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Abstract: In this article, multilevel principal components analysis (mPCA) is used to treat dynamical

changes in shape. Results of standard (single-level) PCA are also presented here as a comparison.

Monte Carlo (MC) simulation is used to create univariate data (i.e., a single “outcome” variable) that

contain two distinct classes of trajectory with time. MC simulation is also used to create multivariate

data of sixteen 2D points that (broadly) represent an eye; these data also have two distinct classes of

trajectory (an eye blinking and an eye widening in surprise). This is followed by an application of

mPCA and single-level PCA to “real” data consisting of twelve 3D landmarks outlining the mouth

that are tracked over all phases of a smile. By consideration of eigenvalues, results for the MC datasets

find correctly that variation due to differences in groups between the two classes of trajectories are

larger than variation within each group. In both cases, differences in standardized component scores

between the two groups are observed as expected. Modes of variation are shown to model the

univariate MC data correctly, and good model fits are found for both the “blinking” and “surprised”

trajectories for the MC “eye” data. Results for the “smile” data show that the smile trajectory is

modelled correctly; that is, the corners of the mouth are drawn backwards and wider during a smile.

Furthermore, the first mode of variation at level 1 of the mPCA model shows only subtle and minor

changes in mouth shape due to sex; whereas the first mode of variation at level 2 of the mPCA model

governs whether the mouth is upturned or downturned. These results are all an excellent test of

mPCA, showing that mPCA presents a viable method of modeling dynamical changes in shape.

Keywords: multilevel principal components analysis (mPCA); dynamical shape changes

1. Introduction

Multivariate data occur when we have more than one “outcome” in our dataset.
Biological shapes can be viewed as a form of multivariate data because shapes are conven-
tionally represented by an abundance of geometric features or measurements. Traditionally,
geometric measurements were taken directly onto subjects (e.g., using the Farkas System
of Craniofacial Anthropometry [1]). However, today, most if not all biological shape anal-
ysis starts from indirect 2D or 3D image acquisitions. From these images, shapes can be
represented by (e.g.,) manual placement of key landmark points (see Figure 1) or by semi-
landmark methods, which also position landmark points regularly on an (often parametric)
topological surface [2,3]. One may use methods such as principal components analysis
(PCA) [2] to analyze such data. Between-group (bgPCA) [4,5] is an extension of standard
PCA that carries out separate PCAs on (between-group) covariance matrices based on
“group means” and (within group) covariance matrices based on individual shapes around
these means. Multilevel PCA (mPCA) has been used by us [6–13] to analyze 3D facial
shapes obtained from 3D facial scans; note that two-level multilevel PCA (mPCA) is equiv-
alent to bgPCA. mPCA has been used previously to investigate changes by ethnicity and
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sex [6,7], facial shape changes in adolescents due to age [8,9], and the effects of maternal
smoking and alcohol consumption on the facial shape of English adolescents [10]. Previous
work also employed mPCA to treat time-related changes in facial shape during the act of
smiling [11,12].

analyze 3D facial shapes obtained from 3D facial scans; note that two-level multilevel PCA 
(mPCA) is equivalent to bgPCA. mPCA has been used previously to investigate changes 
by ethnicity and sex [6,7], facial shape changes in adolescents due to age [8,9], and the 
effects of maternal smoking and alcohol consumption on the facial shape of English ado-
lescents [10]. Previous work also employed mPCA to treat time-related changes in facial 
shape during the act of smiling [11,12].

 

Figure 1. Illustration of lip shape, which is represented here by 12 landmark points placed on the 
3D facial scans here.

However, standard mPCA does not recognize that time is a continuous variable. A 
functional PCA (FPCA) approach is therefore more appropriate for such dynamical data 
[14–16]. FPCA is very similar to PCA, albeit with a preceding step where time-series are 
represented via some basis expansion (e.g., B-splines, wavelets, or Fourier series) and 
smoothing occurs [14]. However, the standard FPCA approach (such as single-level PCA) 
does not recognize clusters or multilevel structure within the subject population. Rela-
tively few articles [17,18] have considered multilevel forms of FPCA (i.e., mFPCA) and 
certainly none have considered this in the context of facial shape.

Methods of analysis of sequences of 2D images include object tracking using point 
features [19], optical flow vectors [20,21], and convolutional neural networks [22]. By con-
trast, there are far fewer methods that have been applied to analyze time-dependent or 
dynamic changes in 3D shapes [23]. However, we note that dynamics changes can (e.g.,) 
play a strong role in the expression of disease in medicine, e.g., in 3D facial shapes [23] 
due to paralysis, stroke, cleft-lip and palate, or even schizophrenia. It is therefore impera-
tive that we develop such methods in order to maximize the potential of this important 
source of (dynamic) data.

Here, we wish to apply a form of mPCA that is inspired by such functional ap-
proaches (and shares some advantages with them) to study shape dynamics, where results 
of standard PCA provide a comparison. Monte Carlo simulated datasets are used to test 
these methods in the first instance, although we also apply them to the “smile” data of 
Refs. [11,12], captured using a 3D dynamical scanner. We describe both datasets and meth-
ods in more detail in the methods section. We then discuss our results before going on to 
consider the implications of this work.

2. Materials and Methods
2.1. Sine Wave Dataset

Two Monte Carlo simulated datasets are used here. Firstly, a very simple case is pre-
sented with just one outcome (such as a signal or simple time series) with two groups. 

Figure 1. Illustration of lip shape, which is represented here by 12 landmark points placed on the 3D

facial scans here.

However, standard mPCA does not recognize that time is a continuous variable.
A functional PCA (FPCA) approach is therefore more appropriate for such dynamical
data [14–16]. FPCA is very similar to PCA, albeit with a preceding step where time-series
are represented via some basis expansion (e.g., B-splines, wavelets, or Fourier series) and
smoothing occurs [14]. However, the standard FPCA approach (such as single-level PCA)
does not recognize clusters or multilevel structure within the subject population. Relatively
few articles [17,18] have considered multilevel forms of FPCA (i.e., mFPCA) and certainly
none have considered this in the context of facial shape.

Methods of analysis of sequences of 2D images include object tracking using point
features [19], optical flow vectors [20,21], and convolutional neural networks [22]. By
contrast, there are far fewer methods that have been applied to analyze time-dependent or
dynamic changes in 3D shapes [23]. However, we note that dynamics changes can (e.g.,)
play a strong role in the expression of disease in medicine, e.g., in 3D facial shapes [23] due
to paralysis, stroke, cleft-lip and palate, or even schizophrenia. It is therefore imperative
that we develop such methods in order to maximize the potential of this important source
of (dynamic) data.

Here, we wish to apply a form of mPCA that is inspired by such functional ap-
proaches (and shares some advantages with them) to study shape dynamics, where results
of standard PCA provide a comparison. Monte Carlo simulated datasets are used to test
these methods in the first instance, although we also apply them to the “smile” data of
Refs. [11,12], captured using a 3D dynamical scanner. We describe both datasets and meth-
ods in more detail in the methods section. We then discuss our results before going on to
consider the implications of this work.

2. Materials and Methods

2.1. Sine Wave Dataset

Two Monte Carlo simulated datasets are used here. Firstly, a very simple case is
presented with just one outcome (such as a signal or simple time series) with two groups.
Trajectories for each subject follow a sine wave. We will refer to this as the “Sine Wave”
dataset. The period of the first group is set to 2 (with respect to arbitrary units of time) and
has an amplitude of 0.5 (with respect to arbitrary units of distance), whereas the period
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of the second group is set to 1.5 and has an amplitude of 0.4. Small normally distributed
random errors are added to the amplitude (magnitude = 0.03) for each subject in order to
provide variation between “within-subject” variation for the two groups. The magnitude
of within-subject variation is therefore approximately two orders of magnitude smaller
than that of between-groups variation (as variance scales with the amplitude squared).

2.2. Blink Dataset

The second Monte Carlo dataset has 16 points in 2D (thus, 2 × 16 = 32 components)
that delineate the boundary (roughly) of an eye during: (group 1) an entire blink; (group 2)
an eye opening slightly, as if in surprise. We shall refer to this as the “Blink” dataset. Again,
small normally distributed random errors are added to the amplitude (magnitude = 0.03)
for each subject in order to provide variation between “within-subject” variation for the two
groups. A two-level mPCA model (presented below) is used to analyze this data. In both
cases, between-groups variation has a much larger magnitude than within-groups variation.

2.3. Smile Dataset

This dataset consisted of 3D video shape data during all phases of a smile, where
12 points are placed (and tracked) along the outer boundary of mouth, as shown in Figure 1.
A 3DMD scanner was used to capture this 3D surface dynamical data. Sixty adult staff
and students at Cardiff University, consisting of thirty one males and twenty nine females,
were recruited for this study. There were between approximately 100 and 250 frames in
total for each subject. All 3D shapes were centered to have a common origin. As described
in Refs. [11,12], different phases of the smile were found for each subject separately by
considering the normalized smile amplitudes. Including rest phases, these seven phases
were found to be [11,12] rest pre-smile, onset acceleration, onset deceleration, apex, offset
acceleration, offset deceleration, and rest post-smile. Ethical approval for this project was
granted by the School of Dentistry Ethics Committee at Cardiff University, UK.

2.4. Functional Principal Components Analysis (FPCA)

The covariance function for (single-level) FPCA with respect to time variables s and t
(time is a continuous variable) is presented generally by

K(s, t) = E[{X(s)− η(s)}{X(t)− η(t)}], (1)

where η(t) is the mean shape function (e.g., in practice with respect to all subjects in the
dataset). Note that we may write K(s, t) as

K(s, t) = ∑
∞

l
θlψl(s)ψl(t), (2)

where θl are non-negative eigenvalues and ψl(t) are the associated eigenfunctions. Finally,
the expansion of any (new) dynamic shape function X(t) is approximated by

X(t) = η(t) + ∑
m

l
alψl(t), (3)

where al are scalar coefficients and m is often set to be finite. Component scores are
standardized readily by finding, al/

√
θl .

Here, we carry out an mPCA approach that is inspired by functional methods in that
dynamical shape changes are approximated by spline fits. This step has some advantages:
random errors should be reduced by smoothing; data might be sampled at regular specific
time points by interpolation; and issues of missing data frames or irregular image capture
are addressed. As explained in Appendix A, spline fits are carried of X. with respect to
time for each subject separately at T regular time intervals for each subject. Examples of
specific fits are also given in Appendix A. When the outcome is a scalar variable sampled
at T regular time intervals (e.g., a signal or single point in 1D), we denote the outcome
variable for each subject i as a vector Xi (of size T), where each component of this vector for
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subject i is denoted Xi
t, and where the index t denotes each of the regularly sampled time

points. The total number of subjects (i.e., the sample size) is given by n. The covariance
matrix is therefore of size T × T and is given by

Kt1,t2 =
1

n − 1 ∑
n

i

(

Xi
t1
− ηt1

)(

Xi
t2
− ηt2

)

, (4)

where each component of this matrix is denoted Kt1,t2 , and η is the mean trajectory vector
of dimension T (ηt1

and ηt2 are specific elements of η), where

η =
1

n ∑
n

i
Xi. (5)

Eigenvalues of Equation (4) are denoted θl and eigenvectors are denoted ψl . The
expansion of any (new) trajectory vector Xnew is given by

Xnew = η + ∑
m

l
alψl , (6)

where, again, al are scalar coefficients and m is often set to be a finite number. The
components al (referred to as “component scores” here) are found via: al = (Xnew − η) · ψl .

For multivariate shape data, shapes at each time point are themselves a vector rather
than a scalar and this is explained in detail in Appendix A. Spline fits are carried out for
each subject and for each 3D point component separately with respect to time. The size
of the vector Xi is given by Dim × M × T for each subject i. We denote the index of each
element of this vector as {k, t}; components of this vector are therefore given by Xi

{k,t}.

Elements of the covariance matrix are now written as

K{k1,t1},{k2,t2} =
1

n − 1 ∑
n

i

(

Xi
{k1,t1} − η{k1,t1}

)(

Xi
{k2,t2} − η{k2,t2}

)

. (7)

η is again the mean vector. The diagonalization of this covariance matrix can become
an intensive computational problem and so direct iteration or the Lanczos method can be
used (as appropriate) to find the eigenvalues θl and the eigenvectors ψl . The expansion of
any (new) trajectory vector Xnew may again be found via Equation (6).

This approach assumes that all components of all landmark points are correlated
potentially with all other components and at all time points. Clearly, this is an inefficient
approach, but it is simple and straightforward to implement. It is therefore used in these
initial calculations.

2.5. Multilevel Functional Principal Components Analysis (mPCA)

Multilevel/hierarchical models allow clustering to be addressed by including between-
and within-group variations at different levels of the model. For a simple two-level model
(initially), we write our feature vector as Xi,j, where i indicates a specific instance or subject
in group or cluster j (of p such groups). Again, we assume initially that the outcome is a
scalar, and that the trajectory data have been sampled regularly at T time points. We write
elements of the level 2 (within-group variation) covariance matrix K2,j for each group j as

K
2,j
t1,t2

=
1

nj − 1 ∑
nj

i

(

X
i,j
t1
− η

j
t1

)(

X
i,j
t2
− η

j
t2

)

. (8)

η j is the mean for each group j, given by

η j =
1

nj
∑

nj

i Xi,j. (9)
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However, a “common” covariance matrix is often assumed for mPCA (specifically
here at level 2). For p such groups in total, we note that this is commonly written for
mPCA as

K2 =
1

p ∑
p

j
K2,j. (10)

An interesting point is that standard mPCA weights individual covariance matrices
with a factor of 1/p in Equation (10) rather than a factor of nj/n, which is the result for the
maximum likelihood solution using an underlying multivariate normal distribution [9].
An advantage of this approach is that each group is treated equally, irrespective of its
sample size. However, this will not fit the available data as well as the maximum likelihood
solution and small sample size effects can occur (see “pathologies” below). The “grand
mean” is now given by

η =
1

p ∑
p

j
η j. (11)

K2 can now be diagonalized, where θ2
l are non-negative eigenvalues at level 2 and

ψ2
l are the associated eigenvectors. By contrast, we now write elements of the covariance

matrix at level 1 (between-group variation) as

K1
t1,t2

=
1

p − 1 ∑
p

j

(

η
j
t1
− ηt1

)(

η
j
t2
− ηt2

)

, (12)

where θ1
l are non-negative eigenvalues at level, and ψ1

l are the associated eigenvectors.
Note that the number of non-zero eigenvalues will be limited to p − 1 due to the finite
number of groups p. The expansion of any (new) dynamic shape Xnew is given by

Xnew = η + ∑
m1

l
a1

l ψ1
l + ∑

m2

l
a2

l ψ2
l . (13)

Again, a1
l and a2

l are scalar coefficients and m1 and m2 are set to be finite numbers. The
coefficients

{

a1
l

}

and
{

a2
l

}

(again referred to as “component scores” here) are determined
for mPCA by using a global optimization procedure in MATLAB. Component scores are

again standardized readily by finding, a1
l /

√

θ1
l and a2

l /
√

θ2
l .

This approach will work for cases where the outcome is a scalar (i.e., X is a vector of
size T) or for multivariate dynamic shape data (i.e., X is a vector of size Dim × M × T). We
write elements of the level 2 (within-group variation) covariance matrix K2,j for each group
j as

K
2,j

{k1,t1},{k2,t2} =
1

nj − 1 ∑
nj

i

(

X
i,j

{k1,t1} − η
j

{k1,t1}

)(

X
i,j

{k2,t2} − η
j

{k2,t2}

)

. (14)

This is a matrix of size: Dim× M× T by Dim× M× T. The common level 2 covariance
matrix is again given by Equation (10) and the “grand mean” by Equation (11). Elements of
the covariance matrix at level 1 (between-group variation) are

K1
{k1,t1},{k2,t2} =

1

p − 1 ∑
p

j

(

η
j

{k1,t1} − η{k1,t1}
)(

η
j

{k2,t2} − η{k2,t2}
)

. . (15)

The expansion of any (new) dynamic shape Xnew is again given by Equation (13). The
extension to three or more levels is presented in Appendix B. We also note that if each
subject is treated as a separate group, then this approach models the “nested” nature of
these dynamical shape data in an efficient manner (i.e., analogous to a mixed model in
which repeated measurements of shape over time are made for each subject). Indeed, it is
likely that this approach is probably very similar to that presented in Ref. [17], albeit now
also for multivariate data.

A problem with mPCA is that divisions between groups can occur purely due to
random sampling (and so are wholly spurious) because such random differences over all
variables become condensed at a given level of the multilevel model [4,13,24]. This can



J. Imaging 2023, 9, 86 6 of 18

lead to apparently strong and erroneous divisions in component scores for mPCA at this
level, which are even more pronounced than for PCA. A rough rule of thumb [13] is that
the sample size per group in the training set must be larger than the overall size of the
feature vector in order to avoid “pathologies” of mPCA-based methods. (The topic of such
pathologies is discussed in more detail in the conclusion.) For the “Sine Wave” dataset,
T = 101 (thus the feature vector is of size 101 also) and so we set the sample size for all
groups to be nj = 1000. Sample sizes per group in the test set are also set to be nj = 1000.
For the “Blink” dataset, T = 101; thus, the feature vector is of size 32 × 101 = 3201 and
so we set the sample size for all groups to be nj = 10,000. Sample sizes per group in the
test set are also set to be nj = 10,000. For the “Smile” dataset, we note that T = 60 and
so the feature vector is of size 60 × 12 × 3 = 2160. Unfortunately, data are limited in this
case to 60 subjects in total only. However, this is adequate here as we wish to present a
“proof-of-principle” calculation only for “real” data. Again, all calculations presented here
were carried out in MATLAB R2021a.

3. Results

3.1. Sine Wave Dataset

Results for the eigenvalues from mPCA and single-level PCA for the Sine Wave dataset
are shown in Figure 2. There is only a single non-zero eigenvalue at level 1 (between-groups
variation) via mPCA, which is what we expect as the number of groups in this simple
simulation is two. By contrast, there are three non-zero eigenvalues at level 2 (within-
groups variation) via mPCA, albeit with magnitudes less than approximately 0.03; this
is to be expected as the between-group variation was set to be much larger than other
(random) sources of variation. Three non-zero eigenvalues are also found for single-level
PCA, which agrees well with results at level 2 (within-groups variation) via mPCA. The
single large eigenvalue at level 1 via mPCA is also clearly echoed in the first eigenvalue for
single-level PCA, as expected. Interestingly, the magnitude of this first eigenvalue is much
lower for single-level PCA compared to level 1, mPCA; we speculate that this is because
single-level PCA is not capturing all of the variation of the data. The other two eigenvalues
for single-level PCA also have magnitude less than approximately 0.03.

to be 𝑛𝑗  =  1000. Sample sizes per group in the test set are also set to be 𝑛𝑗  =  1000. For 
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simple simulation is two. By contrast, there are three non-zero eigenvalues at level 2 
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(random) sources of variation. Three non-zero eigenvalues are also found for single-level 
PCA, which agrees well with results at level 2 (within-groups variation) via mPCA. The 
single large eigenvalue at level 1 via mPCA is also clearly echoed in the first eigenvalue 
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Figure 2. Eigenvalues for single-level PCA and mPCA for between-groups variation (level 1) and 
within-groups variation (level 2) for the Sine Wave dataset.

Results for standardized component scores via single-level PCA and mPCA are 
shown in Figure 3. We see that strong differentiation between groups is seen for mode 1 
in single-level PCA. Strong differences between groups are also observed in Figure 3 at 

Figure 2. Eigenvalues for single-level PCA and mPCA for between-groups variation (level 1) and

within-groups variation (level 2) for the Sine Wave dataset.

Results for standardized component scores via single-level PCA and mPCA are shown
in Figure 3. We see that strong differentiation between groups is seen for mode 1 in single-
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level PCA. Strong differences between groups are also observed in Figure 3 at level 1 via
mPCA. No strong difference in component scores between groups is seen at level 2 for
mPCA, and centroids for these groups are congruent (not shown here).

level 1 via mPCA. No strong difference in component scores between groups is seen at 
level 2 for mPCA, and centroids for these groups are congruent (not shown here).

Figure 3. Results of standardized component scores for the test set of 1000 different trajectories per 
group in the test set for the Sine Wave dataset: (left) single-level, PCA; (right) level 1, mPCA. These 
results show strong clustering with respect to the two groups.

By using the centroids of standardized component scores shown in Figure 3, we may 
fit the single-level PCA model and mPCA at level 1 (between-group variation) only to the 
raw data in the test set. Results for mPCA are shown in Figure 4. Results for model fits via 
single-level PCA model and mPCA are found to capture mean trajectories with time for 
the two groups. These results for the two groups are also almost congruent at all time 
points for PCA and mPCA (not shown here). We also add an additional source of variation 
at level 2, namely, model fit for mPCA for each group plus/minus the first model at level 
2, i.e., ±1.96 × √𝜃12 × 𝜓12, which is essentially a 95% prediction interval with respect to this 
mode. We see that within-group variation around these two curves is being captured cor-
rectly (broadly). Presumably, even better correspondence would be obtained by adding 
in more modes at level 2. All in all, the Sine Wave dataset has been a successful test of the 
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3.2. Blink Dataset

Results for the eigenvalues from mPCA and single-level PCA for the Blink dataset are
shown in Figure 5. Again, there is only a single non-zero eigenvalue at level 1 (between-
groups variation) via mPCA, which, again, is what we expect as the number of groups in
this simple simulation is just two (i.e., for “blinking” and “surprise” type trajectories). By
contrast, there are two non-zero eigenvalues at level 2 (with-groups variation) via mPCA,
although the magnitude of these eigenvalues is much smaller than the single eigenvalue at
level 1, which again is as expected. Three non-zero eigenvalues are found also for single-
level PCA, which also agrees well with results at level 2 (within-groups variation) via
mPCA. The single large eigenvalue at level 1 via mPCA again is also clearly reflected in the
first eigenvalue for single-level PCA. Interestingly again, the magnitude of this eigenvalue
is much lower for single-level PCA.
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Results for standardized component scores via single-level PCA and mPCA are 
shown in Figure 6. We see that strong differentiation between groups is again seen just for 
mode 1 for single-level PCA. The magnitude of differences in centroids of standardized 
component scores for the two groups are of order two for single-level PCA and of order 
one at level 1 via mPCA, as shown in Figure 6. This suggests that strong differences occur 
between groups, although Figure 6 also clearly shows that there is much overlap between 
individual scores at level 1 via mPCA. We note that this level has a single non-zero eigen-
value only because the rank of the covariance matrix—and thus the maximum number of 
eigenvalues—is constrained to be no larger than the number of groups minus one (here, 
there are just two groups). Again, no strong difference in component scores between 
groups is seen at level 2 for mPCA, and centroids for these group are congruent (not 
shown here).

Figure 5. Eigenvalues for single-level PCA and mPCA for between-groups variation (level 1) and

within-groups variation (level 2) for the Blink dataset.

Results for standardized component scores via single-level PCA and mPCA are shown
in Figure 6. We see that strong differentiation between groups is again seen just for mode 1
for single-level PCA. The magnitude of differences in centroids of standardized component
scores for the two groups are of order two for single-level PCA and of order one at level
1 via mPCA, as shown in Figure 6. This suggests that strong differences occur between
groups, although Figure 6 also clearly shows that there is much overlap between individual
scores at level 1 via mPCA. We note that this level has a single non-zero eigenvalue only
because the rank of the covariance matrix—and thus the maximum number of eigenvalues—
is constrained to be no larger than the number of groups minus one (here, there are just
two groups). Again, no strong difference in component scores between groups is seen at
level 2 for mPCA, and centroids for these group are congruent (not shown here).

Two specific cases from the test dataset (randomly chosen) may be explored via mPCA
by using exactly the same two-level model for both cases. Here, we use just the single mode
at level 1 only and no level 2 variation. The results are shown in Figure 7. We see that PCA
correctly models the trajectories of all points delineating the boundary of the “eye” and at
all stages of either the “surprised” expression or the “blinking” dynamic shape changes
using the same model. Note that results of mPCA are shown by full lines in Figure 7,
which are two separate cubic spline fits for the upper and lower boundaries of the eye with
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respect to the predicted 16 2D points from the mPCA model. Clearly, this might lead to
some additional smoothing, although this is carried out to make it easier to visualize and
interpret model results and to differentiate between them and the original data, shown by
the points in Figure 7. (We believe that this is reasonable for these initial calculations and
as a broad final check of model results.) Better model fits might be obtained by including
additional modes from level 2, although we need to be careful not to overfit our model to
the data. However, this is another excellent test of the viability of this method—in this case,
also for multivariate data.

Figure 6. Results of standardized component scores for the test set of 10,000 different trajectories 
per group in the test set for the Blink dataset: (left) single-level PCA; (right) level 1, mPCA. These 
results again show strong clustering with respect to the two groups (i.e., “surprised” in group 1 and 
“blinking” in group 2.).

Two specific cases from the test dataset (randomly chosen) may be explored via 
mPCA by using exactly the same two-level model for both cases. Here, we use just the 
single mode at level 1 only and no level 2 variation. The results are shown in Figure 7. We 
see that PCA correctly models the trajectories of all points delineating the boundary of the 
“eye” and at all stages of either the “surprised” expression or the “blinking” dynamic 
shape changes using the same model. Note that results of mPCA are shown by full lines 
in Figure 7, which are two separate cubic spline fits for the upper and lower boundaries 
of the eye with respect to the predicted 16 2D points from the mPCA model. Clearly, this 
might lead to some additional smoothing, although this is carried out to make it easier to 
visualize and interpret model results and to differentiate between them and the original 
data, shown by the points in Figure 7. (We believe that this is reasonable for these initial 
calculations and as a broad final check of model results.) Better model fits might be ob-
tained by including additional modes from level 2, although we need to be careful not to 
overfit our model to the data. However, this is another excellent test of the viability of this 
method—in this case, also for multivariate data.

Figure 7. mPCA model fits (full lines) to entire trajectories (going from left to right in the images 
above) of the 16 2D landmark points of 2 specific examples chosen randomly from the test set: (upper 
row of images) from group 1: an eye “showing surprise,” i.e., the eye opens wider before returning 
to normal; (upper row of images) from group 2: an eye “blinking,” i.e., the eye closes before return-
ing to normal. (The iris is added as an illustration only.)

3.3. Smile Dataset
Results for the eigenvalues from mPCA and single-level PCA for the Smile dataset 

are shown in Figure 8. Results of level 2 via mPCA are almost congruent with single-level 
PCA. The single eigenvalue at level 1 via mPCA is of much smaller magnitude than those 
eigenvalues at level 2. This is the first evidence that the magnitude of the difference in 
smile dynamics between males and females is small.
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above) of the 16 2D landmark points of 2 specific examples chosen randomly from the test set: (upper

row of images) from group 1: an eye “showing surprise,” i.e., the eye opens wider before returning to

normal; (upper row of images) from group 2: an eye “blinking,” i.e., the eye closes before returning

to normal. (The iris is added as an illustration only.)

3.3. Smile Dataset

Results for the eigenvalues from mPCA and single-level PCA for the Smile dataset
are shown in Figure 8. Results of level 2 via mPCA are almost congruent with single-level
PCA. The single eigenvalue at level 1 via mPCA is of much smaller magnitude than those
eigenvalues at level 2. This is the first evidence that the magnitude of the difference in
smile dynamics between males and females is small.

Results for standardized component scores via single-level PCA and mPCA for the
Smile dataset are shown in Figure 9. By contrast to the earlier simulated dataset, differences
between groups (males and females) appear quite small for both single-level PCA and
mPCA at level 1. This is yet more evidence that no strong differences in the 3D dynamics
of smiles occur between men and women. Again, no strong difference in component
scores between groups is seen at level 2 for mPCA and centroids for males and females are
congruent (not showed here).
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Figure 8. Eigenvalues for single-level PCA and mPCA for between-groups variation (level 1) and 
within-groups variation (level 2) for the Smile dataset.

Results for standardized component scores via single-level PCA and mPCA for the 
Smile dataset are shown in Figure 9. By contrast to the earlier simulated dataset, differ-
ences between groups (males and females) appear quite small for both single-level PCA 
and mPCA at level 1. This is yet more evidence that no strong differences in the 3D dy-
namics of smiles occur between men and women. Again, no strong difference in compo-
nent scores between groups is seen at level 2 for mPCA and centroids for males and fe-
males are congruent (not showed here).

Figure 9. Results of standardized component scores for the Smile dataset: (left) single-level PCA; 
(right) level 1, mPCA. These results show only minor differences in dynamic 3D trajectories between 
males and females as the centroids for the two groups are quite close together.

Results for the mean smile trajectory and also the first mode of variation at level 1 via 
mPCA are shown in Figure 10. Note that these results are shown by full lines in Figure 10 
(and similarly in Figures 11 and 12), which are in fact two cubic spline fits for the upper 
and lower boundaries of the mouth separately with respect to the 12 points from the 
mPCA model in the frontal/coronal and horizontal planes, respectively. Again, this might 
lead to some additional smoothing, although this is carried out simply to make it easier to 
visualize and interpret model results. (Again, we believe that this is reasonable in these 
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Figure 9. Results of standardized component scores for the Smile dataset: (left) single-level PCA;

(right) level 1, mPCA. These results show only minor differences in dynamic 3D trajectories between

males and females as the centroids for the two groups are quite close together.

Results for the mean smile trajectory and also the first mode of variation at level
1 via mPCA are shown in Figure 10. Note that these results are shown by full lines in
Figure 10 (and similarly in Figures 11 and 12), which are in fact two cubic spline fits for the
upper and lower boundaries of the mouth separately with respect to the 12 points from
the mPCA model in the frontal/coronal and horizontal planes, respectively. Again, this
might lead to some additional smoothing, although this is carried out simply to make it
easier to visualize and interpret model results. (Again, we believe that this is reasonable in
these initial calculations.) The results shown in Figure 10 with respect to time are subtle
to interpret. However, it is possible to see from a “movie” of shape changes with respect
to time for the mean trajectory that the corners of the mouth are pulled outwards and
backwards slightly as time evolves, before returning somewhat close to the original shape
at the end of the smile. The first mode of variation at level 1 (between sexes) is definitely
subtle; this mode is quite weak in magnitude and appears to govern the width of the lips
and relative positions of upper and lower lips. A “movie” of shape changes with respect to
time of the trajectory for the mean plus or minus this mode indicates again that the corners
of the mouth are pulled outwards and backwards slightly as time evolves, before returning
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somewhat close to the original shape at the end of the smile (with some increased noise
right at the end).

initial calculations.) The results shown in Figure 10 with respect to time are subtle to in-
terpret. However, it is possible to see from a “movie” of shape changes with respect to 
time for the mean trajectory that the corners of the mouth are pulled outwards and back-
wards slightly as time evolves, before returning somewhat close to the original shape at 
the end of the smile. The first mode of variation at level 1 (between sexes) is definitely 
subtle; this mode is quite weak in magnitude and appears to govern the width of the lips 
and relative positions of upper and lower lips. A “movie” of shape changes with respect 
to time of the trajectory for the mean plus or minus this mode indicates again that the 
corners of the mouth are pulled outwards and backwards slightly as time evolves, before 
returning somewhat close to the original shape at the end of the smile (with some in-
creased noise right at the end).

 

Figure 10. Visualization of the first mode of variation via mPCA at level 1 in the frontal/coronal 
plane (left) and horizontal plane (right) in each image. (Left Column) start of the smile; (Middle 
Column) mid-point (apex or plateau) of the smile; (Right Column) end of the smile. (Top row) 
mean shape trajectory; (Middle Row) mean shape trajectory minus √𝜃11 × first mode of variation 
via mPCA at level 1; (Bottom Row) mean shape trajectory plus √𝜃11 × first mode of variation via 
mPCA at level 1.

Figure 11. Visualization of the first mode of variation via mPCA at level 2 in the frontal/coronal 
plane (left) and horizontal plane (right) in each image. (Left Column) start of the smile; (Middle 
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and relative positions of upper and lower lips. A “movie” of shape changes with respect 
to time of the trajectory for the mean plus or minus this mode indicates again that the 
corners of the mouth are pulled outwards and backwards slightly as time evolves, before 
returning somewhat close to the original shape at the end of the smile (with some in-
creased noise right at the end).

Figure 10. Visualization of the first mode of variation via mPCA at level 1 in the frontal/coronal 
plane (left) and horizontal plane (right) in each image. (Left Column) start of the smile; (Middle 
Column) mid-point (apex or plateau) of the smile; (Right Column) end of the smile. (Top row) 
mean shape trajectory; (Middle Row) mean shape trajectory minus √𝜃11 × first mode of variation 
via mPCA at level 1; (Bottom Row) mean shape trajectory plus √𝜃11 × first mode of variation via 
mPCA at level 1.
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Column) mid-point (apex or plateau) of the smile; (Right Column) end of the smile. (Top row) 
mean shape trajectory; (Middle Row) mean shape trajectory minus √𝜃12 × first mode of variation 
via mPCA at level 2; (Bottom Row) mean shape trajectory plus √𝜃12 × first mode of variation via 
mPCA at level 2.

Results for the mean smile trajectory and the first mode of variation at level 2 are 
shown in Figure 11. The results are much easier to interpret than those in Figure 10. We 
see that this mode is clearly governing whether the natural “resting” mouth shape is either 
upturned or downturned. A “movie” of shape changes with respect to time of the trajec-
tory for the mean plus or minus this mode indicates again that the corners of the mouth 
are pulled outwards and backwards slightly as time evolves, before again returning some-
what close to the original shape at the end of the smile (again with some increased noise 
right at the end). Note that this pattern with time is superimposed on upturned (mean 
minus this mode) or downturned (mean plus this mode) mouth shape appropriately for 
the entire trajectory, as illustrated in Figure 11.

 

Figure 12. Example of model fits at five time points during specific trajectory for a single subject via 
mPCA for the frontal/coronal plane. (Increasing time is shown from left to right.) Points for the raw 
data are shown by the filled circles and the model fits are given by the curved lines.

Results in the frontal/coronal plane of the model fit to the twelve points for a specific 
person’s trajectory are shown in Figure 12. We see that excellent fits are obtained at all 
time points shown. Again, the time evolution is somewhat subtle for this case, although a 
“movie” of points and model fits indicates that the width of the mouth increases very 
slightly with time and then starts to reduce at the end. These results for the Smile dataset 
have been another excellent test of the mPCA method for “real” data.

4. Discussion
Multilevel PCA (mPCA) was used here to model dynamical changes in biological 

shapes. Results for simulated data for a single variable with two groups and for “blink” 
data with 32 variables (16 2D points) and two groups were shown to be modeled correctly, 
i.e., trajectories appeared correct, and the magnitude of eigenvalues made sense given the 
data generation model. The two dynamic trajectories of “surprise” and “blinking” were 
modeled adequately using the same multilevel model and strong differences between 
these trajectories were evident in both single-level PCA and also at level 1 of the mPCA 
model, as expected (and required). This is an encouraging first step.

However, this is exactly what one would expect for such simple simulated datasets. 
It is therefore important to test the method also for “real” data. This was provided here 
via the “smile” dataset of Refs. [11,12], consisting of 12 points placed on the outer bound-
ary of the lips during entire smile trajectories for 29 females and 31 males. Again, dynamic 
smiles appeared to be modeled correctly when compared to the original data. Interest-
ingly, differences between males and females appeared small in terms of magnitude of 
variation, as were differences between groups for standardized component scores. Indeed, 
there is no reason to suppose that males and females smile in fundamentally different 
ways (i.e., a smile is just a smile) and so this is an excellent test of “no effect” in terms of 
differences between groups. Broadly, we take all of these results as an excellent test of the 
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Figure 12. Example of model fits at five time points during specific trajectory for a single subject via

mPCA for the frontal/coronal plane. (Increasing time is shown from left to right.) Points for the raw

data are shown by the filled circles and the model fits are given by the curved lines.

Results for the mean smile trajectory and the first mode of variation at level 2 are
shown in Figure 11. The results are much easier to interpret than those in Figure 10. We see
that this mode is clearly governing whether the natural “resting” mouth shape is either
upturned or downturned. A “movie” of shape changes with respect to time of the trajectory
for the mean plus or minus this mode indicates again that the corners of the mouth are
pulled outwards and backwards slightly as time evolves, before again returning somewhat
close to the original shape at the end of the smile (again with some increased noise right
at the end). Note that this pattern with time is superimposed on upturned (mean minus
this mode) or downturned (mean plus this mode) mouth shape appropriately for the entire
trajectory, as illustrated in Figure 11.

Results in the frontal/coronal plane of the model fit to the twelve points for a specific
person’s trajectory are shown in Figure 12. We see that excellent fits are obtained at all
time points shown. Again, the time evolution is somewhat subtle for this case, although
a “movie” of points and model fits indicates that the width of the mouth increases very
slightly with time and then starts to reduce at the end. These results for the Smile dataset
have been another excellent test of the mPCA method for “real” data.

4. Discussion

Multilevel PCA (mPCA) was used here to model dynamical changes in biological
shapes. Results for simulated data for a single variable with two groups and for “blink”
data with 32 variables (16 2D points) and two groups were shown to be modeled correctly,
i.e., trajectories appeared correct, and the magnitude of eigenvalues made sense given the
data generation model. The two dynamic trajectories of “surprise” and “blinking” were
modeled adequately using the same multilevel model and strong differences between these
trajectories were evident in both single-level PCA and also at level 1 of the mPCA model,
as expected (and required). This is an encouraging first step.

However, this is exactly what one would expect for such simple simulated datasets. It
is therefore important to test the method also for “real” data. This was provided here via
the “smile” dataset of Refs. [11,12], consisting of 12 points placed on the outer boundary
of the lips during entire smile trajectories for 29 females and 31 males. Again, dynamic
smiles appeared to be modeled correctly when compared to the original data. Interestingly,
differences between males and females appeared small in terms of magnitude of variation,
as were differences between groups for standardized component scores. Indeed, there is
no reason to suppose that males and females smile in fundamentally different ways (i.e., a
smile is just a smile) and so this is an excellent test of “no effect” in terms of differences
between groups. Broadly, we take all of these results as an excellent test of the method;
both single-level PCA and mPCA can be applied to model shapes dynamically.

For between-group (bgPCA) [4,13,24], PCA is carried out separately with respect
to (between-group) covariance matrices based on “group means” and (within group)
covariance matrices based on individual shapes around these means; note that two-level
mPCA is equivalent to bgPCA. A limitation of mPCA (as in bgPCA/mPCA) is that small
numbers of groups can limit the number of non-zero eigenvalues (the rank of covariance
matrices is reduced) at higher levels of the model. Another well-known “pathology” of
bgPCA and multilevel PCA is that small sample sizes can lead to spurious differences
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between groups [4,13,24] because small differences between groups in terms of the positions
of all points can become concentrated by reduced dimensionality. Although this can occur
for standard PCA, this effect is more pronounced for bgPCA and mPCA because both are
essentially a form of “guided” dimensionality reduction where differences between groups
are concentrated at one specific level of the model. Full and detailed expositions of the
“pathologies” of bgPCA are presented in Refs. [4,24], and the interested reader is referred
to these articles for more information. However, various techniques [24–26] have been
proposed to address such effects, including cross validation [25]. Monte Carlo simulations
in Ref. [13] suggest that the number of subjects per group should be at least equal to the
number of parameters (here, the number of points is multiplied by spatial dimensionality).

Clearly, the approach considered here relies on spline fits with respect to time to
produce trajectories for the subsequent estimation of shapes at specific time points (here,
time points that are sampled regularly over some overall period). Indeed, many of the
practical aspects of implanting PCA appear to depend on the choice of method of curve
fitting/smoothing procedures [14]. Here, we wished only to carry out a proof-of-principle
of method and so we used a simple (cubic) spline fit (in MATLAB) to the data for each
point component separately. This appeared to work well for both the simulated and real
data, established by visual inspection of model fits to the (test) data.

There are many advantages to using a multilevel approach, especially for trajectories
of dynamical shapes where paths for different groups (e.g., facial expressions for subjects
with and without facial paralysis and/or for different types of expression) are likely to
be radically different. In these cases, a multilevel approach should provide a more effi-
cient and effective model because average trajectories for each group are found explicitly.
Furthermore, mPCA allows us to quantify and explore differences between groups. For
example, it was shown in this article that differences in shape between phases of a smile are
likely to be large, whereas overall differences in how people smile dynamically is likely to
be small between males and females (as expected). Finally, we believe that models that take
into account differences between groups explicitly (e.g., images or shapes from different
types of scanners), as well as differences within groups, might generalize more effectively
than those that do not.

Note also that we previously either considered time as an implicit variable only (e.g.,
during the act of smiling [11,12]) or we used partial-least squares approaches to model
shape changes as a (linear or quadratic) function of time, which should work well for cases
where these changes are more gradual (e.g., facial shape changes with age in adolescents [8]).
Here, splines fits were used in order to provide dynamical shapes sampled at regular time
points, which should even work well when time-dependent changes are very strong (e.g.,
during facial expressions). Such spline fits should, in principle, reduce random errors by
smoothing. In some cases, data frames might be missing, or data might be captured at
irregular time points; spline fit data might be sampled at regular specific time points by
interpolation. Thus, the method presented here is a step forward in treating dynamical
changes in shapes and will hopefully lead to a “full” functional treatment of dynamical
shapes [27] in due course. Future work will also concentrate on validating any such new
methods and studying other types of dynamical objects. If we use multilevel approaches
for multivariate data, similar issues of “pathologies” inherent in mPCA might occur and
we will explore this also. Finally, ideas of clustering and hierarchies in the image or subject
set will be explored also in the context of Deep Learning.
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Here, we carry out simple cubic spline fits of X with respect to time for each subject
separately at T regular time intervals in these initial calculations. Spline fits using the
“spasp2” command in MATLAB were found to provide reliable trajectories (i.e., cubic
splines fitted to data via a least-squares approach). Note that five “knots” gave reliable
results without overfitting for these curves (assessed visually—this is adequate for these
initial proof-of-principle calculations). Results for the “Sine Wave” dataset are shown in
Figure A1 for two cases from the two groups. We see that these curves fit the data well
(albeit for this very simple case.)
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dataset: (left) single trajectory for group 1; (right) single trajectory for group 2. Good model fits from

the cubic splines are found in all cases.

With respect to these multivariate data, we again carry out carry out simple cubic
spline fits of X with respect to time for each subject separately at T regular time intervals.
These initial calculations may then be sampled regularly at T time points for each spline fit
for each component. The simplest method is now to let Xi be an element of a concatenated
vector of each of the Dim × M components of the shape of dimension Dim (Dim = 2, 3
here for 2D and 3D point data, respectively) and at all T time points for each subject i.

Results for the “Blink” dataset are shown in Figure A2 for components for two cases
from each group. Similarly, results for the “Smile” dataset are shown in Figure A3. We see
that these spline curves fit the data well in Figure A2 for the Blink data, even in the presence
of considerable noise. The difference between the two modes (blinking and surprise) is
evidenced by the trajectories of the middle points of the eye, whereas the corners of the eye
change little (as specified for this MC data). Curves from spline fits match the raw data
reasonably well for the Smile data in Figure A3, although the final neutral or “rest” phase is
not captured particularly well for this particular subject in Figure A3. However, the broad
deformations due to a smile are clearly being captured (e.g., evidenced by the corners of
the mouth being drawn outwards and backwards); the purpose here is not to provide a
perfect simulation in this case, but rather to prove the principle that these methods can be
used. Clearly, optimized procedures for smoothing and interpolation could be used, and
this will be an important part of future work.
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eye change little (as specified for this MC data). Curves from spline fits match the raw data 
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ners of the mouth being drawn outwards and backwards); the purpose here is not to pro-
vide a perfect simulation in this case, but rather to prove the principle that these methods 
can be used. Clearly, optimized procedures for smoothing and interpolation could be 
used, and this will be an important part of future work.

Figure A2. Examples cubic spline fits (thicker lines) to the MC data (thinner lines) for the Blink da-
taset. From to left to right: first column, 𝑦-positions of the 1st point (left corner of the eye); second 
column, 5th point (middle upper boundary); third column, 9th point (right corner of the eye); and 
fourth column, 13th point (middle lower boundary). Upper row is for the “blink” group, shown by 𝑦 going to zero for points 5 and 13 at time 0.5 (arbitrary units of time); lower row is for the eyes 
widening/“surprise” group, shown by 𝑦 increasing in magnitude for points 5 and 13 at time 0.5.

Figure A3. Examples cubic spline fits (thicker lines) to the real data (thinner lines) for the Smile 
dataset. From to left to right: first column, 𝑦-positions of the 1st point (left corner of the mouth); 
second column, 4th point (middle upper boundary); third column, 7th point (right corner of the 
mouth); and fourth column, 10th point (middle lower boundary). Upper row includes the 𝑥-com-
ponents, middle row includes the 𝑦-components, and bottom row includes the 𝑦-components. The 
smile is evidenced (e.g.,) by the corners of the mouth for the 1st and 7th points being drawn out-
wards (𝑥 -components increase in magnitude) and backwards (𝑧 -components increase in magni-
tude).
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Appendix B

Again, we assume initially that the outcome is scalar and that trajectory data have
been sampled regularly at T time points. For 3-level mPCA, elements of the covariance
matrix at level 3 for each group j are given by

K
3,j
s,t =

1

nj − 1 ∑
nj

i

(

X
i,j
s − η

3,j
t

)(

X
i,j
t − η

3,j
t

)
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η3,j is the mean for each group j at level 3, given by

η3,j =
1

nj
∑

nj

i Xi,j. (A2)

The “common” covariance matrix at level 3 is defined by

K3,j =
1

p3
∑

p3

j
K3,j. (A3)

Note that there are p3 groups in total at level 3. The analysis has, thus far, followed
that of the 2-level model. For nested mPCA, we now notice that means themselves may
belong to specific groups in the level above them (e.g., classes in specific schools as shown
in Figure A4). The means at level 2 are

η2,k =
1

nk
∑

nk

j
η3,j. (A4)
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Figure A4. Example of a nested model—here, for (say) marks in a test for pupils in a school. Indi-
vidual pupils are at the lowest level (level 3), where each pupil belongs to just one class in level 2. 
Furthermore, each class belongs to just one school. Variation can occur at all levels of the models: 
between pupils in each class; between classes in each school; and between schools.𝑛𝑘 is the number of groups at level 3 that belong to the specific group 𝑘 in level 2. 
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Note that there are 𝑝2 groups at level 2. The “grand mean” at level 1 is now given 
by 𝜂1 = 1𝑝2∑ 𝜂2,𝑘𝑝2𝑘 (A7)

Elements of the covariance matrix at level 1 are written, finally, as𝐾𝑠,𝑡1 = 1𝑝2−1∑ (𝜂𝑠2,𝑘 − 𝜂𝑠1)(𝜂𝑡2,𝑘 − 𝜂𝑡1)𝑝2𝑘 . (A8)
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Figure A4. Example of a nested model—here, for (say) marks in a test for pupils in a school.

Individual pupils are at the lowest level (level 3), where each pupil belongs to just one class in level 2.

Furthermore, each class belongs to just one school. Variation can occur at all levels of the models:

between pupils in each class; between classes in each school; and between schools.

nk is the number of groups at level 3 that belong to the specific group k in level 2.
Elements of the the covariance matrix at level 2 for each group k are given by

K2,k
s,t =

1

mk − 1 ∑
mk

ij

(

η
3,j
s − η2,k

s

)(

η
3,j
t − η2,k

t

)

. (A5)

The “common” covariance matrix at level 2 is defined by

K2 =
1

p2
∑

p2

k
K2,k. (A6)

Note that there are p2 groups at level 2. The “grand mean” at level 1 is now given by

η1 =
1

p2
∑

p2

k
η2,k (A7)

Elements of the covariance matrix at level 1 are written, finally, as

K1
s,t =

1

p2 − 1 ∑
p2

k

(

η2,k
s − η1

s

)(

η2,k
t − η1

t

)

. (A8)

θ1
l , θ2

l , and θ3
l are non-negative eigenvalues at levels 1, 2 and 3, and ψ1

l,t, ψ2
l,t, and ψ3

l,t are
the associated eigenfunctions at these levels. Again, the number of non-zero eigenvalues at
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levels 1 and 2 will be limited to the finite numbers of groups at these levels. The expansion
of any (new) dynamic shape Xnew

t is given by

Xnew = η1 + ∑
m1

l
a1

l ψ1
l + ∑

m2

l
a2

l ψ2
l + ∑

m3

l
a3

l ψ3
l . (A9)

Again, a1
l , a2

l , and a3
l are scalar coefficients and m1, m2, and m3 are set to be finite

numbers. The coefficients
{

a1
l

}

,
{

a2
l

}

, and
{

a3
l

}

may again be obtained by using a global
optimization procedure in MATLAB. The extension to four or more levels for a fully
nested model (reflecting the data) follows the pattern as that established above. Similarly,
multivariate data can also be tackled readily by concatenating shape vectors at all time
points. Non-nested cases (where there is no natural “nested” order to the data) may be
carried out for mPCA as described in an Appendix in Ref. [8]. An example of non-nested
cases might be marks in a test for groupings by both school and sex; there is no natural
order to either sex or school, though one might posit that clustering might be possible via
both variables.
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