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A B S T R A C T 

We introduce a method to infer the vertical distribution of stars in the Milky Way using a Poisson likelihood function, with a 
view to applying our method to the Gaia catalogue. We show how to account for the sample selection function and for parallax 

measurement uncertainties. Our method is validated against a simulated sample drawn from a model with two exponential discs 
and a power-law halo profile. A mock Gaia sample is generated using the Gaia astrometry selection function, whilst realistic 
parallax uncertainties are drawn from the Gaia Astrometric Spread Function. The model is fit to the mock in order to redisco v er 
the input parameters used to generate the sample. We reco v er posterior distributions that accurately fit the input parameters 
within statistical uncertainties, demonstrating the efficacy of our method. Using the GUMS synthetic Milky Way catalogue, we 
find that our halo parameter fits can be heavily biased by our o v erly simplistic model; ho we ver, the fits to the thin and thick discs 
are not significantly impacted. We apply this method to Gaia Early Data Release 3 in a companion paper where we also quantify 

the systematic uncertainties introduced by o v ersimplifications in our model. 

Key words: methods: data analysis – methods: statistical – stars: statistics – Galaxy: kinematics and dynamics – Galaxy: stellar 
content. 
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 I N T RO D U C T I O N  

odels for the distribution of stars in the Milky Way are key to stellar
hysics, Galactic archaeology (study of the formation history of the
alaxy) and understanding observations of external galaxies. 
A core scientific aim of the Gaia mission is to map the 3D distribu-

ion of sources throughout the Milky Way (Perryman et al. 2001 ). To
chieve this, Gaia has measured parallaxes for 1467 744 818 sources
Gaia Collaboration et al. 2016 , 2021a ) providing geometric distance
stimates with no assumptions about source intrinsic brightness
Lindegren et al. 2021 ). Ho we ver, we cannot straightforwardly use
hese billions of distances to construct a map of stars throughout the
alaxy for two key reasons. 
Until recently, the completeness limits of the Gaia catalogues were

argely unknown. The observation strategy of the mission results in
 completeness that varies significantly across the sky on sub-degree
cales. Traditional methods of e v aluating selection functions rely on
he existence of a more complete source catalogue against which
he sample can be compared; ho we ver, there is no such catalogue to
ompare against, due to the incredible depth and resolution of Gaia
cross the entire sky. Without a selection function, it is impossible to
 E-mail: aeverall2@gmail.com 

s  

u  

(  

Pub
enerate an unbiased map of the Milky Way using the full power of
he Gaia data. We refer the interested reader to Rix et al. ( 2021 ) for
 detailed discussion on e v aluating and using selection functions. 

Furthermore, parallax-based distances are statistically awkward to
ork with. Much of our statistical methodology is constructed around

he assumption of Gaussian measurement uncertainties, moti v ated
y the central limit theorem. Parallax uncertainties are Gaussian
istributed, which means that distances are reciprocal Gaussian
istributed. This is a highly asymmetric distribution that, under
n improper uniform prior, cannot be normalized. As such, the
istribution does not have a finite mean. Detailed discussions on
ow to use Gaia parallaxes for distance inference on individual stars
re given in Bailer-Jones ( 2015 ) and Luri et al. ( 2018 ). 

In spite of these hurdles, the structure of the Milky Way has been
tudied in detail by many authors. A work-around to the challenges of
arallax uncertainties is to focus on particular stellar populations for
hich the intrinsic brightness can be modelled. The distance can then
e inferred from the measured apparent brightness. In some cases,
imple stellar colour–absolute magnitude relations are used for either
 large population of sources across the CMD (e.g. Bilir et al. 2006 ;
obbie & Warren 2020 ) or a small subset (e.g. horizontal branch

tars; Fukushima et al. 2019 ). This approach has been taken further by
sing full stellar evolution models to infer intrinsic source brightness
de Jong et al. 2010 ). Period–luminosity relations for certain variable
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ources are also incredibly valuable distance indicators. Ak et al. 
 2008 ) used cataclysmic variables to estimate the vertical profile of
he Milky Way disc, whilst Mateu & Vi v as ( 2018 ) used RR Lyrae to
etermine the structure of the old thick disc and radial profile of the
alo. 
Some of these approaches apply uncertain colour–magnitude 

elations to large populations across the CMD, leaving the results 
usceptible to systematic biases. Other approaches use more carefully 
hosen sub-samples of specific stellar types such that only a small
raction of the data are used. 

In this paper, we develop a method to o v ercome the challenges of
irectly using Gaia parallaxes and applying the selection functions 
or the Gaia source catalogue and astrometry subset from Everall & 

oubert ( 2021 ). We demonstrate its feasibility on a Gaia -like mock
ample with a known ground-truth. We limit the scope of this work
o a high latitude region of the sky for statistical and computational
easons, and due to the challenge of dust extinction that we do not
ttempt to solve here. 

This paper is arranged as follows. In Section 2, we introduce the
ikelihood optimization method used for this work, followed by a full
escription of the model in Section 3. The Gaia -like mock sample
s explained in Section 4 and we demonstrate the application of the
ethod in Section 5. The method is tested on a more realistic mock

atalogue in Section 6. In a companion paper (Everall et al. 2021a ,
enceforth Paper II), we apply this method to high latitude regions 
f the Gaia EDR3 catalogue to estimate the vertical stellar profile 
f the Milky Way at the Solar radius and quantify the systematic
ncertainties introduced by the simplifications and assumptions used 
n our model. 

 M E T H O D  

he probability of drawing a population of objects { x i } from a density
rofile λ( x ) is given by the Poisson likelihood function (for which
eri v ations are gi ven in Lombardi, Lada & Alv es 2013 ; Ev erall &
as 2020 ), 

log L = 

N ∑ 

i= 1 

log ( λ( x i ) ) −
∫ 

d x λ( x ) . (1) 

he observed population of objects is drawn from the true underlying 
istribution of sources multiplied by a selection function that gives 
he probability of a source being included in the surv e y. Therefore, we
an substitute λ( x ) = f ( x , ψ ) S( x ), where S is the selection function
nd f is the true underlying source density with model parameters ψ , 

log L = 

N ∑ 

i= 1 

log ( f ( x i , ψ ) S( x i ) ) −
∫ 

d x f ( x , ψ ) S( x ) . (2) 

he aim of density estimation is to fit the parameters of the true un-
erlying distribution, ψ . Since the selection function is independent 
f the model parameters, it can be dropped out of the first term in the
ikelihood function, 

log L ∼
N ∑ 

i= 1 

log ( f ( x i , ψ ) ) −
∫ 

d x f ( x , ψ ) S( x ) . (3) 

he source properties, x , need to be chosen according to the 
ependencies of the model and selection function. 
Mateu & Vi v as ( 2018 ) use this method on a sample of RR Lyrae

o constrain the structure of the thick disc and halo considering 
nly spatial dimensions, while Bovy et al. ( 2012b ) apply a more
omplex model to a population of G-dwarfs to fit the Milky Way disc
sing measured apparent magnitude, colour, and metallicity. The aim 

f this work is to model the purely spatial distribution of sources,
o we ver the selection function, which will be introduced in more
etail in Section 3.3, is a function of position on the sky and apparent
agnitude. Therefore, we must also consider the intrinsic brightness 

f a source, so our source properties are x = ( l, b, s, M G ). 
An additional complexity we introduce beyond previous works 

s accounting for parallax measurement uncertainties, which is 
ital when working with Gaia astrometry. Suppose instead that x 
re the measured source properties and f ( x , ψ ) is the expected
istribution of measured source properties given the model. Source 
easurements are drawn from an uncertainty distribution, P ( x | x T ), 
here x T are the underlying true source properties. The measured 
odel ( f ) is given by a convolution between the true underlying
odel ( f T ) and the measurement error distribution, 

 ( x , ψ ) = 

∫ 
d x T P ( x | x T ) f T ( x T , ψ ) . (4) 

ubstituting this into the likelihood, we obtain 

log L ∼
N ∑ 

i= 1 

log 

(∫ 
d x T P ( x i | x T ) f T ( x T , ψ ) 

)

−
∫ 

d x T f T ( x T , ψ ) 
∫ 

d x P ( x | x T ) S( x ) , (5) 

here we hav e rev ersed the order of integration in the second term
nd brought f T outside the integral over measured parameters. 

Our measured source properties are x = ( l, b, G, � ), or Galactic
ongitude and latitude, apparent magnitude, and parallax. In this 
ork, we consider parallax error as the only significant measurement 
ncertainty. Positional uncertainties in ( l , b ) are extremely small and
e will test the impact of neglecting error in G in Paper II. Therefore,

he error term becomes 

 ( x | x T ) = δ( l − l T ) δ( b − b T ) δ ( G − G T ( s, M G ) ) P ( � | s) . (6) 

e integrate over all delta functions in the first term of the likelihood
unction , ∫ 

d x T P ( x i | x T ) f T ( x T , ψ ) = 

∫ 
d s P ( � i | s) f T ( l i , b i , G i , s, ψ ) . 

(7) 

The selection function is a function of l , b , and G only; there
s no dependence on measured parallax (Boubert & Everall 2020 ;
verall & Boubert 2021 ). This makes it easy to integrate over ∫ 

d x P ( x | x T ) S( l, b, G ) = S ( l T , b T , G T ( s, M G ) ) . (8) 

inally, we can substitute this into the likelihood function, 

log L ∼
N ∑ 

i= 1 

log 

(∫ 
d s P ( � i | s) f T ( l i , b i , G i , s, ψ ) 

)

−
∫ 

d x T f T ( l T , b T , M G , s, ψ ) S ( l T , b T , G T ( s, M G ) ) . (9) 

his is the likelihood function that we use to fit the model parameters,
 , to the observed data. For the remainder of this paper, we will
rop the subscript T with f al w ays referring to the underlying source
istribution. 

.1 Parallax error integration 

he biggest numerical challenge for our method is the parallax error
onvolution. We need to inte grate o v er parallax for ev ery source at
MNRAS 511, 2390–2404 (2022) 
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very proposed set of model parameters. In this section, we will use
lightly different notation, where � = 1/ s is the true parallax distance
hat we are marginalizing o v er, and � i is the measured parallax for
ource i . The integral we need to e v aluate is ∫ ∞ 

0 
d s P ( � i | s) f ( l i , b i , G i , s, ψ ) 

= 

∫ ∞ 

0 
d � � 

−2 N ( � ; � i , σ�,i ) f ( l i , b i , G i , s, ψ ) 

≡
∫ ∞ 

0 
d � I ( � ) , (10) 

here N is a normal (Gaussian) distribution with standard deviation
� , i , which is the parallax error of source i . In Section 3, we will

ntroduce the absolute magnitude model that is broken into sections
ith an upper absolute magnitude limit (minimum brightness) for the
odel. We can then write the integral as a sum of definite integrals ,∫ ∞ 

0 
d � I ( � ) = 

∑ 

j 

∫ � j+ 1 

� j 

d � I ( � ) , (11) 

here 

 j = 10 ( M j + 10 −G i ) / 5 (12) 

nd M j are the magnitude boundaries of the sections. For an
nconstrained lower absolute magnitude limit, � 0 = 0. 
We numerically e v aluate the integral of each section using the

ollowing five-step recipe: 

(i) Transform into logit-parallax space using the substitution 

 

′ = log 

(
� − � j 

� j+ 1 − � 

)
. (13) 

his gives ∫ � j+ 1 

� j 

d � I ( � ) = 

∫ ∞ 

−∞ 

d x ′ 
I 

J 
, (14) 

here the Jacobian is 

 = 

∣∣∣∣ ∂ x ′ ∂ � 

∣∣∣∣ = 

� j+ 1 − � j 

( � − � j )( � j+ 1 − � ) 
. (15) 

(ii) Find the peak of the logit-transformed integrand by solving 

∂ 

∂ x ′ 

(
I 

J 

)
= 0 (16) 

sing the bisection algorithm with respect to � initializing at the
ntegration boundaries, � j , � j + 1 . Transform the parallax of the
eak into logit space giving us the mode, x ′ 0 . 

(iii) Estimate the width of the peak from the curvature around x ′ 0 , 

x ′ = 

( 

∂ 2 I /J 

∂ x ′ 2 

) −1 / 2 ∣∣∣∣
x ′ = x ′ 0 

. (17) 

(iv) Recentre and rescale via 

 = 

x ′ − x ′ 0 √ 

2 σx ′ 
, (18) 

uch that the integrand is approximately I ∼ exp ( − x 2 ) around the
eak. 
(v) Apply the Gauss–Hermite quadrature in x -space, which gives ∫ � j+ 1 

� j 

d � I = 

∑ 

k 

w k 

√ 

2 σx ′ I ( � ( x k )) 

J ( � ( x k )) 
exp 

(
x 2 k 

)
. (19) 
NRAS 511, 2390–2404 (2022) 
In our application of the method, we use the Gauss–Hermite
uadrature with 11 sample points. Increasing the number of sampling
oints has no appreciable effect on our inferred likelihood. 
A major limitation of this method is that it cannot accurately

ntegrate multimodal integrands. The integrand must be unimodal
uch that we can integrate around the single peak. We will discuss
he implications of this in Section 3 when introducing our model.
o we ver, since this is purely a numerical rather than conceptual

hallenge, we hope future work can impro v e on our method to
llow for more general models to be evaluated and with greater
omputational efficiency. 

 M O D E L  

or this work, we only consider high latitudes, | b | > 80 ◦. There are
everal reasons for this: 

(i) Dust extinction is negligible at high latitudes. Modelling the
D distribution of dust throughout the Milky Way is a complicated
roblem on its own (Marshall et al. 2006 ; Green et al. 2014 ). We
uantify the impact of dust extinction on our results in Paper II. 
(ii) The in-plane structure of the Milky Way disc is complex

ith waves, spiral arms, and the bar that add vast numbers of free
arameters to any spatial model. 
(iii) P arallax inte gration is computationally e xpensiv e and scales

inearly with the number of sources. By focusing on a subset of Gaia
ata, we are left with a computationally tractable problem. 

The aim of this work is to demonstrate how Gaia parallax infor-
ation can be used to obtain an unbiased model of the Milky Way’s

tellar content. The vertical distribution at the Solar neighbourhood
s a tractable first step in this direction. 

The vertical distribution of sources is assumed to be a mixture
f three distinct components: thin disc, thick disc, and halo. This
anonical model has been used for decades since the addition of
he second disc component by Gilmore & Reid ( 1983 ). More recent
ork has shown that – rather than a dichotomy into thin and thick
iscs – there may be a continuous evolution of disc height with stellar
etallicity (Bovy, Rix & Hogg 2012a ; Bovy et al. 2016 ). Ho we ver,

ince metallicity is not an observable in our sample, we keep to the
anonical distinct thin and thick disc model. 

Within each component, we assume the spatial and absolute
agnitude distributions are separable such that 

 ( l, b, �, M G ) = 

∑ 

c={ Tn , Tk , H } 
w c νc ( l, b, �, ψ ν) φc ( M G , ψ φ) . (20) 

his is a significant assumption. The thin disc has undergone star
ormation o v er long periods and will have correlations between age
nd metallicity and the vertical and radial dispersion of orbits (e.g.
vezi ́c et al. 2008 ; Recio-Blanco et al. 2014 ; Martig et al. 2016 ;
naith et al. 2015 ). Likewise, the halo is made of multiple stellar
opulations from in situ star formation and historical merger events
e.g. Helmi et al. 2018 ; Belokurov et al. 2018 , 2020 ). None the less,
e maintain this assumption here in the interests of keeping a simple

nd tractable model. 
We have deliberately chosen to assume a separable thin disc
thick disc – halo Milky Way as this provides a simple and

ractable application of our method that we introduced in Section 2
hilst still returning physically informative parameters. It will be
orthwhile applying our method to Gaia data with more detailed
odel parametrizations. It is beyond the scope of this work because
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Figure 1. HR diagram showing the isochrones used for our mock model of 
Milky Way sources, with ages τ = 6.9, 7.8, and 12.5 Gyr and metallicities 
[Fe/H] = −0.3, −0.7, and −1.5 for the thin disc, thick disc, and halo, 
respectively (orange, green, and purple). The grey dashed line shows the 
minimum absolute magnitude of our model – M G = 12. 
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he exact choice of model will depend on the scientific interests of
he researcher so we wish to leave this open. 

Note that w c is a free parameter of the model for each component
nd gives the total number of stars for that component within the
iv en re gion of the sk y and absolute magnitude range. 

.1 Spatial distributions 

e consider the thin and thick discs to have exponential profiles
 ertically νc ∝ e xp ( −| z| / h c ) similar to previous work (e.g. Juri ́c 
t al. 2008 ; Bovy et al. 2012b , 2016 ). Other possibilities include
ec h or sec h 2 profiles, but there is a moderate preference in the data
or an exponential profile (Dobbie & Warren 2020 ). 

Since we are only considering high latitudes, we neglect any radial 
ependence of the vertical density profile. This makes the numerical 
ntegral described in Section 2.1 significantly more tractable. The 
omplexity introduced by adding radial dependence is explained in 
ore detail in Appendix A. The impact of this simplification on the

esults is tested and quantified in Paper II. 
Transforming into heliocentric coordinates z = s sin ( b ) and nor-
alizing, we obtain the density distribution , 

c ( l, b, s )d V = 

tan 2 ( | b| min ) 

2 π h 

3 
c 

s 2 exp 

(
−| s sin b| 

h c 

)
d l d sin ( b) d s , 

(21) 

here | b | min = 80 ◦ is the on-sky latitude limit of our sample. In
aper II we consider the northern and southern high latitude samples 

ndependently; ho we ver, in this work, we assume that the Galaxy is
ymmetric abo v e and below the Galactic mid-plane and that the Sun
ies perfectly on the plane at z = 0 pc. This introduces a ∼20.8pc
ystematic offset into our results (Bennett & Bovy 2019 ), whose 
ffect on the posterior distributions is quantified in Paper II. 

For the spatial distribution of the halo, we use a spherically 
ymmetric single power-law profile centred on the Galactic Centre, 
H ( r )d V ∝ r −n H . Many other works also include a free parameter
or the halo axial ratio (Juri ́c et al. 2008 ; Mateu & Vi v as 2018 );
o we ver, as we are only using a narrow window on the sky, there
ill be limited information to independently constrain the profile 

nd axial ratio of the halo. Furthermore, previous works have either 
mplicitly or explicitly truncated the halo or included a broken power- 
aw profile. The halo profile used in this work is assumed to extend
nfinitely and as such a normalization constraint is placed such that 
 H > 3. This will be in tension with Deason et al. ( 2014 ) and
ukushima et al. ( 2019 ), who find a steeper halo profile beyond
 ∼ 50 and 160 kpc, respectively. This corresponds to a parallax 
 < 0.02 mas, which is pushing the precision limit of Gaia

arallax es ev en for bright sources (see fig. 7 of Linde gren et al.
021 ). Therefore, our model should not be significantly sensitive to 
his shift. 

As we did for the disc profile, we ne glect c ylindrical radius
ependence for the halo by placing all sources at the same projected
istance from the Galactic Centre as the Sun, R 0 , such that 

 

2 = s 2 sin 2 ( b) + R 

2 
0 . (22) 

gain this is only valid at high latitudes. The dependence of the
ource distribution on Galactic longitude can then be neglected. This 
ay lead to systematic biases that are tested in Paper II. The spatial
odel of the halo is given by 

H ( l, b, s )d V = N νH s 
2 
(
s 2 sin 2 b + R 

2 
0 

)−n H / 2 d l d sin b d s , (23) 
here 

 νH = 

1 

2 π

8 tan 2 ( b min ) √ 

πR 

3 −n 
0 


 ( n/ 2 ) 


 ( n/ 2 − 3 / 2 ) 
. (24) 

his spatial distribution adds three parameters to the model: the 
xponential scaleheight of the thin and thick discs ( h Tn and h Tk ) and
he power-law index of the halo n H . 

.2 Luminosity functions 

he luminosity distribution function of stars in the Milky Way is
n intricate function of the star formation history, accretion history, 
nd dynamical evolution of the Galaxy. The aim of this work is to
erive the spatial distribution of sources in the Galaxy – independent 
f stellar populations – and so the magnitude distribution is only 
ncluded in order to formally account for the surv e y selection
unction. In this section, we will explain how to derive an adequate
arametrization for the luminosity function for each Milky Way 
omponent. 

Each of the three Milky Way components is assumed to be a single
ono-age, mono-abundance stellar population. Using the results of 
ilic et al. ( 2017 ) from white dwarf populations, the ages used for the

hin disc, thick disc, and halo are 6.9, 7.8, and 12.5 Gyr, respectively.
sing SDSS spectroscopy, Ivezi ́c et al. ( 2008 ) derived halo and thick
isc metallicities of [Fe/H] = −1.5 and −0.7, respectively, whilst 
ecio-Blanco et al. ( 2014 ) used the Gaia -ESO surv e y (Gilmore et al.
012 ) to find the thin disc metallicity fell in the range [ − 0.8, 0.2] and
he thick disc in the range [ − 1.0, −0.25]. Combining these results,
e assume the thin disc, thick disc, and halo have metallicities of
0.3, −0.7, and −1.5. The HR diagram in Fig. 1 shows the three

sochrones that are taken from PARSEC v1.2s (Bressan et al. 2012 ;
ang et al. 2014 ; Chen et al. 2014 , 2015 ). 
We then draw a random sample from the broken power law initial
ass function (IMF) of Kroupa ( 2001 ) for initial masses greater than

.09 M 	 with M ini ∼ M 

−1 . 3 
ini for M ini < 0 . 5 M 	 and M ini ∼ M 

−2 . 3 
ini 
MNRAS 511, 2390–2404 (2022) 
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Figure 2. The thin disc, thick disc, and halo isochrones (orange, green, and 
purple) are used to transform a mock sample of stars from initial mass ( M ini ) 
to absolute magnitude ( M G ). The initial mass (top panel) is drawn from a 
Kroupa IMF (Kroupa 2001 ) with M ini > 0 . 09M 	 where the vertical grey 
dotted line is the break mass 0 . 5 M 	. This produces the absolute magnitude 
distribution shown in the right-hand panel. The horizontal grey-dashed line 
shows the maximum absolute magnitude as our model only includes sources 
with M G < 12. 
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Figure 3. The mock distributions produced by transforming the Kroupa 
IMF through isochrones from Fig. 1 (shaded histograms) are fit with the 
approximate absolute magnitude distribution used for the model (dashed 
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therwise. This is shown in the top panel of Fig. 2 . The individual
omponent isochrones, shown in the middle panel, are then used
o transform the IMF into an absolute magnitude distribution that
s shown in the right hand panel. This sample is not used as our
ock catalogue, it is only for deriving our model absolute magnitude

istribution. 
The absolute magnitude distributions of the three components

rom the right-hand panel of Fig. 2 are shown as shaded histograms
n Fig. 3 . They are made up of four regimes. At the bright end ( M G �
), sources evolve much faster along the giant branch than the main
equence (MS), generating a sharp drop at the turn-off abo v e which
he number density of sources falls quickly aside from a spike at
he red clump ( M G ∼ 0). The MS has three components, a relatively
hallow upper sequence for M G ∼ [3, 7], a steeper section for M G ∼
7, 9] where the slope of the MS in Fig. 1 shifts, which is also around
he power-law break of the IMF (we will refer to this section as the
gap’), and a very flat lower MS for M G � 9. Sources continue fainter
o the brown dwarf re gime; howev er, stellar models in these regions
f parameter space are poorly constrained by observations as there
re few stars this dim yet bright enough for current observatories.
or this reason, we only consider sources with M G > 12 in this work.
his will be especially beneficial when we model the Gaia data in
aper II as the majority of sources with spurious astrometric solutions
s classified by Rybizki et al. ( 2021 ) and Gaia Collaboration et al.
 2021b ) have absolute magnitudes fainter than M G = 12. 

Each component of the absolute magnitude distribution is mod-
lled by an exponential distribution. Here we state the parametriza-
ion; ho we ver, a full deri v ation of the absolute magnitude profile is
iven in Appendix B. The absolute magnitude is drawn from a broken
xponential distribution, 

 G ∼ exp ( −αM G ) , (25) 
NRAS 511, 2390–2404 (2022) 
ith four components 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

α1 9 < M G < 12 (Lower MS) 
αg 7 < M G < 9 (MS , ‘gap ′ ) 
α2 M TO < M G < 7 (Upper MS) 
αG M G < M TO (Giants) 

, (26) 

here M TO is the turn-off magnitude. 
The distribution is continuous everywhere except from at the

urnoff where the discontinuous change in the gradient of the
agnitude–initial mass relation leads to a discontinuity in the
agnitude distribution. Continuity conditions at M G = 7 and 9

onstrain the exponential profile αg and the normalization A g of
he gap profile. 

The full magnitude distribution is given by 

 ( M)d M = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(1 − f G ) N D 
1 
a 1 

× exp ( −α1 ( M − M MS ) ) d M 9 < M < 12 

(1 − f G ) N D A g 

× exp 
(−αg ( M − M MS ) 

)
d M 7 < M < 9 

(1 − f G ) N D 
1 
a 2 

× exp ( −α2 ( M − M MS ) ) d M M TO < M < 7 
f G N G 

× exp ( −αG ( M − M TO ))d M M < M TO 

, (27) 

here N D and N G are the normalizations of the dwarf and giant
agnitude distributions, respectively. M MS = 8 is the magnitude of

he transition from the lower to upper MS. 
The magnitude distribution introduces five parameters: α1 , α2 ,
 TO , αG , and f G , the fraction of the population that are giants, which

onstrains the size of the discontinuity at the turn-off. We could
x all parameters using the IMF-isochrone sample just constructed.
o we ver, this is only an approximate representation of the magnitude
istribution that may introduce large systematics. To avoid this
roblem, we free up α1 , α2 , and f G to be constrained by the real
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ata. α1 and α2 are assumed to be the same for all populations as
he MS is dominated by older stars that show a similar distribution
ndependent of population parameters. 

The position of the turn-off, M TO , defines a discontinuity for the
odel. Depending on the location of individual sources in relation to 

he turnoff, this can generate sample-dependent local optima in the 
ikelihood space that is challenging for optimization. For this reason, 
e fix M TO = 3.1 for all models and address the implications of

his in Paper II. αG has a strong degeneracy with f G as both control
he number of sources at bright magnitudes. We also fix αG in all
ptimizations to a v oid this de generac y to values that are discussed
n Section 4. All free parameters are listed in Table 1 with their
espective components. 

This fully defines the model that we fit to the Gaia data. In total,
here are 11 free parameters of the model. 

.3 Selection function 

 major obstacle to using a catalogue of sources to fit a distribution
s the selection function. Many surveys have complex and unknown 
bservation limitations that are a strong function of observatory 
roperties and observing conditions. Gaia is no exception due in 
art to the complexity of the scanning law (Boubert, Everall & Holl
020 ; Boubert et al. 2021 ). 
In most previous works, the sample is either assumed to be 
agnitude complete to some limit (e.g. Juri ́c et al. 2008 ; Bilir et al.

006 ; Ak et al. 2008 ), or the sample is bright and nearby for which
here are larger, complete catalogues against which the selection 
unction has been estimated (e.g. Bovy 2017 ; Mateu & Vi v as 2018 ;
ennett & Bovy 2019 ). Gaia is neither complete in position on the

ky or apparent magnitude, nor is there a larger, more complete 
ample against which to compare the Gaia catalogue. 

Fortunately, a solution for the Gaia source catalogue selection 
unction has been developed and applied to Gaia DR2 (Boubert & 

verall 2020 ). Appendix A of Everall & Boubert ( 2021 ) provides a
imple extension to model the selection function of the Gaia EDR3
ource catalogue using the nominal EDR3 scanning law. This may 
ave some limitations in crowded regions due to changes in Gaia ’s
ata processing pipeline. Ho we ver, since we are only considering 
igh latitude fields, it should be sufficient for our purposes. The 
election probability as a function of apparent magnitude for b = 90 ◦

s given by the green dashed line in Fig. 4 , showing that the source
atalogue is nearly complete for 3 < G < 21. 

Given the source catalogue selection function, the selection func- 
ions of subsets can be estimated by comparison (Boubert & Everall 
021 ; Everall & Boubert 2021 ). In Paper II, we will use the Gaia
strometry catalogue with RUWE < 1.4 where apparent G -band 
agnitude is available. The selection function for this data set is

iven by the product of the source catalogue and subset selection 
unctions : 

 subset ( l, b, G ) = P ( S subset | S source , l, b, G ) P ( S source | l, b, G ) , (28) 

here P ( S source | l, b, G ) is the probability of selection in the Gaia
ource catalogue with published G and P ( S subset | S Gaia , l, b, G ) is 
he probability of an object in the source catalogue having published 
arallax with RUWE < 1.4, modelled in Everall & Boubert ( 2021 ),
s a function of G and position on the sky only. When fitting the
odel parameters to data, equation (28) is substituted into equation 

9). 
The results are applied in 0.2-mag bins in G in NSIDE = 64

EALPIX pixels (G ́orski et al. 2005 ) across the sky. The selection
robability for b = 90 ◦ is given by the red line in Fig. 4 . Due to the
hallenges of modelling sources that saturate the Gaia CCDs at the
right end of the magnitude distribution, we use a selection function
hat truncates at G = 5. Our sample will also only include those
ources with G > 5. 

 M O C K  

o test and demonstrate the efficacy of the method, we generate
 mock catalogue from our model with realistic parameters. Infor- 
ation on the true parameters is then remo v ed, the Gaia selection

unction and Gaia -like parallax uncertainties are applied, and we 
ttempt to infer the input parameters from the mock sample. We
ote that this only tests the method. Because the data are drawn
rom the same model that is being refit, any inconsistencies between
he model and true Milky Way distribution of stars do not show up
ere. These inconsistencies are discussed, tested and quantified in 
aper II. 

.1 Input parameters 

arameters for the scaleheights and power-law indices of the discs 
nd halo respectively are taken from the literature. For the thin disc,
 Tn = 300pc, and for the thick disc, h Tk = 900pc (Juri ́c et al. 2008 ).
he power-la w inde x used is n H = 3.74 from Fukushima et al.
 2019 ). 

The relative stellar mass density of the discs is ρTk / ρTn = 0.12 and
H / ρTn = 0.005 (Juri ́c et al. 2008 ). Instead of local mass density,
ur model fits the total number of sources in each component
ith | b | > 80 ◦. To convert mass density into number density in

he Solar neighbourhood, we divide by the mean mass of a star.
he mean mass is estimated using the IMF-isochrone sample in 
ection 3.2 as M ∼ 0 . 413 , 0 . 369 , 0 . 308 M 	 for the thin disc, thick
isc, and halo, respecti vely. We then di vide the number density by
he value of the normalized component at s = 0 to get the total
umber of sources in each component. The result is that w Tn / w Tk =
.275 and w Tn / w H = 0.0127. The halo dominates the total counts
ecause our observing volume is a cone with | b | > 80 ◦. This
ignificantly reduces the relative contribution from the disc to the 
ample. 

The absolute magnitude distributions for each Milky Way com- 
onent are shown by the shaded histograms in Fig 3 . To estimate
agnitude parameters for the luminosity function described in Sec- 

ion 3.2, we directly fit the parameters to the magnitude distributions.
or each component, the turn-off magnitude is at M G ∼ 3.1. f G 

s approximated from the ratio of sources with G < 3.1 to those
ith G > 3.1. For G < 3.1, we fit a power-law profile to each

omponent independently using the Poisson likelihood function from 

quation (1). This gives α3 = −0.60, −0.77, and −0.64 and f G =
.0045, 0.0054, and 0.0035 for the thin disc, thick disc, and halo,
espectively. 

The lower MS is dominated by old, long-lived stars that evolve
lowly on the HR diagram. Therefore, we assume that the MS profiles
re similar between different Milky Way components such that the 
alues of α1 , α2 are shared between profiles. We draw a sample of
ources from each of the components according to the component’s 
espective weight and fit the MS profiles to the sources with G > 3.1,
hich gives α1 = −0.12, α2 = −0.26. The dashed lines in Fig. 3
ive the absolute magnitude distributions implied by the parameters 
e have just derived. 
All selected and e v aluated parameter v alues are listed as ‘Input’

n Table 2 . 
MNRAS 511, 2390–2404 (2022) 
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Table 1. The 11 free parameters used to model the spatial and absolute magnitude 
distributions of sources along with their priors. 

Component Parameter Prior Transformation Bounds 

Thin disc w Dirichlet( a = 2) log ( w) [ −10,50] 

h Tn U [0.1, 0.6] 
logit ( ( h − 0 . 1 ) / ( 0 . 6 − 0 . 1 ) ) 

[ −10,10] 

f D U [0, 1] logit( f D ) [ −10,10] 

Thick disc w Dirichlet( a = 2) log ( w) [ −10,50] 

h Tk U [0.6, 3.0] 
logit ( ( h − 0 . 6 ) / ( 3 . 0 − 0 . 6 ) ) 

[ −10,10] 

f D U [0, 1] logit( f D ) [ −10,10] 

Halo w Dirichlet( a = 2) log ( w) [ −10,50] 

n H U [3, 7.3] 
logit ( ( h − 3 ) / ( 7 . 3 − 3 ) ) 

[ −10,10] 

f D U [0, 1] logit( f D ) [ −10,10] 

Shared α1 −α1 ∼ log U [ e −5 , e 3 ] log ( − α1 ) [ −5,3] 

α2 −α2 ∼ log U [ e −5 , e 3 ] log ( − α2 ) [ −5,3] 

Notes . The method fits directly to the parameters under the given transformations 
where logistic priors are also included to correct for the logit transform. The bounds 
are applied to the transformed parameters for numerical stability of the optimization. 

Figure 4. The selection function probability at b = 90 ◦ for the Gaia EDR3 
source catalogue (green dashed) drops off at bright magnitudes ( G < 2, due 
to CCD o v ersaturation) and faint magnitudes ( G � 21); ho we ver, it remains 
high across the rest of apparent magnitude space. The Gaia EDR3 astrometry 
with RUWE < 1.4 relative selection function (blue dashed) is more restrictive 
o v er the entire magnitude range and dominates the total selection function 
(red solid). The cut-off at G < 5 is deliberately imposed to remo v e re gions of 
apparent magnitude with poor astrometry calibration. 
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.2 Parallax error 

o generate a realistic mock, we also need to sample measurement
ncertainties. Since the Gaia astrometry was fit using an iterative
inear regression process, the covariance may be estimated from
nformation theory (neglecting excess noise) using only the scanning
aw and individual observation centroid uncertainties. This process
s performed in Everall et al. ( 2021b ) for Gaia DR2 and we use
he Gaia EDR3 nominal scanning law to extend this to the EDR3
aseline. 
The covariance estimates break down for sources with significant

xcess noise, such as in heavily crowded regions and for sources
ith intrinsic astrometric variability like binaries. Since we will only

onsider sources with | b | > 80 ◦, crowding is negligible. By focusing
n the sample with RUWE < 1.4, we expect to have removed sources
ith observable binary motion. 
NRAS 511, 2390–2404 (2022) 
.3 Mock samples 

 sample of one million sources with distance, latitude and abso-
ute magnitude is drawn from the model using MCMC sampling
F oreman-Macke y et al. 2013 ). Since all sources are assumed to be
t the projected distance from the Galactic Centre of the Sun, the full
odel is Galactic longitude-independent so the longitude is drawn

rom a uniform distribution l ∼ U [0, 2 π ]. The distribution of drawn
ources as a function of distance from the Galactic disc and absolute
agnitude is given by the blue histograms in the top panels of
ig. 5 . 
The selection function probability is e v aluated for all sources,

iven their position on the sky and apparent magnitude as described
n Section 3.3. To generate the mock Gaia astrometry with RUWE
 1.4 sample, the event of a source being included is drawn

rom a Bernoulli distribution with the given selection probability
 i ∼ Bernoulli ( S( l i , b i , G i )) , where S i = 0, 1. Of the 1000 000 source
n the full sample, 73 132 survive the selection cuts, shown by the
ed histograms in the middle and bottom panels of Fig. 5 . 

Parallax error is e v aluated from the Astrometric Spread Function
escribed in Section 4.2. The observed parallax is drawn from a
aussian distribution with the given error for each source � ∼
 (1 /s, σ� 

). The red histograms in the bottom panels of Fig. 5
how the distribution of measured z = sin ( b )/ � , M G = G −
0 + 5log 10 ( � /mas) after sampling � from the parallax error. This
ignificantly affects the distributions, demonstrating the importance
f properly accounting for parallax uncertainty when modelling the
tructure of the Milky Way from Gaia data. 

This produces three samples that can each be used to independently
t the model parameters demonstrating each stage of the method: 

(i) Full sample fit with equation (1): l i , b i , s i , G 

i ∀ i, 
(ii) SF sample fit with equation (3): l i , b i , s i , G 

i ∀ i, where S i = 1,
(iii) SF and σ� 

fit with equation (9): l i , b i , � 

i , G 

i ∀ i, where
 i = 1. 

To be clear, in sample (iii), the selection function is not dependent
n measured parallax or parallax error as discussed in Section 2. We
imply mean that the selection function is applied and parallax error
n sources is also included. Samples (ii) and (iii) contain the exact
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Table 2. The input parameters for the mock sample catalogue generation and the results of the fit to the 
data are shown when using the full sample with no observational errors (‘Full’), the selection function with 
no observational errors (‘SF’), and the sample with both the selection function and the added parallax errors 
(‘SF and σ� 

’). 

Component Parameter Input Full SF SF and σ� 

Thin disc log 10 ( w) 4.0792 4 . 0700 + 0 . 0194 
−0 . 0191 4 . 0637 + 0 . 0331 

−0 . 0359 3 . 9816 + 0 . 0586 
−0 . 0657 

h Tn 0.300 0 . 301 + 0 . 007 
−0 . 006 0 . 301 + 0 . 010 

−0 . 010 0 . 281 + 0 . 015 
−0 . 015 

f G 4.50 × 10 −3 3 . 73 + 1 . 00 
−0 . 99 × 10 −3 3 . 91 + 1 . 23 

−1 . 22 × 10 −3 3 . 76 + 1 . 43 
−1 . 30 × 10 −3 

M TO 3.1 

α3 −0.6 

Thick disc log 10 ( w) 4.6335 4 . 6249 + 0 . 0051 
−0 . 0050 4 . 6253 + 0 . 0092 

−0 . 0093 4 . 6221 + 0 . 0200 
−0 . 0198 

h Tk 0.900 0 . 891 + 0 . 012 
−0 . 011 0 . 884 + 0 . 029 

−0 . 028 0 . 812 + 0 . 052 
−0 . 045 

f G 5.40 × 10 −3 5 . 76 + 0 . 54 
−0 . 52 × 10 −3 5 . 80 + 0 . 64 

−0 . 60 × 10 −3 5 . 83 + 0 . 69 
−0 . 66 × 10 −3 

M TO 3.1 

α3 −0.77 

Halo log 10 ( w) 5.9754 5 . 9759 + 0 . 0005 
−0 . 0005 5 . 9662 + 0 . 0106 

−0 . 0105 5 . 9450 + 0 . 0247 
−0 . 0229 

n H 3.740 3 . 745 + 0 . 001 
−0 . 001 3 . 753 + 0 . 020 

−0 . 020 3 . 812 + 0 . 068 
−0 . 066 

f G 3.50 × 10 −3 3 . 47 + 0 . 06 
−0 . 06 × 10 −3 3 . 49 + 0 . 10 

−0 . 09 × 10 −3 3 . 48 + 0 . 15 
−0 . 15 × 10 −3 

M TO 3.1 

α3 −0.64 

Shared α1 −0.1100 −0 . 1109 + 0 . 0003 
−0 . 0004 −0 . 1094 + 0 . 0014 

−0 . 0015 −0 . 1098 + 0 . 0020 
−0 . 0020 

α2 −0.2500 −0 . 2524 + 0 . 0020 
−0 . 0019 −0 . 2534 + 0 . 0045 

−0 . 0046 −0 . 2521 + 0 . 0089 
−0 . 0084 

Note . For all parameters, we provide the median and 16th and 84th percentile uncertainties. 

Figure 5. The posterior distribution of fits to the mock sample are shown by the shaded regions for the thin disc (orange), thick disc (green), halo (purple), 
and the sum total (black) as a function of vertical height ( z, left-hand panel), absolute magnitude ( M G , middle panel), and apparent magnitude ( G , right-hand 
panel). Blue histograms in the top row show the full sample that the model fit perfectly cut through. The red histograms in the middle and bottom rows show the 
distribution of SF selected samples with the bottom ro w sho wing the distribution of z = sin ( b )/ � and M G = G + 5log 10 ( � ) − 10, demonstrating the impact 
of parallax uncertainties on measured quantities. The posteriors agree extremely well with the ground truth shown by the dotted lines in all panels. This is true 
when fitting to the full sample (top panel), the SF-limited sample (middle panel), and the SF-limited sample with measured parallaxes sampled from their error 
distributions (bottom panel). The posterior distributions are e v aluated by randomly selecting 100 samples from the MCMC posteriors and taking the 16th–84th 
percentile range. In several cases, particularly for the ‘Full’ fits in the top row, the posterior is so tight that the distribution appears as a line in the figure. 
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ame subset of sources from the mock catalogue. Sample (ii) has no
arallax error, whilst measured parallaxes in (iii) have been drawn
rom the parallax uncertainties. 

 PAR A M ETER  INFERENCE  

n this section, we will use the method introduced in Section 2 to
t the model parameters to the three mock samples described in
ection 4. 

.1 Priors 

riors for all free parameters of the fits are given in Table 1 . As
s common with mixture model fits to density distributions, the
ikelihood space is strongly multimodal. For the thin and thick discs,
here is of course a complete de generac y where the components
an be switched, but there are also problematic modes where, for
xample, a single component is expanded to fit the full data set,
hilst remaining components are suppressed. 
Priors are chosen specifically to a v oid local optima in the model.

ll weights are assumed to be drawn from a Dirichlet distribution
ith a = 2 to remo v e modes where any component is completely

uppressed relative to the others. To a v oid the disc de generac y, the
ossible disc scaleheights are limited to non-o v erlapping ranges with
 Tn ∼ U[0.1kpc, 0.6kpc] and h Tk ∼ U[0.6kpc, 3.0kpc]. The power-
a w inde x of the halo is also limited to n H ∼ U[3.0, 7.3] as n H <
.0 would produce an unnormalized halo and n H > 7.3 produces an
ncredibly steep halo profile that can mimic the exponential discs (for
 H = 7.3, the mean halo source distance is the same as an exponential
rofile with h = 3.0 kpc). 
For numerical stability, the fits are made on the transformed param-

ters where transformations are given in Table 1 . The transformations
cale parameters to the range [ − ∞ , ∞ ] in all cases. For logit
ransformed parameters, we include a logistic prior in logit space that
s equi v alent to a uniform prior in untransformed space. Therefore
he logit transformation has no effect on the prior. 

The L-BFGS-B algorithm requires boundaries on all parameters
hat are given in the final column of Table 1 . The boundaries are
hosen to a v oid regions of parameter space that suffer from numerical
recision issues. None of the parameter posterior distributions push
p against the boundaries. 

.2 Optimization 

he likelihood optimization is performed in three stages. All MCMC
rocesses used EMCEE (F oreman-Macke y et al. 2013 ). First, a set
f samples is drawn from the parameter priors using MCMC with
4 w alk ers (this is four times the number of free parameters in
ur model), with 100 step burn-in and 100 steps of sampling.
econdly, 10 samples are randomly selected from the prior samples
s initialization for gradient descent using L-BFGS-B (Zhu et al.
997 ) as implemented in SCIPY . Finally, the maximum likelihood
stimate with the highest likelihood is taken as the best fit solution.
 secondary MCMC process is initialized with 44 w alk ers drawn

rom a Gaussian ball around the maximum likelihood estimate with
ariance of 10 −10 times the boundary width. These w alk ers were
un with the likelihood × prior for 5000 steps. The latter 2500
teps are used at five-step intervals as the posterior samples. This
rocess is used for fitting all mock samples and the real Gaia data in
aper II. 
NRAS 511, 2390–2404 (2022) 
.3 Results 

he ‘Full’ sample posteriors, given by the blue contours in Fig. 6 ,
rovide tight solutions around the input parameter values that are
hown by the black dot. A more quantitative comparison can be made
rom Table 2 that shows that the majority of input parameters fall
ithin the 16th–84th percentile range of the posterior distribution.
he top panels of Fig. 5 compare the ground truth input model, shown
ith dotted lines, to the refit model, shown by the narrow shaded

egions. To produce the shaded posteriors in Fig. 5 , we draw 100
amples from the posterior parameter distributions and plot the 16th–
4th percentile range as a function of z, M G , and G . The posteriors
re so tight in most cases that the shaded regions appear as lines
erfectly tracking the input model and the total of the components
n black sits exactly on top of the blue histograms that show the
istribution of the data in the sample. 
The ‘SF’ sample, fit to only 73 132 of the initial one million
ock sources, has a significantly less tight constraint around the

rue parameters, shown by the red contours in Fig 6 , but the
arameters show no significant bias. The fits to the halo parameters
re slightly shifted from the true values but all parameters are well
ithin 2 σ of the input so this can be well explained by correlated
oise, particularly considering the ne gativ e correlation between the
alo weight and power-law index, n H . The red histograms in the
iddle panels of Fig. 5 show the selection-limited sample that drops

ignificantly at large vertical heights and faint apparent magnitudes
emonstrating how much the model has to extrapolate using the
election function. Again, the model posteriors sit perfectly on the
nput model shown by the dotted lines. 

For the apparent magnitude distribution in the middle right-hand
anel of Fig. 5, we show the model multiplied by the selection
unction probability. The total model (black) sits perfectly on top
f the red sample histograms demonstrating how successfully the
odel is fit to the data. This distribution will be especially important
hen analysing fits to the real Gaia data when we cannot directly

nfer the distance of stars from the Galactic plane or their absolute
agnitudes due to significant parallax uncertainties. 
The ‘SF and σ� 

’ posterior, given by the purple contours in Fig. 6 ,
as significantly enhanced uncertainty compared with the solely SF
imited data. This demonstrates how much information is held in the
arallax and how information is lost when realistic Gaia parallax
ncertainties are included. In spite of this, the input parameters are
till reco v ered with reasonable precision and good accurac y. In the
ottom panels of Fig. 5 , we can see the posterior samples produce a
learer spread around the input distribution. This time the thin and
hick discs have not been perfectly fit within the posteriors ho we ver
he difference is still small enough to be well explained by statistical
oise. 
These results have demonstrated that the Poisson-likelihood
ethod accounting for the Gaia selection function and parallax error

s a powerful tool for reco v ering the spatial distribution of sources
n the Milky Way. Ho we ver, this only tests the self-consistency
f the method; the results may still be susceptible to systematic
ncertainties if the model does not represent the real Milky Way. 

 G U M S  

o far, we have only tested the method on data drawn from the fitted
odel. But what happens when we attempt to fit our model to a more

eneral and realistic catalogue? To test this we use the Gaia Universe
odel Snapshot (GUMS; Robin et al. 2012 ), a synthetic Milky Way

ased on the Besan c ¸on Galaxy Model (Robin et al. 2003 ) that was
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Figure 6. The posterior distributions for all mock samples are shown as a function of transformed parameters that are fit to the data. The Full sample fits (blue), 
SF sample (red), and SF with parallax error (purple) all show strong agreement with one another and the input parameters (black lines). The enhancement of the 
statistical uncertainty by introducing parallax error can clearly be seen by the increased spread of the posterior for the purple contours. 
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eveloped to test the Gaia data processing pipeline with a realistic 
opulation of sources. 
The latest GUMS sample is provided with Gaia EDR3 and 

escribed in the Gaia documentation. 1 We will provide a very brief
 v erview of the key components. 
The thin disc is composed of seven mono-age populations each 

ontributing a sum of square-exponential radial and vertical profiles 
 ht tps://gea.esac.esa.int /archive/documentation/GEDR3/Dat a processing/ch 
p simulated/sec cu2UM/ssec cu2starsgal.html . 

h  

o
∼  

o

o the Milky Way disc. The scaleheights of the profiles increase
ith age, with ages ranging from 0 to 10 Gyr. The thick disc is
ased on the results of Robin et al. ( 2014 ) and consists of a sum of
wo components that are exponentially distributed in Galactocentric 
adius and reciprocal-cosh -square distributed in vertical height abo v e 
he mid-plane with ages 10 and 12 Gyr, and scaleheights 400 and
95 pc, respectively. Flaring is also applied to the disc profiles;
o we ver, this only takes effect for R > 10 kpc so should not affect
ur analysis. The spheroidal halo is power law distributed with n H 

3.77 for Galactocentric distances of r > > 2.2 kpc and is slightly
blate with q = 0.77. 
MNRAS 511, 2390–2404 (2022) 
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Figure 7. Bottom row: number density of sources in sample (red histograms) and predicted by the model in the thin disc (orange), thick disc (green), halo 
(purple), and sum total (black). Model shaded regions show the 1st–99th percentiles of posterior parameter fits to the data. Top right-hand panel: relative residual 
of the data from the median model fit showing that the model produces a small but significant underestimate of the data at bright magnitudes and o v erestimate 
at fainter magnitudes. The shaded red regions show the 1 standard deviation Poisson uncertainties of the bin counts. 
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The absolute magnitudes of the populations are determined by
ampling from an IMF and star formation history and using stellar
volution tracks. The thin discs use a constant star formation history
hilst instantaneous bursts of star formation at 10 and 12 Gyr are
sed for the thick disc and 14 Gyr for the halo. 
The sample provided through the Gaia archive includes binary

nd higher order systems for a significant fraction of stars. For the
urposes of this study, we treat all systems as unresolvable with Gaia ,
.e. we only include them as a single point source with flux given by
he sum of all stars in the system. 

We select sources with b > 80 ◦ in the north and b < −80 ◦ in the
outh from the GUMS catalogue. Due to computational limitations,
e work only with a randomly-drawn 10 per cent subsample when

esting our method on GUMS. The GUMS sample was cut internally
o only include sources with G < 21, where G was estimated from
imple colour relations. The published apparent G -band magnitude is
omputed from the GUMS synthetic spectra such that the originally
harp cut becomes a smooth drop off at G ∼ 21 (Robin, private
ommunication). To a v oid this, we cut the sample at G = 20.5
nd set the selection function to S = 0 for G > 20.5. We then
roduce a Gaia -like mock catalogue by resampling the data from the
election function introduced in Section 3.3. This produces 47 027
ources in the north and 49 508 in the south. The distributions of the
orth sample as a function of height abo v e the mid-plane, absolute
agnitude, and apparent magnitude are shown by the red histograms

n the lower panels of Fig. 7 . 
As we did for the mock in Section 4.2, we also resample a realistic

bserved parallax measurement for each source from the Astrometric
pread Function (Everall et al. 2021b ). We then run two fits for each
f the north and south samples, one fit to the sample with no parallax
rror applied and the other with parallax error applied. These are
qui v alent to fits (ii) and (iii) in Section 4. 

The results of the fits to the north sample with parallax error are
hown in Fig. 7 . The model is only slightly abo v e the data at small z
nd bright absolute magnitudes, which is unsurprising as few sources
ill have been removed by the selection function in these regions of
arameter space. For the apparent magnitude distribution, we also
pply the selection function to the total model that produces the black
NRAS 511, 2390–2404 (2022) 
otted line. The top right-hand panel of the figure shows the relative
esiduals of the data from the model. At bright magnitudes, the
esiduals are very large but decline to approximately a few per cent
or G � 15. This demonstrates that our model is not flexible enough
o accurately reproduce the data; ho we ver, at the fainter magnitudes,
his inaccuracy is small relative to the scale of the model. 

The parameter posteriors for all four fits are shown in Fig. 8 . The
rst thing to note is that the north and south posteriors, shown by
lue and red contours respectively, are consistent with one another
or all parameters whether parallax error is applied or not. This
emonstrates that we are correctly finding no asymmetry north
r south of the Milky Way disc. The glaring problem with our
esults is that the halo fits are significantly different when exact
istances are used (solid contours) and when parallaxes are drawn
rom uncertainties (dashed contours). The halo distribution peaks
t z ∼ 10 kpc corresponding to a parallax of ∼0.1 mas, which is
maller than the parallax uncertainty for sources fainter than G ∼
8. Many faint sources will have low parallax signal-to-noise ratio
nd so will only have weakly constrained distances. At these large
istances, we expect that the method is using the absolute magnitude
istribution combined with the measured apparent magnitude of
ources to estimate the distance distribution. Oversimplifications
n our absolute magnitude model therefore significantly bias the
nferred halo profile. In spite of this, the thin and thick disc profiles
re remarkably resilient to the halo systematics with no parameters
roducing significant offsets between the two fits. 
As the model parametrization used for GUMS is significantly

ifferent to our own, we cannot make direct comparisons between
ur parameter values and a ‘ground truth’ input. The thick disc
caleheight of 670–780 pc is broadly consistent with the scaleheights
sed to generate the population ho we ver the GUMS sample has
wo profiles for different age populations that bracket our inferred
alue. 

We conclude from this that the inferred halo profile parameters
re susceptible to significant systematic uncertainties when applying
ur method to realistic Gaia samples likely due to an o v ersimplified
bsolute magnitude model. Ho we ver, the disc parameters are more
eliable and we can draw information about the structure of the Milky

art/stab3325_f7.eps


The Galaxy Photo-Astrometric tracer density 2401 

Figure 8. Posterior distribution of fits to GUMS data for the north (blue) and south (red) samples show reasonable agreement across all parameters. The fits 
with precise distances (solid) and parallax es dra wn from uncertainty distributions (dashed) are consistent for disc parameters but significantly disagree for the 
halo, likely related to a o v erly simplistic magnitude model. 
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ay disc profiles from our results when applying to the real Gaia
ata in Paper II. 
Ev en giv en the consistenc y of our disc parameter results, we cannot

uarantee that we have managed to separate out the two components. 
ince our model is different to the one used to generate GUMS, it is

ikely that some thin disc stars will be contributing to the thick disc
nd vice versa . This will happen to some extent with the real Gaia
ata too assuming that the Galactic disc can even be decomposed into
iscrete components, which is contested (e.g. Bovy et al. 2012a ). In
he scenario that the Milky Way disc does not decompose well into
xponential thin and thick discs, the sum total of our disc models
hat describes the total tracer density may be of greater interest to the
ommunity than the individual components that contribute to it. 

In Paper II, we quantify the systematic uncertainty introduced by 
ome of the assumptions we have applied. We test the impact of
olar position offset from the Galactic mid-plane, dust extinction, 
agnitude uncertainty, parallax zero-point offset, shifting the turn- 

ff absolute magnitude, Galactocentric-radius-dependent disc and 
alo distributions, and an oblate stellar halo. This provides a 
omprehensiv e o v erview of the systematic uncertainties introduced 
o parameter estimates by o v ersimplifications in our model of stars
n the Galaxy. 
MNRAS 511, 2390–2404 (2022) 
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 C O N C L U S I O N S  

e hav e dev eloped a method to fit the distribution of stars in
he Milky Way using the Poisson likelihood function. Our method
orrectly accounts for the sample selection function and parallax
easurement uncertainty. 
The method is used to fit the vertical distribution of stars with

 b | > 80 ◦. For the model, we use two exponential disc components
nd a power-law halo. The data are also simultaneously fit with a
our-piece exponential absolute-magnitude distribution. 

The efficacy of our method is demonstrated against a mock sample.
y refitting the model parameters, we demonstrate that the method
roduces results that are accurate to within the statistical uncertainties
f the parameter posteriors. 
We apply our method to the GUMS mock sample to infer the

arameters of a population that are drawn from a far more complex
ilky Way model. We obtain consistent fits when applying our model
ith and without parallax error for disc parameters but not for halo
arameters. This suggests that our results for disc parameters are
eliable when fit to data that does not exactly represent our model
ut that our disc parameters should be viewed with caution. 

In Paper II, we set the machinery working on Gaia EDR3.
e undertake a set of strenuous tests to quantify the systematic

ncertainties in our parameter estimates due to o v ersimplifications
n the model. 
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PPEN D IX  A :  I N T E G R A N D  LIMITATIONS  

n Section 2.1, we stated that the integral over parallax uncertainty 
ecomes intractable for more complex models, we will briefly justify 
hat statement here where we will use the example of the exponential
isc model to demonstrate. 
The integrand including R -dependence is 

 d � ∝ � 

−4 exp 

(
− z 

h 

− R 

L 

)
exp 

(
( � − � i ) 

2 σ 2 
�i 

)
d � (A1) 

here h and L are the scaleheight and scalelength of the disc being
onsidered. The Jacobian for the logit transformation we applied is 

 ∝ 

1 

( � j+ 1 − � )( � − � j ) 
. (A2) 

aking the gradient of I / J , setting to zero (as in equation 16) and
implifying down, we are left with 

− 4 

� 

− 1 

h 

∂ z 

∂ � 

− 1 

L 

∂ R 

∂ � 

− ( � − � i ) 

σ 2 
�i 

+ 

1 

( � j+ 1 − � ) 
− 1 

( � − � j ) 
= 0 , 

(A3) 

here 

 = 

sin b 

� 

and R 

2 = R 

2 
0 + 

(
cos b 

� 

)2 

− 2 R 0 cos b cos l 

� 

. (A4) 

In our application, we have assumed no R -dependence, i.e. setting 
 = ∞ . We have 

∂ z 

∂ � 

= − sin b 

� 

2 
, (A5) 

nd equation (A3) simplifies to a quintic polynomial in terms of � .
e know that at least two solutions of the quintic are outside [ � j ,
M

 j + 1 ], since 

I 

J 

⎧ ⎨ 

⎩ 

= 0 for � = � j , � j+ 1 

< 0 for � � � j , � � � j+ 1 

= 0 for � = 0 , ∞ 

, (A6) 

o there must be a stationary point abo v e and below the boundaries.
his leaves three stationary points in the integration range corre- 
ponding to two peaks or modes. Our model is equi v alent to the
xponentially-decreasing square distance prior used by section 7 of 
ailer-Jones ( 2015 ) and they also find the same two modes. Ho we ver,

wo of the roots are often either complex, or, for � i < 0, there will be
 mode with ne gativ e parallax that is outside the integration limits.

hilst we cannot guarantee that the integrand is al w ays unimodal,
ection 5 demonstrates that this does not have a measurable affect
n our results. 
If, ho we ver, we include R -dependence and have L of order unity

kpc), then the integrand significantly changes. Equation (A3) now 

ncludes 

∂ R 

∂ � 

= 

1 

R 

(
− cos 2 b 

� 

3 
+ 

R 0 cos b cos l 

� 

2 

)
, (A7) 

here R is given in equation (A4). Expanding this out, equation (A3)
s now an 11th-order polynomial in � . Again, two of the stationary
oints are outside the integration bounds due to the logit transforma-
ion but that leaves nine stationary points meaning up to five modes
n the integrand. 

One simplification we could take that would a v oid adding any
ore modes to the integrand is 

 ≈ R 0 − X = R 0 − s cos l cos b. (A8) 

his would provide a slight improvement on our previous models; 
o we ver, it also makes the model normalization non-analytic that
dds another layer of complexity. This may be an avenue worth
ursuing ho we v er we consider it be yond the scope of this work. 

PPENDI X  B:  M AG N I T U D E  DI STRI BU TIO N  

o derive the absolute magnitude distribution, we start from a power-
aw IMF with a break at M b = 0 . 5M 	: 

 ( M )d M = 

{
N M 1 exp ( −ε1 ) M < M b 

N M 2 exp ( −ε2 ) M > M b 
. (B1) 

he continuity boundary condition at M = M b constrains 
 M 1 M 

−ε1 
b = N M 2 M 

−ε2 
b . 

The initial–mass luminosity relation is assumed to approximately 
ollow a set of power-law slopes: 

 ∝ M 

a , (B2) 

uch that the absolute magnitude distribution is given by 

 = 

−2 . 5 a 

log (10) 
log ( M ) + C, (B3) 

here C is an unknown normalization constant. 
Fig. 2 shows that the magnitude–luminosity relation changes 

pproximately around the mass break in the IMF . W e introduce the
agnitude boundary M MS that is the absolute magnitude approxi- 
ately corresponding to the mass M b : 

 = 

{ −2 . 5 a 1 
log (10) log ( M ) + C 1 M > M MS 

−2 . 5 a 2 
log (10) log ( M ) + C 2 M < M MS 

. (B4) 
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pplying a continuity condition for the magnitude–initial mass
elation at M MS constrains : 

 2 = C 1 + 

log (10) M MS 

2 . 5 a 2 

(
1 

a 2 
− 1 

a 1 

)
. (B5) 

We can now construct the absolute magnitude distribution: 

 ( M)d M = f ( M )d M (B6) 

= f ( M ( M ))d 
∣∣∂ M 

∂ M 

∣∣ d M (B7) 

= N 

{ 

1 
a 1 

exp ( −α1 ( M − M MS ) ) d M M > M MS 
1 
a 2 

exp ( −α2 ( M − M MS ) ) d M M < M MS 
. (B8) 

The model derived so far assumes a discontinuous change in the
radient of the magnitude–initial mass relation; ho we ver, Fig. 2
learly shows that there is a continuous change between modes.
o reflect this, the model shifts between regimes across a range
f apparent magnitudes. We refer to the intermediate magnitude
ange as the ‘gap’ and use an extra exponential profile that connects
moothly into the lower and upper MSs: 

 ( M)d M = N 

⎧ ⎨ 

⎩ 

1 
a 1 

exp ( −α1 ( M − M MS ) ) d M M MS1 < M 

A g exp 
(−αg ( M − M MS ) 

)
d M M MS2 < M < M MS1 

1 
a 2 

exp ( −α2 ( M − M MS ) ) d M M < M MS2 

. (B9) 

his introduces two boundary conditions that are continuity condi-
ions at M MS1 and M MS2 . Applying the boundary conditions fully
onstrains both A g and αg : 

αg = 

log 
(

a 1 
a 2 

)
−α1 ( M MS −M MS1 ) + α2 ( M MS −M MS2 ) 

(B10) 

M MS1 −M MS2 
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A g = 

1 
a 1 

exp 
(
( αg − α1 )( M MS − M MS1 ) 

)
. (B11) 

This gives us our MS distribution. However, the giants follow a
teeper track with a sharp drop at the turn-off magnitude, M TO . For
his, a final exponential component is included with an independent
ormalization to the MS: 

 G ( M)d M = N G exp ( −αG ( M − M TO )) M < M TO , (B12) 

here N G = −1 / αG , to normalize the giant distribution. 
Finally, putting this all together, the fraction of all sources that are

warfs (i.e. have M > M TO ) is parametrized by f D . The full magnitude
istribution is given by 

 ( M)d M = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

f D N D 
1 
a 1 

exp ( −α1 ( M − M MS ) ) d M M MS1 < M < M X 

f D N D A g exp 
(−αg ( M − M MS ) 

)
d M M MS2 < M < M MS1 

f D N D 
1 
a 2 

exp ( −α2 ( M − M MS ) ) d M M TO < M < M MS2 

(1 − f D ) N G exp ( −αG ( M − M TO ))d M M < M TO 

, 

(B13) 

where N D is the normalization of the full MS. In order to make
his well normalized, an upper absolute magnitude limit, M X , has
een placed on the lower MS. This also cuts the distribution off
efore it reaches the end of the information from isochrones. At these
agnitudes, there are very few visible stars and those that are in the
aia data set will be nearby with well constrained parallaxes enabling

hem to be easily remo v ed from the sample as contamination. 
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