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Self-consistent calculation of discrete and continuous states
in spherical semiconductor quantum dots
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A self-consistent procedure for calculating the energy structure, wave functions, and charge distribution in
spherically symmetric semiconductor quantum dots is presented that takes account of both bound and free-
electron states. The Schro¨dinger and Poisson equations are solved iteratively while using the Morse-type
parametrized potential to keep the charge neutrality in each iterative step. Numerical calculations performed for
a GaAs-Al0.3Ga0.7As based quantum dot indicate that under realistic doping conditions bound states account
for most of the charge accumulated in the dot. However, the self-consistent potential very significantly modi-
fies the free-state wave functions and hence the bound-free transition matrix elements.
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I. INTRODUCTION

Semiconductor quantum dot structures have attracted
siderable research attention, both theoretical and experim
tal. Analytical models based on the multiband effective m
approximation, have been developed for spherically symm
ric dots,1 and self-consistent studies of the accumula
charge have been done.2 Yet, the free part of energy spec
trum in these structures was not very thoroughly studied
analogy to the more conventional quantum well structu
one may expect that free-electronic states in the dot may
become very important in some phenomena or applicat
of quantum dots.3 Here we present a self-consistent proc
dure for calculating the energy structure and charge distr
tion in quantum dots, taking account of both the bound a
free states. Also, we explore the influence of the s
consistency on intraband bound-bound and bound-free o
cal transitions.

II. THEORETICAL CONSIDERATIONS

A. The effective mass Schro¨dinger equation
for a quantum dot

Electronic states close to the conduction band extrem
can be described by a single-electron one-band effec
mass equation:

@E~2 i¹!1U~rW !#F~rW !5EF~rW !, ~1!

whereF(rW) denotes the envelope function. In the case
GaAs and similar materials with the isotropic electron effe
tive mass, Eq.~1! applied to a spherically symmetric qua
tum dot takes the form
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m* ~r !
¹ D1U~r !GRe~r !Yl m~u,f!

5ERe~r !Yl m~u,f!, ~2!

whereR(r ) is the radial part of the envelope function, an
m* (r ) the radially dependent electron effective mass. In
structure considered it is given by

m* ~r !5Hmw , r,R0

mb , r>R0,
~3!

whereR0 is the dot radius andmw(mb) are the effective
masses in GaAs~Al xGa12xAs!, i.e., the well and bulk ma-
terials. Introducing the new functionf l (k,r ) with
Re(r )5rf l (k,r ), as usual in such problems, we recast E
~2! into

1

r 2
d

drF r 2 1

m* ~r !

d

drS f l ~k,r !

r D G2
l ~ l 11!

r 3
f l ~k,r !

m* ~r !

1
2

\2 @E2U~r !#
f l ~k,r !

r
50 ~4!

with l denoting the orbital quantum number,U(r ) the po-
tential energy, and the constantk is related to energy,
E5(\2k2/2mb). The boundary conditions for the functio
f l (k,r ), in the center of the structure is4

lim
r→0

~2l 11!!! r2l 21f l ~k,r !51. ~5!

The asymptotic form of the solution of Eq.~4! for large
values of radii may be obtained by first writing its gene
solution as a linear combination of counterpropagating pl
waves f l (6k,r ) that satisfy the asymptotic boundar
conditions5

lim
r→`

e6 ikr f l ~6k,r !5 i l , ~6!
15 681 © 1997 The American Physical Society
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in terms of which the solution of Eq.~4! reads

f l ~k,r !5C1~k! f l ~k,r !1C2~k! f l ~2k,r !, ~7!

with

C1~k!5
i

2kl 11S mb

mw
D [ ~ l 12!/2]

f l ~2k!, ~8!

C2~k!52
~21! l i

2kl 11 S mb

mw
D 2[ ~ l 12!/2]

f l ~k!, ~9!

and f l (6k) denotes the Jost function defined as5

f l ~6k!5 lim
r→0

~6kr ! l f l ~6k,r !

~2l 21!!!
. ~10!

The solution of Eq.~4! may thus be written as

f l ~k,r !5
i

2kl 11Smw

mb
D [ ~ l 12!/2] @ f l ~2k! f l ~k,r !

2~21! l f l ~k! f l ~2k,r !#. ~11!

By comparing the solution of Eq.~4! for the constant effec-
tive mass case6 in the limit r→`,

f l ~k,r→`!→
i l 11e2 id l ~k!

2
@e2 ikr2~21! l e2id l ~k!eikr #,

~12!

and Eq.~11! in the same limit

f l ~k,r→`!5
i l 11

2kl 11Smw

mb
D [ ~ l 12!/2] @ f l ~2k!e2 ikr

2~21! l f l ~k!eikr ], ~13!

we find that the ratio of Jost functions remains unchang
i.e.,5

f l ~k!

f l ~2k!
5ei2d l ~k!, ~14!

so the asymptotic solution with the position-dependent m
~3! is of the same form as that with constant mass,

f l ~k,r→`!}C~k!sinFkr2 l p

2
1d l ~k!G . ~15!

The position-dependent effective mass is, however, refle
in the values of the phase-shift function.

B. Bound electron states

Value~s! k0 in the lower half of the complexk plane in
which the Jost function became zero correspond to bo
states of the system.6 From Eq.~11!, then, it follows that the
corresponding eigenfuntions asymptotically behave as
d,

ss

ed

d

f l ~k0 ,r→`!5
i l 11

2kl 11Smw

mb
D [ ~ l 12!/2] f l ~2k0!e

2 ik0r

}e2uk0ur . ~16!

As suggested by Eq.~16! we substitute f l (k,r )
5F l (k,r )e

2kr in Eq. ~4!, and the differential equation fo
F l (k,r ) inside the dot reads

d2F1l

dr2
22k

dF1l
dr

1F S 12
mw

mb
D k22S 2mw

\2 U~r !

1
l ~ l 11!

r 2 D GF1l 50 ~17!

and in the bulk (r.R0) it has the form

d2F2l

dr2
22k

dF2l
dr

2S 2mb

\2 U~r !1
l ~ l 11!

r 2 DF2l 50,

~18!

with the bound state energyE52(\2k2/2mb). The bound-
ary conditions to be imposed toF1l (k,r ) andF2l (k,r ) fol-
low from Eqs.~5! and~16! and from the continuity of radia
function derivative at the heterointerface

1

mw

dR1l
dr U

r5R02

5
1

mb

dR2l
dr U

r5R01

. ~19!

These read

F1l ~k,r50!50, F1l ~k,r5R02!5F2l ~k,r5R01!,

F2l ~k,r→`!51,
dF2l
dr U

r→`

50 ~20!

and

dF1l ~k,r5R02!

dr
5
mw

mb

dF2l ~k,r5R01!

dr
1S 12

mw

mb
D

3S k1
1

R0
DF2l ~k,r5R01!. ~21!

The normalization constantsCl (k) of the eigenfunctions
f l (k,r ) are to be determined from the unity-norm conditio

C. Free-electron states

The free-~continuous! electron spectrum is characterize
by positive energiesE5(\2k2/2mb), measured from the
conduction band edge deep in the bulk. From the asympt
expression~15! it follows that f l (k,r ) for large values of
r can be written as

f l ~k,r !5Im$ei [kr2~ l p/2!1d l ~k!]F l ~k,r !%. ~22!

Substituting it in Eq.~4! we find that forr.R0,

d2F2l

dr2
12ik

dF2l
dr

2S 2mb

\2 U~r !1
l ~ l 11!

r 2 DF2l 50,

~23!

and for r,R0,
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d2F1l

dr2
12ik

dF1l
dr

1F Smw

mb
21D k22S 2mw

\2 U~r !1
l ~ l 11!

r 2 D GF1l 50.

~24!

The boundary condition forF1l and F2l is found using
similar arguments as in the case of bound states, and re

F2l ~k,r→`!51,
dF2l
dr U

r→`

50,

F1l ~k,r5R02!5F2l ~k,r5R01!, ~25!

and

dF1l ~k,r5R02!

dr
5
mw

mb

dF2l ~k,r5R01!

dr
1Smw

mb
21D

3S ik2
1

R0
DF2l ~k,r5R01!. ~26!

To complete the construction of radial eigenfunctions o
should find the phase shiftsd l (k). Using Eq.~4! we find

Im$ei [kr2~ l p/2!1d l ~k!]F1l ~k,r50!%50, ~27!

wherefrom

tan†d l ~k!‡52
Im$F1l ~k,r50!%

Re$F1l ~k,r50!%
. ~28!

D. Electron density

The normalized bound state wave functions, upon tak
the modulus squared, and multiplying by the Fermi-Dir
distribution function f FDEi5@e[(Ei2EF)/kBT]11#21 are di-
rectly applicable for calculating the electron density
bound states, via

nb~r !5
1

2p (
l 50

l max

~2l 11! (
i51

Nb~ l !

uRi ,l ~r !u2f FD~Ei ,l !, ~29!

whereNb(l ) denotes the number of bound states for a
particular value ofl and the factor 2(2l 11) accounts for
the spin and magnetic quantum number degeneracy, an
functions are taken to be normalized as*0

`Rl
2 r 2dr51.

The expression for free-electron density, analogous to
~29!, depends on the type of free wave function normali
tion. Here we use the ‘‘box’’ normalization, i.e., take th
structure to be embedded in a spherical box~infinite poten-
tial!, its radiusRinf being very large. The continuous spe
trum in such a case becomes quasicontinuous, i.e., form
very dense discrete. With the effective mass depende
given by Eq.~3! the unnormalized free spectrum wave fun
tionsf l (k,r ) satisfy

7

2kE
0

Rinf
f l
2dr5F]f l

]k

]f l

]r
2f l

]2f l

]r ]k G
Rinf

. ~30!

From Eq. ~15! f l (k,Rinf→`)}sin@kRinf2(l p/2)1d l (k)#
and it follows from the above expression that
ds

e

g
c

y

the

q.
-

lly
ce

E
0

Rinf→`

f l
2dr5

1

2kFkSRinf1
]d l
]k D

2
1

2
sin2S kRinf2 l p

2
1d l ~k! D G

Rinf→`

,

~31!

i.e.,

E
0

Rinf→`

f l
2dr5

Cl
2 ~k!

2 FRinf1
]d l
]k G

Rinf→`

, ~32!

becausef l (k,Rinf)50. For the quasicontinuous spectru
we have8

dk

p
5

1

Rinf1
]d l ~k!

]k

, Cl
2 ~k!5

2 dk

p
~33!

and, using Eq.~29!, the free-electron density is given by

nc~r !5
1

p2(
l 50

l max

~2l 11!E
0

`

uRl 1k
~n! ~r !u2f FD S \2k2

2mb
D dk. ~34!

The bulk is taken to be uniformly doped with donors, a
degree of their ionization being

nd~r !5
Nd

112e$[EFb2EDb2U~r !]/kBT% , ~35!

whereNd , EFb , andEDb denote the donors density, bul
Fermi level, and donor ionization energy. Equation~35! ac-
counts for the influence of the local potentialU(r ) on the
degree of ionization.

E. Poisson equation

The electrostatic potential is found by solving the Poiss
equation,

¹@e~r !¹w~r !#52r, ~36!

wherer denotes the charge density and«(r ) the dielectric
permittivity which is also position dependent:«(r )5«1 for
r,R0 and«(r )5«2 for r.R0. Due to the spherical symme
try of structure Eq.~36! thus becomes

1

r 2
d

drFe~r !r 2
dw

dr G52r, ~37!

with w(r ) satisfying the boundary condition
w(0)50,dw/drur5050, the first of which is simply the
choice of reference. Integrating~37! then delivers

w~r !5
1

r E0
r v~v2r !r~v !

«~v !
dv. ~38!

Sincer(r )52e@nb(r )1nc(r )2nd(r )#, the ionized donors
density is
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nd~r !5H 0, r,R0

Nd

112e[EFb2ED~r !]/kBT
, r.R0

. ~39!

The potential inside the dot (r,R0) is

w~r !5
e

«1
F E

0

r

v@nb~v !1nc~v !#dv

2
1

r E0
r

v2@nb~v !1nc~v !#dvG ~40!

and outside (r.R0)

w~r !5
e

«1
F E

0

R0
v@nb~v !1nc~v !#dv2

1

r E0
R0
v2@nb~v !

1nc~v !#dvG1
e

«2
F E

R0

r

v@nb~v !1nc~v !2nd~v !#dv

2
1

r ER0
r

v2@nb~v !1nc~v !2nd~v !#dvG ~41!

and the potential energy isU(r )52ew(r )2DEc
•u(R02r ).

F. Charge neutrality of the structure

The global charge neutrality of the structure implies th

E
0

`

@nb~r !1nc~r !2nd~r !#r 2dr50. ~42!

Substituting the expressions for charge densities in Eq.~42!
and using some analytical properties of free-state wave fu
tions ~see the Appendix!, we find

1

p2 (
l 50

`

~2l 11!F \2

4mbkBT
E
0

` d l ~k!kdk

cosh2S \2k222mbEFb

2mBkBT
D

2 2
d l ~0!

11e2EFb/kBTG1
1

2p (
l 50

l max

~2l 11! (
i51

Nb~ l !

f FD~Ei !

2E
0

R→`

@ncb2nd~r !#r 2dr50, ~43!

wherencb in the last integral denotes the electron density
the bulk.

G. The parametric self-consistent procedure

Within the self-consistent procedure the Schro¨dinger and
Poisson equations are solved iteratively. Somewhat diffe
from the conventional self-consistent procedure that de
only with bound states, we have employed the parametr
tion of Hartree potential8,9 within each iterative step, which
enables one to enforce the charge neutrality condition
contributes to the numerical stability of the procedure.
effect, inside the dot the potential is obtained by direct n
t

c-

nt
ls
a-

d

-

merical integration of the Schro¨dinger equation, and in the
bulk region the potential is written as a Morse-type functi
with three parameters

w~r2R0!5
w0

12b
@e2l~r2R0!2be22l~r2R0!#, ~44!

as is customarily done in such a case.8,9 Herew0 represents
the potential of the heterointerface (r5R0), while l andb
are related through the conservation of dielectric displa
ment at the interface:

b5

«2lw01«1
dw

dr U
r5R02

2«2lw01«1
dw

dr U
r5R02

. ~45!

Therefore, a single free parameter (l) remains to fit the
Morse potential in order to get the charge neutrality, E
~43!. As usual, a suitably chosen convergence factorf was
introduced to make the procedure stable,10 i.e., the input po-
tential in the next iteration was taken as weighted averag
the input and output potentials of the previous iteration,

U in
~n11!5U in

~n!1 f ~Uout
~n!2U in

~n!!. ~46!

The value off50.7 was taken in our calculations.

H. Intraband transition matrix elements

Having found the wave functions of bound and free sta
in a quantum dot, it is straightforward to calculate the mat
elements of bound-bound and bound-free optical transitio
Given the spherical symmetry of the system these are po
ization insensitive. For bound-free transitions~quantum dot
‘‘ionization’’ ! the dipole matrix element11 is given by

M ~nl ,El 8!5E
0

`

Rn,l r
3RE,l 8dr, ~47!

where n denotes the principal quantum number of boun
and E the energy of the free state. The same express
upon substitutionE→n8, holds for bound-bound transitions
In either case the orbital quantum numbersl andl 8 satisfy
the selection rulel 2l 8561.

III. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations were performed for a GaAs d
with the radiusR0510 nm embedded in Al0.3Ga0.7As bulk.
Based on data in Ref. 12 the following parameters were u
in calculation: the effective masses in the dot and bulk m
terials mw50.067 andmb50.092 ~in free-electron mass
units!, and the dielectric permittivities«1513.18 and
«2512.24, respectively, the donor binding ener
EDb58.21 meV and conduction band offsetDEc5227.9
meV. The Fermi level for a given donor doping level w
calculated from Eqs.~A3! and~35!. All the calculations were
done for the temperatureT5300 K, and the donor density in
the bulk was taken in the range 101421015 cm23, i.e., not far
from unintentional doping levels in these materials, t
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Fermi level being20.229 eV and20.169 eV in two limit
cases, measured from the conduction band edge deep i
the bulk.

To find the energy spectrum Eqs.~17!–~18! for discrete
and Eqs.~23!–~24! for free states were numerically inte
grated~from the origin tor590 nm!, and the charge densit
was calculated according to Eqs.~29! and~34!. The numeri-
cal procedure employed was found to be very stable and
high accuracy.13 Within the continuous spectrum the ener
range included in calculations extended toEmax5130 meV
above the bulk conduction band edge. This was sufficien
cover all significantly populated states while keeping
nonparabolicity low~the largestk vector were,1/20 of the
distance to the Brillouin zone boundaries!.

There are five bound states in this dot. The non-s
consistent calculation gives their energies~the notation is
En,l ) asE0,0520.189 eV,E1,0520.080 eV,E0,1520.148
eV, E0,2520.098 eV, andE0,3520.040 eV. The corre-
sponding values obtained by the self-consistent calcula
are 20.181 eV,20.078 eV,20.142 eV,2.092 eV, and
20.034 eV atNd51014 cm23 and20.162 eV,20.052 eV,
20.124 eV,20.075 eV, and20.018 eV atNd51015 cm
23. Effects of self-consistency are thus quite significa
However, they are here due mostly to bound, not free, st
space charge.

In the above range of doping densities the Fermi leve
well below the conduction band edge, i.e., the population
free states is quite low. The charge density in the dot reg
almost entirely originates from bound states, and the sa
holds true for the Hartree potential. It is only at very mu
larger doping densities, of the order of 1017 cm23 or more,
that free-state space charge and Hartree potential would
come non-negligable in respect to bound states contributi
However, quantum dot structures with such doping do
seem to be of interest at present. The calculated s
consistent Hartree potential for two values of doping,
given in Fig. 1, indicating the increasing importance of t
self-consistent calculation as the doping increases.

FIG. 1. Self-consistent Hartree potential in the bulk region
R510 nm GaAs quantum dot structure, at two different donor d
ing levels of the bulk.
ide
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to
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f-

n

.
es

s
f
n
e

e-
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t
lf-
s

e

depletion region extends from the dot boundary to deep
side the bulk.

While the free-state space charge may not have large
fects on the electronic structure, except for very large dop
levels, the wave functions of~mostly unpopulated! free states
may be substantially affected by the self-consistent Har
potential of accumulated bound states charge. This is
flected in the values of bound-free intraband optical tran
tion matrix elements, describing the absorption related
quantum dot ‘‘ionization,’’ to use the analogy with atom
physics. Such transitions have been considered in Ref.
with the space charge effects neglected. In Figs. 2 and 3
give the dipole matrix elements squared vs free-state en
depedence for bound-free (n50,l 51)→(E,l 850) transi-
tion, calculated via Eq.~47! self-consistently or non-self
consistently. The accumulated space charge tends to incr
the matrix elements squared, taken at the peak absorp
energy, by a modest 11% at the doping density of 114

cm23, or a very significant 65% at 1015 cm23. It is mostly
the sensitivity of wave functions in continuum which bring
about the importance of self-consistency. The bound-bo

FIG. 3. Same as in Fig. 2, but forNd51015 cm23.

f
-

FIG. 2. Dipole matrix element squared for the bound-free tr
sition (n50,l 51)→(continuum,l 50) in R510 nm GaAs/
Al 0.3Ga0.7As quantum dot, calculated with or without the se
consistent effects, with the donor doping levelNd51014 cm23.
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transition matrix elements squared, calculated via the
approaches at 1015 cm23, differ by less than 5%. This is
because bound states wave functions are essentially d
mined by the built-in confining potential and are not ve
sensitive to the details of mild self-consistent correctio
Fig. 1. On the other hand, free-state wave functions come
to be sensitive, apparently because the Hartree potential h
rather long range, just like the character of the wave fu
tions themselves.

IV. CONCLUSION

The self-consistent procedure for calculating the el
tronic structure and charge density in semiconductor qu
tum dots, taking into account both the discrete and conti
ous parts of energy spectrum is presented. Numer
calculations performed for a GaAs-Al0.3Ga0.7As based quan-
tum dot show that only bound states significantly contrib
to the total charge in the dot region, unless the doping le
of bulk is quite large (.1017 cm23). However, the free-state
wave functions are considerably affected by the Hartree
tential of the accumulated charge. This shows in the val
of bound-free optical transition matrix elements, calcula
self-consistently or non-self-consistently, the difference
tween the two approaches becomming prominent at dop
levels 101421015 cm23. Calculating the bound-free intra
band absorption in most structures is thus likely to requ
the self-consistant procedure.

APPENDIX

In a homogeneous, uniformly doped bulk semiconduc
the free-electron density is given by

ncb~r !5
1

p2(
l 50

`

~2l 11!E
0

`

j l
2 ~kr ! f FD~k!k2dk, ~A1!

where j l (kr) are the spherical Bessel functions, i.e., t
regular solution of Eq.~4!. Using the property of spherica
Bessel functions15

(
l 50

`

~2l 11! j l
2 ~kr !51, ~A2!

we find from ~A1! that the electron density in bulk is

ncb5
1

p2E
0

`

f FD~k!k2dk. ~A3!

Using Eq.~A3! in Eq. ~34! we get

nc~r !5ncb1
1

p2E
0

`

$†Rl
~n!~r !‡22 j l

2 ~kr !% f FD~k!k2dk.

~A4!
o

ter-

,
ut
s a
-

-
n-
-
al

e
el

o-
s
d
-
g

e

r

The second term in~A4! is the ‘‘excess’’ density that appear
due to the heterojunction. In Eq.~32! for the free-electron
density it is convenient to useRl* (r )5(1/k)Rl

(n)(r ) instead
of the unnormalized radial functionRl

(n)(r ). Prior to substi-
tuting ~A4! into ~42! the integrals*0

R→`(Rl* )
2r 2dr and

*0
R→` j l

2 (kr)r 2dr are evaluated, using Eq.~32!

E
0

R→`

~Rl* !2r 2dr5
1

2k3FkSR1
dd l ~k!

dk D
2
1

2
sin2S kR2

l p

2
1d l ~k! D G ,

~A5!

E
0

R→`

j l
2 ~kr !r 2dr5

1

2k3FkR2
1

2
sin2S kR2

l p

2 D G ,
~A6!

wherefrom

E
0

R→`

@~Rl* !22 j l
2 ~kr !#r 2dr

5
1

2k2
dd l ~k!

dk
1

1

4k3Fsin2S kR2
l p

2 D
2sin2S kR2

l p

2
1d l ~k! D G . ~A7!

and, following the same lines as described in Ref. 8, we fi

E
0

R→`

nc~r !r 2dr

5E
0

R→`

ncbr
2dr1

1

p2(
l 50

`

~2l 11!E
0

`

f FD
]d l ~k!

]k
dk.

~A8!

From Eq.~41! the bound electron density may be written

E
0

R→`

nb~r !r 2dr

5
1

2p (
l 50

l max

~2l 11! (
i51

Nb~ l !

f FD~Ei !E
0

R→`

uRi ,l ~r !u2r 2dr

5
1

2p (
l 50

l max

~2l 11! (
i51

Nb~ l !

f FD~Ei !. ~A9!

Substituting Eqs.~A8! and ~A9! into Eq. ~42! the charge
neutrality equation~43! is derived.
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