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A B S T R A C T 

We develop a method (‘Galactic Archaeology Neural Network’, GANN ) based on neural network models (NNMs) to identify 

accreted stars in galactic discs by only their chemical fingerprint and age, using a suite of simulated galaxies from the Auriga 
Project. We train the network on the target galaxy’s own local environment defined by the stellar halo and the surviving 

satellites. We demonstrate that this approach allows the detection of accreted stars that are spatially mixed into the disc. Two 

performance measures are defined – reco v ery fraction of accreted stars, f recov and the probability that a star with a positive 
(accreted) classification is a true-positive result, P ( TP ). As the NNM output is akin to an assigned probability ( P a ), we are able 
to determine positivity based on flexible threshold values that can be adjusted easily to refine the selection of presumed-accreted 

stars. We find that GANN identifies accreted disc stars within simulated galaxies, with high f recov and/or high P ( TP ). We also 

find that stars in Gaia–Enceladus–Sausage (GES) mass systems are o v er 50 per cent reco v ered by our NNMs in the majority 

(18/24) of cases. Additionally, nearly every individual source of accreted stars is detected at 10 per cent or more of its peak 

stellar mass in the disc. We also demonstrate that a conglomerated NNM, trained on the halo and satellite stars from all of the 
Aurig a g alaxies pro vides the most consistent results, and could pro v e to be an intriguing future approach as our observational 
capabilities expand. 

Key words: methods: data analysis – Galaxy: evolution. 
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 I N T RO D U C T I O N  

n the Lambda cold dark matter ( � CDM) cosmological model,
alaxies undergo mergers and interactions o v er the course of their
volution (Springel et al. 2008 ). These events affect their properties,
uch as morphology, star formation activity, and angular momentum
istribution, as shown by numerous observational (e.g. Lambas et al.
003 ; Patton et al. 2005 ; Ruiz-Lara et al. 2020 ; G ́omez et al. 2021 )
nd numerical works (e.g. Barnes & Hernquist 1991 ; Tissera 2000 ;
erez et al. 2006 ; Rupke, K e wley & Barnes 2010 ; Perez, Michel-
ansac & Tissera 2011 ; Purcell et al. 2011 ; G ́omez et al. 2013 ;
morisco 2017 ; G ́omez et al. 2017 ; Moreno et al. 2019 ). As a

onsequence, mergers can also shape the properties of the stellar
opulations that form the different dynamical components: disc (e.g.
inchev et al. 2009 ; Quillen et al. 2009 ; Scannapieco et al. 2009 ;
 E-mail: thor.tronrud@gmail.com 

s
 

t  

Pub
 ́omez et al. 2012 , 2016 ), bulge (e.g. Gargiulo et al. 2019 ; Tissera
t al. 2019 ), and stellar haloes (e.g. Bullock & Johnston 2005 ; Zolotov
t al. 2010 ; Font et al. 2011 ; Tissera et al. 2013 ; Monachesi et al.
019 ). In particular, the stellar halo is expected to be formed mainly
y accreted stars with some contribution of in situ star in the inner
egions (Tissera et al. 2013 ; Monachesi et al. 2016 ; Brook et al.
020 ). It has been shown that the stellar mass function of the accreted
atellites leave an imprint in the chemical properties of the stellar
aloes so that more massive accretion will contribute with high-
etallicity stars to the central regions while the outer regions will

e dominated by the contribution of less massive satellites populated
y low-metallicity stars (Cooper et al. 2010 ; Tissera et al. 2014 ,
018 ; D’Souza & Bell 2018 ; Monachesi et al. 2019 ; Fattahi et al.
020b ). It is worth noting, ho we ver, that massi ve progenitors can
lso contribute the most metal-poor stars to the inner regions of the
tellar halo (e.g. Deason, Mao & Wechsler 2016 ). 

These studies have also shown that the stellar haloes are expected
o be populated primarily by the stellar debris of these mergers, which
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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ay take the form of coherent tidal features (Mart ́ınez-Delgado 
t al. 2010 ; Vera-Casanova et al. 2021 ; Martin et al. 2022 ) or
ubstructures thoroughly spatially mixed with the halo but which 
ould be disentangled in phase space (e.g. Helmi et al. 1999 ).
bservations have revealed in the stellar halo of the Milky Way 

MW) both type of contributions, which support the claim that 
ost of the stellar halo has been formed by satellite accretion, 

ncluding substantial contribution from the Sagittarius stream (e.g. 
ell et al. 2008 ; Koppelman et al. 2019 ). These interactions may

ead stars from accreted substructures such as GES (Helmi et al. 
018 ; Belokurov et al. 2018 ) to be embedded in the galactic
isc. 
One of the goals of galactic archaeology is to use the properties

f old stars to reconstruct the history of the MW (Helmi 2020 ).
ccreted stars represent an opportunity to deepen our understanding 
f specific, far-reaching merger events, and to study the effect these 
ave had on our galaxy’s present-day characteristics. First attempts to 
solate stars and star clusters based on their motion (e.g. Roman 1950 ;
ggen, Lynden-Bell & Sandage 1962 ; Searle & Zinn 1978 ) have
ontributed to paradigm-shifting theories on galaxy formation that 
hape our field to this day. As techniques and methods for detecting
tellar debris that originated outside the MW impro v e, the number of
nown mergers and interactions with the MW increases, and another 
iny gap in our understanding of the Galaxy in which we live is filled.
y unco v ering ancient mergers, we can further test � CDM, and the
redictions it makes about galaxy formation. 
Pre vious ef forts to identify accreted stars have resorted to a

ide variety of techniques. Six-dimensional phase space can be 
sed to identify stars that might have originated from outside the 
alaxy and formed streams around the MW (e.g. Helmi & White 
999 ; G ́omez et al. 2010 , 2012 ). Borsato, Martell & Simpson
 2019 ) implemented data mining techniques to this phase-space 
ata and reco v ered fiv e stellar streams, one of which had been
reviously undisco v ered. Malhan, Ibata & Martin ( 2018 ) used the
TREAMFINDER algorithm to detect a rich network of streams 

n the MW’s stellar halo, including several new structures. Specific 
hase-space parameters, such as angular momentum and radial action 
an even be used to isolate stars from a single source (Feuillet
t al. 2021 ). Alternatively, groups of stars can be separated based on
ow similar their abundance patterns are to those expected of dwarf 
alaxies (e.g. Font et al. 2006 ). Mackereth et al. ( 2018 ) performed
his analysis on stars from the MW stellar halo, and determined 
hat two-thirds of these stars display high orbital eccentricity, and 
nrichment patterns typical of massive MW dwarf satellites today. 
heir results imply that the MW’s accretion history of dwarf galaxies 

10 8.5 ≤ M sat ≤ 10 9 M �) might have been atypically active at early
imes in comparison to other similar galaxies in their EAGLE sample. 
attahi, Navarro & Frenk ( 2020a ) and Libeskind et al. ( 2020 )
eport similar findings in both the Auriga and Hestia simulations, 
espectively. 

Ho we ver, Kruijssen et al. ( 2018 ) reconstructed the MW assembly
istory through globular clusters, based on a quantitative com- 
arison with simulated analogues. They determined that the MW 

as undergone no mergers with a mass ratio abo v e 0.25 since
t least z ≈ 4. They did, ho we ver, identify three massive satellite
rogenitors for the ex situ globular cluster population. This includes 
 galaxy dubbed ‘Kraken’, to which they attribute 40 per cent of
 x situ glob ular clusters (Kruijssen et al. 2020 ; Callingham et al.
022 ). Other techniques based on machine learning algorithms, 
uch as boosted decision trees have been utilized on the scale of
ndividual stars by Veljanoski et al. ( 2018 ) to identify MW halo
tars. The model was e x ecuted on a selection of halo stars from
he Gaia Universe Model Snapshot (GUMS; Robin et al. 2012 ).
hen full phase-space data are available, at uncertainties similar 

o those of Gaia -DR2, 90 per cent of a halo stars are reco v ered
ith 30 per cent distance errors. While these works have focused
rimarily on halo stars and stellar streams, they display the variety
f techniques that are currently available to scientists attempting to 
isentangle the formation history of our Galaxy. These results also 
how that, while there have been enormous advances in the study
f the MW assembly, many aspects are still far from being fully
nderstood. 
Tidal debris from satellites might not only contribute to the stellar

alo spheroid, but also to the primarily in situ thin and thick discs
Abadi et al. 2003 ; Pillepich, Madau & Mayer 2015 ; Ruchti et al.
015 ; Bignone, Helmi & Tissera 2019 ; Fattahi et al. 2020b ). While
alactic stellar discs are expected to form mainly in situ , we also
xpect a contribution of accreted stars to be distributed by satellites
hat orbit the primary galaxy near its disc plane. Using a sample of 26
imulated MW mass-sized galaxies from the Auriga Project, G ́omez 
t al. ( 2017 ) showed that, in one third of the models up to 8 per cent of
isc stars, with a circularity parameter εJ abo v e 0.7, had an accreted
rigin. These fractions increase with lower circularity thresholds, 
nd can make up o v er 10 per cent of the stellar mass contained in the
opulation of stars with a circularity abo v e 0.4. These ex situ disc
tars were found to be primarily contributed by one to three massive
ergers. In many cases, one of these donor satellites contributed 
ore than half of the ex situ disc mass. As such, the identification of

heir debris would allow us to constrain massive accretion events that
ould have played a significant impact on the subsequent evolution 
f the galaxy, even plausibly leaving behind a local dark matter (DM)
otating component. According to simulations, a fraction of the oldest 
opulation of disc stars in a galaxy is expected to have formed ex
itu and have been imported by merger events (G ́omez et al. 2017 ).
revious results showed similar trends. Using a set of MW mass-sized
alaxies from the Aquarius Project, Tissera et al. ( 2013 ) reported a
ontribution of up to 15 per cent accreted stars in the disc. These stars
ere old, low-metallicity, and α-enhanced compared to the in situ 
opulations. In the case of the simulated MW analogue analysed by
ignone et al. ( 2019 ) in the EAGLE simulations, which was selected

o satisfy several observational traits of the MW, a massive satellite
alaxy resembling a GES event with M � = 3.9 × 10 9 M � impacted
he disc. These authors reported a contribution of stars from this
vent to the thick disc representing 1.4 per cent of its final mass and
.06 per cent of the thin disc component at z = 0. 
The goal of this work is to introduce a training method based on

eural network architecture that can be applied to classify accreted 
tars in galactic discs, based only on chemical abundances with 
o external information. This method can be used both to ‘clean’
tellar disc populations of accreted material to better constrain the 
rocess of galaxy formation, and also to isolate the accreted stellar
atter for the purposes of galactic archaeology. Our method will 

e based on the chemical abundance information and stellar ages. 
hemical abundance patterns have been shown to be useful to 

dentify contributions from different stellar populations (Freeman & 

land-Hawthorn 2002 ). Our results will be expressed in terms of
ccreted star particle reco v ery, and precision, which are adaptations
f commonly used metrics to gauge the performance of neural 
etwork models (NNMs). Neural networks have already been trained 
o label accreted stars by Ostdiek et al. ( 2020 ). They successfully
rained their network on simulated kinematic data and applied to 
bserved MW stars from the Gaia DR2 catalogue. The training set
as built with simulated stars from the FIRE simulations (Hopkins 

t al. 2018 ), and applied to observational data using a technique
MNRAS 515, 3818–3837 (2022) 
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alled transfer learning, which allows important selection criteria to
e maintained, while adapting the NNM to the details of the new
ata set. This approach led to the disco v ery of the Nyx stream, made
p of o v er 200 stars ( Necib et al. 2020a,b) . 
In this work we consider a selection of simulated galaxies from

he Auriga suite, co v ering a wide variety of stellar discs, all with
ifferent fractions of accreted material (shown in Table 2 ), and with
 variety of accretion histories (Monachesi et al. 2019 ). We define the
nvironment of a simulated galaxy as the system made by its stellar
alo and surviving satellites from which the training sets will be
efined. The diversity in assembly histories and galaxy environments
llow us to test our network and training method more generally, to
nsure it can provide useful output in a these situations. Additionally,
t permits us to study the situations that lead to poor predictive
erformance. 
We also analyse the performance obtained by using a training

et built from stars in a particular Auriga environment to detect
ccreted stars in stellar discs of different Auriga systems. G ́omez
t al. ( 2017 ) have previously explored how the assembly history
f galaxies in the Auriga simulations impacts the accreted star
articles in the disc, which has moti v ated our initial g alaxy-by-g alaxy
pproach. Additionally, we inspect the performance impro v ement of
ncorporating multiple galaxies’ environments into a single training
et, to examine the ability of a one-size-fits-all training set to describe
ach galaxy’s unique history. 

This paper is organized as follows. In Section 2 , we describe
he Auriga simulations. In Section 3 , we explain the adopted
eural networks, our model architecture, the training and e v alua-
ion method, and define the two performance metrics. Section 4
ncompasses the analysis and main results on the performance of
ur method in general, and in several tests to assess the performance
y using the defined indicators. This section also discusses the
pplicability of our method to the MW, as well as several cases
hat reflect two different weaknesses of our method. Finally, in
ection 6 , we present our conclusions, and the aim of our future
ork. 

 T H E  AU R I G A  SIMULATIONS  

he Auriga Project (Grand et al. 2017 ) comprises of a set of 30
igh resolution zoom-in simulations of late-type galaxies within MW
ass-sized haloes, within the range of [10 12 –(2 × 10 12 )] M �. The

nitial conditions were selected from a dark-matter-only cosmolog-
cal simulation of the EAGLE project (Schaye et al. 2014 ; Crain
t al. 2015 ), performed in a periodic cubic box of 100-Mpc side.
he initial conditions are consistent with a � CDM cosmology with
arameters �m 

= 0.307, �b = 0.048, �� 

= 0.693, and Hubble
onstant H 0 = 100 h km 

−1 s −1 Mpc, and h = 0.6777 (Ade et al.
014 ). We w ork ed with the Auriga simulations run at level 4,
ith DM particle mass of ∼4 × 10 5 M � and initial baryonic cell
ass resolutions of ∼5 × 10 4 M �. DM haloes are identified in the

imulations using a friends-of-friends algorithm (Davis et al. 1985 ),
nd bound substructures were iteratively detected with a SUBFIND
lgorithm applied (Springel 2005 ). 

Gas was added to the initial conditions, and its evolution was
alculated with the magneto-hydrodynamical code AREPO (Springel
010 ). A variety of physical processes are followed such as gas
ooling and heating, star formation, chemical evolution, the growth
f supermassive black holes and supernova (SN) and AGN feedback
Marinacci, Pakmor & Springel 2013 ; Vogelsberger et al. 2013 ). The
nter-stellar medium (ISM) is modelled with a two-phase equation of
NRAS 515, 3818–3837 (2022) 

c

tate from Springel & Hernquist ( 2003 ). Star formation proceeds
tochastically in gas with a density abo v e n = 0.13 cm 

−3 . Star
ormation and stellar feedback models include phenomenological
inds (Marinacci et al. 2013 ), and chemical enrichment from SN Ia,
N II, and AGB stars, with yield tables from Thielemann et al. ( 2003 )
nd Travaglio et al. ( 2004 ), Karakas ( 2010 ), and Portinari, Chiosi &
ressan ( 1998 ), respectively. Metals are removed from star forming
as through wind particles, which take 1 − νw of the metal mass of the
as cell that creates it, where νw = 0.6 is the metal loading parameter.
he Auriga simulations track eight non-Hydrogen elements, He,
, O, N, Ne, Mg, Si, and Fe. Each star particle (hereafter ‘star
articles’ and ‘stars’ will be used interchangeably when referring to
imulated data) represents a single stellar population (SSP) with a
habrier (2003) initial mass function (IMF). The model for baryonic
hysics has been calibrated to reproduce the stellar mass to halo
ass function, the galaxy luminosity function, and the cosmic star

ormation rate density. 
In the Auriga simulations, the chemical elements are distributed

nto the interstellar medium by star particles, which inject metals
nto nearby gas cells as they age. As a simulated galaxy evolves, so
o the relative ratios of these elements, as previously enriched gas
orms new stars. After 13.6 Gyr, the resulting ab undance distrib utions
ncode events that took place during this evolution, the impact of
hich can be detected today. Grand et al. ( 2018 ) found that two
istinct star formation pathways can lead to conspicuous gaps in
adial metallicity distributions, consistent with trends noticed by
ovy et al. ( 2016 ). 
While general trends can be mirrored between the Milky Way

nd simulated galaxies, the slopes and locations are not reproduced
xactly. Grand et al. ( 2018 ) noted a difference in iso-age metallicity
istributions, which they postulate to be due to SN II/SNe Ia
iming (more detail in Marinacci et al. 2013 ), and the IMF (for
hich Gutcke & Springel 2018 have studied the impact on total
alactic metallicity). On the basis of these previous results, the
uriga simulations provide suitable abundance distributions and
alaxy assembly histories to study the impact of accreted stars in the
iscs. 
In fact, the Auriga simulations have been successfully utilized

or predictive purposes in a wide variety of situations. Among
hem, Monachesi et al. ( 2016 ) used the suite to study the metal-
icity profile of the stellar halo. Digby et al. ( 2019 ) found that
he star formation history (SFH) trends with dwarf stellar mass
n Auriga were in good agreement with those of Local Group
alaxies. 

In this work, we focus on 24 of the 30 Auriga galaxies. This subset
as selected to not have a close companion at z = 0, and to contain
 clear stellar disc. To this end, we excluded Auriga haloes 1, 8, 11,
5, 29, and 30. Data from each simulated galaxy will be referred
o as AuID, where ID is the simulation number. Accreted stars, as
etermined from the simulation merger trees, will also be referred
o as ‘ex situ’ in this work. They are classified as those that were
ormed while bound to a different DM halo than that which they
ccupy at z = 0. Conversely, stars considered to have been formed
n situ are still bound to the same object or their progenitor in which
hey were born. The in situ classification encompasses stars formed
rom gas brought in by accreted satellites, which will be referred to
s ’endo-debris’ in this work (Tissera et al. 2013 ). Gas from these
atellite may have lower α-abundances at a given [Fe/H] than that
xpected for the disc, due to their bursty SFH (Tissera et al. 2013 ).
ence, star particles of this nature will display different chemical
atterns, introducing an extra dimension of variation that should be
onsidered to interpret the results from our method. 
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in Section 3 . 
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 M AC H I N E  L E A R N I N G  APPROACH  

.1 Neural networks 

 neural network mimics the behaviour of neurons in a brain 
y transmitting signals between nodes, or neurons. One neuron is 
onnected to several in the layer before it, from which it receives
ignals, and several in the layer after it, to which it transmits its signal.
 neuron weighs each incoming signal depending on the neuron 

rom which it is originating. All incoming signals are summed, and 
he total is fed into an acti v ation function to be transmitted as a
ignal to neurons in the next layer. We train these NNMs by making
djustments to the weights between neurons, the building blocks of 
he NN, until the desired output is reached for each class of input. 

We used the KERAS package (Chollet et al. 2015 ) that implements
ensorFlow ( https://www .tensorflow .org/ about/ bib ). Our network is
omposed of six layers. The first is simply a batch normalization 
ayer (Ioffe & Szegedy 2015 ) that impro v es network training rate by
educing internal covariate shift due to possible differences between 
he distributions of parameters in the training and e v aluation data
ets. The next four layers are composed of 64, 256, 64, and 32
eurons each, with the Scaled Exponential Linear Unit (SELU) 
cti v ation function (Klambauer et al. 2017 ). The properties of this
cti v ation function allo w our NNMs to converge faster than they
ould otherwise, as well as removing the risk of both vanishing 

nd exploding gradients. On all hidden layers, we implement LeCun 
ormal initialization (Lecun et al. 1998 ). The final layer is composed
f a single sigmoid neuron, which scales the network output between 
 and 1, and allows us to treat it as a probability of a star particle
aving been accreted. We tested several configurations with varying 
umbers and distributions of neurons, including a ‘flat’ variant (i.e. 
very layer has equal numbers of neurons), an ‘expanding’ variant 
with 32, 64, 128, and 256 neurons), and a ‘contracting’ variant 
with 256, 128, 64, and 32 neurons). We found that our ‘standard’
onfiguration, in addition to the ‘contracting’, retained its average 
redictive performance at both halved and doubled neuron counts, 
hile the other architectures pro v ed to be less stable. 
As our networks are trained with labels between 0 and 1, and

ur output layer uses a sigmoid neuron, we can interpret the output
alue for each stellar particle as the probability of being an accreted
tar, P a , as assigned by the network. Star particles that have been
ssigned a P a by an NNM that is abo v e a certain threshold, t ( t = 0.5,
.75, and 0.9 are used in this work) will be referred to as ‘positives’
r ‘positively-labelled’. Stars assigned a P a by an NNM below 0.5 
ill be referred to as ‘ne gativ es’ or ‘ne gativ ely-labelled’. Hence,

ccreted stars that are labelled positive are ‘true-positive’, while 
hose labelled ne gativ e are ‘false-ne gativ e’ (FN), which means that
hey been wrongly classified by the algorithm as in situ . Similarly,
n in situ star labelled ne gativ e is a ‘true-ne gativ e’ (TN), while
hose labelled positive are ‘false-positive’ (FP) and hence, they have 
een wrongly classified as accreted (this will be also discussed in 
ection 3.5 ). 

.2 Our method 

he NNM applied by Ostdiek et al. ( 2020 ) focused primarily on
lassifying stars based on parameters that are broadly available across 
he Gaia DR2 data set – principally spatial and kinematic data. 
nterestingly, this work showed that including even the single Fe/H 

nput dimension impro v ed NNM performance in all cases. Ho we ver,
he number of stars with chemical abundance information available 
t the time of the work limited the applicability of that particular
ethod, and the authors opted to use purely kinematic input. Our
ork is, instead, entirely based on chemical abundances patterns and 

ge information. The main advantage of this approach is that it does
ot depend on the degree of phase-space mixing of the stellar debris.
o this end, we chose to adopt a holistic method of network training
sing data from the galaxy’s environment, i.e. stars in the halo and
urviving satellites, in the same data set as our e v aluation and target
tars (or in the same suite of observations), a v oiding the need for
ransfer learning entirely (Niculescu-Mizil & Caruana 2007 ). 

This also means that any differences between simulated and 
bserved metallicity distributions (as mentioned briefly in Section 2 ) 
hould make little difference to the efficacy of GANN , our description
f which includes a specific methodology for constructing training 
ata from the same data source as the population in which one might
ish to find accreted stars (see Section 3.3 ). 
We have selected H mass fraction (’H’), Fe/H, and the average

f three α-iron ratios O/Fe, Mg/Fe, and Si/Fe as our chemical
nput parameters for GANN , and we have opted not to take the
ogarithm instead leaving them as linear fractions normalized by the 
olar v alues. Our figures, ho we ver, will use the familiar logarithmic
onvention. 

The logarithm of the latter will be referred to as [ α/Fe], following
ovy et al. ( 2016 ). Additionally, we supply the model with the stellar
ge ( τ , in Gyrs). While any parameter may be added to the NNM’s
nput, these were chosen based on the primary indicators ([Fe/H] 
nd [ α/Fe]) used to identify distinct stellar populations that are also
racked in the Auriga simulations (Feuillet et al. 2021 ). Including τ
llows the NNM to use accurate ages to differentiate between the
i verse temporal e volutionary tracks of metallicity among galaxies 
f different masses (Venn et al. 2004 ). 
Fig. 1 displays a broad schematic representation of the pipeline 

hrough which information will travel in our method. The network, 
reated as a black box in this depiction, transforms the input
arameters into a widely usable probability value. The specifics of 
he fully trained network are, ho we ver, accessible to the user, who is
ble to view the weight values in each layer. 

.3 Network training 

e constructed our network training sets on a g alaxy-by-g alaxy 
asis by creating two sets of stars, labelled as in situ and ex situ ,
ith assigned labels 0 and 1, respectively. These sets both contain

qual numbers of each classification of star. In a population heavily
eighted by an unknown amount towards in situ stars, this approach
revents the model from de-sensitizing itself to accreted populations. 
MNRAS 515, 3818–3837 (2022) 
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Figure 2. Distributions in [ α/Fe] and [Fe/H] of the different components of 
the ex situ training set for Au14, compared to the true distribution of accreted 
star particles in the disc (bottom right-hand panel). While the population 
sampled from the Halo lie near the true distribution in this space, the sample 
deri ved from massi ve satellites ( M sat ≥ 10 8 M �, bottom left-hand panel) 
includes a small knee in low-[Fe/H] space that is absent in the other samples. 
Black contours enclose 50 and 90 per cent of the total mass in each 2D 

histogram. 
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he in situ half of the training set is constructed out of disc stars, of
hich a small minority are contaminating accreted stars. 
We define the disc as the stellar material within R gal = 0.15 × R 200 ,

utside the ef fecti ve bulge radius R eff, b (taken from Gargiulo et al.
019 ), with a height along the minor axis of the disc stars between
10kpc, with circularity εJ > 0.4 1 as in Tissera et al. ( 2013 ). The

mpact of contamination is expanded on later in this work. 
By definition, galaxy satellites are the ‘sources’ of accreted stars in

he galactic disc. In the case of accreted stars present in the primary
alaxy’s disc at the current epoch, the source may no longer exist.
o we ver, in the simulations the source of these stars is identified by

he peak mass ID, defined as the unique number associated with the
ost massive object with stellar mass M peak it belonged to prior to

ecoming bound to the primary galaxy. 
The ex situ half of the training set is sampled from stars beyond

5 kpc from the Galactic Centre, including both halo stars and those
elonging to surviving satellite galaxies. Fattahi et al. ( 2020b ) have
hown that while the innermost regions of the Auriga stellar halo
re dominated by only a fe w massi ve progenitors, the outer regions
 > 20 kpc) have, on average, eight main progenitors of relatively
ower stellar mass ( M � < 10 8 M �) in the Auriga simulations. Hence,
ccreted stars typically dominate the mass of the stellar halo beyond
0 kpc (see also Monachesi et al. 2019 ) as have been previously found
n other simulations (Zolotov et al. 2010 ; Font et al. 2011 ; Tissera
t al. 2013 ). We have moved our cutoff further to ensure that we do
ot capture disc stars, and to further minimize contamination by in
itu stars in our halo training sample. Despite this, both our ex situ
nd in situ training sets may contain some contamination. Although
his approach may ignore the contribution of massive satellites to
he inner halo, we will sample their abundance distributions directly
hrough surviving satellites, as explained below. Even though we
re able to separate contaminants from training sets derived from
imulated data, we are most interested in realistic applications of
ANN , and wish to characterize NNM behaviour in the presence of

onfounding information, and to demonstrate methods to minimize
ontamination that do not rely on information unavailable in all
ircumstances. 

For the ex situ training set, we separate stars bound to surviving
atellites by the total stellar mass of the satellite at the current epoch.
ery high mass ( M � > 5 × 10 8 M �), high-mass (5 × 10 8 > M � 

 10 8 M �), medium-mass (10 8 > M � > 10 6 M �), and low-mass
 M � < 10 6 M �) satellites contribute to the training set as evenly as
ossible through the imposition of sampling limits in each mass bin.
n the event that they contain fewer stars than required, all stars from
hat source are sampled. This approach comes with the caveat of
nderestimating the contribution and the stellar mass of objects that
ave been stripped by the central galaxy. Ho we ver, these stars will
ikely be part of the outer stellar halo, and thus considered in the
raining sets. As shown in Fig. 2 , these selections, particularly from
he halo and massive satellites, span the bulk of the distribution of
ccreted disc star particles in the [ α/Fe]–[Fe/H] space. 

During each cycle of network training, a random sample of the
raining set is passed through the network. The loss function, a value
ith which performance is quantified, is determined by comparing

he true label values of the training data with those predicted by
he network. The aim of training is to minimize this value. In our
ase, the loss function is binary cross-entropy, which is well suited
NRAS 515, 3818–3837 (2022) 

 This parameter is defined as εJ = L z / ( L z, max ( E) ) , where L z is the angular 
omentum along the main axis of rotation and L z, max ( E ) is its maximum 

alue for all particles of given binding energy (BE) E . 

h  

2

l
z

or classification problems such as this. 2 The network weights are
djusted by the optimizer based on the gradient of the trainable
alues with respect to the loss. The learning rate can be adjusted
ynamically if the loss value plateaus between training cycles. Early
topping is also active, and will restore the best-performing NNM
eights once training concludes. In our case, the network is trained
 v er a maximum of 25 cycles, which is enough for the NNM’s
erformance to plateau. Further training iterations have failed to
ignificantly impact NNM performance, in our tests. 

.4 Netw ork ev aluation 

he chemical abundance of a star particle is inherited from the
rogenitor gas cells from which it was created. Hence, the stellar
omponent can determine chemical patterns that will reflect the
roperties of the interstellar medium from which they formed, the
MF, and the history of assembly as they can be dynamical perturbed
nd mixed, for example during mergers. Our goal is to construct
 method to identify accreted stars in well mixed and primarily in
itu stellar populations. For that purpose, we need to construct an
 v aluation data set that reflects the properties of the galactic disc,
 structure within which it can be difficult to distinguish between
inematic perturbations due to merger activity and those due to the
istribution of matter in the galaxy itself (Helmi et al. 2005 ). This
akes our chemistry-based approach well suited to the problem at

and. Ho we ver, in order to accurately e v aluate our method, we need
 The computation of the binary cross-entropy loss between a true and assigned 
abel can be written as L ( y , z ) = max ( z , 0) − zy + log (1 − e −| z | ), where y and 
 are the true and predicted labels, respectively. 
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o construct a data set as close to our anticipated usage scenario as
ossible. To this end, we construct the e v aluation data sets from star
articles in the disc region of each galaxy, which we will refer to
s ‘disc stars’ for the purposes of this work. As we are not seeking
o minimize the fraction of accreted disc stars in this data, our disc
election for the e v aluation data set is less stringent than that used to
onstruct our in situ training set. Hence, we consider all stars between
 gal and R eff, b with a distance from the disc plane of less than 5 kpc.

.5 Performance measures 

o quantify the performance of our neural networks on stellar 
lassification, we define and use two metrics, based on the ground- 
ruth accretion labels from the simulations, which allows us in this
ase to discriminate between TP and FP and FN results. The first
erformance metric we introduce is the reco v ery fraction ( f recov )
hat is the number of TP accreted stars with an assigned P a abo v e
 stated threshold, divided by the total number of accreted stars,
s determined by the ground truth. This metric is also known as
he ‘recall’ of a NN. The second metric, P ( TP ), is the probability
hat a star is a ‘true-positive’ result, which will be defined as the
robability that a given star with an assigned probability P a abo v e
 stated threshold t is actually an accreted star, and not an FP. This
etric is also known as the ‘precision’ of an NN. This is calculated

y taking the number of accreted stars with P a greater than a given
hreshold t , and dividing this by the total number of stars with P a > t .

e can now delineate our performance metrics by thresholds in P a ,
o build a robust understanding of how network confidence varies on 
 g alaxy-by-g alaxy basis. 

These metrics are generally anticorrelated. A high f recov will 
ypically correspond with a lower TP probability, and vice versa. 
imilarly, increasing the P a threshold for results from a single galaxy 
ill normally increase the TP probability, and lower the reco v ery

raction. This implies that different thresholds may be more suitable 
or different goals, e.g. if one is attempting to remo v e all accreted
tars from a sample, a lower threshold of t = 0.5 will give the highest
hance of sanitizing the data. On the other hand, if one is trying to
ather information on specifically accreted stars, a higher threshold 
f t = 0.9 will give the best probability of having a clean data set. 
Stars that were formed ex situ but were assigned a P a value below

he given threshold for positivity are considered to be FNs, and 
orrespond inversely to f recov . The fractional impact of an incorrectly 
ssigned FN star depends on the total population of accreted stars in
he disc. FNs generally occur in cases where certain sets of satellite

asses (or sources) are missing from the galactic environment, 
eaving gaps in the training set of ex situ stars. Typically, this
ccurs when high or very high stellar mass satellites are missing,
nd may have already been completely devoured by the massive 
rimary galaxy they are bound to, and potentially leaving a gap in the
atellite galaxy mass–metallicity relation that our network implicitly 
onstructs. An additional source of FNs may be contamination 
onfusion, due to the selection of in situ training examples potentially 
ontaining a significant number of accreted stars. We have chosen 
ot to remo v e these to mimic a nai ve observ ational selection criteria.
Stars that were formed in situ but have been assigned a P a above

he threshold for positivity are considered FPs. The number of these 
tars heavily affects the value of P ( TP ), as a higher number of
ncorrectly assigned in situ stars as accreted will lower our confidence
n the NNM’s final assessment. The possible presence of in situ stars
ormed from accreted gas particles (so-called endo-debris stars), may 
ontribute to this number. Such stars might exhibit similar or slightly
ore enriched chemical abundances than those of truly accreted stars 
epending on how rapidly the gas was transformed into stars after
alling into the galaxy. 

The impact of the adopted parameters on the performance of the
rained NNMs is displayed in Table 1 . Over three specific simulated
alactic discs, NNMs trained on the complete data set were deprived
f information for one specific parameter by setting its value in
ll star particles to 0. The impact of this histogram flattening is
etermined by the change in performance when compared with the 
efault results. We can see that H, i.e. the hydrogen mass fraction,
eavily impacts the behaviour of the NNMs, as would be expected 
or a measure that is inversely proportional to total metallicity. The
emoval of the other parameters impacts the NNMs in different ways.
his is due to the NNMs being trained individually for each selected
alactic disc, leading to potentially multiple approaches that are 
ailored specifically to the unique training data. [Fe/H] appears to 
ave a mild impact on NNM performance across the board; ho we ver,
n the case where the τ parameter is remo v ed entirely, we have
ound that the impact of [Fe/H] flattening rises dramatically. The 
NM trained on Au14 data appears to use the [ α/Fe] parameter to
istinguish between in situ and ex situ stars, whereas in Au20 and
u22, this flattened parameter only barely changes the results. The 

mpact of τ flattening also varies by the Auriga system. In both Au14
nd Au22, it appears to be pivotal for NNM discrimination; however,
n Au20, this effect is significantly lessened. 

 ANALYSI S  A N D  RESULTS  

n this section, we present the network performance results across 
he selected Auriga galaxies. For this purpose, for each of them,
e constructed the training set by combining stars from the different

tellar components, i.e. stellar halo and surviving satellites galaxies as 
xplained in Section 3.2 . Then we applied our method to each galaxy.
able 2 displays the performance indicators of the NNM trained and
 v aluated on data from each Auriga system. As expected, f recov and
 ( TP ) are anticorrelated. In Fig. 3 , we display the two metrics for t =
.75 estimated by training o v er the combined stellar sample (large,
lack circles). First, the anticorrelation is not quite 1:1, with NNMs
 v erperforming in P ( TP ) as f recov increases. This is good, as it means
n increase in one performance measure does not necessarily corre- 
pond with an equal decrease in the other. Indeed, our model achieved 
oth P ( TP ) and f recov abo v e 50 per cent in 14 of our selected haloes. 
Additionally, this figure shows the metrics obtained by training 

 v er data sets built from surviving satellites with different stellar
ass. As it can be seen, two individual sets of training data

eliver similar NNM performance to the one obtained from the full
ombined training set: those built from the stellar halo only and from
 ery massiv e satellites. Specifically, halo stars with galactocentric 
istances larger than 25 kpc (red circles) yield generally comparable 
 ( TP ) and f recov at a threshold of t = 0.75, although they show a mild
ystematic increase in f rec , and a similar systematic decrease in P ( TP ).
 direct comparison between NNMs trained on halo-only stars and 

hose trained with the combined data set is presented in Fig. A1 .
e found that, on average, halo-only NNMs (red circles) achieved 

.2 per cent higher f rec for 2.5 per cent lower P ( TP ). In contrast,
 training data set composed of satellite stars (large blue circles)
venly split by present-day object mass has on average 2.6 per cent
igher P ( TP ), and 17.7 per cent lower f rec . While surviving satellites,
y definition, are expected to have contributed minimally to the 
ccreted population of star particles in the stellar disc, they contain
aluable information about age and metallicity that GANN can apply 
uring its e v aluations to detect star particles that formed in similarly
nriched environments, but whose parent object was destroyed before 
MNRAS 515, 3818–3837 (2022) 
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Table 1. Impact of the specific parameters,hydrogen mass fraction, H, iron-to-hydrogen mass fraction, 
Fe/H, α-to-hydrogen mass fraction, α/ H and stellar age, τ , on the performance of the trained NNMs 
in a selection of three simulated galactic discs. 

Au14 P ( TP ) f rec 

Param P a > 0.5 P a > 0.75 P a > 0.9 P a > 0.5 P a > 0.75 P a > 0.9 

None 0.69 0.8 0.9 0.88 0.59 0.17 
H 1 1 1 0 0 0 
Fe/H 0.66 0.71 0.91 0.462 0.387 0.156 
α/Fe 0.12 0.12 0.12 1 1 1 
τ 0.3 0.36 0.46 0.994 0.984 0.964 

Au20 P ( TP ) f rec 

Param P a > 0.5 P a > 0.75 P a > 0.9 P a > 0.5 P a > 0.75 P a > 0.9 
None 0.75 0.84 0.92 0.36 0.17 0.03 
H 0.78 0.78 0.78 0 0 0 
Fe/H 0.75 0.85 0.87 0.251 0.12 0.019 
α/Fe 0.73 0.77 0.83 0.387 0.305 0.193 
τ 0.52 0.55 0.56 0.703 0.608 0.497 

Au22 P ( TP ) f rec 

Param P a > 0.5 P a > 0.75 P a > 0.9 P a > 0.5 P a > 0.75 P a > 0.9 
None 0.23 0.26 0.33 0.99 0.97 0.91 
H 1 1 1 0 0 0 
Fe/H 0.29 0.32 0.39 0.906 0.852 0.73 
α/Fe 0.23 0.27 0.34 0.995 0.979 0.919 
τ 0.06 0.06 0.07 1 1 1 

Notes . The flattened parameter (Param) denotes which specific parameter has been set to zero to assess 
its impact. Results are quantified by two adopted metrics, P ( TP ) and f rec (see Section 3.5). 

Table 2. Neural network results with a training set composed of stars from the galactic halo, and those sampled across a variety of satellite masses. 

Halo Disc f acc f recov | P a > 0.9 f recov | P a > 0.75 f recov | P a > 0.5 P ( TP ) | P a > 0.9 P ( TP ) | P a > 0.75 P ( TP ) | P a > 0.5 

2 0.11 0.10 0.41 0.85 0.50 0.53 0.51 
3 0.13 0.24 0.41 0.51 0.65 0.60 0.56 
4 0.33 0.07 0.30 0.51 0.79 0.69 0.59 
5 0.08 0.60 0.78 0.88 0.68 0.56 0.49 
6 0.08 0.30 0.66 0.79 0.75 0.65 0.55 
7 0.32 0.07 0.35 0.65 0.93 0.87 0.80 
9 0.07 0.71 0.80 0.86 0.57 0.48 0.43 
10 0.02 0.63 0.92 0.99 0.73 0.44 0.26 
12 0.14 0.29 0.56 0.73 0.71 0.57 0.50 
13 0.08 0.25 0.70 0.94 0.79 0.66 0.53 
14 0.12 0.17 0.59 0.88 0.90 0.80 0.69 
15 0.12 0.16 0.70 1.00 0.70 0.56 0.42 
16 0.07 0.41 0.81 0.93 0.74 0.58 0.46 
17 0.02 0.85 0.99 1.00 0.40 0.26 0.21 
18 0.03 0.73 0.97 1.00 0.48 0.37 0.32 
19 0.20 0.13 0.43 0.68 0.88 0.78 0.67 
20 0.36 0.03 0.17 0.36 0.92 0.84 0.75 
21 0.15 0.16 0.41 0.57 0.74 0.67 0.58 
22 0.02 0.91 0.97 0.99 0.33 0.26 0.23 
23 0.09 0.25 0.56 0.71 0.87 0.72 0.63 
24 0.11 0.21 0.61 0.85 0.59 0.55 0.52 
26 0.14 0.30 0.50 0.62 0.77 0.70 0.67 
27 0.10 0.13 0.47 0.66 0.62 0.62 0.55 
28 0.22 0.14 0.31 0.42 0.88 0.78 0.72 

Notes . For each halo, we present a summary of network performance as the mean f recov and P ( TP ) of three NNMs separately trained on the same 
training set data, e v aluating the same galactic disc star particles. As NNM training is a stochastic process, each will behave slightly differently. We 
provide the simulation number, fraction of accreted stars in the disc selection, and the mean reco v ery fractions, and true-positive (TP) rate for separate 
runs at three confidence thresholds (columns from the left to right). 
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he current epoch. In particular, massi ve survi ving satellites (small
ellow and cyan circles) are rele v ant to build a good training set.
his is important since the inner region of the stellar haloes have
een excluded from the training sets. Massive satellites are expected
NRAS 515, 3818–3837 (2022) 
o contribute significantly to these regions (e.g. Tissera et al. 2014 ,
018 ; Fattahi et al. 2020b ; Khoperskov et al. 2022 ) principally if they
re set in radial orbits (e.g. Amorisco 2017 ; Fern ́andez-Alvar et al.
019 ). 
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Figure 3. P( TP ) as a function of f recov | P a > 0.75 for the selected Auriga 
stellar discs. Symbols are coloured by the specific set of data used to train 
the NNM, with the final combined set presented as large, black circles. The 
anticorrelation is clear, as is the fact that the NNMs tend to o v erperform (e.g. 
a gain in f recov does not imply an equal loss in P ( TP )) with respect to the 
ne gativ e 1:1 linear relation (black solid line). 
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Figure 4. Fraction of the total number of e v aluated stars that are FPs, ordered 
by their arbitrarily assigned Auriga halo number. The circles denote the 
results for t = 0.75. Mean values for t = 0.5 (green), 0.75 (red), and 0.9 
(blue) are also displayed, with shaded bands corresponding to the standard 
deviation. 
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Fig. 4 shows the rate of FPs in the total e v aluation population at a
 a threshold of t = 0.75 for each Aquarius halo. In situations where
e may not know of the exact P ( TP ) value (e.g. with observational
ata), this allows us to estimate a median, as well as an upper and
ower bound on the number of contaminating FPs in the end result.
or a median false-positivity rate of 4 per cent, this allows us to
alculate 

 ( T P ) prelim 

= 1 − 0 . 04 × N tot /N ( P a > 0 . 75) 

ithout any information besides the total number of stars in the 
ample. We also include the mean values and the standard deviation 
or models with t = 0.9 and 0.5 for comparison. 

To characterize how the network distinguishes between positively 
nd ne gativ ely labelled material in the [ α/Fe]–[Fe/H] space, we
alculated the median [ α/Fe] and [Fe/H] of the positive and ne gativ e
lassified star particles, and those of the ground truth accreted and in
itu particles. We find that the median [ α/Fe] in both positively and
e gativ ely labelled star particles of 0.13 dex indicates that simply
sing α-element abundance is not enough to differentiate accreted 
nd in situ star particles at least in the Auriga haloes. This could be
ue to the large scatter in the [ α/Fe] ratios exhibited by the simulated
tellar populations as we will discuss in Section 4.2 . The median
Fe/H], ho we ver, displays a stark dif ference. Positi vely labelled star
articles have a median [Fe/H] of −0.72 dex, while negatively 
abelled star particles have a median value of [Fe/H] = 0.04 dex.
s expected, the ground-truth median [Fe/H], at a value of −0.47 
ex across all the Auriga discs, regardless of their origin, is higher
han that of the star particles labelled as accreted by the NNMs.
his margin decreases to −0.62 dex as the threshold P a decreases to
 = 0.5. This implies the NNMs require a larger margin in [Fe/H]
han that arises naturally to confidently distinguish between the two 
opulations in that space. 
We have also found that the fraction of stellar mass with
Fe/H] abo v e and below the galactic disc median value [Fe/H]
assi vely v aries between the positi v ely and ne gativ ely labelled

opulations of star particles. The fraction of positively labelled 
tellar mass that has a [Fe/H] greater than the total galactic disc
edian is 0.04. For negatively labelled star particles, this fraction is

.60. 
These findings are displayed clearly on the [ α/Fe]–[Fe/H] plane 

or for Au14, Au22, and Au20 in the top panels of Figs 7–9 , which
re discussed in detail in the next section. Ho we ver, to facilitate the
nterpretation, let us note that the 50 and 90 per cent contours only
ary slightly in [ α/Fe] position, while the distinction between the
ositiv ely and ne gativ ely labelled populations is stark on the [Fe/H]
xis. 

.1 Performance with fixed subpopulations 

o properly e v aluate network performance in galaxies with different
x situ contributions to the stellar disc, we constructed subsamples 
f stellar disc populations with fixed sample size, while varying 
he fractions of accreted star particles. Four training subsamples are 
onstructed from the same set of eligible star particles, with fixed total
umbers, and fixed fractions of accreted star particles of 10, 5, 2.5,
nd 1 per cent of a total 10 000 star particles. Hence, the difference
n performance can be then associated to the different sampling of
ccreted stellar populations. Table 3 displays the variation of P ( TP )
ith accreted fraction. Cells are colour-coded by value – blue cells 

re abo v e 0.75, green are abo v e 0.5, and red contain below 0.5. This
oding allows us to easily see that P ( TP ) correlates very well with
he fraction of accreted stars in the test subsamples. As the fixed
raction of accreted material is decreased, the rate of FPs will remain
onstant, and lead to a decrease in P ( TP ). 
MNRAS 515, 3818–3837 (2022) 
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Figure 5. The distribution of ex situ stars (top panels), and ex situ -labelled (bottom panels) star particles from Au14. Colours represent the star particles brought 
in by different satellites identified by their unique peak mass Id (see Section 3.3 ). Colours on the bottom panel match those in the top for the same peak mass 
Id, while black points correspond to mislabelled in situ star particles (FPs). Both the BE and the angular momentum along the z -axis, L z , are normalized by the 
maximum and minimum values to lie in [ −1,0] and [ −1,1], respectively. 

Figure 6. Projected radial distance, R (top panels) on the rotation plane and disc height, Z , (bottom panels) as a function of circularity for the four classifications 
of star particles in our network e v aluation of Au14: TN, FN, TP, and false positive (FP). Contours contain 50 and 90 per cent of the total stellar mass of each 
classification. 
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In summary, Table 3 shows that the reco v ery fraction of the
iminishing accreted population remains relatively constant, which
urther implies that the cause of the decreased P ( TP ) is due to the
xed FP rate in this experiment. As f recov is a measure of similarity
etween the accreted populations in the disc and the training satellite
opulations in the galactic halo, it should not vary significantly
s the size of the populations are adjusted, as shown in the
NRAS 515, 3818–3837 (2022) 

able. 
.2 Accr etion sour ce r eco v ery 

he next step is to e v aluate the performance of our method to
dentified accreted stars in the Auriga haloes. For this purpose we take
dvantage of having the complete assembly histories. Additionally,
ach accreted stellar particle can be linked to an accreted satellites
or sources) through their Peak mass ID, which is associated to the
ost massive object the particles were bound to prior to their infall
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Figure 7. Upper panels: histogram of [ α/ Fe] versus [Fe / H] for the TN, FN, TP, and False Positive (FP) selections of star particles from Au14, coloured by 
the median particle age in each bin. The median galactic [Fe/H] is displayed with a vertical black line. Bottom panels: histogram of the BE, rescaled by the 
highest and lowest values in the selection of star particles, and εJ . Bins are coloured by the median age of the star particles they contain. Contours contain 50 
and 90 per cent of the total mass of star particles. 

Figure 8. Upper panels: histogram of [ α/ Fe] versus [Fe / H] for the TN, FN, TP, and False Positive (FP) selections of star particles from Au22, coloured by 
the median particle age in each bin. The median galactic [Fe/H] is displayed with a vertical black line. Lower panels: histogram of the BE, rescaled by the 
highest and lowest values in the selection of star particles, and εJ . Bins are coloured by the median age of the star particles they contain. Contours contain 50 
and 90 per cent of the total mass of star particles. 

o
I  

t  

o  

W  

m  

w  

o  

l  

u

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/3/3818/6648826 by Liverpool John M
oores U

niversity user on 19 April 2023
n to the massive, primary galaxy. By comparing these unique source 
Ds in the accreted stellar particle data sets with P a > 0.75 to the
otal list of unique sources in the discs, we can estimate the power
f the NNMs to unco v er a picture of the complete accretion history.
e find that in every host galaxy in the Auriga set, 85 per cent or
ore of the individual accretion sources are reco v ered at P a > 0.75,
here we consider a satellite to be reco v ered if o v er 10 per cent
f its deposited mass in the present-day stellar disc is correctly
abelled by the NNM. This shows the potential of this method to
nveil a comprehensive picture of the contribution of accreted stars 
MNRAS 515, 3818–3837 (2022) 
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Figure 9. Upper panels: histogram of [ α/ Fe] versus [Fe / H] for the TN, FN, TP, and False Positive (FP) selections of star particles from Au20, coloured by 
the median particle age in each bin. The median galactic [Fe/H] is displayed with a vertical black line. Lower panels: histogram of the BE, rescaled by the 
highest and lowest values in the selection of star particles, and εJ . Bins are coloured by the median age of the star particles they contain. Contours contain 50 
and 90 per cent of the total mass of star particles. 

Table 3. P ( TP ) (Columns 1–4) and f recov (Columns 5–8) for P a > 0.75 for trained networks on 
10 000 star subsets with fixed fractions of accreted stars, f acc . 

P ( TP ) f recov 

\ f acc 0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01 

2 0.63 0.44 0.25 0.12 0.50 0.50 0.46 0.48 
3 0.85 0.77 0.59 0.30 0.15 0.14 0.18 0.12 
4 0.78 0.71 0.56 0.28 0.09 0.10 0.13 0.11 
5 0.92 0.84 0.69 0.50 0.30 0.28 0.34 0.29 
6 0.89 0.82 0.61 0.41 0.51 0.52 0.46 0.45 
7 0.47 0.33 0.18 0.06 0.22 0.25 0.27 0.19 
9 0.98 0.93 0.84 0.74 0.65 0.64 0.66 0.63 
10 0.96 0.90 0.78 0.65 0.86 0.85 0.83 0.86 
12 0.92 0.82 0.66 0.41 0.38 0.35 0.37 0.34 
13 0.80 0.60 0.43 0.28 0.51 0.49 0.50 0.59 
14 0.64 0.43 0.27 0.13 0.74 0.74 0.70 0.73 
15 0.15 0.08 0.04 0.02 0.72 0.69 0.71 0.69 
16 0.78 0.66 0.45 0.24 0.58 0.54 0.58 0.53 
17 0.75 0.60 0.41 0.21 0.98 0.98 0.97 0.97 
18 0.87 0.79 0.61 0.37 0.59 0.61 0.55 0.56 
19 0.93 0.78 0.69 0.45 0.19 0.18 0.19 0.17 
20 0.79 0.62 0.47 0.22 0.10 0.10 0.08 0.13 
21 0.64 0.48 0.30 0.12 0.26 0.26 0.27 0.25 
22 0.98 0.97 0.92 0.83 0.56 0.56 0.52 0.55 
23 0.80 0.65 0.50 0.27 0.27 0.24 0.30 0.26 
24 0.86 0.74 0.70 0.44 0.27 0.27 0.30 0.27 
26 0.67 0.58 0.26 0.21 0.20 0.24 0.14 0.27 
27 0.63 0.43 0.26 0.10 0.13 0.12 0.12 0.12 
28 0.72 0.51 0.40 0.26 0.22 0.19 0.24 0.25 

Note . Cell colours: Blue represents values abo v e 0.75, green abo v e 0.5, and pink below 0.5. 
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o the galactic disc, if used in concert with additional techniques
o disentangle the detected accreted stars based on their progenitor
atellites. As an example, Fig. 5 displays the spatial distribution and
ele v ant properties of the accreted stars coloured by their sources
top panels), and the populations that the model reco v ers (bottom
NRAS 515, 3818–3837 (2022) 
anels), assigned the same colour for each unique source object for
u14. 
Once a set of stars have been assigned P a values by the NNM, other

hysical parameters could be used to disentangle the contribution of
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n the NNMs, the only correlation with P a will be due to innate
orrelations with the metallicity distribution and chemical abun- 
ances. As an example, the upper panels of Fig. 5 displays stream-
ike stellar structures (yellow-green), and an inner core of accreted 
aterial (blue), which are reco v ered by the NNM, as displayed in

he lower panels. In general, ∼ 60 per cent of the accreted stars in 
his galaxy are correctly labelled at P a > 0.75, as shown Table 2 .
he misclassified in situ stars displayed in Fig. 5 (black points) are
ominated by primarily old stars ( τmedian = 10 . 7 Gyr) that follow a
ircularity distribution centred around εJ, median = −0.08. These stars 
re both chemically and kinematically much more similar to the 
ccreted population than that of the global disc. Other clustering of
ndividual accreted substructures could be more evident with higher 
arameter post-processing method such as streamfinding algorithms, 
r with more general clustering approaches, which can be applied 
fter the NNM classification. 

Au14 provides a good example of the potential for kinematic 
isentangling, and is discussed in more detail below. Other galaxies 
ay similarly provide excellent environments for distinction between 

rue and false positive and ne gativ e assignments by the NNM.
n-depth post-processing of NNM results that rely on kinematic 
ifferences between accreted and in situ populations are beyond 
he scope of this work, which is primarily focused on the application
f NNM techniques towards chemical information. Nevertheless, 
e analyse three examples of good and poor performance in order 

o assess the physical reasons behind these behaviours. The other 
alaxies in the sample can be generally characterized as following 
he same pitfalls as these e xamples, re gardless of galaxy-specific 
etails - either performing well, o v erestimation of accreted material, 
r o v erestimation of in situ material. 

.2.1 Au14 

u14 is an example of a galaxy for which the NNMs perform well.
e find that the star particles that NNMs assign P a > 0.75 in this

alaxy’s stellar disc are 80 per cent likely to be TP accreted stars.
he selected particles contain 59 per cent of all true accreted star
articles. The training data set we create for this galaxy is dominated
y contributions from the stellar halo, and high- M star satellites. Lower 
 star objects do not contribute enough stars to fill their allotment of

he training set, as there are not enough satellite objects in this mass
ange at z = 0. This leads to a small, but non-negligible fraction
f FN classifications, though not enough to significantly impact the 
etwork performance measures. 
This galaxy also provides an excellent example for the use of

inematic data to augment the NNM results. Fig. 6 displays the 
istributions of the kinematic parameter, εJ , and projected radial 
istance, R , and height, Z , in each network-assigned classification. 
he FP population (fourth column) is distinct from the TP star
articles (third column) primarily due to its lower circularity and 
entral concentration, globally. This is due to the fact that, as
iscussed in G ́omez et al. ( 2017 ), Au14 posses a very prominent
x situ disc component. From this figure it is clear avoiding the
entral regions, with R < 5 kpc, would improve the NNM’s selection
f accreted star particles. FP are distributed more evenly in Z than
ccreted stars. These stars were misclassified due to their ele v ated
 α/Fe], and lower [Fe/H], as they tend to be older. This can be
ppreciated from Fig. 7 where [ α/Fe] are displayed together with the
E as a function of the angular momentum along z -axis, L z . 
Those stars classified as FN have been misplaced because they 

re more concentrated to the central region with low Z . The upper
anel of Fig. 7 shows that the chemical abundances resembled 
etter those of true in situ or TN stars. The lower panels of the
gure demonstrate that although there is no kinematic information 
rovided to the NNM, the subgroups formed by comparing the NNM-
ssigned label with the ground-truth populate phase space differently. 
tar particles labelled as in situ (TN and FN) have more dominant
oung populations and are clearly supported by rotation, with only 
mall counter-rotating elements. Star particles labelled as accreted 
TP and FP) are predominantly older and less rotationally supported, 
orming a thicker disc in the case of the TP selection, and contributing
o the bulge in the FP case. 

Other galaxies may not be as well se gre gated, and would po-
entially require more complicated methods to separate correctly 
abelled star particles from those that are incorrect. In this case,
o we ver, the boundaries are quite clear. 

.2.2 Au22 

u22 is an example of a galaxy with a low P ( TP ). While 97 per cent
f the accreted stars are reco v ered at P a > 0.75, we would only be
6 per cent certain that a star the NNM has flagged as accreted
as actually come from outside the primary galaxy. Its f acc of
 per cent falls at roughly half the mean FP rate, which can explain
he particularly poor P ( TP ), given such a high reco v ery fraction.
he galaxy’s trained NNM, ho we ver, also yields a large number
f FP results. This is due to the presence of endo-debris, or star
articles formed by gas stripped from orbiting satellite galaxies. This 
s demonstrated in the galaxy’s complicated merger history. Between 
3.5 and 11.6 Gyr ago, a satellite with nearly nine times the gaseous
ass of the central galaxy fell from 66 to 13 kpc from the primary

alaxy, losing nearly all of its gas in the process. Fig. 8 displays
he distribution of [ α/ Fe] versus [Fe / H] and BE versus L z for the
arious classification categories of stars in this galaxy. The FP BE –
 z distribution is similarly tightly bound in comparison with the TP
opulation, and the age distribution of these mislabelled stars falls 
ff abruptly 7.5 Gyr ago, after peaking at roughly 11 Gyr, which
s a distribution we would not expect from FPs that are randomly

isassigned from the in situ population. This can be explained with
ndo-debris, or technically in situ stellar material formed from gas 
hat was accreted from an infalling satellite, as defined in Tissera et al.
 2013 ). If this were the true source of the FPs, we would expect the
ge distribution of FP stars to be tied closely to the age distribution
f TP accreted stars. From Fig. 8 , we can see the similarities in both
he metallicity and age distributions in the TP and FP selections. 

This example highlights the impact of gas-rich mergers on the 
erformance of our method. If a galaxy has experienced such a
erger, the endo-debris may be detected as accreted stellar material, 

espite ostensibly having formed in situ , from gaseous debris mixed
ith the matter in the disc. 

.2.3 Au20 

u20 is an example of a galaxy with a low f recov in conjunction with
 large reservoir of stars from massive satellites in its local environ-
ent, which comprise the majority of the training set candidate stars

or this galaxy. Despite the presence of this reservoir of training stars,
 massive majority of the misidentified FN stars originate from an
bject with a peak stellar mass (defined in 3.3 ) of M tot = 10 11.10 M �.
his object has been orbiting the central galaxy for o v er 11 Gyr, and
erged only 2.5 Gyr ago with a stellar mass of M � = 10 10.16 M �. Fig. 9

emonstrates that the distribution of [ α/ Fe] versus [Fe / H] values for
he FN selection bears many more similarities to that of the TN
ample, indicating that the accreted stars from this massive object 
MNRAS 515, 3818–3837 (2022) 
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Figure 10. The difference between the true fraction of accreted to in situ 
stellar mass and the fraction calculated with NNM results as a function of the 
ratio of the sum of the surviving satellite galaxies’ peak stellar masses with 
M � ≥ 10 8 M � to that contained in galaxies less massive. The accreted and 
in situ masses from the NNMs were taken from the output, requiring P a > 

0.75 to be considered as accreted stars, and P a < 0.5 for in situ . The mean 
differences at each circularity limit are displayed as coloured dashed lines. 
The median difference at εJ > 0.7 is shown as a black dashed line. Galaxies 
that have been previously referred to as ‘good’ are marked with a circle. 
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re chemically similar to those in a central galaxy, not a satellite. As
his example shows, if a merger takes place with a galaxy with similar
tellar mass, the accreted stars may be chemically indistinguishable
rom those that belong to our primary galaxy. 

In fact we have found that GANN generally recover accreted
tellar populations that are mainly rotationally dominated but also
xtended to lower εJ in agreement with G ́omez et al. ( 2017 ) (Fig. 5 ).
e further investigate this by estimating the fraction of accreted

tars o v er in situ at εJ selections abo v e 0.7, 0.8, and 0.9, that are
eco v ered by GANN . This is shown in Fig. 10 . The NNM results were
alculated assuming every star particle with P a > 0.75 is accreted, and
very particle with P a < 0.5 was formed in situ . On average, GANN
esults underestimate the fraction of accreted to in situ stars by up
o 2 per cent. The black dashed line, corresponding to the median
ifference in M acc / M ins values at εJ > 0.7 across our galaxy selection,
hows no significant shift. This implies the deviation is driven by
everal outliers, as opposed to being a systematic underestimation of
he fraction of accreted star particles. Selections based on circularity,
r other non-chemical parameters have the potential to provide
rucial post-processing in low P ( TP ) situations. 

.3 Impact of galactic environment 

n interesting aspect of our NNM is that, once trained, it does not
equire an y e xternal data for further training. This means that it
ould be readily applied to observational data without the need of a
ompanion simulation suite. Note that the models used for training
re MW analogs that sample a wide range of different possible
ssembly histories. We have also shown that the method is very
NRAS 515, 3818–3837 (2022) 
uccessful for half (12) of the Auriga simulated galaxies that we
ave e v aluated, providing us with f recov > 0.5 and P ( TP ) > 0.5 for P a 

 0.75. In these galaxies, the training selection of stars encompasses
nough of the variation present in the galactic disc for in situ and
ccreted material to be distinguished and separated. Ho we ver, for the
ther half of our sample, the results yielded either low f recov and/or
 ( TP ) (below 50 per cent). 
The underperfomance of our NNM in these cases could be

ssociated with one of the principal components of our method:
he local galactic environment from which the the training set is
btained. To explore this, we quantified the local environment by
omputing the probability distribution function (PDF) of the stellar
ass of nearby satellites and contributors to the outer stellar halo

i.e. stars beyond 25 kpc as described in Section 3.3 ). While an
 v aluation suite of Aurig a g alaxies has allowed us to determine that
he method will distinguish between accreted and in situ stars in
eneral, we need to compare the surviving satellite mass distributions
o dra w an y further conclusions about performance with the MW
tself. 

Fig. 11 displays the cumulative mass fractions of each surviving
atellite’s peak mass, plus the peak masses of objects that have
ontributed star particles to the outer stellar halo (identified by
nique peak mass IDs), as a function of the stellar mass of
heir source satellite, M 

peak 
� , for each Auriga galaxy, separated by

NM performance. The cumulative distributions are shown as lines
oloured by either f recov or P ( TP ). The black lines represent the
qui v alent distributions for accreted stars in the discs for the same
NM performance selections. Galaxies for which an NNM achieves
 ( TP ) > 0.5 | P a > 0.75 are in the top panel, galaxies for which an
NM provides f rec < 0.5 | P a > 0.75 are located in the middle panel,

nd galaxies for which an NNM provides P ( TP ) < 0.5 | P a > 0.75 are
ocated in the bottom panel. 

Auriga systems for which both f recov and P ( TP ) are abo v e 0.5
top panel: Au5, Au6, Au12, Au13, Au14, Au15, Au16, Au23,
u24, Au26) tend to have accreted stellar particles in the disc

egion originated in sources with similar M 

peak 
� distribution to their

nvironment (from which the training set are selected). Galaxies
or which NNMs result in a lower reco v ery fraction (middle panel,
u2, Au3, Au4, Au7, Au19, Au20, Au21, Au27, Au28) tend to have

ccreted stellar particles in the disc region that originated from higher
 

peak 
� compared to those that contribute to training sets. We would

xpect this given the difficulty NNMs experience distinguishing
etween stars accreted from extremely massive objects and those
ormed in situ in a massive galaxy, as was discussed previously
or Au20. These galaxies typically host significant ex situ discs
G ́omez et al. 2017 ). We find that only one of the galaxies in this
erformance selection follows a similar distribution of source masses
bo v e 10 8 M �, while the rest have training set populations that fail
o represent the highest mass contributors to their respective stellar
iscs. This can be understood from the results reported by Monachesi
t al. ( 2019 ), where the assembly histories of the stellar haloes of the
urig a g alaxies are studied in detail. Our findings for this particular

ubset of galaxies, with low f recov , which have environments formed
ainly from small satellites, agree with their results. Ho we ver, more
assive satellites have contributed to their discs, and hence to the
 v aluation set, with significant fractions of accreted stars. From
able 1 , we can estimate f acc = [0.11, 0.36] and a mean value of
 acc = 0.22. Our training set missed their contributions because these
tars tend to be concentrated around the discs within ∼20 kpc as
hown in Fig. 4 of Monachesi et al. Hence, they are missed in our
raining set by construction. 
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Figure 11. Cumulative mass fractions of the peak masses of satellites, as well 
as the peak masses of objects that ha ve contrib uted to the outer stellar halo 
(identified by a unique peak mass IDs) as a function of the stellar mass of the 
source, M 

peak 
� , for each Auriga galaxy, separated by the NNM performance. 

The distributions are shown for stars in the environments (coloured by either 
f recov or P ( TP )) and for the accreted star particles in the corresponding galactic 
discs (black lines). Galaxies for which an NNM achieves P ( TP ) > 0.5 | P a > 

0.75 are in the top panel, galaxies for which an NNM provides f rec < 0.5 | P a 

> 0.75 are located in the middle panel, and galaxies for which an NNM 

provides P ( TP ) < 0.5 | P a > 0.75 are shown in the bottom panel. 
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Finally, galaxies for which NNMs result in lower P ( TP ) values
bottom panel, Au9, Au10, Au17, Au18, Au22) ha ve distrib utions
hat match very well, but tend to lack star particles from higher-mass
ources in both the population of accreted disc star particles, and the
tar particles in the halo and surviving satellites (see also fig. 8 in

onachesi et al. 2019 ). Due to the lack of massive contributors to
he discs in these galaxies, the fraction of accreted star particles is
ystematically lower. In fact, the mean values is f acc = 0.03. As the
P rate is comparable to the fraction of accreted star particles to find

n the disc, the P ( TP ) will be below 50 per cent. This FP rate could
lso be driven partially by endo-debris, as described in Section 4.2 . 

.4 Accr etion sour ce r eco v ery: the GES analogue test 

o pro v e the predictiv e power of our algorithm, we focus on the
ell-identified massive merger that the MW had roughly 10 billion 
ears ago, the Gaia–Enceladus (GES) galaxy (Belokurov et al. 2018 ;
elmi et al. 2018 ). The stellar debris from this event covers nearly

he full sky and, at the time of the merger, the GES is estimated to
ave contained nearly a quarter of the mass of the progenitor of the
W. One of the goals for our NNM training and e v aluation method

s to be able to detect debris from disrupted satellites, such as the
ES, in the MW disc. 
To this end, we generated a ‘GES-mass proxy’ sample for each

ested Auriga halo. This proxy is created by sampling old stars ( τ
 10 Gyr) from the satellite galaxy with the highest M star within

he virial radius of the central galaxy (Helmi et al. 2018 ). This
efinition, by necessity, neglects most of the physical and kinematic 
haracteristics of the GES itself. A true analogue to the GES has
een demonstrated by Bignone et al. ( 2019 ) to be rare and none of
he Auriga initial conditions have been designed to include a GES
vent. By instead sampling appropriately aged stars from massive 
urviving satellites, we allow ourselves to obtain results from every 
uriga volume. This approach will approximate an object composed 
f stars formed before the GES would have ceased star formation,
hough we will neglect the effects that accreted gas may have had on
he development of endo-debris. The NNMs for these galaxies are 
rained with the same data set as previously, with the exception that
he stars associated with the selected GES-proxy have been remo v ed,
o pre vent forekno wledge about any of the stars in the structure.
ince any accreted stars in GES-like structures will be old stars from
 single satellite source, our NNM’s performance in this test should
orrespond with future performance in the disco v ery of large accreted 
omponents in the MW disc. While the isolation of stars belonging
o GES-like objects or substructures will require additional post- 
rocessing, in an application of GANN with real data, this test will
e indicative of ideal performance. While these results are based on
he mass–metallicity relation of the Auriga simulations, as long as a
lear mass–metallicity relation exists in the training and e v aluation
opulations the NNM should be able to identify accreted stars. 
Table 4 displays our NNM’s performance with a GES-proxy from 

he halo of each Auriga galaxy. The stellar mass ( M star ) of the
ES-proxy, and the reco v ery of the stars at three P a thresholds are
isplayed. In a majority (18/24) of our galaxies, more than 80 per cent
f the star particles that make up the GES proxy are reco v ered, for
 a > 0.75. With a lower threshold of P a > 0.50, every GES-proxy is

eco v ered abo v e 50 per cent. 

 CROSS-NNM  P E R F O R M A N C E  TESTS  

hile our method of NNM training leads to models that are
pecialized towards each galaxy’s specific environment, certain 
nvironments provide a well-rounded training sample of potential 
ccreted stars that is applicable more broadly. Tables 5 and 6 display
he P ( TP ) and f rec of each NNM trained in a given Auriga environment
hen applied to each Auriga galactic disc. Cells are coloured based
n their values. Blue cells indicate values abo v e 0.75, green indicates
alues abo v e 0.5, and pink indicates v alues belo w 0.5. Columns
MNRAS 515, 3818–3837 (2022) 
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Table 4. f recov for a GES proxy constituted of old stars ( τ > 10 Gyr) from a 
single satellite source located in each Auriga galactic halo. 

Halo log 10 M � / M � f recov | P a > 0.90 f recov | P a > 0.75 f recov | P a > 0.50 

2 9.35 0.15 0.45 0.63 
3 8.64 0.67 0.89 0.97 
4 8.75 0.34 0.95 0.99 
5 8.17 0.16 0.73 0.95 
6 7.98 0.06 0.40 0.89 
7 8.07 0.04 0.13 0.52 
9 8.30 0.46 0.82 0.93 
10 8.23 0.32 0.91 1.00 
12 8.45 0.26 0.83 0.93 
13 8.07 0.34 0.88 0.98 
14 7.94 0.22 0.90 0.97 
15 9.09 0.09 0.50 0.84 
16 8.46 0.28 0.99 1.00 
17 7.90 0.85 0.99 1.00 
18 8.52 0.24 0.48 0.68 
19 8.23 0.16 0.83 0.99 
20 8.27 0.22 0.72 0.98 
21 8.69 0.04 0.64 0.95 
22 7.78 0.72 0.78 0.85 
23 8.64 0.07 0.24 0.81 
24 8.67 0.08 0.45 0.81 
26 8.76 0.51 0.83 0.92 
27 8.43 0.50 0.93 0.98 
28 8.52 0.92 0.98 1.00 

Notes . The Auriga Id and stellar mass of the GES-proxy object is included (first and 
second columns). The f recov for different thresholds t are given (third to fifth columns). 
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hat consist of primarily green and blue in both tables demonstrates
xcellent NNM performance across the set of galactic discs. 

Table 6 presents two clear columns representing galaxies that
rovided poor NNM training sets. Au7 and Au20 both share recent
ergers. In both of these cases, these events create a disc environment

hat is composed of > 30 per cent accreted star particles. In the case
f Au7, a majority of the FN star particles originate from one of two
erger events from 3.97 and 1.34 Gyr ago. Au20 presents a very

imilar situation. A single merger event that took place 2.48 Gyr
go contributed a majority of the FN disc stars. In both these cases,
f we select only true in situ star particles from the disc to create
he in situ half of the training set, the FNs disappear. This implies
hat the mislabelling is not due to chemical similarity between these
ccreted stars and the in situ population of the galactic disc. This is
 demonstration of the weakness of our observationally motivated
raining set selection scheme, which is predicated on the disc being
rincipally composed of in situ star particles, and was designed
round an imposed inability to remo v e accreted contamination from
he disc a priori. This is evidenced by the impro v ed performance
ther NNMs display when e x ecuted on both Au7 and Au20. 

.1 Conglomerated training set 

ne approach we can use to ameliorate issues that arise due to
alactic satellite environments that do not well or fully describe
he accreted stellar material in the disc is conglomeration. By
onstructing a training set out of a wide surv e y of satellite galaxy,
nd halo star particles we can attempt to train a single model that can
erform well on a wide assortment of simulated galaxies. Table 7
isplays the results of training an NNM on the union of all the
ndividual Auriga training sets, o v er a maximum of 100 training
pochs, during which NNM weights were adjusted to model the
raining data. We can see that the variation of the results between
alaxies is significantly reduced with P ( TP ) abo v e 0.5 in all but
ight galaxies at a P a threshold of 0.5, and none at higher thresholds.
NRAS 515, 3818–3837 (2022) 
eco v ery fraction varies more predictably with thresholds in P a ,
ince the dependence on the environment-specific features is reduced.

 C O N C L U S I O N S  

n this work, we hav e dev eloped a machine learning method GANN
or identifying accreted stars purely with chemical abundances and
ge. We used a suite of simulations from the Auriga project to build
he NNM framework and tested its performance. These galaxies have

W mass-sized haloes with a variety of assembly histories. 
We adopt two performance measures to quantify the classification

erformance in general, P ( TP ) and f recov , calculated by assuming
 probability P a for a star particle to be classified as TP. Each
erformance indicator illustrates a different aspect of how reliable
ANN labels are for each of our test galaxies. P ( TP ) measures the
recision of the labels, and f recov measures the completeness of the
etected stars. 

They are also more reliable indicators of performance than simply
ccuracy, which is not tailored to specific cases, and is misleading
n situations with heavily imbalanced populations (Figs 3 and 4 ).

e have shown that, while GANN is based on chemical abundance
nformation and ages, the classification results in stellar populations
hat have the expected dynamical properties (Fig. 11 ). For example,
he TN stars are rotation dominated ( εJ ∼ 1), radially extended and
ith low heights abo v e the discs. Conv ersely, while TP stars are also
ominated by rotation, they show a larger dispersion in εJ , which is in
greement with the larger height achieved by this sample. Those stars
isclassified have properties that distinguished themselves clearly

Figs 6 –9 ). 
Our NNM algorithm appears to identify endo-debris stars as in situ

tars, as their chemical patterns mirror those of the satellites from
hich the gas that formed them originated. These stars tend to be

lightly less α-enriched at given [Fe/H] (Tissera et al. 2014 ). In
eneral, because this gas component is transformed into stars as gas
ound to the main host galaxy, the new born stars are considered by
he merger tree ground-truth to have been formed in situ . This tension
esults in FPs and lowers the calculated P ( TP ) values, however it
oes not imply that the GANN is not functioning as intended.These
iss-classified stars can provide information about the accretion

f gas-rich mergers by using kinematical and spatial information
f available. It is unknown how modelling of gaseous mixing will
ffect this, although by altering the chemical balance of the resulting
tars to a point between that of the satellite and that of the primary
alaxy, the P a assigned by GANN will likely be lower, possibly
educing FP rates. On the other hand, stellar material in the disc
hat originates from accreted satellites with comparable mass to the
rogenitor galaxy may pro v e difficult to disentangle with just this
ethod. Additional, physical and kinematic measurements will likely

e necessary in those cases as shown in Fig. 8 . 
We have also demonstrated the performance of our method on

pecific tasks, such as identification of GES-mass proxy stellar
tructures, and the completeness of the reco v ered accretion history
or all sources of accreted stars (Table 4 ). While our method
truggles to reco v er large portions of the accreted stellar population
n situations where the satellite and halo training set is not a fair
eflection of sources of the accreted stars in the disc region, in the
ajority of cases it is able to reco v er substantial fractions of them.
e find that our training method generates NNM models that are

enerally able to reco v er pieces of nearly every accretion source that
s present in the disc. This lends NNMs incredible power to aid in
he deconstruction of galactic accretion histories, as shown in Fig. 5 .
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Table 7. Neural network results for a single NNM trained with data from every Auriga galactic environment. 

Halo f recov | P a > 0.9 f recov | P a > 0.75 f recov | P a > 0.5 P ( TP ) | P a > 0.9 P ( TP ) | P a > 0.75 P ( TP ) | P a > 0.5 

2 0.15 0.49 0.73 0.72 0.62 0.54 
3 0.11 0.37 0.55 0.71 0.62 0.56 
4 0.14 0.38 0.54 0.70 0.63 0.56 
5 0.16 0.45 0.62 0.69 0.61 0.54 
6 0.20 0.50 0.66 0.70 0.61 0.53 
7 0.23 0.54 0.69 0.73 0.65 0.56 
9 0.25 0.56 0.72 0.73 0.63 0.54 
10 0.32 0.61 0.75 0.72 0.58 0.50 
12 0.30 0.60 0.75 0.72 0.59 0.50 
13 0.30 0.61 0.77 0.72 0.59 0.50 
14 0.29 0.61 0.77 0.73 0.60 0.52 
15 0.31 0.64 0.79 0.72 0.60 0.51 
16 0.31 0.65 0.80 0.72 0.59 0.50 
17 0.32 0.67 0.81 0.70 0.57 0.48 
18 0.33 0.68 0.82 0.70 0.56 0.47 
19 0.33 0.67 0.82 0.70 0.57 0.48 
20 0.31 0.65 0.80 0.71 0.58 0.49 
21 0.31 0.64 0.79 0.72 0.58 0.49 
22 0.32 0.65 0.80 0.70 0.57 0.48 
23 0.32 0.65 0.80 0.71 0.57 0.49 
24 0.31 0.65 0.80 0.70 0.57 0.49 
26 0.30 0.64 0.79 0.71 0.58 0.50 
27 0.30 0.64 0.79 0.71 0.58 0.50 
28 0.29 0.62 0.78 0.72 0.59 0.51 
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The best GANN performance is achieved when the most possible 
ources of accreted stars are included in the training data set (Fig. 11 ).
n cases where it is difficult to build a complete, accurate set of
tars from satellites, we have shown that a selection of halo stars
s sufficient for a training data set, at only a marginal cost to
 ( TP ), or precision. A large training set that includes stars from
 wide range of satellites will increase the performance of GANN .
hen the assembly history of the stellar haloes and the surviving 

atellites involved only small galaxies, there is a systematically 
maller fraction of accreted stars in the discs, which makes it difficult
o extract them. Additionally, some accretion events could have 
ontributed with large fraction of accreted stars to the discs but the
emnants are also distributed close to the discs. As a consequence, 
hese stars are excluded from the training sets to a v oid confusion and,
herefore, are missed. These cases suggest that a training set including 
tars from the environments of other massive galaxies could be a 
ay to identify these stars even when the current environments do 
ot include massive satellites. 
In fact, we find that training sets can be combined to great effect,

nd that the NNM algorithm trained on this conglomerated data 
an be generally applied and achieve more consistent results than 
ANN trained on a single galactic environment (Table 7 ). This

urther impro v es our method’s applicability to observational data, by 
pening up the possibility of using stars and stellar populations from
atellites and haloes of other galaxies to broaden an investigation into 
he MW’s stellar disc. This approach requires a large, varied training 
et, with multiple highly resolved stellar discs and haloes. This may 
ecome feasible as our observational techniques and technologies 
mpro v e. 

While our demonstrations use data from simulated MW-like 
alaxies, the input values can be gathered from any stellar data. 
n cases where we lack the required resolution to identify and 
ccurately measure the chemical components of individual stars, 
hemical estimates from isochrones could be substituted, and final 
 estimates can be determined based on the likelihood of each 
a 
otential set of isochrone parameters, and the output P a of each
articular configuration. Hence, unlike pre vious ef forts (Ostdiek et al. 
020 ), which have shown success at applying neural networks to
bservational MW data, our method does not require external data 
or training. 

In the future, GANN can be impro v ed by inclusion of data from
ther simulation suites to determine which findings are general, and 
hich are isolated to the Auriga simulations. Machine learning 

nd neural networks are a powerful set of tools for large-scale
stronomical classification problems. As we develop the proper 
anguage and measures to describe their performance in the unique 
etting of galaxy formation, we can begin to expect their flexi-
ility to lead to further exploration of their applications in this
eld. 
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Figure A1. Comparison of NNM results when trained on the final combi- 
nation data set, and a set composed entirely of halo stars greater than 25 kpc 
from the Galactic Centre. At a threshold of P a > 0.75, halo-only NNMs have 
systematically higher f rec and systematically lower P ( TP ), indicating that 
they are slightly less distinguishing than NNMs trained on data that include 
satellite stars. 
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PPEN D IX  A :  T R A I N I N G  SET  M A K E U P  

O M PA R I S O N S  

hile we have displayed the individual training subselection per- 
ormances alongside each other in Fig. 3 , we have also directly
ompared the best alternative training set composition with our final, 
ombined choice in Fig. A1 , for a threshold of P a > 0.75. This
econd-best selection is entirely composed of stars from the galactic 
tellar halo past 25 kpc from the Galactic Centre. On average, using
his training set increases our f rec with a mild decrease in P ( TP ). This
an be explained by the fact that the stellar halo is almost entirely
omposed of stellar debris from satellites that have either passed 
hrough or merged with the central galaxy (Bell et al. 2008 ). This
mplies that the chemistry-age trend information of any accreted 
tars in the galactic disc should be represented in this single set of
raining data. In cases where the halo is dominated by the debris from
elati vely fe w objects, ho we v er, e xtra care will be required to prevent
he NNM from learning only to identify stars from these objects at
he expense of others. 

These results provide a good moti v ation for the use of halo-only
raining sets in cases where satellite stellar information is difficult to 
btain, or of low quality. This will be an advantage particularly in an
bservational use-case, where significantly more information exists 
n individual halo stars than for stars in orbiting satellites. 
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