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ABSTRACT

Context. Extreme-ultraviolet (EUV) observations provide considerable insight into evolving physical conditions in the active solar
atmosphere. For a prescribed density and temperature structure, it is straightforward to construct the corresponding differential emis-
sion measure profile ξ(T ), such that ξ(T ) dT is proportional to the emissivity from plasma in the temperature range [T,T + dT ]. Here
we study the inverse problem of obtaining a valid ξ(T ) profile from a set of EUV spectral line intensities observed at a pixel within a
solar image.
Aims. Our goal is to introduce and develop a regularized maximum likelihood (RML) algorithm designed to address the mathe-
matically ill-posed problem of constructing differential emission measure profiles from a discrete set of EUV intensities in specified
wavelength bands, specifically those observed by the Atmospheric Imaging Assembly (AIA) on the NASA Solar Dynamics Observa-
tory.
Methods. The RML method combines features of maximum likelihood and regularized approaches used by other authors. It is also
guaranteed to produce a positive definite differential emission measure profile.
Results. We evaluate and compare the effectiveness of the method against other published algorithms, using both simulated data gen-
erated from parametric differential emission profile forms, and AIA data from a solar eruptive event on 2010 November 3. Similarities
and differences between the differential emission measure profiles and maps reconstructed by the various algorithms are discussed.
Conclusions. The RML inversion method is mathematically rigorous, computationally efficient, and produces acceptable measures of
performance in the following three key areas: fidelity to the data, accuracy in the reconstruction, and robustness in the presence of data
noise. As such, it shows considerable promise for computing differential emission measure profiles from datasets of discrete spectral
lines.
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1. Introduction

Extreme-ultraviolet (EUV) lines emitted by atomic species with
a variety of characteristic formation temperatures provide a pow-
erful probe of evolving physical conditions in the active solar
atmosphere. However, it has not been a customary practice to
use a physical source model to predict a complete set of EUV
line intensities and then directly compare these predicted inten-
sities with those observed (the “full forward” approach). Neither
is it feasible (for several extremely good reasons, some of which
are addressed below) to use a set of observed line intensities to
infer the temperature and density structure of the source (the
“full inverse” approach). Instead, it has been a common prac-
tice in the literature to “meet in the middle,” using the construct
of a differential emission measure (DEM) profile.

From the physical (“forward”) perspective, the formal defi-
nition of the (volumetric) DEM (cm−3 K−1) is (cf. Eq. (10) of
Craig & Brown 1976)

Ξ (T ) =
∑

i

("
S T,i

n2(r) |∇T |−1 dS T,i

)
, (1)

where n(r) (cm−3) is the number density of electrons at posi-
tion r, ∇T is the gradient of the temperature distribution T (r),

and the sum is over the (one or more) constant-temperature sur-
faces S T,i within the source. For a one-dimensional source (e.g.,
a loop with a constant cross-sectional area) that has a monotonic
temperature variation T (s) along it, this reduces to the consid-
erably simpler expression for the DEM per unit cross-sectional
area:

ξ(T ) = n2(s[T ] )
ds
dT
. (2)

This quantity, with units in cm−5 K−1, is the product of the
square of the electron density in, and the thickness of, a layer
that corresponds to a prescribed elemental range of temperatures,
and it can readily be determined from a prescribed density and
temperature structure.

Coming from the other (“inverse”) direction, the observed
count rates (per pixel per second) from a specified pixel in an
image, measured in a set of m wavelength channels, are given in
terms of ξ(T ) by

Ii =

∫
Ki(T ) ξ(T ) dT ; i = 1, · · · ,m. (3)

Here Ki(T ) (cm5 pixel−1 s−1) is the emissivity function corre-
sponding to the one or more spectral lines that fall within the
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Fig. 1. Temperature response functions for the SDO/AIA EUV channels
(Boerner et al. 2012).

bounds of the i-th wavelength channel and ξ(T ) = n2 ds/dT is
the emission measure per unit area on the sky, with s being the
distance along the line of sight. The observational inverse prob-
lem is to deduce the form of ξ(T ), given a set of observed count
rates Ii and knowledge of the emissivity functions Ki(T ).

Early EUV flare observations made with the Skylab Apollo
Telescope Mount (ATM) captured the emission in a set of spec-
tral lines formed at temperatures ranging from a few ×104 K
to more than 106 K, within a set of 5.5′′ × 5.5′′ pixels, reveal-
ing (Emslie & Noyes 1978) significant temporal correlations
between the emissions corresponding to different temperature
ranges during several small flares. Emslie & Noyes (1978) also
computed the weighted DEM-related quantity (µ(T ), in their
notation)

⟨ξ(T )⟩i =

∫
Ki(T ) ξ(T ) dT∫

Ki(T ) dT
=

Ii∫
Ki(T ) dT

(4)

for each observed spectral line i, thus allowing a relatively
straightforward estimate of the evolution of the ξ(T ) profiles
throughout the events studied. Relatively modest increases in
⟨ξ(T )⟩ over the durations of the various flares were found, which
were interpreted as being due to a combination of a significant
increase in density in the emitting volume, coupled with a steep-
ening of the temperature gradient dT/ds (e.g., from an enhanced
thermal conductive flux) and hence reduced thickness of the
emitting volume.

Subsequent measurements by the Hinode X-Ray Telescope
(XRT; Golub et al. 2007) and EUV Imaging Spectrometer (EIS;
Culhane et al. 2007), and by the Solar Dynamics Observatory’s
Atmospheric Imaging Assembly (AIA; Lemen et al. 2012) and
EUV Variability Experiment (EVE; Woods et al. 2012) have pro-
vided a large amount of flare-event data from atomic species
formed over a broad range of temperatures. Given the superior
nature of this data, it is manifestly appropriate to go beyond
the construction of average ⟨ξ(T )⟩ values corresponding to each
wavelength channel using the prescription (4), and instead treat
Eq. (3) as an integral equation to be solved for the desired source
function ξ(T ), given the set of observed data vector values Ii and
the prescribed kernel functions Ki(T ) (shown in Fig. 1 for the six
EUV channels in the SDO/AIA instrument).

In principle, this appears straightforward: Eq. (3) can be
discretized as an m × n matrix equation

Ii =

n∑
j=1

Ki j ξ j ; i = 1, · · · ,m, (5)

where the ξ j are components of a vector of ξ(T ) values at a set
of chosen temperatures T j; j = 1, · · · n and the m × n matrix K
has coefficients Ki j that represent the emissivity function for the
ith channel integrated over the temperature bin [T j,T j + ∆T j].
Naively, this has a straightforward solution in terms of the
generalized inverse of the matrix K:

ξ j =

m∑
i=1

([KT K]−1KT ) ji Ii ; j = 1, · · · , n. (6)

However, it is well understood (e.g., Craig & Brown 1986) that,
due to a significant inter-dependence between the rows of the
matrix K, this is an ill-posed inverse problem (Tikhonov 1963;
Bertero et al. 1985; Schmitt et al. 1996). Because of the ill–
conditioning of K, the solution given by Eq. (6) is usually
corrupted by oscillations due to noise amplification effects, and
it often yields (unphysical) negative values at one or more points.
Hence straightforward application of Eq. (6) typically does not
yield physically useful solutions. In practice, viable solutions for
ξ(T ) must instead be found by imposing additional “reasonable-
ness” requirements (e.g., smoothness, boundedness, positivity)
on the solution.

Given the considerable importance of the recovered ξ(T )
profile in probing the physics of the emitting plasma (see, e.g.,
Emslie & Bradshaw 2022, and references therein), numerous
authors have proposed a variety of methods for generating phys-
ically acceptable ξ(T ) profiles. For a general overview of such
methods, we refer the reader to, for instance, Chapter 5 of
Phillips et al. (2008). Whatever the method chosen, quantitative
uncertainties in the ξ(T ) profiles derived can straightforwardly
be determined by constructing multiple realizations of the data,
with each realization drawn from a range of values consistent
with the level of noise in the data; synthesis of the ξ(T ) pro-
files obtained from multiple realizations of the data produces a
“confidence strip” of ξ(T ) profiles (cf. Brown et al. 2006).

Perhaps the most basic approach to solving Eq. (3) is the
so-called “EM Loci” method, originally applied to observa-
tions of UV lines observed in stellar spectra by Jordan et al.
(1987) and subsequently applied to solar observations from the
SoHO Coronal Diagnostic Spectrometer (CDS; Harrison et al.
1995) by Cirtain et al. (2007) and Schmelz et al. (2007), and
to data from the Hinode EUV Imaging Spectrometer (EIS;
Culhane et al. 2007) by Tripathi et al. (2009). The basis of this
method is to initially assume that the emitting plasma is isother-
mal with temperature To, so that the DEM can be approximated
by a Dirac delta-function ξ(T ) = EM δ(T − To), where EM is
the total source emission measure (cm−5). The problem then
reduces to determining the location and strength of the Dirac
delta-function, i.e., the correct temperature To and correspond-
ing emission measure EM. For such a delta-function form of
ξ(T ), Eq. (3) reduces to Ii = EM Ki(To), so that dividing an
observed intensity Ii by the corresponding response function
value Ki(To) gives the emission measure EM. Using different
assumed temperatures To yields a (generally, concave upward)
set of EM(To) points corresponding to that single observation,
and repeating this for different observing channels gives a set
of such “EM Loci.” If the source were truly isothermal, then all
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the EM Loci would intersect at a single point, which would then
inform both the source temperature To and the emission measure
EM. However, for a nonisothermal emitting region, the various
EM Loci intersect at different (To, EM) points. Further, since the
emission in a given observing channel has contributions from
material at temperatures other than the assumed To, the actual
value of ξ(T ) at any temperature is necessarily less than the value
deduced from the assumption that the plasma is isothermal at
that temperature. It follows that the set of local minima of the
overlapping EM Loci curves forms an upper bound (“curtain”)
to the ξ(T ) profile (see, e.g., Fig. 17 of Hannah & Kontar 2012).
This can be useful in determining a starting point for iterative
methods.

A more physical approach, that allows a priori for the
nonisothermal nature of the region under observation, is to
model ξ(T ) as a locally smooth function, using, for example,
a discretized cubic spline fitting procedure. Such an approach
was originally applied to data from the NRL High Resolu-
tion Telescope and Spectrograph (HRTS; Tousey et al. 1977)
by Monsignori-Fossi & Landini (1992), from the Solar EUV
Rocket Telescope and Spectrograph (SERTS; Neupert et al.
1992) by Brosius et al. (1996), and from the SoHO CDS by
Parenti et al. (2000). Kashyap & Drake (1998) have presented
a Bayesian approach to derive ξ(T ) using a Metropolis Markov
chain Monte Carlo (MCMC) method, which, similar to the
cubic spline fitting of the above references, applies a local
smoothing, but over a scale determined by correlating the line
emissivity function Ki(T ) (Guℓ(T ) in the notation of Kashyap &
Drake 1998) with a parametric Gaussian-based “Mexican Hat”
wavelet function (their Eq. (8)). Even for simulated data gener-
ated from rather complicated forms of assumed ξ(T ) functions
(their Figs. 7 and 8), the recovered ξ(T ) have a generally good
overall agreement with the initially assumed forms, but unfortu-
nately with rather large uncertainties. Kashyap & Drake (1998)
argue that “a careful selection of the spectral lines used to infer
the DEM is needed in order to avoid ‘artificially’ generating
structure in the DEM.”

A fundamentally different approach to recovering the DEM
ξ(T ) involves assuming a parametric form and determining the
best values of the associated parameters by forward-fitting to the
observations. Such an approach, using a parametric form con-
structed from multiple Gaussian functions of log T (see their
Eq. (7)), was employed in the analysis of SDO/AIA data by
Aschwanden & Boerner (2011). A similar parametric “basis
function” approach was employed by Cheung et al. (2015), using
a combination of finite-width Gaussians of log T (see their
Eq. (13)) and (isothermal) delta-functions. However, compari-
son of the ξ(T ) profiles derived from simulated data generated
even from relatively simple functional forms of ξ(T ) showed on
occasion spurious features at high temperatures (e.g., Fig. 4 in
Cheung et al. 2015). This “basis pursuit” technique seeks the
minimum number of nonzero basis coefficients needed to fit
the data within plausible uncertainties and, to avoid (unphysi-
cal) negative solutions, it applies a positivity constraint to each
of the nonzero coefficients returned. However, the underlying
simplex optimization procedure sometimes fails (cf. remarks in
Sect. 3.1.2) to generate a solution that satisfies all the required
constraints, leading to reconstructed DEM maps (see Sect. 3.3
below) that contain a number of “empty” pixels where the
method has been unable to find a solution.

The SITES (Solar Iterative Temperature Emission Solver)
algorithm (Morgan & Pickering 2019) first normalizes the
temperature response curves Ki(T ) for each AIA observing
channel to produce a set of “relative response curves” that sum

to unity in each of several temperature bins. Count rates obtained
by forward processing of an initially assumed ξ(T ) profile with
the normalized temperature response curves are then compared
to the observed counts and the differences used to generate a
correction term to ξ(T ), and this step incorporates a positivity
constraint. This iterative process is then repeated until the ξ(T )
profile converges to acceptable limits. Pickering & Morgan
(2019) have expanded this concept into a “Gridded SITES”
method in which pixels with similar intensities in all six EUV
channels of the AIA are grouped together and a ξ(T ) for each
group of pixels is found; this saves considerable computational
time by avoiding the calculation of ξ(T ) profiles that are similar
to those that have already been calculated for another pixel with
similar data properties. Such a grouping method could obviously
also be used to expedite other algorithms used to generate ξ(T )
profiles from datasets that comprise a set of spectral line
intensities.

Goryaev et al. (2010) employed a maximum likelihood (ML;
see Sect. 2) approach, specifically termed a Bayesian iterative
method (BIM; Richardson 1972). They compared the results
using this method with previous analyses of spectral line data
from the SoHO SUMER (Wilhelm et al. 1995) instrument in
order to validate the conclusions of Landi & Feldman (2008).
They also compared their results with the results of Shestov et al.
(2010), who had applied the BIM method (with fewer iterative
steps) to spectral line data from the SPIRIT/CORONAS-F instru-
ment. Lastly, they compared their results to broadband soft X-ray
data from the Hinode XRT to validate the conclusions of Reale
et al. (2009), whcih were in turn based on a parametric basis
function technique similar to that of Cheung et al. (2015), but
using “top-hat,” rather than Gaussian, basis functions. Figures 2
and 3 of Goryaev et al. (2010) show that the BIM method can
recover rather complicated ξ(T ) functions (e.g., those with mul-
tiple peaks) with a reasonable degree of accuracy (we note that,
in their figures, a logarithmic scale is applied to the y-axes).
However, we show in Sect. 3.1 that ML approaches without addi-
tional regularization constraints in general produce unreliable
results when applied to data consisting of only a few spectral
lines, as in the case of AIA data. Another ML method proposed
by Withbroe (1975) and Sylwester et al. (1980) was utilized in the
interpretation of Hinode XRT data by Siarkowski et al. (2008),
and of EIS and AIA data by Mackovjak et al. (2014). Certain
similarities between the performances of this ML method and
those of a genetic algorithm have been noted (Siarkowski et al.
2008), and the use of a genetic algorithm has also proven effec-
tive (McIntosh et al. 2000) as a preconditioning step to determine
the subset of spectral lines for which the corresponding K matrix
has minimum condition number. After this preconditioning
step, the profile of ξ(T ) is then determined by applying the
Tikhonov (1963) regularization method to this selected subset
of data.

Several authors have utilized regularized inversion methods;
such methods impose a priori information on the solution in
order to suppress the amplification of data uncertainties and
thus obtain a relatively stable “smooth” recovery of the ξ(T )
profile (see Craig & Brown 1986). Several forms of regular-
ized inversion, such as zeroth-order regularization, second-order
regularization and maximum entropy regularization have been
employed and tested using simulated EUV spectral line emis-
sion data (e.g., Judge et al. 1997). For example, the second-order
regularized inversion method of Hannah & Kontar (2012) seeks
to minimize the quantity

|| I −K ξ ||2 + λ || ξ ||2, (7)
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where I = (I1, . . . , Im), ξ = (ξ(T1), . . . , ξ(Tn)), and λ is the reg-
ularization parameter. High values of λ smooth the solution by
penalizing large deviations in ξ(T ), while lower values of λ place
greater emphasis on the accuracy with which the reconstructed
ξ(T ) profile produces spectral line intensities that replicate those
observed. Although these regularization approaches are gener-
ally superior to simple methods such as EM Loci, (unphysical)
negative solutions can still result from over-fitting of (noisy)
data; accordingly, Hannah & Kontar (2012) chose the low-
est value of λ that is consistent with a nonnegative ξ(T ) at
all temperatures T . The addition of the regularization term
resolves many of the problems with ξ(T ) profiles corrupted by
unphysical artifacts and generally recovers the underlying ξ(T )
(with uncertainties) quite well. However, analysis of simulated
SDO/AIA data constructed from an assumed Gaussian ξ(T ) pro-
file showed that the method can underestimate the actual ξ(T ) at
high temperatures and overestimate it at low temperatures (e.g.,
Figs. 11 and 13 of Hannah & Kontar 2012). Hannah & Kontar
(2013) applied this method to a number of “interesting” pix-
els within the SDO/AIA images for a solar eruptive event on
2010 November 3, and we shall return to these results in Sect. 3.2
below.

Plowman et al. (2013) have presented a “fast iterative regu-
larized” (FIR) method based on the L2 norm regularization of
Eq. (7), starting with construction of a ξ(T ) profile in terms of a
number of prescribed basis functions Bl(T ), the coefficients el of
which are to be determined. Plowman et al. (2013) also impose
a positivity constraint on the recovered ξ(T ) values, although
their six-step iterative procedure is rather involved. Their ξ(T )
reconstructions compare favorably with those of Hannah &
Kontar (2012, their Fig. 13, noting that this comparison does
not (as it possibly could) impose positivity on the reconstruc-
tions produced by the Hannah & Kontar 2012 method). However,
recovery of ξ(T ) profiles from simulated data constructed from
simple Gaussian functions of log T shows (e.g., their Figs. 1–4)
that the method tends to generate spurious features, especially at
high temperatures.

In summary, it is apparent that both maximum likelihood and
regularized approaches each bring their own set of strengths (and
also some weaknesses) to the overarching problem of construct-
ing ξ(T ) profiles from a discrete set of optically thin spectral
line intensities. Strengths include a high degree of mathematical
rigor, the absence of any need to assume an a priori (paramet-
ric) mathematical form for ξ(T ), the ability to impose global
(rather than local) smoothness constraints, the ability to authen-
tically reconstruct model ξ(T ) profiles from simulated data and
to determine uncertainties in the solution. Weaknesses and/or
concerns include the possible generation of spurious features in
the solution (particularly at high temperatures) and the occa-
sional inability to find a solution which satisfies the imposed
constraints.

We therefore here present a new “regularized maximum
likelihood” (RML) method for the generation of ξ(T ) pro-
files from a discrete set of EUV spectral line intensities. This
method combines the favorable elements of the maximum like-
lihood approaches of Withbroe (1975), Sylwester et al. (1980),
and Goryaev et al. (2010), and the regularization approaches
of Hannah & Kontar (2012) and Plowman et al. (2013). We
shall demonstrate, using simulated data generated from idealized
single-Gaussian (Sect. 3.1.1) and double-Gaussian (Sect. 3.1.2)
ξ(T ) forms, that this mathematically rigorous method, which
does not require an a priori choice of a functional form for the
solution, is nevertheless robust and always generates a (physi-
cally required) nonnegative solution. In Sect. 3.2 we apply the

method to the same set of representative pixels in a solar erup-
tive event previously studied by Hannah & Kontar (2013), and
we compare the ξ(T ) reconstructions obtained for each of these
representative pixels by several methods, noting the similarities
and differences between the reconstructions obtained. Overall,
we find that the RML method produces results that are generally
consistent with those obtained using other methods and, unlike
other methods, never generates “outlier” results. The method
generally shows an acceptable of fidelity to the data without gen-
erating unphysical features caused by unnecessary overfitting. In
Sect. 4, we summarize the results obtained and offer prospects
for the implementation of this powerful DEM reconstruction
method in the near-real-time prediction of solar activity.

2. The regularized maximum likelihood (RML)
method

Let gi(x, y) denote the count rate per unit time detected in the
i-th observing channel of the SDO/AIA telescope that originates
within an 0.6′′ ×0.6′′ pixel centered at location (x, y) on the solar
disk, Ki(T ) (cm5 pixel−1 s−1) the temperature response function
of the ith AIA channel (see Fig. 1), and ξ(T ; x, y) (cm−5 K−1) the
line-of-sight DEM at location (x, y). These quantities are related
by the integral equation (cf. Eq. (3))

gi(x, y) ≈
∫

T
Ki(T ) ξ(T ; x, y) dT, (8)

where the approximation is due to the fact that experimental data
are inevitably corrupted by statistical (and possibly other sources
of) noise. Once discretized, Eq. (8) becomes

g = K ξ, (9)

where we have denoted gi ≡ gi(x, y), Ki j ≡ Ki(T j), and ξ j ≡

ξ(T j; x, y), i = 1, . . . ,m; j = 1, . . . , n. The essence of solving the
DEM inverse problem involves finding a physically acceptable
source vector ξ that, given an observed data vector g, satisfies
Eq. (9) within the bounds of observational uncertainty.

We assume that data are affected by statistical noise only, so
that

gi ≃ P((Kξ)i), (10)

where P(η) denotes a Poisson random variable with a mean
η > 0. The maximum likelihood problem is to determine ξ∗
such that

ξ∗ = arg max
ξ≥0

P(g |Kξ), (11)

where P is the likelihood function associated with a Poisson
distribution, defined as

P(g |Kξ) =
∏

i

exp(−(Kξ)i) (Kξ)gi
i

gi!
. (12)

The condition (11) is equivalent to minimizing the negative
logarithm of the likelihood function (cf. the C-statistic; Cash
1979)

ξ∗ = arg min
ξ≥0

[
− ln (P(g |Kξ))

]
= arg min

ξ≥0
DKL(g,Kξ), (13)
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where

DKL(g,Kξ) =
∑

i

(K ξ)i − gi log(K ξ)i (14)

is the Kullback–Leibler divergence (Bertero et al. 2008) and we
have ignored terms in Eq. (12) that depend only on the (known)
quantities gi.

The partial derivative of DKL with respect to each of the
unknowns ξk is

∂DKL

∂ξk
=

∑
i

 ∂∂ξk
∑

j

Ki jξ j −
gi

(Kξ)i

∂

∂ξk

∑
j

Ki jξ j


=

∑
i

[
Kik −

gi

(Kξ)i
Kik

]
=

∑
i

KT
ki

[
1i −

gi

(Kξ)i

]
,

(15)

where 1 is an m-vector with components all equal to unity, and
hence the gradient

∇ξ DKL(ξ) = KT
(
1 −

g
Kξ

)
, (16)

where g/Kξ is the vector with i-th component equal to the ratio
of the respective components gi and (Kξ)i. By using the Karush-
Kuhn-Tucker (KKT) conditions (Kuhn & Tucker 2014; Kuhn
2014), it can be shown that the minimization problem (13) is
equivalent to finding a solution of

ξ · ∇ξDKL(ξ) = 0 , ξ ≥ 0, (17)

where the multiplication and the inequality between arrays are to
be interpreted component–wise. This equation can be solved by
means of the iterative scheme

ξ(l+1) =
ξ(l)

KT 1
KT

(
g

Kξ(l)

)
; ξ(0) = 1, (18)

starting with a “gray” trial vector1 with all unit values. This
iterative algorithm, also known as Expectation Maximization
(Dempster et al. 1977) or, in the context of astronomical image
deconvolution, Richardson–Lucy (Richardson 1972; Lucy 1974),
has been applied to the solution of inverse problems in sev-
eral different fields, including medical imaging (Shepp & Vardi
1982), microscopy (Sarder & Nehorai 2006), and most recently
hard X-ray imaging of solar sources (Benvenuto et al. 2013;
Massa et al. 2019; Piana et al. 2022). We refer the interested
reader to Bertero et al. (2008, 2018) and Massa & Benvenuto
(2021) for a comprehensive overview of the ML method and its
applications.

The ML method defined by Eq. (18) is essentially the same
as the BIM method proposed by Goryaev et al. (2010, cf. their
Eq. (22)). Also, the ML strategy is similar to the method pro-
posed by Withbroe (1975) and Sylwester et al. (1980), the main
difference being the adoption by the latter method of empiri-
cally defined weight functions in the iterative process. Contrary
to many of the methods discussed in Sect. 1, the ML method
naturally includes a positivity constraint on the solution, which
prevents the generation of unphysical negative ξ(T ) values.
However, as is evident from the simulation results below, the ML
strategy is not well suited for addressing the ξ(T ) reconstruc-
tion problem from EUV AIA data only, since the low number
1 It is not necessary to use a realistic guess (such as the base of the EM
Loci plots; see Sect. 1) as the initial estimate ξ(0).

of available data channels does not permit the application of a
sufficient number of constraints; this generally leads to the pres-
ence of spurious features in the reconstructions. This suggests
that it would be highly advantageous to incorporate (Green 1990)
a penalty term to allow the inclusion of a priori information on
the solution. Specifically, we incorporate a term which penalizes
solutions with large ξ(T ) values at high temperatures in order to
suppress the generation of artifacts at the upper end of the tem-
perature range under consideration. With this term added, the
minimization problem (13) becomes

ξ∗ = arg min
ξ≥0

DKL(g,Kξ) + λ
∑

j

T j ξ j ∆T j

 , (19)

where λ > 0 is a regularization parameter and the penalty term
represents the DEM-weighted mean temperature. The rationale
for this choice of the penalty term is to select the solution,
among all the ones with similar accuracy in fitting the data, that
results in a ξ(T ) profile that is most concentrated at low tem-
peratures. Indeed, the penalty term can be written as (n/3 kB) ×∑

j 3 n j kB T j (ds/dT ) j ∆T j, where kB is the Boltzmann constant.
The penalty term is thus proportional to the product of the mean
source density n and the quantity

∫
3 n kBT ds, representing the

total thermal energy per cm2 along the line of sight. The regu-
larization constraint thus effectively seeks, among solutions that
adequately fit the data, the one with the lowest thermal energy
content.

For solving problem (19), we note that the derivative ∂/∂ξk
of the objective function (Eq. (15)) now includes an addi-
tional term λTk ∆Tk, which accordingly modifies the gradient
expression (16). Incorporating this additional term, the iteration
formula (18) becomes

ξ(l+1) =
ξ(l)

KT 1 + λT
KT

(
g

Kξ(l)

)
; ξ(0) = 1, (20)

where T = (T1 ∆T1, . . . ,Tn ∆Tn) is an array formed by multiply-
ing each temperature selected for the discretization of Eq. (3)
by the width of the corresponding energy bin. Since the array
λT has only positive entries, at each iteration the estimated
ξ(l) profile is multiplied component-wise by a nonnegative array
to yield a revised estimate ξ(l+1). Therefore, since the iterative
scheme is initialized with an array ξ(0) with all positive entries,
each iteration, and hence the final solution, automatically sat-
isfies the (physically required) nonnegativity requirement. The
value of the regularization parameter λ is determined according
to the Morozov (1966) discrepancy principle: starting from an
intentionally high value of λ (which leads to an over–regularized
solution with a correspondingly high value of the reduced χ2

measure of fidelity to the data), we then progressively decrease λ
by a constant multiplicative factor (typically 2/3), until we reach
a value λ̃ at which the solution ξ̃ has a reduced χ2 lower than 1.
This criterion proves to be almost always effective and leads to
solutions which do not overfit the data. We term the method
expressed by Eq. (20) the “regularized maximum likelihood”
(RML) method.

We conclude this section with a few remarks.
1. First, in rare instances, especially in weak pixels with

relatively poor statistics, it is possible that the Morozov dis-
crepancy principle cannot be satisfied for any value of the
regularization parameter λ ; in such cases we simply adopt the
solution corresponding to the initially chosen value of λ. Fur-
ther, the main drawback of the progressively-decreasing-estimate
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approach for determining λ is that it involves performing several
reconstructions in sequence and hence substantially increases
the computational cost. In a future work we will explore tech-
niques for determining a priori the optimum value of λ, possibly
exploiting the use of neural networks (see, e.g., Alberti et al.
2021).

2. Second, we can straightforwardly apply the iterative for-
mula (20) for each of the N pixels in an AIA image in parallel by
casting g and ξ as matrices of dimension m×N and n×N, respec-
tively. We start by applying Eq. (20) to every pixel and terminate
the iterative process for each pixel once that pixel satisfies the
discrepancy principle constraint χ2 < 1. Pixels for which accept-
able solutions have been so far obtained are then discarded when
we perform the next iteration with a decreased value of λ. This
approach significantly reduces the total amount of computational
time required to produce acceptable ξ(T ) profiles for every pixel
in the image.

3. Third, similar to the ML method of Goryaev et al. (2010)
and the regularized approach of Hannah & Kontar (2012), we
can provide a quantitative estimate of the uncertainty of the
RML solution by means of the confidence strip approach. Specif-
ically, we apply the procedure 25 times, each using a randomized
Poisson noise perturbation of the data, and then assign the stan-
dard deviation of the recovered ξ(T ) values for each temperature
bin as an estimate of the uncertainty of that ξ(T ) value. For each
AIA pixel, the selection of the regularization parameter value λ
is performed just once (according to the Morozov discrepancy
principle) during the reconstruction process; this value of λ is
then used for each of the 25 reconstructions, thus speeding up
the uncertainty estimation process.

4. Finally, to the best of our knowledge, this is the first time
that a maximum-likelihood-type algorithm has been applied to
the reconstruction of ξ(T ) profiles from AIA data exclusively.

3. Results

Throughout this section, the ξ(T ) profiles are generated as a
function of the temperature T (K). However, in order to high-
light features in different temperature ranges, they are plotted as
a function of the logarithm (to base 10) of the temperature.

3.1. Simulated data

As a test of the ability of the various inversion algorithms
to accurately recover the source DEM function ξ(T ), several
“ground truth” analytic forms of ξ(T ) were used to generate
simulated SDO/AIA data in the five SDO/AIA EUV channels
94 Å, 131 Å, 171 Å, 193 Å, and 211 Å. The 335 Å EUV channel
was excluded because of its relatively weak temperature response
function (Fig. 1); it is the only AIA channel that does not dom-
inate2 the instrument response at any temperature (Fig. 1), and
we have found that attempting to fit the data in this channel often
introduces spurious features in the recovered solutions. This sim-
ulated data in these five channels was then inverted, using six of
the algorithms described above, namely:
1. the basis pursuit (BP) technique of Cheung et al. (2015);
2. the fast iterative regularized (FIR) methodology of Plowman

et al. (2013);
3. the iterative SITES method of Morgan & Pickering (2019);
4. the regularized (REG) approach of Hannah & Kontar (2012);

2 The 94 Å channel is never strictly dominant, but it does have a
response roughly equal to that of the 131 Å and 193 Å channels at
log10 T ≃ 6.9 (Fig. 1) and so is included in the analysis.

5. the (un-regularized) maximum likelihood (ML) method of
Eq. (18); and

6. the regularized maximum likelihood (RML) approach of
Eq. (20),

to produce recovered ξ(T ) forms, to be compared with the orig-
inal input form as a measure of the accuracy of each method.
The reconstructed ξ(T ) profiles for all methods involved the
discretization into 12 temperature bins; this number was cho-
sen as being more than the number of data channels (five),
but not so large as to unnecessarily exacerbate the nonunique-
ness aspect of the solution. The chosen temperatures (at the
[logarithmic] center of each bin) are given by log10 T (K) =
5.85 (0.15) 7.50. For each method we calculated ξ(T ) profiles
using 25 different realizations of the data, established by per-
turbing the data with Poisson noise; assessing the similarities
and/or differences between the ξ(T ) profiles reconstructed from
each data realization allows a characterization of the robustness
of the method.

We find in Sect. 3.2 that many AIA pixels during flares
and/or solar eruptive events contain data that are consistent with
EUV emission generated either by a single source containing
material at a relatively small range of temperatures correspond-
ing to quiet-Sun coronal temperatures (≃1.5 × 106 K), or by
a two-temperature source with both quiet Sun and enhanced
(≃107 K) components. We do not dwell extensively on the var-
ious physical reasons for this (although we do offer plausible
explanations for the appearance of both components), but we
lean heavily on this observed two-component structure to inform
the types of simulated data to be used as a test of the various
DEM reconstruction methods. Specifically, the methods should
be able to clearly identify and adequately characterize both low-
temperature and (if they exist) high-temperature components in
the DEM profile. We therefore test the methods using simulated
data generated from two main types of “ground truth” DEM
profiles: a single Gaussian function of log10 T with a centroid
temperature ranging from 106.1 K–106.4 K (Sect. 3.1.1), and a
double Gaussian (Sect. 3.1.2) with both a 106.1 K component
and a higher temperature component with a centroid temperature
ranging from 106.6 K to 107.2 K.

3.1.1. Single Gaussian forms

Figure 2 shows the results using simulated “ground truth” ξ(T )
that take the form of a Gaussian function of log10 T . For each
method we show the results for 25 different realizations of the
data, established by perturbing the data with Poisson noise; the
red line is the mean of these 25 reconstructions, while the gray
lines show the individual reconstructions for each realization.
From left to right, the various columns represent “ground truth”
ξ(T ) forms with a total3 Emission Measure EM=

∫
ξ(T ) dT =

1028 cm−5 and a standard deviation equal to 0.15 dex; the cen-
troid temperatures are given by log10 Tc=6.1, 6.2, 6.3, and 6.4.

Table 1 shows the values of two metrics that collectively
measure the fidelity, accuracy, and robustness of each DEM
reconstruction method. The first is the reduced χ2 metric, which

3 The “ground truth” ξ(T ) profiles are Gaussians with different
centroid temperatures but the same standard deviation in log10 T .
Thus the total Emission Measure EM =

∫
ξ(T ) dT=

∫
ξ(T ) T d ln T =

(ln 10)
∫
ξ(T ) T d log10 T scales as the peak value of the Gaussian times

its centroid temperature Tc. It follows that, in order for all the “ground
truth” profiles to have the same EM, the peak value of each profile must
be inversely proportional to its centroid temperature Tc = 10log10 Tc . This
pattern is evident in Fig. 2.
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Fig. 2. Results of the single-Gaussian simulation tests. From top to bottom: reconstructions of simulated Gaussian ξ(T ) profiles by means of the
basis pursuit (BP) technique (Cheung et al. 2015), the FIR inversion method of Plowman et al. (2013), the iterative SITES technique (Morgan
& Pickering 2019), the regularization technique of Hannah & Kontar (2012, REG), the ML method defined in Eq. (18), and finally our proposed
RML technique. The black solid lines represent the “ground truth” configurations, which are all Gaussian functions of log10 T with total Emission
Measure EM =

∫
ξ(T ) dT = 1028 cm−5 and standard deviation equal to 0.15 dex. From left to right, the centroid temperatures are given by

log10 Tc = 6.1, 6.2, 6.3, and 6.4. The gray lines represent the reconstructions from 25 different realizations of Poisson-noise-perturbed data; the
red lines represent the mean values of these 25 reconstructions. The ξ(T ) profiles are plotted as a function of the (base 10) logarithm of the
temperature (K), so that the peak value of each Gaussian is inversely proportional to 10x, where x is the abscissa.

measures the fidelity of the method with respect to the data: we
computed the sum of the squared differences (normalized by the
corresponding squared uncertainty) between the original five-
channel SDO/AIA spectral line data and the set of line intensities

produced by substituting the recovered ξ(T ) profiles into Eq. (3);
this quantity is then normalized by the number of degrees of
freedom. The second metric is the “normalized root mean square
error” (NRMSE), the root–mean–squared difference between the
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Table 1. Metrics for the single Gaussian “ground truth” model test.

Method log10 Tc = 6.1 log10 Tc = 6.2 log10 Tc = 6.3 log10 Tc = 6.4

Red. χ2 NRMSE
Mean

NRMSE
Std. Dev.

Red. χ2 NRMSE
Mean

NRMSE
Std. Dev.

Red. χ2 NRMSE
Mean

NRMSE
Std. Dev.

Red. χ2 NRMSE
Mean

NRMSE
Std. Dev.

BP 6.7± 1.2 0.10 0.01 7.8± 1.1 0.19 0.04 6.1± 1.8 0.48 0.16 6.7± 0.9 1.22 0.01
FIR 2.5± 1.1 0.55 0.06 1.8± 1.3 0.54 0.05 2.0± 1.4 0.81 0.06 2.5± 1.4 1.29 0.02

SITES 2.7± 1.2 0.70 0.05 2.2± 1.6 0.60 0.07 0.9± 1.1 0.24 0.05 0.8± 0.7 0.47 0.13
REG 45± 14 0.42 0.04 41± 14 0.49 0.06 27± 23 0.83 0.14 9.9± 15 1.27 0.08
ML 2.7± 1.1 0.61 0.09 2.4± 1.3 0.50 0.11 2.2± 1.5 0.42 0.07 1.2± 1.2 0.37 0.07

RML 1.9± 1.5 0.48 0.04 1.6± 1.6 0.44 0.05 1.4± 1.5 0.87 0.01 1.0± 0.6 1.41 0.09

Notes. The rows represent the six different reconstruction methods used (see text), while the columns are labeled by the (logarithm of the) centroid
temperature of the Gaussian. For each case, the column “Red. χ2” is the mean± standard deviation of the reduced χ2 values over the 25 different
realizations of the simulated data, while the next two columns measure the mean of the normalized root mean square error between the 25 recovered
ξ(T ) profiles (a measure of the accuracy of the recovered profile) and its standard deviation (a measure of the robustness of the recovered profile to
the introduction of data noise).

“ground truth” ξGT
j and reconstructed ξREC

j profiles, normalized
by the mean intensity of the “ground truth” profile:

NRMSE =

√
1
n
∑n

j=1

(
ξGT

j − ξ
REC
j

)2

1
n
∑n

j=1 ξ
GT
j

. (21)

The mean value of this metric over the 25 different noisy data
realizations provides a measure of the accuracy of the recon-
struction, while its standard deviation over this set of realizations
is a measure of the robustness of the method, i.e., the sensitiv-
ity of the recovered ξ(T ) profile to data noise. Table 1 shows
the mean and standard deviation of both the reduced χ2 and the
NRMSE, for the different “ground truth” input DEM functions
used and for each of the six reconstruction methods studied. To
emphasize the different types of information that we derive from
the mean and the standard deviation of the NRMSE metric, we
report in Table 1 the mean and standard deviation in two different
columns.

We now discuss the features of the various reconstructions.
1. The basis pursuit (BP) approach of Cheung et al. (2015)

(first row of Fig. 2) is very robust, as evident from the near-
congruence of most of the gray curves for the 25 different
data realizations and the very low standard deviation values of
the NRMSE metric in Table 1. (The only exception is for the
simulation centered on log10 Tc = 6.3, for which one of the
25 reconstructions is corrupted by spurious features.) Com-
pared to the other inversion methods, BP appears to be the
most accurate in reconstructing the “ground truth” ξ(T ) profiles
with log10 Tc = 6.1 and 6.2, as is evident from the lowest mean
NRMSE values (Table 1). This high degree of accuracy is likely
due to the strong similarity between the shapes of the simulated
“ground truth” configurations and the (Gaussian) basis functions
used by this method. However, the fidelity of the reconstructed
ξ(T ) forms becomes poorer for higher centroid temperatures
(third and [especially] fourth columns of Fig. 2). We note that
the mean χ2 values of the BP reconstructions are systematically
larger than those associated with the FIR, SITES, ML, and RML
methods. This is probably because the BP method slightly under-
estimates the peak DEM value and, in order to limit the number
of basis functions that are used, it does not compensate for this
by adding spurious features at high temperatures, as do SITES
and ML (see below).

2. The fast iterative regularized (FIR) methodology of
Plowman et al. (2013, second row of Fig. 2) has good fidelity,
with a reduced χ2 of order unity (Table 1). However, it sig-
nificantly overestimates the peak in ξ(T ) for the low centroid
temperature cases, while underestimating it (and shifting the
peak to lower temperatures) for cases with higher centroid tem-
peratures. This worsens the agreement with the corresponding
“ground truth” configurations with respect to BP, as evidenced
by the much higher values of the mean NRMSE value (Table 1).
The method is very robust: the NRMSE standard deviations have
values that are among the lowest of all the methods studied.

3. The iterative SITES method of Morgan & Pickering (2019)
(third row of Fig. 2) produces quite acceptable reduced χ2

and NRMSE metrics, especially for the “ground truth” profiles
centered at log10 Tc = 6.3 and 6.4. However, for low-centroid-
temperatures, it recovers a ξ(T ) profile that is significantly
broader (with a commensurately lower peak value) than the
“ground truth” profile. This is to be expected: the essence of
the SITES algorithm is to add, at each iterative step, a correc-
tion to the ξ(T ) profile that is based on the difference between
the set of forward-fit spectral line intensities and those observed.
Any such correction must necessarily introduce structure in ξ(T )
that was not present in the previous iteration, and thus, as the
number of iterations is increased to provide a better match to the
data, the method produces ξ(T ) profiles that are progressively
broader, leading to a final result that is substantially broader than
the “ground truth.” Indeed, Morgan & Pickering (2019) note that
“SITES performs poorly for narrow DEM profiles at all temper-
atures,” such that “narrow peaks are found by SITES, but are
smoother,” and this characteristic is evident in the application to
AIA data in Sect. 3.2. The method also introduces a spurious
component at very high temperatures (log10 T ≳ 7.2) in the first
three cases, presumably to compensate for the relative inability
of the low-temperature component, with its substantial devia-
tion from the “ground truth” profile, to adequately fit the data
by itself.

4. The regularized approach of Hannah & Kontar (2012,
REG; fourth row of Fig. 2) typically underestimates the value
of the peak and/or shifts it to lower temperatures. The mean
reduced χ2 values tend to be quite large since, because of the
underestimated value of the peak DEM, the intensities in the
171 Å, 193 Å and 211 Å channels are poorly fitted. However,
the reconstructed ξ(T ) profiles are generally consistent with the
respective ground truth configurations, as evidenced by mean
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NRMSE values similar to (or even better than) those correspond-
ing to the reconstructions produced by the other methods. The
relatively poor data–fitting performance of the method is likely
due to the significant emphasis that the penalty term in the min-
imization Eq. (7) places on smoothness of the recovered ξ(T )
profile, even at the expense of loss of fidelity in matching the
input data.

5. The (unregularized) maximum likelihood (ML) method
based on Eq. (18) (fifth row of Fig. 2) produces acceptable val-
ues of both the mean reduced χ2 and NRMSE metrics; however,
it underestimates the peak ξ(T ) for the two lowest centroid tem-
perature cases. This method performs much better for cases with
a higher centroid temperature, and in all cases it well reproduces
the value of that centroid temperature. However, it systematically
creates a spurious artifact at temperatures log10 T ≳ 7.1. Because
of the presence of artifacts at high temperatures (particularly for
the two configurations with lowest centroid temperatures), the
total Emission Measure EM =

∫
ξ(T ) dT of the reconstructions

provided by ML and SITES is ∼3 to 4 times larger than the
ground truth value of 1 × 1028 cm−5. The method is also less
robust than BP and FIR, with significant differences between
the reconstructed ξ(T ) profiles for the 25 different data realiza-
tions and hence higher standard deviation values of the NRMSE
metric in Table 1.

6. The regularized maximum likelihood (RML) method
(final row of Fig. 2) produces reduced χ2 values that are all of
order unity, indicating that it is able to fit the data with high
fidelity. It also reproduces the peak intensities and centroid tem-
peratures of the input ξ(T ) with log10 Tc = 6.1 and 6.2 (first
two columns of Fig. 2) with greater accuracy compared to FIR,
SITES and ML, as indicated by the lower mean NRMSE values
(Table 1). However, the RML method does progressively under-
estimate the high-temperature wings (at log10 T ≃ 6.5) in the
third column, and significantly underestimates the log10 T = 6.4
centroid temperature in the last column. Indeed, underestima-
tion of ξ(T ) at such temperatures is a common element of all
of the reconstruction methods tested (except ML and, to a lesser
extent, SITES). Reference to Fig. 1 reveals why this may be the
case: temperatures log10 T ≃ 6.3 − 6.7 correspond to rather low
values of the temperature response curves Ki(T ) in all channels,
so that fitting the data in any observed channel is more straight-
forwardly accomplished by adding a relatively small amount of
emission measure at other temperatures. Finally, RML is a very
robust method, as evidenced by the values of the NRMSE stan-
dard deviation, which, except for the configuration centered at
log10 Tc = 6.4, are among the lowest produced by any method.

3.1.2. Double Gaussian forms

Figure 3 shows the results obtained with simulated “ground
truth” ξ(T ) that take the form of two Gaussian functions of
log10 T . In application of the methods to real data (see Sect. 3.2
below), it is apparent that ascertaining the veracity of recov-
ered high-temperature (log10 Tc≳7.0) components in ξ(T ) is
important. Hence, in the simulation test shown in Fig. 3, the
lower-temperature Gaussian has a total Emission Measure EM=∫
ξ(T ) dT =1028 cm−5 and a standard deviation of 0.1 dex,

and is centered on log10 Tc = 6.1, while the higher-temperature
Gaussian has a total Emission Measure EM=

∫
ξ(T ) dT== 2 ×

1028 cm−5 and a standard deviation of 0.15 dex, and is cen-
tered on four different values of log10 Tc = 6.6, 6.8, 7.0 and 7.2.
Again, the gray lines represent the reconstructions from 25 dif-
ferent data realizations, and the red lines represent the mean

values of these 25 reconstructions. Table 2 shows the means and
standard deviations of the same two validation metrics used in
Table 1.

1. The basis pursuit (BP) approach of Cheung et al.
(2015) generally underestimates the intensity of both the low-
temperature and high-temperature components, the latter being
especially obvious in the first column, corresponding to a high-
temperature component with the lowest centroid temperature of
the four cases considered. The resulting mean NRMSE values
(Table 2) are hence considerably larger than those for the first
two cases presented in the single-Gaussian experiment. This
underestimation of the peak intensity of the low temperature
component is likely the reason for the rather large mean χ2 val-
ues (Table 2). With the exception of the test presented in the first
column, and, to a lesser extent, the test presented in the fourth
column, the BP method does correctly identify the approximate
centroid temperatures of both low- and high-temperature com-
ponents. As measured by the standard deviation of the NRMSE
values, the robustness of the method for the double-Gaussian
case is comparable to that for the single-Gaussian case. However,
as expected from the more complex configuration that has to
be reconstructed, the NRMSE standard deviation values corre-
sponding to the first two configurations presented in Table 2 are
slightly larger than most of those obtained in the single-Gaussian
test.

2. The FIR approach (Plowman et al. 2013) typically under-
estimates the high-temperature component, but apparently com-
pensates for this by significantly overestimating the intensity of
the low-temperature component. Similar to the results for the
single-Gaussian experiment, the method is able to fit the data
with high fidelity, as shown by mean reduced χ2 values that are
generally of order unity. It also reproduces the “ground truth”
profile rather accurately, as evident from mean NRMSE values
(Table 2) that are among the lowest of all the methods consid-
ered. With regard to robustness, there is considerable variation
in the reconstructions for different data realizations, particularly
with reference to the high-temperature component. This results
in a standard deviation of the NRMSE metric which is almost
always larger than those for the other methods.

3. In all cases the iterative SITES method of Morgan
& Pickering (2019) significantly broadens the low-temperature
Gaussian component and concomitantly underestimates its peak
value, similar to the method’s performance in the single-
Gaussian tests (Fig. 2). To compensate for this, and still repro-
duce reasonably low reduced χ2 values (see Table 2), the method
introduces a spurious feature at log10 T ≳ 7.2. This behavior,
similar to that of the ML method (see below), results in mean
NRMSE values that are generally quite large (near unity; see
Table 2). Similar behavior is found in Fig. 5 of Morgan &
Pickering (2019), who note that “the hot peak is well-fitted by
SITES, but the fit for the cool peak is poor.” For the case with
a high-temperature component at log10 Tc=6.8 (second column
of Fig. 3) SITES does a reasonable job of fitting this high-
temperature component, but its performance is not as good for
other centroid temperatures for the high-temperature component.

4. The regularized inversion technique (REG) of Hannah
& Kontar (2012) significantly underestimates both low- and
high-temperature components, especially for lower values of the
centroid temperature of the high-temperature component. This
is particularly evident in the case presented in the first column
of Fig. 3, where the method consistently produces a rather large
χ2 value. Interestingly, in all the other double-Gaussian cases,
REG systematically fits the data with remarkable fidelity, with
mean reduced χ2 values very close to unity. The method is also
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Fig. 3. Results of the double-Gaussian simulation tests. From top to bottom: Reconstructions of a simulated double Gaussian ξ(T ) profile by means
of the basis pursuit (BP) technique (Cheung et al. 2015), the FIR inversion method of Plowman et al. (2013), the iterative SITES technique (Morgan
& Pickering 2019), the regularization technique of Hannah & Kontar (2012, REG), the ML method defined in Eq. (18), and finally our proposed
RML technique. The black solid lines represent the “ground truth” configurations, which consist of double Gaussian profiles. The left Gaussian
has a total Emission Measure EM =

∫
ξ(T ) dT = 1028 cm−5 and a standard deviation of 0.1 dex, and is centered on log10 Tc = 6.1, while the right

Gaussian has a total Emission Measure EM =
∫
ξ(T ) dT = 2 × 1028 cm−5 and a standard deviation of 0.15 dex, and is centered on (from left to

right) log10 Tc = 6.6, 6.8, 7.0 and 7.2. The gray lines represent reconstructions from 25 different realizations of Poisson noise affecting the data;
the red lines represent the mean values of these 25 reconstructions. The ξ(T ) profiles are plotted as a function of the (base 10) logarithm of the
temperature (K).

among the most accurate and robust, as evident from the low
means and standard deviations of the NRMSE metric. Consis-
tently, the ξ(T ) profiles for the 25 different data realizations are
very similar, even to the point of consistently reconstructing the

spurious high-temperature features at log10 T ≳ 7.2. Similar arti-
facts are also present in the reconstructions shown in the first
two columns of Fig. 2, although, in these cases, they are less
prominent.
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Table 2. As for Table 1, but for the double Gaussian “ground truth” model tests.

Method log10 Tc = 6.6 log10 Tc = 6.8 log10 Tc = 7.0 log10 Tc = 7.2

Red. χ2 NRMSE
Mean

NRMSE
Std. Dev.

Red. χ2 NRMSE
Mean

NRMSE
Std. Dev.

Red. χ2 NRMSE
Mean

NRMSE
Std. Dev.

Red. χ2 NRMSE
Mean

NRMSE
Std. Dev.

BP 9.1± 1.3 0.69 0.03 12± 0.9 0.47 0.06 11± 0.7 0.38 0.02 10± 0.4 0.41 0.01
FIR 2.0± 0.8 0.73 0.05 2.3± 0.7 0.60 0.08 2.5± 0.7 0.68 0.07 2.2± 0.8 0.84 0.07

SITES 3.5± 1.1 0.84 0.05 1.7± 0.3 1.04 0.03 1.0± 0.1 1.19 0.02 1.3± 0.6 1.23 0.03
REG 33± 18 0.80 0.03 1.3± 0.2 0.50 0.04 1.2± 0.1 0.58 0.03 1.5± 0.7 0.54 0.02
ML 2.5± 1.0 0.79 0.06 0.5± 0.1 1.36 0.09 0.17± 0.04 1.60 0.04 0.3± 0.1 1.50 0.04

RML 0.8± 0.1 0.69 0.03 0.8± 0.1 0.58 0.02 0.7± 0.1 0.66 0.01 0.7± 0.1 0.73 0.01

Notes. The columns are labeled by the (logarithm of the) centroid temperature of the high-temperature Gaussian component; all models also have
a lower-temperature Gaussian component with log10 Tc = 6.1 (see Sect. 3.1.2 and Fig. 3).

5. The (unregularized) maximum likelihood (ML) approach
significantly underestimates the magnitude of the low-
temperature component, and severely overestimates both
the magnitude and width of the high-temperature component, in
all cases creating features at temperatures well in excess of any
that are actually present in the “ground truth” ξ(T ) profile. The
presence of these artifacts is reflected in the large (near unity)
mean values for the NRMSE metric. Similar to the SITES recon-
structions, these spurious features are most likely introduced to
compensate for the underestimated peak of the low-temperature
component, as evidenced by the low mean reduced χ2 value
(see Table 2). Interestingly, similar to REG, ML deduces these
(erroneous) high-temperature ξ(T ) features rather robustly, as
evidenced by values of the NRMSE standard deviation that are
comparable to those provided by the other methods. We finally
note that, due to the presence of high temperature artifacts, the
total Emission Measure of the reconstructions provided by ML
and SITES ranges from 8 × 1028 cm−5 to 1.5 × 1029 cm−5, and
from 1.0 × 1029 cm−5 to 1.2 × 1029 cm−5, respectively; all these
are an order of magnitude larger than the ground truth value of
3 × 1028 cm−5.

6. The regularized maximum likelihood approach (RML)
tends to slightly overestimate the centroid temperature of the
low–temperature component. However, together with SITES, it
is the most accurate in reconstructing both the centroid and
peak value of the high temperature components for the tests
presented in the second column of Fig. 3. Further, only RML,
SITES and ML suggest the presence of the (actual) high-
temperature component in the test case considered in the first
column, albeit without always accurately reproducing the cen-
troid temperature of this component. A comparison with the
results obtained by means of the (un–regularized) ML method
shows the effectiveness of the adopted regularization, which sup-
presses spurious high-temperature features present in the ML
reconstructions. Table 2 shows that RML achieves a good com-
promise between fidelity to the data and accuracy (similarity to
the ground truth configuration), with mean reduced χ2 values
that are systematically close to unity and mean NRMSE val-
ues that are systematically among the lowest for the methods
considered. The RML method also proves to be very robust,
with NRMSE standard deviations that are systematically the low-
est (Table 2). Most importantly, comparing the single-Gaussian
results of Fig. 2 and the double-Gaussian results of Fig. 3, it is
apparent that the RML method recovers a (suitably scaled and
positioned) high-temperature component if and only if one is
actually present.

3.2. Application to AIA data

Here we compare4 the ξ(T ) reconstructions for a selected set of
pixels in the 2010 November 3 12:15 UT event previously studied
by Hannah & Kontar (2013). Fig. 4 shows the general morphol-
ogy of the region, which produced both a flare and an erupting
flux rope, at 12:15:02 UT in several SDO/AIA channels. Eight
pixels (see Fig. 5) were selected by Hannah & Kontar (2013) as
representative of different features in the field of view. In Fig. 5
we show the ξ(T ) reconstructions for each of these pixels by
the various reconstruction methods (excluding the problematic
unregularized ML method) considered above. Below we discuss
and compare the general features of the results obtained.

– Pixel 1 – Core of the erupting plasmoid: The various recon-
structions are quite similar, and clearly show two components
to the emission, a relatively cool one at around 1.5 × 106 K
and a hotter one at around 107 K. We agree with the inter-
pretation of Hannah & Kontar (2013) that these components
probably represent the background corona along the line of sight,
and the plasmoid emission, respectively. The methods provide
consistent reconstructions of the low–temperature component,
although SITES returns a significantly broader high tempera-
ture wing. For the high–temperature component, the centroid is
consistently retrieved by the different techniques, while its recon-
structed peak value, width and skewness vary somewhat from
method to method.

– Pixel 2 – Filament/stem behind the plasmoid: Here the rel-
atively cool background line-of-sight emission is about 3× more
intense than for Pixel 1, while the hot component is about 3× less
intense. Although most of the methods agree on the tempera-
ture of the two components, the FIR method appears to broaden
the low-temperature component and shift its centroid temper-
ature downward slightly, while, as expected from the results
of Sects. 3.1.1 and 3.1.2, the SITES method produces a much
broader profile with a lower value of ξ(T ) at the centroid.

– Pixel 3 – High corona away from the event: This pixel con-
tains a relatively small amount of emission (peak value of ξ(T ) ≃
2 × 1020 cm−5 K−1) at a temperature around log10 T = 6.2,

4 Small differences between the results presented in this paper and
those in Hannah & Kontar (2013) result from the fact that we do not
consider the AIA 335 Å channel in reconstructing the ξ(T ) profiles.
Although, as discussed in Sect. 3.1 above, the 335 Å channel has a small
emissivity function over the temperature range of interest (Fig. 1) and
hence can lead to the introduction of spurious features in the recovered
ξ(T ) profiles, this very consideration means that its influence on the
recovered ξ(T ) profiles is not entirely negligible.
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Fig. 4. Images recorded by AIA on November 3, 2010 around 12:15:02 UT in the 94 Å, 131 Å, 171 Å, 193 Å, and 211 Å channels, from left to right,
respectively.

Table 3. Reduced χ2 values for the various pixels in the 2010 November 3 solar eruptive event (Fig. 5), for five different DEM reconstruction
algorithms.

Method Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8

BP 2.13 1.96 1.05 1.62 2.13 2.45 1.49 1.44
FIR 1.11 2.82 0.57 0.94 3.98 0.67 1.11 0.83
SITES 0.40 3.00 0.08 0.14 0.31 1.22 0.14 0.08
REG 1.03 1.27 1.15 1.18 0.90 2.35 1.16 11.36
RML 0.55 0.65 0.35 0.72 0.99 0.70 0.86 0.94

similar to the temperature of the background corona components
in Pixels 1 and 2. The BP, REG and RML methods agree on the
centroid temperature of this component, although BP produces
an enhanced high–temperature wing and RML returns a higher
estimate of the peak value of ξ(T ). However, the reconstructions
by BP and REG both fall within the ±1σ error bars associated
with the RML reconstruction, suggesting that this is simply due
to statistical uncertainty in the data. The FIR and SITES meth-
ods again (cf. Pixels 1 and 2) produce a broader peak with an
enhanced low (high) temperature wing compared to the other
methods.

– Pixel 4 – Corona away from the event: All methods agree
very well as to the presence and intensity of a relatively cool
log10 T ≃ 6.2 component; however, the SITES method again pro-
duces a much broader profile, and considerations similar to those
for Pixel 3 apply to the enhanced high–temperature wing pro-
duced by BP and the higher estimate of the peak flux returned by
RML.

– Pixel 5 – Corona near the event: Again, all methods
agree very well as to the presence and intensity of a relatively
cool log10 T ≃ 6.2 K component; however, the FIR method
substantially overestimates the low-temperature “wing” of this
component relative to the other three methods, while the SITES
method overestimates the high-temperature wing. Further, simi-
lar to Pixels 3 and 4, the BP method reconstructs a ξ(T ) profile
that is more skewed toward higher temperature values.

– Pixel 6 – Low corona flare emission: All methods agree
very well with regard to both the relatively cool (log10 T ≃
6.2) and hot (log10 T ≃ 7.1) components present. Again, the
FIR method creates a low-temperature ξ(T ) component that is
broader (and skewed toward lower temperatures) than those of
the other methods. Further, both the BP and the SITES recon-
structions of the high–temperature component show an enhance-
ment in the high–temperature wing, while the other methods
agree quite well in terms of the centroid value, peak intensity
and width of the reconstructed high–temperature component.

– Pixel 7 – Envelope just ahead of the plasmoid: Here the FIR
method once again produces a centroid of the low–temperature

component that is broader and slightly shifted toward lower
temperatures compared to the other reconstructions, while the
SITES method again produces a broader component with an
enhanced high-temperature wing. Also, the BP method retrieves
an enhanced high-temperature “wing” for this component. There
is also evidence of a weak high-temperature (log10 T ≃ 7.0) com-
ponent. Given the location of this material, it is not unreasonable
to expect additional heating there, given, for instance, the find-
ings of Mishra et al. (2020) that “the CME is in the heat-releasing
state (i.e., entropy loss) throughout its journey from the Sun to
Earth”.

– Pixel 8 – Further ahead of the plasmoid: Here all meth-
ods agree that there is a low-temperature component with an
intensity similar to that of Pixel 7. The BP and SITES meth-
ods both show an enhancement in the high–temperature wing
of the ξ(T ) profile. The 131 Å image shows that this pixel is at
the leading edge of the erupting material, providing (similar to
Pixel 7) a plausible explanation for such enhanced heating of the
low-temperature component.

In any ill-posed inversion problem, there is a necessary trade-
off between fidelity to the data and accuracy in the recovered
solution. The fidelity to the AIA data is determined by the
reduced χ2 values shown in Table 3, which are based on a com-
parison of the original data with the line intensities obtained
by substituting the recovered ξ(T ) profile into Eq. (3). Most
of the χ2 values for the eight pixels are of order unity, show-
ing that the data is well-fit but not overfitted at the expense
of the plausibility of the ξ(T ) profile. Notable exceptions are
many of the SITES reconstructions, which have reduced χ2

values that are generally below unity: the resulting overfitting
of noisy data could be among the reasons behind the pres-
ence of spurious artifacts in the reconstructions. Other notable
exceptions occur in application of the FIR method to Pixel 5,
where the method creates a more intense peak compared to
the reconstructions by the other methods, and in application
of the REG method to Pixel 8, where the reconstruction has a
significantly lower peak value compared to those of the other
methods.
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Fig. 5. DEM profiles reconstructed from observed AIA count rates in selected pixels of the 2010 November 3 event. Top row: AIA images recorded
around 12:15:02 UT in the 131 Å and 211 Å channels (left and right panel, respectively). The numbered crosses denote the location of the pixels
selected for a comparison of the ξ(T ) profiles reconstructed by the different methods. Second to fifth row: ξ(T ) profiles associated with Pixels 1
through 8. In each panel, the profiles reconstructed by the BP, FIR, SITES, REG and RML methods are plotted in magenta, blue, brown, green,
and orange, respectively. The ±1σ uncertainties associated with the SITES, REG and RML reconstructions have been added as error bars at each
temperature point in the pertinent reconstruction. The intensities of the reconstructions of Pixels 1, 3 and 5 have been multiplied by a factor of 2.
The intensity axes are linear, while the temperature axes are in terms of log10 T (K).

3.3. Differential emission measure maps

In Fig. 6, we show the DEM maps reconstructed by each of the
five reconstruction methods considered (rows), at five different

temperatures (columns), logarithmically scaled with a factor of
two between successive temperatures. In each map, the pixel
value corresponds to the value of the DEM profile ξ(T ) cal-
culated for that specific pixel at the temperature in question.
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Fig. 6. DEM maps reconstructed from the AIA images shown in Fig. 4. Rows, from top to bottom: the BP method (Cheung et al. 2015), the FIR
method (Plowman et al. 2013), the SITES method (Morgan & Pickering 2019), the REG method (Hannah & Kontar 2012), and our proposed RML
method. The images of each column correspond to the same temperature, which is reported in the top left corner of the first row panels. The same
color map is shared by each of the images in the same temperature column, with different (logarithmic) scalings for the different temperatures.

As pointed out by Hannah & Kontar (2013), for some temper-
atures the DEM maps closely resemble the images from one of
the AIA channels: for example, the T = 1.4 MK map closely
resembles the 171 Å image, and the T = 11 MK map closely
resembles the 131 Å image. These close matches reflect the well-
defined peaks in the response curves for those channels at those
respective temperatures (Fig. 1). However, the DEM maps for
other temperatures reveal features that are not as apparent in
the individual SDO/AIA images, such as the large region of
emission extending out to coordinates (x ≃ −1100, y ≃ [−450 :
−350]) above the eastern limb in the T = 2.8 MK maps. This fea-
ture is reproduced consistently by all the reconstruction methods
(see Fig. 6), confirming its reality and highlighting the gener-
ally complicated relationship between temperature and emitted
wavelength, particularly for SDO/AIA channels with a relatively
broad temperature response. We also note (cf. remarks in Sect. 1)
that the DEM maps produced by the BP method (see Fig. 6)
contain 253 “null” pixels, showing points where the simplex

optimization method adopted by BP has not been able to find
a solution that satisfies all the required constraints. Finally, look-
ing at the high temperature (22 MK) maps, we see that the
SITES method produces a relatively high amount of emission
at these temperatures (cf. the results of Sects. 3.1.1 and 3.1.2).
On the other hand, the RML method, consistent with the way
it is designed (with a regularization term that acts to suppress
the presence of ξ(T ) features at high temperatures; see remarks
following Eq. (19)), produces substantially less emission at such
high temperatures.

In Fig. 7, we show the RML 2.8 MK DEM map, together
with a map of the regularization parameter λ (Eqs. (19) and (20))
used at each pixel within the image and a histogram of the λ val-
ues used throughout the image. In general, bright pixels have a
higher signal-to-noise ratio and hence require a lower degree of
regularization during the inversion process, and Fig. 7 indeed
shows that the more intense regions of the flare are associ-
ated with smaller values of the regularization parameter λ. The
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Fig. 7. Distribution of values of the RML regularization parameter. Left panel: reconstructed DEM map corresponding to T = 2.8 MK, produced
by the RML method. Middle panel: value of the regularization parameter λ used at each pixel within the image. Right panel: histogram of the
λ values selected by RML for the ∼250 000 0.6′′ × 0.6′′ pixels within the image.

number of pixels that use a given value of λ has an approximately
monotonic dependence on λ: most pixels require a high degree
of regularization to produce a physically acceptable result, while
a few pixels in the most intense regions of the flare produce a sat-
isfactory ξ(T ) profile with little to no regularization required. It
is important to note, however, that the value of the regularization
parameter is not simply determined by the statistical quality of
the data: the optimal regularization parameter value selected by
the Morozov discrepancy principle also depends on the “shape”
of the DEM profile to be reconstructed. Finally, we note that,
given the several orders of magnitude spanned by the values
of the regularization parameter λ necessary to yield acceptable
reduced χ2 values in all pixels, approximating the regularization
parameter with a constant value would result in a substantial
decrease of the RML performance, both in terms of fidelity to
the data and accuracy of the reconstructed ξ(T ) profiles.

4. Summary

The results of Sects. 3.1 and 3.2 show that, both for simulated
and actual AIA data, the ξ(T ) reconstructions obtained using
the regularized maximum likelihood (RML) method described
in Sect. 2 are broadly compatible with those of other methods;
in no case does the RML method create a ξ(T ) profile that is
an “outlier,” and, with the possible exception of the very weak
(and hence statistically uncertain) Pixel 3, in no case is its χ2

value unacceptably large (corresponding to over-smoothing) or
unacceptably small (corresponding to over-fitting of data).

As evidenced by the reconstructed ξ(T ) profiles constructed
from different (Poisson-noise) realizations of the data (Figs. 2
and 3), and by comparisons of the spectral line data produced by
using the “ground truth” and recovered ξ(T ) profiles in Eq. (3),
the RML method5 is characterized by excellent performance
in all three areas of concern: fidelity to the data, accuracy in
the reconstructed ξ(T ) profiles, and robustness in the presence
of data noise. Further, it is straightforward to implement and
computationally efficient, taking6 about 35 s to reconstruct ξ(T )
profiles for 500 × 500 pixels (∼7000 ξ(T ) reconstructions per s)

5 Both IDL and Python codes that implement the RML method are
available at https://github.com/paolomassa/WAFFLE.git
6 When a more efficient rule for the selection of the regularization
parameter (which does not involve performing multiple reconstructions
as is the case when the Morozov discrepancy principle is employed)
is implemented, the computational time for reconstructing 500 × 500
ξ(T ) profiles (without uncertainty estimation) should decrease to less
than 10 s.

on an Apple MacBook Pro M1 (Chip Apple M1, CPU 8-core)
processor, without considering need to reconstruct solutions for
multiple data realizations in order to estimate the uncertainty
on the solution. Further, it does not require an a priori choice
of a parametric functional form and, very importantly for this
particular application, always generates a nonnegative solution
without the need to impose a posteriori adjustments on the solu-
tions obtained (cf. Plowman et al. 2013). We conclude that it is
an appropriate method to use in the construction of ξ(T ) profiles
from pixel-by-pixel AIA data.

In future work we will develop a more general version of
RML that is applicable to other data sets, such as those from
EIS or XRT, in order to better constrain (cf. Hannah & Kontar
2013) the overall solution of the DEM reconstruction problem.
Given the general features of the RML reconstructions (exis-
tence, fidelity, accuracy, robustness, and nonnegativity), this
DEM reconstruction method is particularly suitable for the appli-
cation of machine learning tools to solar data. Furthermore, the
computational efficiency of the method will allow us to generate,
from AIA data in near real-time, four-dimensional data hyper-
cubes ξ(x, y; T ; t) (see Sect. 5 of Massa & Emslie 2022) that
represent a time series of DEM maps. Application of machine
learning tools to such hypercubes, each labeled with the even-
tual level of activity (e.g., maximum GOES level, duration of
high levels of emission, total energy released) that results in the
event represented by the data hypercube in question, can be used
to identify both morphological and thermodynamic precursors
of solar activity (see, e.g., Gontikakis et al. 2020), thus pro-
viding a promising tool for predicting the timing, location, and
characteristics of solar eruptive events.
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