractor circuit. Example shows
specialisation of three most-significant qubits |q4d′|q3d′|q2d′〉 to |101〉. In reduced quantum circuit
shown at bottom, the MAJ and UMA sub-circuits have been expanded for clarity.

For the previously considered example specialisation, Figure 7 illustrates the alterna-
tive approach proposed here. The top part of the figure shows the parameterised subtractor
circuit before reduction-by-specialisation. For the choice |q4d′|q3d′|q2d′〉 = |101〉, static
analysis is then used to create the reduced circuit shown in the bottom half of Figure 7.

4.3. Reducing Memory Requirement in Full-State Vector Simulation

Section 3 highlighted the challenges in terms of memory requirements and strides
when performing full-state simulations of quantum circuits. For quantum circuits where
one or more qubits remain in a constant state throughout the quantum simulation, circuit
transformations can be used to create a smaller computational problem. Here, this is
illustrated for an example circuit applying the CNOT gate. For an example 3-qubit register
|q2|q1|q0〉, applying the CNOT gate to |q0〉 (least-significant qubit used in indexing of
amplitudes) as target and |q2〉 as control, the amplitudes of the updated state vector |Ψ〉1
follow as,

Algorithms 2023, 16, 241 14 of 33

C000
C001
C010
C011
C100
C101
C110
C111

(1)

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

C000
C001
C010
C011
C100
C101
C110
C111

(0)

(6)

where the previously used indices k are represented in binary format for convenience.
The sparsity pattern in Equation (6) shows that in this case, the NOT operations only change
the amplitudes in the ‘lower’ half of the amplitude vector corresponding to |q2〉 = |1〉.
If |q2〉 = |1〉 is fixed for a circuit, then the circuit simulation can be performed while only
considering half the original problem.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|test〉

|q3d′〉

|q3i〉

|q2d′〉
|q2i〉
|q1d′〉
|q1i〉
|q0d′〉
|q0i〉

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|test〉
|q3d′〉

|q3i〉

|q2d′〉

|q2i〉

|q1d′〉

|q1i〉

|q0d′〉

|q0i〉

⇓
|test〉

|q3i〉

|q2i〉

|q1d′〉

|q1i〉

|q0d′〉

|q0i〉
|c〉 = |0〉

Figure 7. Illustration of automated reduction of a quantum modulo adder in parameterised form.
Example shows specialisation of three most-significant qubits |q4d′|q3d′|q2d′〉 to |101〉.

Algorithms 2023, 16, 241 15 of 33

This principle can be extended to cases with the two most-significant qubits acting as
control (now a Toffoli gate is considered) with |q0〉 still acting as the target, and |q1〉 acting
as the additional control.

C000
C001
C010
C011
C100
C101
C110
C111

(1)

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

C000
C001
C010
C011
C100
C101
C110
C111

(0)

(7)

Similarly, this approach can be extended further to NOT gates controlled by a larger number
of control qubits, as well as circuits where a series of NOT and controlled-NOT operations
are performed, provided the qubits acting as control remain in original state.

It should be noted that the concept of removing constant-state qubits (e.g., acting
only a control qubit in controlled-gate operations) to achieve memory saving in full-state
vector simulations applies equally to algorithms employing amplitude based encoding and
algorithms using computational-basis encoding. The focus of the current transformation
on quantum arithmetic operations in quantum algorithms is motivated by the relative ease
in identifying such constant-state qubits once parameterised circuits have been introduced.

5. Derivation of Parameterised Comparator Circuits

In Section 1, the concept of the comparator step in quantum circuit implementations
of a long-division based quantum integer divider was introduced. An example quantum
circuit that performs the comparator step for two 4-qubit registers was shown in the top
half of Figure 4, where the quantum circuit design followed the work of Xia et al. [33].
In this section, an alternative type of quantum comparator circuits will be derived that
facilitates automated quantum circuit reduction steps. Specifically, the aim is to create
comparator circuits where, in contrast to the quantum comparator shown in Figure 4, the
qubits defining the divisor in the long division will remain unchanged in the circuit and
where these qubits can only acts as control qubits in quantum gate operations. For an
n-qubit comparator, the derivation works as follows.

• An (n + 1)-qubit ripple-carry modulo adder of the type introduced by Cuccaro acts as
starting point where subtraction of two positive numbers can be achieved by having
one of the (n + 1)-qubit inputs represent an n-qubit number in 2’s complement, while
the second input will have its leading qubit in state |0〉;

• For a specific choice of the n + 1 qubits defining the divisor in 2’s complements
representation, qubit specialisation steps of the type previously illustrated in Figure 5
for a 3-qubit modulo adder are applied;

• The reduced circuits that result from this process represent a subtraction operation by
the integer value represented in negative form by the 2’s complement representation;

• Next, the gate operations in the reduced circuits are sorted in n + 1 groups, where
each group represents gate operations affecting the state of each of the n + 1 qubits
from the second (remaining) input string;

• To create the comparator circuit, the group acting on the most-significant qubit of the
input qubit register is selected, while the rest of the gate operations can be ignored;

• The subtractor circuits discussed in Section 6 are similarly created by using the gate
operations from each of the n + 1groups identified.

Since the interest is only in positive divisors defined by a qubit string with the most-
significant qubit in state |1〉, 2n−1 specialised, reduced circuits can be defined. For n = 3
and n = 4, the top half of Figures 8 and 9, respectively, shows these circuits for specific
values of the divisor. As a final step in creating a parameterised comparator, the gate

Algorithms 2023, 16, 241 16 of 33

operations from these 2n−1 specialised circuits are parameterised using the qubits defining
the divisor. Two options are available here. First, the use of the n qubits defining the divisor
in its original form. Alternatively, the n + 1 qubits defining the divisor in 2’s complement
representation can be used. Design choices made in the quantum circuit implementation of
the integer divider determine which approach is the most suitable. In this work, for qubit
registers where prime superscripts are used in qubit indices, the integer representation is in
2’s complement representation. The next subsections show the quantum comparators for
n = 3, n = 4, and n = 5 to illustrate the results of the specialisation for divisors represented
by an increasing number of qubits.

C4 C5 C6 C7

.

.

.

.

|b3〉

|b2〉
|b1〉
|b0〉

|q2d〉 = |1〉
|q1d〉
|q0d〉

|b3〉

|b2〉
|b1〉
|b0〉

|q3d′〉 = |1〉
|q2d′〉
|q1d′〉
|q0d′〉

|b3〉

|b2〉
|b1〉
|b0〉

Figure 8. Comparator circuits for use in quantum dividers with 3-qubit divisor. Parameterisation
with divisor qubits and with 2’s complement representation of divisor shown in lower half.

C8 C9 C10 C11

.

.

.

.

.

|b4〉

|b3〉
|b2〉
|b1〉
|b0〉

C12 C13 C14 C15

.

.

.

.

.

|b4〉

|b3〉
|b2〉
|b1〉
|b0〉

|q4d′〉 = |1〉
|q3d′〉
|q2d′〉
|q1d′〉
|q0d′〉

|b4〉

|b3〉
|b2〉
|b1〉
|b0〉

Figure 9. Comparator circuits for use in quantum dividers with 4-qubit divisor. Parameterisation
with 2’s complement of the divisor is shown in the lower half.

Algorithms 2023, 16, 241 17 of 33

5.1. Comparator Circuits for 3-Qubit Divisor

Based on the reduction in 4-qubit modulo adders, comparator circuits can be derived
for quantum dividers with a 3-qubit divisor. Assuming that the divisor is defined by
|q2d|q1d|q0d〉 with |q2d〉 = |1〉, four different comparator circuits will result. The four
comparator circuits are shown at the top of Figure 8.

Using the three divisor qubits as parameters, a parameterised subtractor can be ob-
tained as shown in the bottom half of Figure 8. As will be explained in later sections,
the quantum-circuit implementation of quantum integer dividers may employ 2’s comple-
ment representation of the divisor qubits. Using the 4-qubit 2’s complement representation
|q3d′|q2d′|q1d′|q0d′〉, the comparator can be parameterised, as shown in Figure 8. The lead-
ing qubit |q3d′〉 = |1〉 as a result of the positive value for divisor assumed here.

5.2. Comparator Circuits for 4-Qubit Divisor

Based on reduction of 5-qubit modulo adders, comparator circuits can be derived
for quantum dividers with 4-qubit divisor using the same approach as in the previous
section. Assuming that the divisor is defined by |q3d|q2d|q1d|q0d〉 with |q3d〉 = |1〉,
eight different comparator circuits will result. The top part of Figure 9 summarised the
8 comparator circuits.

The lower part of Figure 9 shows the parameterised comparator circuit for the 4-qubit
divisor. The parameterisation is based on the 5-qubit 2’s complement representation of the
divisor. As before, the leading qubit |q4d′〉 in this representation is in state |1〉 as a result of
the assumption of a positive divisor.

5.3. Comparator Circuits for 5-Qubit Divisor

To further illustrate the parameterised comparator circuits, and to show the increase in
circuit complexity for increased number of divisor qubits, the example for 5-qubit divisors
is summarized in Figure 10.

|q5d′〉 = |1〉
|q4d′〉
|q3d′〉
|q2d′〉
|q1d′〉
|q0d′〉

|b5〉

|b4〉
|b3〉
|b2〉
|b1〉
|b0〉

Figure 10. Parameterised comparator circuit for division by 5-qubit divisor. Parameterisation employs
qubits in 2’s complement representation.

6. Derivation of Parameterised Subtractor Circuits

The specialisation of modulo adders used in deriving quantum comparator and
subtractor circuits was detailed in Section 5. Here, parameterised subtractors for the
example n = 4 (used in division by 4-qubit divisor) are detailed. As explained later in
Section 7, the present work considers divider designs where the divisor is represented
directly in 2’s complement. For n = 4, the 5-qubit string representing the divisor in 2’s
complement is then considered as the basis for a parameterised 4-qubit subtractor, where,
as a result of the assumed positive divisor, |q4d′〉 = |1〉 is guaranteed. The parameterised
quantum circuit design is shown in Figure 11. Clearly, the parameterised gate operations
acting on the leading qubit of the input register (termed |b4〉 here) match the gate operations
in the comparator circuit for division by a 4-qubit divisor.

Algorithms 2023, 16, 241 18 of 33

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|q4d′〉 = |1〉
|q3d′〉
|q2d′〉
|q1d′〉
|q0d′〉

|b4〉

|b3〉

|b2〉
|b1〉
|b0〉

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|q4d′〉 = |1〉
|q3d′〉
|q2d′〉
|q1d′〉
|q0d′〉
|b4〉

|b3〉

|b2〉

|b1〉

|b0〉

Figure 11. Subtractor circuit for 4-qubit quantum divider. Gate operations are parameterised with
divisor qubit state represented in 2’s complement.

Comparing the quantum circuit in Figure 11 with the quantum circuit implementation
of an equivalent ripple-carry adder/subtractor, it is apparent that the complexity of the
parameterised quantum circuits is significantly larger in terms of the number of gate
operations and, in particular, the number of control qubits used in the majority of gate
operations. Therefore, ‘complete’ parameterised circuits as shown in Figure 11 are there
to be introduced temporarily during the quantum-circuit transformation with subsequent
reduction steps creating smaller, reduced circuits.

7. Applying Circuit Transformations to a Quantum Integer Divider

The quantum circuit implementations for integer dividers considered in this work are
based on the concept of long division. Specifically, for a dividend and divisor represented
by n qubits, a (2n− 1)-qubit dividend register (with n− 1 least significant qubits in state
|0〉) is created that is then divided by the n-qubit divisor in n long-division steps. This
creates an n-qubit representation of the quotient, assuming that the most significant qubit
in divisor is in state |1〉. This integer divider can be used in algorithms using fixed-point
arithmetic. Additionally, the divider can be used as building block of a floating-point
divider where n mantissa bits are used in the floating-point representation. In the quantum
circuit implementation, comparator steps are performed that need an additional qubit to
act as ‘sign’ qubit. Therefore, for n = 4, a qubit register with 8 qubits is created to hold the
7-qubit representation of dividend along with this sign qubit. Furthermore, the designs
considered are based on the requirement that in the final quantum state, only the qubits
representing the result will have been updated, while all other qubits remain in or return to
their original state. To achieve this, after the setting the n-qubit result, the steps representing
the long division need to be ‘uncomputed’.

Algorithms 2023, 16, 241 19 of 33

7.1. Design 1: Baseline Divider

Figure 3 shows the quantum circuit design of an integer divider based on the long-
division approach. The example shown divides a 7-qubit dividend by a 4-qubit divisor.
The qubits in this circuit represent the following

|out3|out2|out1|out0〉 : n qubits defining output

|test〉 : qubit defining comparator result

|q4d〉 : additional qubit needed in 2’s complement

|q3d|q2d|q1d|q0d〉 : n-qubit representation of divisor

|q3i|q2i|q1i|q0i〉 : n-qubit representation of dividend

|c〉 : ‘carry’ qubit in modulo adder

|qin2|qin1|qin0〉 : n− 1 qubits used to create the 7-qubit

dividend along with |q3i|q2i|q1i|q0i〉

for the quantum circuit implementation illustrated in Figure 3 for the example n = 4,
the circuit complexity in terms of required number of qubits as a function of n is,

n + 2 + 2n + 1 + (n− 1) = 4n + 2 (8)

for n = 4, a minimum of 18 qubits is, therefore, needed, as shown in Figure 3. For n = 5,
22 qubits are required. For reference, when employing double-precision arithmetic in the
simulators used in the present work, simulating circuits with 28 qubits typically requires 8
GB of memory. Increasing the dividend and divisor representation to n > 6 therefore means
that computational resources on a desktop work station are challenged. The quantum
circuit implementation of the comparator C and subtractor Sub used in the long-division
steps are detailed in Figure 4.

Design 1, presents the following challenges to ‘reducing out’ one or more of the divisor
qubits:

• In the comparator C and its uncomputation U(C), the state of the divisor qubits can
temporarily become changed before returning the their original state;

• The subtractor Sub involves a transformation to 2’s complement formulation for
divisor qubits at start and completes with a transformation from 2’s complement to
original representation. Along with the further temporary changes to divisor qubit
states in the ripple-carry based modulo adder, this greatly complicates static analysis,
as outlined previously in Section 4;

• The ‘downward’ movement of subtractor circuit toward less significant qubits of the
dividend in successive long-division steps requires re-arrangement of qubits so that
the modular addition on which the subtractor Sub is based can be performed. This
further complicates qubit-reduction steps.

The comparator circuit shown in Figure 4 can be reduced by specialisation of one
or more (divisor) qubits. Reduction by two qubits is illustrated in Figure 12, while a
further reduction by three and four divisor qubits is shown in Figure 13 and Figure 14,
respectively. Note that, here, the divisor is represented in its original (4-qubit) form, not in
2’s complement used in later designs. The reductions shown were performed manually,
following the same principles outlined previously in Figure 5 for the example of ripple-
carry modulo adders. The complexity of step-by-step reduction in these comparator circuits
further supports the conclusion drawn in Section 4, that this type of reductions present
a major challenge to automation and that, therefore, the alternative approach based on
parameterised circuits is preferable.

Algorithms 2023, 16, 241 20 of 33

|q3d|q2d〉 = |10〉 |q3d|q2d〉 = |11〉
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|test〉 = |0〉

|q3i〉
|q2i〉

|q1d〉

|q1i〉

|q0d〉

|q0i〉

|c〉 = |0〉

Figure 12. Reduction-by-specialisation of comparator circuit introduced by Xia et al. [33]. Reduction
by two qubits.

|q3d|q2d|q1d〉 = |100〉 |q3d|q2d|q1d〉 = |101〉
. . .

. . .

. . .

. . .

. . .

. . .

. . .

|test〉 = |0〉

|q3i〉
|q2i〉
|q1i〉
|q0d〉

|q0i〉

|c〉 = |0〉

|q3d|q2d|q1d〉 = |110〉 |q3d|q2d|q1d〉 = |111〉
. . .

. . .

. . .

. . .

. . .

. . .

. . .

|test〉 = |0〉

|q3i〉
|q2i〉
|q1i〉
|q0d〉

|q0i〉

|c〉 = |0〉

Figure 13. Reduction-by-specialisation of comparator circuit introduced by Xia et al. [33]. Reduction
by three qubits.

|1000〉 |1001〉 |1010〉 |1011〉
.

.

.

.

.

.

|test〉 = |0〉

|q3i〉
|q2i〉
|q1i〉
|q0i〉

|c〉 = |0〉

|1100〉 |1101〉 |1110〉 |1111〉
.

.

.

.

.

.

|test〉 = |0〉

|q3i〉
|q2i〉
|q1i〉
|q0i〉

|c〉 = |0〉

Figure 14. Reduction-by-specialisation of comparator circuit introduced by Xia et al. [33]. Reduction
by four qubits.

Algorithms 2023, 16, 241 21 of 33

7.2. Design 2: Dividend Register-Shifting Divider

As a first step to facilitating reduction-by-specialisation of divisor qubits, the second
design considered here (Design 2) includes a number of important changes relative to
Design 1:

• The ‘downward’ movement of the comparator (and its uncomputations) and sub-
traction steps for successive long-division steps have been removed by introducing
shift operation Sh that moves the dividend register one step toward more significant
qubits. The quantum circuit implementation of this Sh operation, as well as the reverse
operation Ŝh (used in the uncomputation steps), was previously discussed in previous
work by the authors [30] and follows the work of Jayashree et al. [38];

• With the changes introduced, the divisor qubits (states) remain in the same position in
the qubit register throughout the computation.

The quantum circuit implementation of C (and, therefore, also U(C)), as well as Sub,
remains unchanged relative to Design 1. For the quantum circuit implementation illustrated
in Figure 15 for the example n = 4, the circuit complexity in terms of required number of
qubits as a function of n is the same for Design 1, i.e., defined by Equation (8).

|out3〉 = |0〉

|out2〉 = |0〉

|out1〉 = |0〉

|out0〉 = |0〉

|q4d〉 = |0〉

Sub Sub Sub

|test〉 = |0〉

C U(C)

Sh

C U(C)

Sh

C U(C)

Sh

C U(C)

Ŝh

Add

Ŝh

Add

Ŝh

Add

|q3d〉
|q3i〉
|q2d〉
|q2i〉
|q1d〉
|q1i〉
|q0d〉

|q0i〉

|c〉 = |0〉

|qin2〉 = |0〉
|qin1〉 = |0〉

|qin0〉 = |0〉

Figure 15. Quantum integer divider design 2: top-level overview of quantum circuit implementation
of quantum integer division. Example shown for 4-qubit representation of dividend, divisor, and
output. The quantum circuit implementation of C and Sub same as in Design 1.

7.3. Design 3: Parameterised Divider

Figure 16 shows a top-level overview of the third design of for a quantum circuit
implementation of quantum integer division. For this Design 3, the qubits represent the
following:

|out3|out2|out1|out0〉 : n qubits defining output

|test〉 : qubit defining comparator result∣∣q4d′|q3d′|q2d′|q1d′|q0d′
〉

: (n + 1)-qubit representation of divisor

in 2’s complement representation

|q3i|q2i|q1i|q0i〉 : n-qubit representation of dividend

|c〉 : ‘carry’ qubit in modulo adder

|qin2|qin1|qin0〉 : n− 1 qubits used to create the 7-qubit

dividend along with |q3i|q2i|q1i|q0i〉

Therefore, the required number of qubits as a function of n can be written as,

n + 1 + (n + 1) + n + 1 + (n− 1) = 4n + 2 (9)

Algorithms 2023, 16, 241 22 of 33

showing that the quantum circuit width remains the same as compared with Design 1 and
Design 2.

|out3〉 = |0〉

|out2〉 = |0〉

|out1〉 = |0〉

|out0〉 = |0〉

|q4d′〉 = |1〉

Sub Sub Sub

|test〉 = |0〉

C U(C)

Sh

C U(C)

Sh

C U(C)

Sh

C U(C)

Ŝh

Add

Ŝh

Add

Ŝh

Add

|q3d′〉
|q3i〉
|q2d′〉
|q2i〉
|q1d′〉
|q1i〉
|q0d′〉

|q0i〉

|c〉 = |0〉

|qin2〉 = |0〉
|qin1〉 = |0〉

|qin0〉 = |0〉

Figure 16. Quantum integer divider Design 3: top-level overview of quantum circuit implementation
of quantum integer division. Example shown for 4-qubit representation of dividend, divisor, and
output. Based on parameterised quantum circuit implementation of C, U(C), and Sub.

The definition of the divisor qubits in terms of 2’s complement means that the com-
parator circuit used in Design 1 and Design 2 cannot be used. Instead, an alternative
comparator circuit taking the qubits defining the divisor using 2’s complement is required.
One possible way to create such a comparator is shown in Figure 17, where the original
circuit following the design of Xia et al. [33] is modified such that the divisor qubits are
transformed from 2’s complement representation at input on the left-hand side of the circuit
to the regular representation. At the end of the comparator step, the transformation to
return to 2’s complement representation for divisor qubits is performed. As can be seen
from Figure 17, the additional steps introduced related to 2’s complement conversions add
further complexity to the circuit, and therefore making the circuit-width transformation
outlined in Figures 12–14 for the original form of the comparator even more challenging to
automate. This further supports the approach outlined next, where this type of reduction
is circumvented.

|test〉 = |0〉

|q3d′〉

|q3i〉

|q2d′〉

|q2i〉

|q1d′〉

|q1i〉

|q0d′〉

|q0i〉

|c〉 = |0〉

Figure 17. 4-qubit comparator based on design of Xia et al. [33] reworked to have divisor quantum
state in terms of 2’s complement.

In Design 3, the key ideas underpinning the automation of qubit reduction-by-
specialisation are introduced:

• For the comparator C and U(C), the original implementation is replaced by an alter-
native, parameterised quantum circuit implementation where divisor qubits acts as
specialisation parameters;

Algorithms 2023, 16, 241 23 of 33

• For the subtractor Sub, the original implementation is replaced by an alternative,
parameterised quantum circuit implementation where divisor qubits acts as speciali-
sation parameters;

• Design 3 also stores divisor qubits directly in 2’s complement representation. The cur-
rent analysis shows that using this form of the divisor state makes the parameterisation
of the comparator and subtractor more compact than with the original form of divisor.

With these changes, the states of the divisor qubits remain unchanged throughout the
computation. This way, automated qubit reduction-by-specialisation becomes a realistic
prospect for the tool chain used here. This will be demonstrated in Section 9.

The quantum circuit implementation of the parameterised comparator used in division
by 4-qubit divisor is shown in Figure 18, where the states of qubits |q3d′〉, |q2d′〉, |q1d′〉
and |q0d′〉 act as parameters. It should be noted that for the assumed positive divisor,
|q4d′〉 = |1〉 in all cases. Based on this parameterisation, a parameterised quantum circuit
implementation for the subtractor can be derived as outlined previously in Section 6.
For the case of division by a 4-qubit divisor, Figure 19 shows this parameterised quantum
circuit implementation.

|test〉 = |0〉

|q3d′〉
|q3i〉
|q2d′〉
|q2i〉
|q1d′〉
|q1i〉
|q0d′〉
|q0i〉

Figure 18. Quantum circuit implementation of comparator C as used in Design 3 for 4-qubit repre-
sentation of dividend, divisor and output.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|q4d′〉 = |1〉

|test〉

|q3d′〉

|q3i〉

|q2d′〉
|q2i〉
|q1d′〉
|q1i〉
|q0d′〉
|q0i〉

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|q4d′〉 = |1〉
|test〉
|q3d′〉

|q3i〉

|q2d′〉

|q2i〉

|q1d′〉

|q1i〉

|q0d′〉

|q0i〉

Figure 19. Quantum circuit implementation of subtractor Sub as used in Design 3 for 4-qubit
representation of dividend, divisor and output.

Algorithms 2023, 16, 241 24 of 33

8. Quantum Circuit Toolchain

One of the general goals of this research is to use reconfigurable hardware to ac-
celerate the simulation of quantum circuits. A quantum circuit toolchain known as the
Functional Quantum Toolchain (FQT) [30,46] was developed with the primary purpose of
outputting quantum assembly in forms specialised for our custom hardware architectures.
Additionally, the toolchain includes utilities for expressing quantum circuits, circuit unit
testing, static analysis, and other utilities specific to hardware acceleration. A custom eDSL
facilitates expression of quantum circuits. The static analysis tools are particularly relevant
to the current work since these form a key part of the automated quantum circuit reduction
steps introduced here.

8.1. Circuit Specification and eDSL

FQT is developed in the functional programming language Haskell [47]. In FQT,
a circuit (Circ) is defined as a list of gates that comprise the quantum circuit. A core
set of gates is supported as primitives. Custom gates can be defined by composition of
primitives. Circuits are defined by functions which return a Circ type; list concatenation
(the ++ operator in the code snippets below) is used to compose more complex circuits.

At the level of our Haskell eDSL, qubits are given unique identifiers which are used
as parameters for our circuit generation functions. Qu represents a single qubit identifier
and QReg is an arbitrarily sized list of Qus. High-level operators allow for complex control
patterns to be specified for a gate. control(s) takes one control or a list of controls to apply
to a gate which follows. negControl(s) are the equivalents for negative controls. For a
mix of controls and negative controls, the .== operator is provided to make specification
easier. For example ([a,b,c] .== "011") (x d) applies the X gate to qubit d only when
a is 0 and b and c are 1. Additional convenience operators include an inverse operator
.! which gives the inverse of a quantum circuit by iterating through all gates, finding
their inverse, and returning them in reverse. This is particularly useful when using the
uncomputation pattern.

As a brief example of circuit specification in the eDSL, Figure 20 defines a specialised
4-qubit comparator circuit used to check if the input value is less than 9. Line 1 describes
the type signature of the lt9q4 circuit generator, ascertaining it takes a quantum register
QReg and a single qubit Qu, and returns a Circ. As QReg is an arbitrarily sized quantum
register, the Line 2 pattern matches on its contents and tells the compiler to expect exactly
four elements. Lines 3, 4, and 5 define and concatenate the three sub-circuits which form the
comparator. Each of x, cnot, and .== are (informally) defined as ‘circuit generators’. In gen-
eral, a circuit generator takes any number of arguments and returns a Circ. High-level
operators (including .== are defined as functions which take at least one Circ argument.

LT9Q4

|test〉

|r3〉
|r2〉
|r1〉
|r0〉

Figure 20. A specialised four-qubit less than 9 operator expressed in the FQT eDSL. On the right is
the circuit diagram of the comparator for reference.

The internal representation (IR) of a circuit defined in this way is simply a list of gates
defined over some set of primitive gate types. Figure 21 shows the IR of the example 4-bit
comparator, specialised for less-than-9.

Algorithms 2023, 16, 241 25 of 33

[X test [],X test ["r3"],X r2 [],X r1 [],X r0 [],
X test ["r3","r2","r1","r0"],X r2 [],X r0 [],X r1 []]

Figure 21. Specialised 4-bit comparator (9) in the Toolchain IR. The X gates on r2, r1, and r0 are there
to enable the negative controls on these qubits.

8.2. Static Analysis to Reduce Qubit Count

A key component of our toolchain is the static analyser, which enables reducing a
circuit’s depth by specialising the circuit for specific inputs for some qubits. In the presented
version, the qubits to be reduced cannot have gates applied to them which change their
state; they can only be used as controls or negative controls. To perform the reduction,
the analyser iterates through the circuit gate-by-gate, checking if each gate’s controls satisfy
the input specialisation; in the case they do, their controls are modified to no longer include
the specialisation qubits and they are are added to the reduced circuit. If the controls are
not satisfied, the gate is not included in the final circuit.

8.3. Testing and Verification

Verification of circuits is performed by implementing unit tests that comprise the
following steps. First, for the specific case considered, the quantum register is initialized
in the simulator, followed by the simulation of the quantum circuit. Then, the obtained
output is checked against the intended output for the specified input. The example circuits
considered here employ computational basis encoding, while the gate operations are
restricted to logic gates, i.e., NOT with any number of control qubits. For this type of
circuits, the simulations in the verification can be performed using the logic-based simulator
described earlier. For more general circuits, as well as quantum circuits defining algorithms
employing amplitude-based encoding, the verification is performed using a full-state-
vector simulator. A QCTestSuite is defined as a set of tests with different preparations
and expectations for the same circuit. It takes a string descriptor, the circuit to test, the full
register over which to apply the circuit, and a list of QCTests. A QCTest is simply a string
descriptor, a list of initial qubit register states, and a list of expected output qubit register
states. An example of manually specifying tests suites is given in Figure 22. In this example,
Line 1 defines leftShiftTestSuite as a static QCTestSuite. Line 3 declares the register
over which the circuit tests are to be ran. Line 4 declares the test suite itself, passing it the
circuit (leftShift reg), and the register. Two test cases follow: lines 6 and 9 specify the
preparations of the test cases, each preparing reg in a different state; lines 7 and 10 specify
the intended output state of qubit register of the tests.

Figure 22. Manually specifying test cases for a 4-qubit left shift operator.

Manually specifying test cases can be tedious, and for larger circuits is very impractical.
However, since the testing framework is implemented and used in Haskell, native Haskell
features, such as list comprehensions, enable automated test generation, as shown in
Figure 23.

Algorithms 2023, 16, 241 26 of 33

Figure 23. Automating the generation of test cases for a parameterised subtractor circuit. As binary
operations such as subtraction and comparison take two inputs, to fully iterate over the possible test
cases, two list comprehensions are used. To keep the code clear and maintainable, two functions are
used, each using a list comprehension to iterate on one of the inputs.

9. Demonstration of Reduction of Integer Divider

This section illustrates the implementation of the full long division circuit (Figure 16)
in the FQT toolchain and demonstrates the derivation and verification of its reduced forms.

9.1. Parameterised Integer Divider Implementation in Toolchain—Before Circuit Transformation

Figure 24 illustrates the implementation of the integer divider quantum circuit pre-
sented in Figure 16 in the FQT eDSL. As demonstrated in the figure, the division of a
7-bit dividend by a 4-bit divisor can be composed from three compare, subtract, and shift
blocks and one compare block. To return qubits acting as workspace to the original |0〉
state, a 3-step uncomputation of controlled subtractions (with associated reversed shifts)
is performed.

Figure 24. Long division operator specification.

Algorithms 2023, 16, 241 27 of 33

The compare block uses a comparator circuit to set the |test〉 = |1〉 qubit if the integer
value of the considered 4-bit sub-string of the dividend is less than the divisor integer
value. A controlled-X gate copies the result of the comparison to the output qubit for the
considered long-division step. The uncomputation of the comparison is then performed to
restore the test qubit to its original state.

The compare, subtract, and shift block (compareSubtractShiftBlock) uses this com-
pare block and applies the subtraction circuit controlled by the out qubit (which now carries
the result of the comparison). Finally, the left shift operator is applied to the dividend
register (including |test〉 and |qin〉) to prepare the state for the next long division step.
Three of these compare, subtract, and shift blocks are used (lines 9–11), each using an out
qubit with the next lower significance in the |out〉 register as the output of the comparator.
The last compare block (without a subtractor) on line 12 sets the least significant out qubit.
Finally, the uncomputation of the subtractions and shifts is performed on lines 13–15 by
declaring three shiftUnsubtractBlocks. These blocks are defined as a right shift over the
previously shifted qubits, followed by the inverse circuit of the subtractor. These operations
are chained together to match the blocks in Figure 16.

9.2. Specialised Integer Divider

To specialise the circuit for particular values of the divisor, the specialisation function
(specialiseQCircForQubitValues) is used, applying the static analysis methods discussed
in Section 8.2 to reduce the divisor qubits. First the full circuit is created, and then passed
to the specialiser, as shown in Figure 25. This high-order function expects three arguments,
including the qubits over which to specialise, expressed as a QReg; a bit string indicating
their initial values; and the circuit to specialise. The sizes of the register and the bit
string must match and the circuit must not contain gates which change the state of the
specialisation qubits, otherwise an error will be thrown. In the example shown, the function
generating the specialised circuit now takes an integer representing the value of b (the
divisor) instead of a register bReg. On line 7, an intermediate register bReg is created to
pass to the generator of the full function on line 8. On line 9, the bit register is prepared by
calling the utility function paddedTwoComplementBitString to obtain the 2’s complement
representation of −b (as required by the long division algorithm). Finally, the specialisation
function is called to generate the qubit-reduced circuit.

Figures 26 and 27 show the first blocks of a parameterised divider that has been
fully specialised on the divider qubits. These are the initial comparison and subtraction
blocks which set the most significant out qubit. Figure 26 shows the block specialised for a
divisor value of 9, while Figure 27 shows the specialised circuit for a divisor value of 11
as illustrative examples.

Figure 25. Specialisation of the long division circuit.

Algorithms 2023, 16, 241 28 of 33

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|out3〉 = |0〉 |out3〉

|out2〉 = |0〉 |out2〉 = |0〉
|out1〉 = |0〉 |out1〉 = |0〉
|out0〉 = |0〉 |out0〉 = |0〉

|test〉 = |0〉 |q3i〉

|q3i〉 |q2i〉

|q2i〉 |q1i〉

|q1i〉 |q0i〉

|q0i〉 |qin2〉 = |0〉

|c〉 = |0〉 |c〉 = |0〉
|qin2〉 = |0〉 |qin1〉 = |0〉
|qin1〉 = |0〉 |qin0〉 = |0〉
|qin0〉 = |0〉 |test〉 = |0〉

Figure 26. Fully specialised quantum circuit implementation of integer division. Reduction for
|q4d′|q3d′|q2d′|q1d′|q0d′〉 = |10111〉 represents cases where the divisor is 9. First step of long division.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|out3〉 = |0〉 |out3〉

|out2〉 = |0〉 |out2〉 = |0〉
|out1〉 = |0〉 |out1〉 = |0〉
|out0〉 = |0〉 |out0〉 = |0〉

|test〉 = |0〉 |test〉

|q3i〉 |q3i〉

|q2i〉 |q2i〉

|q1i〉 |q1i〉

|q0i〉 |q0i〉

|c〉 = |0〉 |c〉 = |0〉
|qin2〉 = |0〉 |qin2〉 = |0〉
|qin1〉 = |0〉 |qin1〉 = |0〉
|qin0〉 = |0〉 |qin0〉 = |0〉

Figure 27. Fully specialised quantum circuit implementation of integer division. Reduction
for |q4d′|q3d′|q2d′|q1d′|q0d′〉 = |10101〉 represents cases where the divisor is 11. First step of
long division.

9.3. Results

The primary goal of this work is to introduce techniques for facilitating the reduction
in quantum circuit width (required qubit count) through static analysis. In this section,
results from testing the full and specialised circuits are presented.

The toolchain’s testing components are used to verify the correctness of the generated
dividers using the logic-based circuit simulator. Both the full divider and the specialised
versions were tested.

We start by verifying the functionality of the non-specialised divider demonstrated
in Figure 16 (Design 3). The circuit is constructed as described in the previous section
by the code in Figure 24. Table 1 shows a sample from the results of running an auto-
matically generated test suite for this circuit. The first column shows the integer division
performed, while the second and third columns show the qubit register state after initial-
ization and completion of the circuit simulation, respectively. For clarity, the final column
summarizes the 4-qubit output from the long-division performed. For all cases considered,
the obtained output from the quantum circuit simulator used in verification matched the
intended output.

We also verify the functionality of a divider with a fully specialised divisor. It is
important to note that, unlike the full divider test suite which operates only on one circuit,
the specialised dividers require specific quantum circuits for each value of the divisor. Thus,
several test suites are constructed (this is automated with list comprehensions, as described
in Figure 23), one for each divisor. Table 2 shows the results of testing these circuits, collated
from multiple test suites.

Algorithms 2023, 16, 241 29 of 33

Table 1. Full Design 3 long division divider testing results sample.

|out3|out2|out1|out0|test|b3|a3|b2|a2|b1|a1|b0|a0|qin2|qin1|qin0〉
Operation Input Output Unpacked |out〉

64/9 |0|0|0|0|0|0|1|1|0|1|0|1|0|0|0|0〉 |0|1|1|1|0|0|1|1|0|1|0|1|0|0|0|0〉 |0111〉 (7)
72/10 |0|0|0|0|0|0|1|1|0|1|0|0|1|0|0|0〉 |0|1|1|1|0|0|1|1|0|1|0|0|1|0|0|0〉 |0111〉 (7)
96/11 |0|0|0|0|0|0|1|1|1|0|0|1|0|0|0|0〉 |1|0|0|0|0|0|1|1|1|0|0|1|0|0|0|0〉 |1000〉 (8)

104/12 |0|0|0|0|0|0|1|1|1|0|0|0|1|0|0|0〉 |1|0|0|0|0|0|1|1|1|0|0|0|1|0|0|0〉 |1000〉 (8)
112/13 |0|0|0|0|0|0|1|0|1|1|1|1|0|0|0|0〉 |1|0|0|0|0|0|1|0|1|1|1|1|0|0|0|0〉 |1000〉 (8)
80/14 |0|0|0|0|0|0|1|0|0|1|1|0|0|0|0|0〉 |0|1|0|1|0|0|1|0|0|1|1|0|0|0|0|0〉 |0101〉 (5)
104/15 |0|0|0|0|0|0|1|0|1|0|0|1|1|0|0|0〉 |0|1|1|0|0|0|1|0|1|0|0|1|1|0|0|0〉 |0110〉 (6)

Table 2. Specialised-divisor long division testing results sample.

|out3|out2|out1|out0|test|a3|a2|a1|a0|qin2|qin1|qin0〉
Operation Input Output Unpacked |out〉

64/9 |0|0|0|0|0|1|0|0|0|0|0|0〉 |0|1|1|1|0|1|0|0|0|0|0|0〉 |0111〉 (7)
72/10 |0|0|0|0|0|1|0|0|1|0|0|0〉 |0|1|1|1|0|1|0|0|1|0|0|0〉 |0111〉 (7)
96/11 |0|0|0|0|0|1|1|0|0|0|0|0〉 |1|0|0|0|0|1|1|0|0|0|0|0〉 |1000〉 (8)
104/12 |0|0|0|0|0|1|1|0|1|0|0|0〉 |1|0|0|0|0|1|1|0|1|0|0|0〉 |1000〉 (8)
112/13 |0|0|0|0|0|1|1|1|0|0|0|0〉 |1|0|0|0|0|1|1|1|0|0|0|0〉 |1000〉 (8)
80/14 |0|0|0|0|0|1|0|1|0|0|0|0〉 |0|1|0|1|0|1|0|1|0|0|0|0〉 |0101〉 (5)
104/15 |0|0|0|0|0|1|1|0|1|0|0|0〉 |0|1|1|0|0|1|1|0|1|0|0|0〉 |0110〉 (6)

9.4. Discussion of Results—Implication for Wider Range of Circuits

As discussed in Section 1, the present work on circuit reduction steps for quantum
arithmetic operations is motivated by the fact that such arithmetic operations are often an
important part of a wide range of larger and more general quantum algorithms. The devel-
opment and evaluation of these larger quantum algorithms typically involves large-scale
full-state vector circuit simulations, e.g., to check correctness, sensitivity of quantum gate
errors and effect of quantum decoherence errors. High-performance computing resources
commonly available to quantum algorithm developers typically limit the qubit count to
30–35, so that reductions of multiple qubits that are only involved in quantum arithmetic
operations create much needed reduced memory requirements.

Considering the small example problems discussed here, for the integer divider the
quantum circuit width was reduced from 17 qubits in the original circuit (going down to 16
when parameterised, since a carry qubit used in the Cuccaro adders could be removed) to
12 in the ‘fully’ reduced circuit (i.e., specialised for a specific value of divisor). For a circuit
simulator using full state vector, this results in a useful reduction in memory by a factor
of 32.

The FQT toolchain was also used to inspect the gate complexity of the circuits that
result from the various eDSL definitions above. To summarise the results of proposed
transformation, the previously considered integer division circuit for a 7-qubit dividend
and 4-qubit divisor is detailed in Table 3. The baseline circuit uses Cuccaro modulo adders.
For a 4-qubit divisor, the reduction step can then reduce the qubit count by 5 since the carry
qubit from the Cuccaro adder can also be removed. The gate count reduction relative to the
baseline is dependent on the particular choice of the divisor value, as shown in the table for
two example values. The baseline long division circuit without parameterisation requires
674 gates to implement. The implemented parameterised long division circuit produced
by the listing in Figure 24 requires 1612 gate operations, while the fully reduced divider
generated by Figure 25 requires only 252 gates for the dividing by 9 example and 296 gates
for dividing by 11.

Algorithms 2023, 16, 241 30 of 33

Table 3. Summary of circuit specialisation results. The results for the reduced circuit gate count are
for specific examples of the divisor being specialised to 9 and 11.

Divider Comparator Subtractor

Baseline Circuit Qubit Count 17 9 8
Reduced Circuit Qubit Count 12 5 4

Baseline Circuit Gate Count 674 49 24
Reduced Gate Count (for divisor |1001〉 (9)) 252 3 14

Reduced Gate Count (for divisor |1011〉 (11)) 296 5 19

Today, it is feasible to simulate 20–25 qubits on a typical everyday laptop. For larger
problems up to approximately 35 qubits, researchers using full-state vector simulators
require distributed computing facilities often available in research centres and universities.
For even larger circuit width, regional or national high-performance computing facilities
are required, so that circuits simulations cannot be performed routinely in an algorithm
development process where many repeated simulations are needed.

It is important to recognise that while the implemented examples here are four dividers
with 4 divisor bits, the techniques described are applicable to dividers of any size. For exam-
ple, the complexity analysis in Section 7.1 can be used to determine that a divider with an 8
bit divider would require a 34 qubit circuit to run (requiring over 137 GB of memory to sim-
ulate with 32-bit floating point precision). Using the described techniques, 8 qubits can be
reduced, requiring only 26 qubits or 0.53 GB to be simulated. The quantum integer divider
was used here for illustration purposes; the proposed reduction involving parameterisation
and static analysis applies far more widely to quantum arithmetic operations.

The quantum circuits for integer arithmetic can naturally be extended to arithmetic of
real numbers using fixed-point representation. Additionally, in ongoing work by one of the
authors [29,31], arithmetic operations based on computational basis encoding is used for
floating-point operations. In the interest of brevity, this was not discussed in the present
work. However, the introduced quantum circuit transformations can be applied to this
type of quantum circuit for floating-point arithmetic as well. This will be considered in
future work.

The introduced circuit width reductions can therefore be of great benefit to algorithm
developers by facilitating simulations of larger circuits on available computing resources.

10. Conclusions and Future Work

Quantum circuit transformation and parameterisation techniques were introduced that
specifically target facilitating static analysis of quantum circuits for the purpose of circuit
width reduction (reduced qubit count). Using these techniques, quantum circuits which
would otherwise require excessive amounts of memory can be analysed on full state vector
simulators. The introduced transformation approach can be applied to a wide range of
quantum algorithms where quantum arithmetic operations form part of the computational
work performed by the algorithm. The transformations are demonstrated for an exemplar
quantum integer divider and its constituent parts, the comparators and subtractors. The first
step in transformation involves a user-directed replacement of an quantum-circuit block
performing arithmetic by a parameterised circuit performing this operation. In the next
step, the presented static analysis tool can then automatically eliminate any qubits which
are used only as controls for user-specified given inputs. As demonstrated for the integer
divider example, using this approach, reductions in quantum circuit width can be achieved
that match reductions obtained by manual reduction-by-specialisation.

While the introduced transformation approach is specific to quantum circuit operations
performing arithmetic in the computational basis, it is clear that the specialised circuits
can be used as building blocks in larger circuits which go beyond the computational basis.
Furthermore, it is important to note that the transformation approach is not limited to the
particular tool chain employed here, i.e., it is expected that other tool chains designed to

Algorithms 2023, 16, 241 31 of 33

perform transformations on circuits specified in other DSLs can be extended to include the
transformation approach discussed here.

In future work, the introduced techniques will be extended to a wider range of quan-
tum algorithms with embedded quantum arithmetic operations. Additionally, quantum
algorithms for scientific computations using floating-point arithmetic will be targeted.

Author Contributions: Circuit Transformation and Reduction Concepts, R.S.; derivation of Parame-
terised Comparator, Subtractor, and Divider circuits, R.S.; Project administration and supervision,
R.S. and W.V.; Functional Quantum Toolchain, Y.M.; Implementation and validation of circuits, Y.M.;
Writing—review and editing, W.V. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data being made available for this work is in the form of the
FQT code which generates and processes the discussed circuits. The code is available on Zenodo:
https://zenodo.org/record/7645972#.Y-3-6S-l1B0 (accessed on 3 February 2023).

Acknowledgments: The authors acknowledge financial support received from the University of
Glasgow in the form of a Ph.D. scholarship for Y.M.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

QC Quantum Computing
FQT Functional Quantum Toolchain
DSL Domain Specific Language
eDSL Embedded Domain Specific Language

References
1. Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press:

Cambridge, UK, 2010.
2. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]
3. IBM unveils 127-qubit computer. Phys. World 2021, 34, 13ii. [CrossRef]
4. Gambetta, J. IBM Quantum Roadmap to Build Quantum-Centric Supercomputers. 2022. Available online: https://research.ibm.

com/blog/ibm-quantum-roadmap-2025 (accessed on 28 April 2023).
5. Guerreschi, G.G.; Hogaboam, J.; Baruffa, F.; Sawaya, N.P.D. Intel Quantum Simulator: A cloud-ready high-performance simulator

of quantum circuits. Quantum Sci. Technol. 2020, 5, 34007. [CrossRef]
6. Childs, A.M.; Schoute, E.; Unsal, C.M. Circuit Transformations for Quantum Architectures. In Proceedings of the TQC 2019,

College Park, MD, USA, 3–7 June 2019; Volume 135, pp. 1–24. [CrossRef]
7. Boixo, S.; Isakov, S.V.; Smelyanskiy, V.N.; Neven, H. Simulation of low-depth quantum circuits as complex undirected graphical

models. arXiv 2017, arXiv:1712.05384. [CrossRef]
8. Chen, J.; Zhang, F.; Huang, C.; Newman, M.; Shi, Y. Classical Simulation of Intermediate-Size Quantum Circuits. arXiv 2018,

arXiv:1805.01450. [CrossRef]
9. Schutski, R.; Lykov, D.; Oseledets, I. Adaptive algorithm for quantum circuit simulation. Phys. Rev. A 2020, 101, 42335. [CrossRef]
10. Pednault, E.; Gunnels, J.A.; Nannicini, G.; Horesh, L.; Magerlein, T.; Solomonik, E.; Draeger, E.W.; Holland, E.T.; Wisnieff, R.

Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction Deferral. arXiv 2017, arXiv:1710.05867. [CrossRef]
11. Chen, Z.Y.; Zhou, Q.; Xue, C.; Yang, X.; Guo, G.C.; Guo, G.P. 64-qubit quantum circuit simulation. Sci. Bull. 2018, 63, 964–971.

[CrossRef]
12. Li, R.; Wu, B.; Ying, M.; Sun, X.; Yang, G. Quantum Supremacy Circuit Simulation on Sunway TaihuLight. IEEE Trans. Parallel

Distrib. Syst. 2018, 31, 805–816. [CrossRef]
13. Qiskit Contributors. Qiskit: An Open-source Framework for Quantum Computing; Zenodo: Geneva, Switzerland, 2023. [CrossRef]
14. Green, A.S.; LeFanu, P.; Ross, N.J.; Selinger, P.; Valiron, B. Quipper: A Scalable Quantum Programming Language. ACM SIGPLAN

Not. 2013, 48, 333–342. [CrossRef]
15. Cross, A.W.; Bishop, L.S.; Smolin, J.A.; Gambetta, J.M. Open Quantum Assembly Language. arXiv 2017, arXiv:1707.03429.

https://zenodo.org/record/7645972#.Y-3-6S-l1B0
http://doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1088/2058-7058/34/12/16
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
http://dx.doi.org/10.1088/2058-9565/ab8505
http://dx.doi.org/10.4230/LIPICS.TQC.2019.3
https://doi.org/10.48550/ARXIV.1712.05384
https://doi.org/10.48550/ARXIV.1805.01450
http://dx.doi.org/10.1103/PhysRevA.101.042335
https://doi.org/10.48550/ARXIV.1710.05867
http://dx.doi.org/10.1016/j.scib.2018.06.007
http://dx.doi.org/10.1109/TPDS.2019.2947511
http://dx.doi.org/10.5281/zenodo.2573505
https://dl.acm.org/doi/10.1145/2499370.2462177

Algorithms 2023, 16, 241 32 of 33

16. Cross, A.W.; Javadi-Abhari, A.; Alexander, T.; de Beaudrap, N.; Bishop, L.S.; Heidel, S.; Ryan, C.A.; Smolin, J.; Gambetta, J.M.;
Johnson, B.R. OpenQASM 3: A broader and deeper quantum assembly language. ACM Trans. Quantum Comput. 2021, 3, 12.

17. Killoran, N.; Izaac, J.; Quesada, N.; Bergholm, V.; Amy, M.; Weedbrook, C. Strawberry Fields: A Software Platform for Photonic
Quantum Computing. Quantum 2019, 3, 129. [CrossRef]

18. Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, A.;
et al. PennyLane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2018, arXiv:quant-ph/1811.04968.

19. Hooyberghs, J. Q# Language Overview and the Quantum Simulator. In Introducing Microsoft Quantum Computing for Developers;
Apress: Berkeley, CA, USA, 2022; pp. 121–167. [CrossRef]

20. Shor, P. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [CrossRef]

21. Partsch, H.; Steinbrüggen, R. Program transformation systems. ACM Comput. Surv. 1983, 15, 199–236. [CrossRef]
22. Lattner, C.; Amini, M.; Bondhugula, U.; Cohen, A.; Davis, A.; Pienaar, J.; Riddle, R.; Shpeisman, T.; Vasilache, N.; Zinenko, O.

MLIR: Scaling compiler infrastructure for domain specific computation. In Proceedings of the 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), Seoul, Republic of Korea, 27 February–3 March 2021; IEEE: Piscataway,
NJ, USA, 2021; pp. 2–14.

23. Bastoul, C.; Cohen, A.; Girbal, S.; Sharma, S.; Temam, O. Putting polyhedral loop transformations to work. In Proceedings of the
Languages and Compilers for Parallel Computing: 16th International Workshop (LCPC 2003), College Station, TX, USA, 2–4
October 2003; Springer: Berlin/Heidelberg, Germany, 2004; pp. 209–225.

24. Vanderbauwhede, W. Making legacy Fortran code type safe through automated program transformation. J. Supercomput. 2022,
78, 2988–3028. [CrossRef]

25. Todorova, B.; Steijl, R. Quantum Algorithm for the collisionless Boltzmann equation. J. Comp. Phys. 2020, 409, 109347. [CrossRef]
26. Steijl, R. Quantum Algorithms for Fluid Simulations. In Advances in Quantum Communication and Information Bulnes; Bulnes, F.,

Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-78-985268-4. [CrossRef]
27. Budinski, L. Quantum algorithm for the advection–diffusion equation simulated with the lattice Boltzmann method. Quantum

Inf. Process. 2021, 20, 57. [CrossRef]
28. Itani, W.; Succi, S. Analysis of Carleman Linearization of Lattice Boltzmann. Fluids 2022, 7, 24. [CrossRef]
29. Steijl, R. Quantum algorithms for nonlinear equations in fluid mechanics. In Quantum Computing and Communications; Zhao, Y.,

Ed.; IntechOpen: London, UK, 2022; ISBN 978-1-83-968133-2. [CrossRef]
30. Moawad, Y.; Vanderbauwhede, W.; Steijl, R. Investigating hardware acceleration for simulation of CFD quantum circuits. Front.

Mech. Eng. 2022, 8. [CrossRef]
31. Steijl, R. Quantum Circuit Implementation of Multi-Dimensional Non-Linear Lattice Models. Appl. Sci. 2023, 13, 529. [CrossRef]
32. Overton, M. Numerical Computing with IEEE Floating Point Arithmetic, 1st ed.; SIAM: Philadelphia, PA, USA, 2001.
33. Xia, H.; Li, H.; Zhang, H.; Liang, Y.; Xin, J. Novel multi-bit quantum comparators and their application in image binarization.

Quantum Inf. Process. 2019, 18, 229. [CrossRef]
34. Shan-zhi, L. Design of Quantum Comparator Based on Extended General Toffoli Gates with Multiple Targets. Comput. Sci. 2012,

39, 302–306.
35. Vudadha, C.; Phaneendra, P.S.; Sreehari, V.; Ahmed, S.E.; Muthukrishnan, N.M.; Srinivas, M. Design of Prefix-Based Optimal

Reversible Comparator. In Proceedings of the 2012 IEEE Computer Society Annual Symposium on VLSI, Amherst, MA, USA,
19–21 August 2012; pp. 201–206. [CrossRef]

36. Orts, F.; Ortega, G.; Cucura, A.C.; Filatovas, E.; Garzón, E.M. Optimal fault-tolerant quantum comparators for image binarization.
J. Supercomput. 2021, 77, 8433–8444. [CrossRef]

37. Yuan, S.; Gao, S.; Wen, C.; Wang, Y.; Qu, H.; Wang, Y. A novel fault-tolerant quantum divider and its simulation. Quantum Inf.
Process. 2022, 21, 182. [CrossRef]

38. Jayashree, H.; Thapliyal, H.; Arabnia, H.; Agrawal, V. Ancilla-input and garbage-output optimized design of a reversible quantum
integer multiplier. J. Supercomput. 2016, 72, 1477–1493. [CrossRef]

39. Dutta, S.; Bhattacharjee, D.; Chattopadhyay, A. Quantum circuits for Toom-Cook multiplication. Phys. Rev. A 2018, 98, 012311.
[CrossRef]

40. Munoz-Coreas, E.; Thapliyal, H. Quantum Circuit Design of a T-count Optimized Integer Multiplier. IEEE Trans. Comput. 2019,
68, 729–739. [CrossRef]

41. Orts, F.; Ortega, G.; Filatovas, E.; Garzón, E.M. Implementation of three efficient 4-digit fault-tolerant quantum carry lookahead
adders. J. Supercomput. 2022, 78, 13323–13341. [CrossRef]

42. Gayathri, S.; Kumar, R.; Dhanalakshmi, S.; Dooly, G.; Duraibabu, D.B. T-Count Optimized Quantum Circuit Designs for
Single-Precision Floating-Point Division. Electronics 2021, 10, 703. [CrossRef]

43. Draper, T.G. Addition on a Quantum Computer. arXiv 2000, arXiv:quant-ph/0008033. [CrossRef]
44. Ruiz-Perez, L.; Garcia-Escartin, J. Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 2017, 16, 152.

[CrossRef]
45. Cuccaro, S.A.; Draper, T.G.; Kutin, S.A.; Moulton, D.P. A new quantum ripple-carry addition circuit. arXiv 2004, arXiv:quant-

ph/0410184. [CrossRef]

http://dx.doi.org/10.22331/q-2019-03-11-129
http://dx.doi.org/10.1007/978-1-4842-7246-6_6
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1145/356914.356917
http://dx.doi.org/10.1007/s11227-021-03839-9
http://dx.doi.org/10.1016/j.jcp.2020.109347
http://dx.doi.org/10.5772/intechopen.86685
http://dx.doi.org/10.1007/s11128-021-02996-3
http://dx.doi.org/10.3390/fluids7010024
http://dx.doi.org/10.5772/intechopen.95023
http://dx.doi.org/10.3389/fmech.2022.925637
http://dx.doi.org/10.3390/app13010529
http://dx.doi.org/10.1007/s11128-019-2334-2
http://dx.doi.org/10.1109/ISVLSI.2012.49
http://dx.doi.org/10.1007/s11227-020-03576-5
http://dx.doi.org/10.1007/s11128-022-03523-8
http://dx.doi.org/10.1007/s11227-016-1676-0
http://dx.doi.org/10.1103/PhysRevA.98.012311
http://dx.doi.org/10.1109/TC.2018.2882774
http://dx.doi.org/10.1007/s11227-022-04401-x
http://dx.doi.org/10.3390/electronics10060703
https://doi.org/10.48550/ARXIV.QUANT-PH/0008033
http://dx.doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.48550/ARXIV.QUANT-PH/0410184

Algorithms 2023, 16, 241 33 of 33

46. Moawad, Y.; Vanderbauwhede, W.; Steijl, R. Transformations for accelerator-based quantum circuit simulation in Haskell. arXiv
2022, arXiv:2210.12703. [CrossRef]

47. Marlow, S. Haskell 2010 Language Report. 2010. Available online: http://www.haskell.org/ (accessed on 28 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/ARXIV.2210.12703
http://www.haskell.org/

	Introduction
	Brief Review of Quantum Computing Essentials
	Qubit Representation and Manipulation
	Quantum Circuit Model

	Context of Present Work
	Exemplar Circuit: Integer Divider
	Contributions of This Work

	Data Encoding in Quantum Information
	Quantum Circuit Simulation
	Discussion of Key Concepts
	Issue with Reduction-by-Specialisation
	Our Approach: Reduction by Parameterisation
	Reducing Memory Requirement in Full-State Vector Simulation

	Derivation of Parameterised Comparator Circuits
	Comparator Circuits for 3-Qubit Divisor
	Comparator Circuits for 4-Qubit Divisor
	Comparator Circuits for 5-Qubit Divisor

	Derivation of Parameterised Subtractor Circuits
	Applying Circuit Transformations to a Quantum Integer Divider
	Design 1: Baseline Divider
	Design 2: Dividend Register-Shifting Divider
	Design 3: Parameterised Divider

	Quantum Circuit Toolchain
	Circuit Specification and eDSL
	Static Analysis to Reduce Qubit Count
	Testing and Verification

	Demonstration of Reduction of Integer Divider
	Parameterised Integer Divider Implementation in Toolchain—Before Circuit Transformation
	Specialised Integer Divider
	Results
	Discussion of Results—Implication for Wider Range of Circuits

	Conclusions and Future Work
	References

