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Abstract 

Background  Dysfunctional adipose tissue (AT) is known to contribute to the pathophysiology of metabolic disease, 
including type 2 diabetes mellitus (T2DM). This dysfunction may occur, in part, as a consequence of gut-derived 
endotoxaemia inducing changes in adipocyte mitochondrial function and reducing the proportion of BRITE (brown-
in-white) adipocytes. Therefore, the present study investigated whether endotoxin (lipopolysaccharide; LPS) directly 
contributes to impaired human adipocyte mitochondrial function and browning in human adipocytes, and the 
relevant impact of obesity status pre and post bariatric surgery.

Methods  Human differentiated abdominal subcutaneous (AbdSc) adipocytes from participants with obesity and 
normal-weight participants were treated with endotoxin to assess in vitro changes in mitochondrial function and 
BRITE phenotype. Ex vivo human AbdSc AT from different groups of participants (normal-weight, obesity, pre- and 
6 months post-bariatric surgery) were assessed for similar analyses including circulating endotoxin levels.

Results  Ex vivo AT analysis (lean & obese, weight loss post-bariatric surgery) identified that systemic endotoxin nega-
tively correlated with BAT gene expression (p < 0.05). In vitro endotoxin treatment of AbdSc adipocytes (lean & obese) 
reduced mitochondrial dynamics (74.6% reduction; p < 0.0001), biogenesis (81.2% reduction; p < 0.0001) and the BRITE 
phenotype (93.8% reduction; p < 0.0001). Lean AbdSc adipocytes were more responsive to adrenergic signalling than 
obese AbdSc adipocytes; although endotoxin mitigated this response (92.6% reduction; p < 0.0001).

Conclusions  Taken together, these data suggest that systemic gut-derived endotoxaemia contributes to both 
individual adipocyte dysfunction and reduced browning capacity of the adipocyte cell population, exacerbating 
metabolic consequences. As bariatric surgery reduces endotoxin levels and is associated with improving adipocyte 
functionality, this may provide further evidence regarding the metabolic benefits of such surgical interventions.
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Background
Low-grade chronic systemic inflammation, character-
ized by increased circulating pro-inflammatory factors, 
is strongly associated with obesity and obesity-related 
diseases, such as type 2 diabetes mellitus (T2DM) and 
cardiovascular disease (CVD) [1, 2]. Indeed, this chronic 
inflammation constitutes a major risk factor for cardio-
metabolic morbidity and mortality [2, 3]. Adipose tissue 
(AT) directly produces and releases several pro-inflam-
matory adipokines/cytokines that contribute to the 
development of this chronic inflammation and the asso-
ciated diseases[1]. In addition, obesity is known to impair 
the permeability of the gut wall, resulting in a ‘leaky gut’ 
which enables gut-derived inflammatory agents (e.g. 
endotoxin, also referred to as lipopolysaccharide; LPS) 
to enter the bloodstream [4, 5]. Endotoxin forms part 
of the outer membrane of gram-negative bacteria and, 
once in the circulation, can elicit a marked inflammatory 
response in adipocytes, as our previous work has shown 
[6–10]. Overall, the combination of chronic inflamma-
tion, dietary factors (e.g. a high fat diet) and excess weight 
gain in obesity can promote adipocyte dysfunction [11].

Obesity is associated with the alteration of the pro-
portion of both white (WAT) and brown adipose tissue 
(BAT) in the body, with a subsequent metabolic impact 
[12–15]. WAT stores excess energy as triglycerides (TGs), 
however with excess and sustained weight gain the vol-
ume of WAT expands to a point where TGs spill over 
into ectopic sites (e.g. in the liver, skeletal muscle and 
pancreas), inducing insulin resistance and metabolic 
dysfunction [16]. In contrast, BAT, which is rich in mito-
chondria, can dissipate energy as heat via non-shivering 
thermogenesis, which contributes to the removal of 
plasma TGs, mitigates ectopic lipid storage, and improves 
insulin sensitivity and glucose uptake [16–20]. In obesity, 
BAT mass/activity appears to reduce, with multiple stud-
ies indicating that individuals with obesity have reduced 
BAT compared with their lean counterparts [18, 21, 22]. 
Of note, it is possible for WAT to possess adipocytes 
with a brown phenotype known as BRITE (brown-in-
white) or beige adipocytes, following a browning process 
in response to cold adaptation or other stimuli. Differ-
ences in susceptibility to browning between WAT from 
lean individuals and individuals with obesity have not yet 
been investigated; however, weight loss via interventions 
such as bariatric surgery has been shown to enhance 
the browning of adipocytes [23–27]. Although chronic 
inflammation has a profound effect on the metabolic 
function of adipocytes, the underlying mechanism(s) 
mediating this browning effect remains unclear.

To date, there is a paucity of data on the direct influence 
of endotoxin on adipocyte browning and the associated 
impact on the production and health of mitochondria 

[28, 29]. BAT is known to have a large number of well-
developed mitochondria, and therefore mitochondrial 
health and biogenesis are indicators that BRITE adipo-
cytes are functioning correctly. This includes constant 
fusion and fission of mitochondria to maintain their 
shape, distribution and size in order to function opti-
mally and carry out quality control processes [30, 31]. 
Transcriptional regulation plays an important role in 
managing mitochondrial biogenesis and dynamics, with 
key proteins involved in these processes, which are highly 
regulated at the transcriptional level [32–34]. As such, 
studying mitochondrial biogenesis and dynamics at the 
transcriptional level in response to endotoxin is expected 
to provide novel insight into the impact on BRITE cells 
and their mitochondrial health.

Therefore, this study sought to investigate the direct 
impact of endotoxin on both adipocyte browning and 
mitochondrial health, utilizing both in vitro and in vivo 
human data from lean individuals and individuals with 
obesity, as well as individuals with obesity-related T2DM 
who have undergone bariatric surgery. Accordingly, the 
aims of the present study were to investigate: (1) the rela-
tionship between endotoxin and adipocyte browning in 
human WAT in vivo; (2) the impact of endotoxin on the 
transcriptional characteristics of the BRITE phenotype 
in  vitro; (3) the effect of endotoxin on mitochondrial 
genes in BRITE adipocytes in vitro; and (4) the potential 
of inflammation as a mediator of LPS action within WAT.

Methods
Ethics and study design
Human WAT samples were obtained from participants 
with (i) body mass index (BMI): 18.5–24.9 kg/m2, (lean: 
n = 44), (ii) BMI: 25–29.9  kg/m2 (overweight: n = 49); 
and (iii) BMI: > 30  kg/m2 (obese: n = 63). Of the 63 par-
ticipants with obesity, 26 were Caucasian women with 
severe obesity (BMI > 35 kg/m2) and T2DM who under-
went bariatric surgery at the OB clinic, Prague, Czech 
Republic; either biliopancreatic diversion (BPD: n = 8), 
laparoscopic greater curvature plication (LGCP; n = 10), 
or laparoscopic adjustable gastric banding (LAGB; n = 8). 
For this study group, eligibility criteria was BMI > 35 kg/
m2 with or without comorbidities. WAT samples and 
fasted blood samples were collected both pre- and 
6-months post-surgery at the Institute of Endocrinol-
ogy, Prague, Czech Republic. All other study participants 
were non-diabetic, pre-menopausal Caucasian women 
who underwent non-emergency abdominal surger-
ies at University Hospital Coventry and Warwickshire 
(UHCW) NHS Trust, Coventry, UK (2013–2018). Exclu-
sion criteria for the present study included diseases, such 
as cancer and Cushing’s syndrome, as well as medica-
tions, such as glucocorticoids, incretin mimetics, insulin, 
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and thiazolidinediones which could interfere with the 
objectives of the study and were considered potential 
confounders. AT biopsies from abdominal subcutaneous 
(Sc) and omental (Om) fat depots were obtained, along-
side fasted serum samples. Ethical approval was obtained 
from the Local Research Ethics Committees, and all 
study participants provided written and informed con-
sent in accordance with the Declaration of Helsinki.

Blood biochemistry and anthropometry
Biochemical and anthropometric measurements were 
performed at the time of surgery, as well as 6  months 
post-surgery for those undergoing bariatric surgery. Par-
ticipants underwent a 10-h overnight fast, after which 
venous blood was collected in chilled EDTA-containing 
tubes with and without aprotinin (for glucose and insu-
lin measurements). Accordingly, serum samples were 
prepared, aliquoted and frozen at -80  °C until assayed. 
Serum glucose, HbA1c and lipids were determined using 
the Cobas 6000 analyzer. Insulin resistance was assessed 
using the homeostatic model assessment of insulin resist-
ance (HOMA-IR) according to the following equation: 
HOMA-IR = fasting glucose (mmol/L) x fasting insulin 
(mIU/L)/22.5, as previously described [35]. The Fried-
wald formula [36] was used to compute serum levels 
of LDL cholesterol. Body weight was measured to the 
nearest 0.5 kg and height to the nearest 1 cm. For those 
undergoing bariatric surgery, percentage of excess weight 
loss was calculated according to the following equation: 
(preoperative weight – postoperative weight) / (preop-
erative weight – ideal body weight) × 100, and body fat 
mass was measured using the bioimpedance method 
(Tanita TBF-300; Tanita corporation).

Primary human pre‑adipocyte isolation
Abdominal Sc AT was digested with collagenase to iso-
late pre-adipocyte cells, as previously described [37]. 
Briefly, AT was incubated with collagenase class 1 (Wor-
thington, UK) for 30 min before being filtered through a 
cotton mesh and centrifuged. The pellet was then re-sus-
pended in Dulbecco’s modified Eagle’s medium with high 
glucose (DMEM/F12) containing 10% FBS and 10 µg/mL 
transferrin. Cells were then cultured at 37 °C, 5% CO2.

Primary human pre‑adipocyte differentiation 
and treatment
Once confluent, cells were grown for a further two 
days before being incubated in differentiation media 
(DMEM/F12, 3% FBS and Differentiation Supplement 
Mix (Promocell, Heidelberg, Germany)) for four days. 
Differentiation was induced in the presence or absence 
of 2  µM rosiglitazone (Rosi, #71,740, Cayman Chemi-
cal, Cambridge, UK) to promote browning, 100  ng/mL 

lipopolysaccharide (LPS, 100  ng/mL, E.  Coli O55:B5, 
#L6529, Sigma-Aldrich, UK) to induce inflammation, or 
a combination of the two. Following this, cells were main-
tained in nutrition media (DMEM/F12 with Nutrition 
Supplement Mix (Promocell)) for 10 days at which point 
they were fully differentiated. Cells were then incubated 
in basal media (DMEM/F12 with 0.5% BSA) for 24  h 
before being harvested, or treated with 10 µM isoproter-
enol (Iso, #I6504, Sigma-Aldrich, UK) for 5 h to stimulate 
an adrenergic response and induce uncoupling protein 1 
(UCP1) expression before harvesting.

RNA isolation and quantification
For adipose tissue, 100 mg of frozen tissue was homog-
enized in TRI Reagent® (#T9424 Sigma-Aldrich, UK); 
for cell culture, cells were lysed in TRI Reagent. Total 
RNA was then extracted with chloroform (#J67241.
AP, VWR International Ltd., UK) (0.2  mL, TRI 
reagent®:Chloroform 5:1 v/v) and isopropanol (0.5  mL, 
TRI reagent®: Isopropanol 2:1 v/v). Samples were meas-
ured on a spectrophotometer at 260 nm.

cDNA synthesis and qRT‑PCR
Samples were digested with DNase I (DNase I kit, #AMP-
D1 Sigma-Aldrich, UK) and cDNA synthesis was under-
taken using a Sigma-Aldrich mRNA reverse transcription 
kit (#M1302-40KU, UK) according to the manufacturer’s 
instructions. Primers for mRNA were synthesized by 
Sigma Aldrich (see Additional file 1, Table S1). All assays 
were carried out in duplicate using SYBR Green master-
mix (#S4438-500RXN Sigma-Aldrich, UK), using L19 as 
a housekeeping control gene.

Protein determination and western blot analysis
Cultured primary adipocytes (n = 3) were lysed in radio-
immunoprecipitation assay buffer (#9806, Cell Signalling, 
US) supplemented with protease and phosphatase inhibi-
tor cocktail (#11,836,153,001, Roche, Switzerland). Once 
harvested, protein concentration was determined via 
Bradford Assay (#5,000,006, Biorad, US). Western blot-
ting was performed as described previously [38]. In brief, 
30ug of protein was loaded onto a denaturing polyacryla-
mide gel and transferred on to polyvinylidene difluoride 
membranes (#IPVH00010, Millipore, US). Membranes 
were blocked in a 5% bovine serum albumin (BSA) solu-
tion, incubated with antibodies against UCP1 (1:2000, 
#ab10983, Abcam, UK) and subsequently with secondary 
antibodies conjugated to horse radish peroxidase. Equal 
protein loading was confirmed using antibodies against 
β-Actin (1:1000, Cell Signalling, US). Proteins were visu-
alised using the XBOX chemi-luminescence imaging sys-
tem (Syngene, US) and band intensities were quantified 
with Fiji software [39] (ImageJ, US).
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Oxygen Consumption Rate (OCR) measurements
A Seahorse XFe24 Extracellular Flux Analyser (Seahorse 
Bioscience, Santa Clara, CA, US) was used to measure 
OCR as described elsewhere [40]. Primary pre-adipo-
cytes were seeded on to 24-well Seahorse Mitcroplates 
coated with 0.1% gelatine, and were differentiated and 
treated as detailed above. Media was changed to Sea-
horse XF media one hour before undertaking the assays. 
The XFe Cell Mito Stress Test was carried out using 2 μM 
Oligomycin, 2  μM FCCP and 0.5  μM rotenone/antimy-
cin (n = 5); preliminary experiments were used to deter-
mine optimal drug concentrations (data not shown). In a 
separate assay, isoproterenol was injected into the wells 
containing differentiated, treated primary adipocytes at 
a final concentration of 10 μM to determine their ability 
to respond to an adrenergic stimulus (n = 5). Values from 
both assays were normalised to total protein.

Endotoxin serum measurements
Serum endotoxin was measured using the EndoLISA 
assay (Hyglos, Germany) as per manufacturer’s instruc-
tions. Briefly, samples were added to wells pre-coated 
with endotoxin- specific phage binding protein before 
being washed. An assay reagent was then added which 
generated a fluorescent compound in the presence of 
endotoxin. Fluorescence was then measured against a 
standard curve to determine endotoxin concentration.

Artificial neural network inference
BAT and inflammatory genes were selected based on 
their association with phenotype from an Artificial Neu-
ral Network (ANN)-based data-mining step. The ANN 
model was validated using Monte Carlo cross-validation 
to minimize the risk of over-fitting and to optimize the 
generality of the model, as described previously [41]. This 
resulted in a phenotype enriched molecule set which was 
investigated further within an Artificial Neural Network 
Inference (ANNi) algorithm [41], including analysis of 
BMI and endotoxin. Within this ANN inference a matrix 
of interactions was generated based on signal directions 
and prediction weights. This matrix was then collapsed 
by taking the sum of values to and from each gene to 
determine the most influential and most influenced fea-
tures. The interactions from this matrix were also pre-
sented in a cytoscape map [42].

Statistical analysis
Statistical analyses were performed using the SPSS 21.0 
software [43] and GraphPad Prism 7.04. Data were exam-
ined for normality according to the D’Agostino & Pearson 
normality test. Visual inspection of the data histograms, 
normal Q-Qplots and box plots were examined, with 
skewness and kurtosis z-values accepted at (-1.96—1.96). 

Analysis of the varying BMI cohort (n = 136) was per-
formed via one-way ANOVA (if parametric) or Kruskal–
Wallis test (if non-parametric) followed by Tukey’s (if 
parametric) or Dunn’s (if non-parametric) multiple com-
parisons test to define significant differences between 
individual groups. Differences between pre- and post-
surgery time-points in the bariatric surgery cohort 
(n = 26) were assessed via paired two-tailed T-Test (if 
parametric) and the Wilcoxon signed ranks test (if non-
parametric). For Pearson correlation analyses, data were 
log-transformed prior to analysis, if non-parametric. 
Two-way ANOVA, followed by Tukey’s multiple com-
parison test, was performed for all comparisons between 
different cell culture treatments. P-values of < 0.05 were 
considered statistically significant. Unless otherwise 
specified, data are reported as mean ± standard error of 
the mean (SEM) with statistical differences compared to 
control indicated with *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001.

Results
Anthropometric and metabolic variables for study 
participants
Pertinent clinical, anthropometric and biochemical data 
for the study groups (Table  1) were stratified based on 
BMI, (lean (n = 44), overweight (n = 49) and obesity 
(n = 63)) and evaluated. Participants who were over-
weight or obese were compared with lean participants. 
Analysis of these cases indicated that fasting insulin lev-
els were significantly increased in both the overweight 
and obese group (both p-values < 0.05). Additionally, fast-
ing glucose (p < 0.0001) and LDL (p < 0.05) levels were sig-
nificantly increased in the obese group. The latter obese 
group also exhibited significantly lower fasting HDL lev-
els than lean participants (p < 0.001).

Change in endotoxin post‑bariatric surgery correlates 
with BAT gene expression
Paired serum and AT samples were collected from 
study participants undergoing bariatric surgery and 
analyzed for circulating endotoxin (LPS) and AT brown 
gene expression both pre- and 6  months post-surgery. 
Brown genes CIDEA (cell death activator CIDE-A), 
ELOVL3 (elongation of very long-chain fatty acids pro-
tein 3), PLIN5 (perilipin 5) and SLC27A2 (solute car-
rier family 27 member 2) were included in this analysis. 
Our findings show that, compared with pre-surgery 
levels, circulating endotoxin significantly decreased 
post-surgery, whilst brown gene expression increased, 
resulting in a negative correlation between endotoxin 
and ELOVL3, PLIN5 and CIDEA (Fig. 1, p < 0.05). Arti-
ficial neural network inference analysis revealed that 
SLC27A2 was most influenced by inflammatory genes, 
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Table 1  Clinical, anthropometric, and fasting biochemical characteristics of participants based on BMI and bariatric surgery status

Selected pertinent clinical, anthropometric and fasting biochemical characteristics of the study participants based on body mass index (BMI) and bariatric surgery 
status; participants with (i) BMI: 18.5–24.9 kg/m2, (lean: n = 44); (ii) BMI: 25–29.9 kg/m2 (overweight: n = 49); and (iii) BMI: > 30 kg/m2 (obese: n = 63). Data are presented 
as mean ± SEM. All samples were taken in a fasted state. One-way ANOVA or the Kruskal–Wallis test were used to test significance between group comparisons; 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 for lean vs. overweight and lean vs. obese, # p < 0.05, ## p < 0.01, ### p < 0.001, #### p < 0.0001 for overweight vs. obese. 
Significant differences between measurements taken pre- and 6 months post-bariatric surgery were assessed using two-tailed paired T-Test or Wilcoxon signed ranks 
test; +p < 0.05, ++p < 0.01, +++p < 0.001, ++++p < 0.0001

BMI Body mass index, TGs Triglycerides, LDL Low-density lipoprotein, HDL High-density lipoprotein

Lean Overweight Obese Pre-Surgery Post-Surgery

n 44 49 63 26 26

Age (years) 32.07 ± 1.2 31.56 ± 1.4 39.93 ± 1.7***#### 54.50 ± 3.41 54.50 ± 3.41

BMI (Kg/m2) 22.14 ± 0.7 27.30 ± 0.8**** 36.35 ± 1.0****#### 42.21 ± 3.24 36.70 ± 3.14++++

Glucose (mmol/l) 3.58 ± 0.1 3.63 ± 0.1 5.92 ± 0.4****#### 9.22 ± 1.57 6.96 ± 0.83++++

LDL (mmol/l) 4.56 ± 0.2 4.46 ± 0.2 3.82 ± 0.2**# 3.08 ± 0.54 2.67 ± 0.40+

HDL (mmol/l) 1.74 ± 0.1 1.53 ± 0.1 1.35 ± 0.1**** 1.08 ± 0.16 1.04 ± 0.18

TGs (mmol/l) 3.11 ± 0.2 3.26 ± 0.1 2.65 ± 0.2# 1.83 ± 0.65 1.39 ± 0.40+

Insulin (pmol/l) 39.79 ± 4.3 64.58 ± 6.3* 62.97 ± 5.9* 31.90 ± 11.26 17.16 ± 5.49++++

Fig. 1  Circulating Endotoxin Correlates with BAT gene expression changes pre- and 6 months post-bariatric surgery. Correlations between the 
changes in endotoxin (LPS) and brown adipose tissue (BAT) genes (A) CIDEA (cell death activator CIDE-A), B ELOVL3 (elongation of very long chain 
fatty acids protein 3), C PLIN5 (perilipin 5), and (D) SLC27A2 (solute carrier family 27 member 2) following bariatric surgery. Change was measured by 
subtracting the pre- value from the post- value; r values were calculated using the Pearson correlation test and p < 0.05 was considered significant
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with its expression pre-surgery negatively affected by 
CD14, IL6, IL10 and CD68. Pre-surgery CD14 expres-
sion also influenced SLC27A2 levels post-surgery (see 
Additional file 1, Fig. S1).

BMI correlates with reduced BAT gene expression
To establish the relationship between BMI and the 
BRITE genotype, the expression levels of key brown fat 
genes including CIDEA, ELOVL3, PLIN5 and SLC27A2 
were analyzed in both subcutaneous (Sc) and omental 
(Om) AT samples from patients with a range of BMIs. 
A strong negative correlation between BMI and BAT 
genes was observed with a maximum r value of -0.422 
for CIDEA in Sc, and -0.468 for ELOVL3 in Om (Fig. 2, 
p < 0.05). UCP1 gene expression was low in both Sc and 
Om AT samples with no significant change between 

lean and obese, or Sc and Om depots (see Additional 
file 1, Fig. S2).

Inflammation is increased in abdominal AT samples 
with BMI
To determine if inflammation was increased with 
increasing BMI as expected, pro-inflammatory markers 
IL6, tumour necrosis factor alpha (TNFα), MCP1 and 
interleukin 1 beta (IL1β) were measured in the lean, 
overweight and obese study groups in both Sc and Om 
AT depots. All these pro-inflammatory markers were 
significantly upregulated in participants with obesity 
compared with lean individuals (see Additional file  1, 
Fig. S3, p < 0.05), with an observed maximum three-
fold difference for IL1β (see Additional file 1, Fig. S3D2, 
p < 0.001).

Fig. 2  Body mass index (BMI) Correlates with Reduced Brown Adipose Tissue Genes. The expression of key brown fat genes Cell death-inducing 
DFFA-like effector A (CIDEA), ELOVL fatty acid elongase 3 (ELOVL3), perilipin 5 (PLIN5) and Solute Carrier Family 27 Member 2 (SLC27A2) was 
measured in subcutaneous (Sc) and omental (Om) adipose tissue depots via RT-PCR using L19 as a housekeeping control. Pearson correlation test 
was used to calculate r values; all genes had a strong negative correlation with BMI. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Inflammatory genes correlate with reduced BAT genes
As expression of both BAT and inflammatory genes 
were shown to significantly change with increasing BMI, 
the direct relationship between the two was also inves-
tigated, and a Pearson correlation test was carried out 
to determine any significant correlations. This analysis 
highlighted that there was a strong negative correlation 
between the BAT and inflammatory genes in Om AT, 
with a less apparent negative correlation present in Sc AT 
(Table 2). Utilizing the artificial neural network inference 
(ANNi algorithm), a network was created demonstrat-
ing the interactions between inflammatory markers and 
brown fat genes in Sc (see Additional file 1, Fig. S4) and 
Om (see Additional file  1, Fig. S5). This network graph 
revealed that in Sc, CIDEA and PLIN5 were the most 
negatively influenced brown genes and IL6, PLIN5 and 
ELOVL3 had the most influence on other genes. In Om, 
SLC27A2 was the most influenced brown gene, whilst 
CIDEA had the highest level of influence on others, fol-
lowed by IL6 and PLIN5.

Endotoxin reduced adipocyte browning in primary human 
adipocytes
To investigate the direct impact of endotoxin on BAT 
gene expression, lean and obese primary human adi-
pocytes were grown and differentiated with or without 
a gut-derived endotoxin fragment (LPS, 100  ng/mL) 
and/or 2 µM rosiglitazone, which replicates the brown 
phenotype. The gene expression of adipocyte protein 2 
(aP2) was measured, indicating that treatments did not 
impact differentiation (see Additional file  1, Fig. S6). 
Differentiation with endotoxin reduced the expression 
of BAT genes UCP1, PGC1α, CIDEA, PLIN5, ELOVL3 
and SLC27A2 compared to control. Differentiation 
with rosiglitazone significantly upregulated most 
BAT genes, with a maximum upregulation of 22-fold 

(p < 0.001); however, upregulation occurred to a much 
greater extent in adipocytes from lean individuals com-
pared to obese. This upregulation indicates that lean 
adipocytes may be more susceptible to browning than 
obese adipocytes. The upregulation of BAT genes was 
significantly reduced when endotoxin was included in 
the treatment (p < 0.001), suggesting that endotoxin and 
therefore obesity-related endotoxaemia may impair the 
browning process (Fig. 3).

Endotoxin reduces the responsiveness of BRITE cells 
to adrenergic stimuli
Following the observation that endotoxin reduces 
the level of browning of adipocytes, we investigated 
whether endotoxin also impacts the ability of BRITE 
cells to respond to an adrenergic stimulus. Lean and 
obese primary human adipocytes were grown and dif-
ferentiated with 2  µM rosiglitazone, endotoxin (LPS, 
100  ng/mL), or a combination of the two. Once dif-
ferentiated, cells were treated with or without 10  µM 
isoproterenol. Isoproterenol stimulates an adrenergic 
response similar to cold exposure in brown adipocytes, 
which should induce UCP1 and PGC1α expression 
if the cells are functioning correctly. As presented in 
Fig.  4, isoproterenol treatment significantly increased 
the expression of UCP1 and PGC1α in most cases, both 
with and without rosiglitazone treatment (p < 0.0001). 
However, adipocytes from lean individuals experienced 
a much higher increase than those from individuals 
with obesity. Endotoxin treatment significantly reduced 
the expression of both genes in the presence and 
absence of rosiglitazone (p < 0.0001), indicating that 
endotoxin reduces the capacity of these cells to respond 
to an adrenergic stimulus (Fig. 4).

Table 2  Correlations between studied pro-inflammatory and brown adipose tissue (BAT) related genes

The correlation of genes for interleukin-6 (IL6), monocyte chemotactic protein-1 (MCP1), tumour necrosis factor-alpha (TNFα), and interleukin-1beta (IL1β) with 
BAT-related genes, i.e. cell death-inducing DFFA-like effector A (CIDEA), ELOVL fatty acid elongase 3 (ELOVL3), perilipin 5 (PLIN5) and solute carrier family 27 member 2 
(SLC27A2), was assessed using the Pearson correlation test. Significant correlations are highlighted in bold font, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

IL6 MCP1 TNFα IL1β

Pearson’s r P value Pearson’s r P value Pearson’s r P value Pearson’s r P value

CIDEA Sc -0.01 0.91 0.01 0.93 -0.05 0.55 0.03 0.78

Om -0.33*** 2.00E-04 -0.31*** 6.00E-04 -0.12 0.21 -0.40**** 7.25E-06
ELOVL3 Sc -0.23** 0.01 -0.16 0.08 -0.06 0.52 -0.13 0.17

Om -0.33*** 2.00E-04 -0.30*** 7.00E-04 -0.05 0.62 -0.35*** 1.00E-04
PLIN5 Sc -0.20* 0.03 -0.05 0.58 -0.26** 3.00E-03 -0.16 0.08

Om -0.26** 3.00E-03 -0.22* 0.02 -0.17 0.05 -0.23* 0.01
SLC27A2 Sc 0.07 0.47 0.004 0.96 -0.10 0.28 0.10 0.28

Om -0.13 0.19 -0.12 0.19 0.01 0.91 -0.29** 1.00E-03
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Endotoxin impairs mitochondrial function
To explore the impact of endotoxin on the adrenergic 
response further, a Seahorse analyser was used to meas-
ure oxygen consumption rate (OCR) whilst isoproterenol 
was injected into the media of lean primary adipocytes 
treated with 2 µM rosiglitazone, endotoxin (LPS, 100 ng/
mL), or a combination of the two. An increase in OCR 
represents the adrenergic response. Cells treated with 
rosiglitazone exhibited an 83% increase with isoproter-
enol which was significantly different to the 60% increase 
in control cells, and 46% increase in cells treated with 
endotoxin (p < 0.05). Cells treated with both rosiglita-
zone and endotoxin had an increased OCR of 72% fol-
lowing isoproterenol injection, however this was not 

significantly different to cells treated with rosiglita-
zone alone (Fig.  5A). A mitochondrial stress test was 
also carried out, indicating that maximal respiration 
was increased with rosiglitazone treatment compared 
to control cells (p < 0.05), whilst endotoxin significantly 
decreased the maximal respiration (p < 0.05, Fig.  5B). 
Previous studies suggest that these differences may be 
due to UCP1 [44]. As such, UCP1 protein expression 
was assessed. Rosiglitazone caused a 1.7-fold increase 
in UCP1 expression (p < 0.05), whilst the inclusion of 
endotoxin with the rosiglitazone treatment caused a 59% 
decrease in expression compared to control (p < 0.001). 
Endotoxin on its own had a similar impact, reducing 
UCP1 expression by 57% (p < 0.01, Fig. 5C).

Fig. 3  Impact of Endotoxin (LPS) on Human Primary Adipocyte Browning. Lean (A1/B1/C1/D1/E1/F1) and obese (A2/B2/C2/D2/E2/F2) primary 
human adipocytes were differentiated with/without 2 µM rosiglitazone (Rosi), 100 ng/mL lipopolysaccharide (LPS100) or a combination of the two. 
Browning genes uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), cell death-inducing 
DFFA-like effector A (CIDEA), ELOVL fatty acid elongase 3 (ELOVL3), perilipin 5 (PLIN5) and Solute Carrier Family 27 Member 2 (SLC27A2) were 
analyzed using qRT-PCR with L19 as a housekeeping control. Data represent mean ± standard error of the mean (SEM). The two-way ANOVA test 
was used to test significance levels; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to control; † p < 0.05, †† p < 0.01, ††† p < 0.001, †††† 
p < 0.0001 compared to Rosi treatment; × p < 0.05, ×  ×  ×  × p < 0.0001 compared to LPS treatment
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Endotoxin reduces mitochondrial dynamics
To further explore the impact of endotoxin on BRITE adi-
pocyte function, mitochondrial health was investigated 
via their ability to undergo fission and fusion following 
endotoxin treatment. Fission genes dynamin-related pro-
tein 1 (DRP1) and mitochondrial fission 1 (FIS1), as well 
as fusion genes mitofusin 2 (MFN2) and mitochondrial 
dynamin like GTPase (OPA1) were analyzed in lean and 
obese primary human adipocytes following treatment 

with rosiglitazone, endotoxin (LPS) or a combination of 
the two. Adipocytes from lean individuals had increased 
expression of fission and fusion genes when treated with 
rosiglitazone, whereas adipocytes from individuals with 
obesity experienced very little change with rosiglita-
zone treatment (Fig. 6). Differentiating cells in the pres-
ence of endotoxin significantly reduced the expression 
of all mitochondrial dynamic genes in both the presence 
and absence of rosiglitazone (p < 0.001), suggesting that 

Fig. 4  Impact of Endotoxin (LPS) on BRITE Adipocyte Response to Adrenergic Stimulus. Lean (A1, B1) and obese (A2, B2) primary human 
adipocytes were differentiated with or without 2 µM rosiglitazone (Rosi), 100 ng/mL lipopolysaccharide (LPS100) or a combination of the two. When 
fully differentiated, cells were treated with 10 µM isoproterenol (Iso). BAT genes uncoupling protein 1 (UCP1) and peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (PGC1α) were analyzed using RT-PCR with L19 as a housekeeping control.  Data are presented as mean ± SEM. 
Two-way ANOVA was used to test significance; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to control; # p < 0.05, ## p < 0.01, ### 
p < 0.001, #### p < 0.0001 compared to Iso treatment; ƒ p < 0.05, ƒƒ p < 0.01, ƒƒƒ p < 0.001, ƒƒƒƒ p < 0.0001 compared to Rosi + Iso treatment
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Fig. 5  Impact of Endotoxin (LPS) on Mitochondrial Function. Primary human adipocytes were differentiated in the presence of 2 µM rosiglitazone 
(Rosi), 100 ng/mL lipopolysaccharide (LPS) or a combination of the two. A Following differentiation, isoproterenol was injected (to a final 
concentration of 10 µM) whilst oxygen consumption rate (OCR) was measured. B A Seahorse Mito Stress Test was also performed on the 
differentiated cells to assess key parameters of mitochondrial respiration. Dotted lines indicate injections into media of the specific compounds: 
isoproterenol, oligomycin, carbonyl cyanite-4 (trifluoromethoxy) phenylhydrazone (FCCP) and rotenone/antimycin A (R&A). C UCP1 protein 
expression was assessed in differentiated cells via Western blot. One-way ANOVA was carried out to assess significant differences. Seahorse data: 
* p < 0.05 control vs. LPS; # p < 0.05, ## p < 0.01 LPS vs. Rosi; x p < 0.05 LPS vs. Rosi + LPS; f Rosi vs. Rosi + LPS; † control vs. Rosi. UCP1 data: + p < 0.05 
compared to control; ^^^ p < 0.001 compared to Rosi

(See figure on next page.)
Fig. 6  Impact of Endotoxin (LPS) on Mitochondrial Dynamics. Following differentiation of lean (A1, B1, C1, D1, n = 4) and obese (A2, B2, C2, D2, 
n = 3) primary human adipocytes with 2 µM rosiglitazone (Rosi), 100 ng/mL lipopolysaccharide (LPS100) or a combination of the two, mitochondrial 
fission genes dynamin-related protein 1 (DRP1) and mitochondrial fission 1 (FIS1), as well as fusion genes mitofusin 2 (MFN2) and mitochondrial 
dynamin like GTPase (OPA1) were analyzed via RT-PCR, with L19 as a housekeeping control. Data represent mean ± SEM. The two-way ANOVA 
test was used to test significance; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to control, † p < 0.05, †† p < 0.01, ††† p < 0.001, †††† 
p < 0.0001 compared to Rosi treatment, x p < 0.05, xx p < 0.01, xxx p < 0.001, xxxxp < 0.0001 compared to LPS
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Fig. 6  (See legend on previous page.)



Page 12 of 17Omran et al. BMC Medicine          (2023) 21:154 

endotoxin reduces the ability of the adipocytes to main-
tain healthy mitochondria (Fig. 6).

Endotoxin reduces mitochondrial biogenesis
Mitochondrial biogenesis genes citrate synthase (CS), 
DNA polymerase gamma (POLG), nuclear respiratory 
factor 1 (NRF1) and mitochondrial transcription fac-
tor A (TFAM) were analyzed via RT-PCR following the 
treatment of primary human adipocytes with rosiglita-
zone, endotoxin (LPS) or a combination of the two. Lean 
adipocytes experienced a maximum 2.8-fold increase 
(p < 0.001) in mitochondrial biogenesis when treated with 
rosiglitazone, compared with obese adipocytes which did 
not significantly differ from control. Endotoxin treatment 
significantly reduced expression of all mitochondrial bio-
genesis genes both in the presence and absence of rosigli-
tazone, suggesting that endotoxin negatively impacts the 
production of new mitochondria in adipocytes (Fig. 7).

Endotoxin induces inflammation in primary human 
adipocytes
To investigate inflammation as a potential mechanism 
mediating the effect of endotoxin on adipocyte brown-
ing, both lean and obese primary human adipocytes were 
treated with endotoxin (LPS, 100 ng/mL), 2 µM rosigli-
tazone, or a combination of the two. Following endo-
toxin treatment, genes for the pro-inflammatory factors 
interleukin 6 (IL6) and monocyte chemotactic protein-1 
(MCP1) were significantly upregulated. A maximum 
15-fold increase in lean adipocytes, and a maximum ten-
fold increase in obese adipocytes (see Additional file  1, 
Fig. S7, p < 0.001) was observed. This suggests that endo-
toxin induces an inflammatory response in lean white 
adipocytes that appears blunted in obese white adi-
pocytes. In addition, IL6 and MCP1 were significantly 
upregulated by a maximum of eightfold by endotoxin in 
rosiglitazone treated cells, indicating that endotoxin also 
induces inflammation in BRITE adipocytes.

Discussion
These studies highlight for the first time the damaging 
influence gut derived endotoxin has on human adipo-
cyte function through inhibiting the browning process 
and reducing mitochondrial health, as well as providing 
insight as to why obesity itself exacerbates the inflam-
matory response. Specifically, these human studies have 
shown that endotoxin prevents the induction of adipo-
cyte browning in primary white adipocytes; whilst differ-
entiated BRITE adipocytes have reduced responsiveness 
to adrenergic stimuli when treated with endotoxin, par-
ticularly noted in cells cultured from obese subjects. 
In vivo human AT analysis indicated that endotoxin neg-
atively impacts the expression of the BRITE phenotype in 

obesity and highlighted the associated benefit of bariat-
ric surgery on reducing endotoxin levels and increasing 
WAT browning. In vitro analysis revealed that endotoxin 
treatment impaired mitochondrial respiration, dynam-
ics and biogenesis in BRITE adipocytes with BAT genes 
also being influenced by inflammatory genes, highlight-
ing the downstream influence endotoxin has on inflam-
mation. As such, these findings suggest that endotoxin 
contributes to obesity-associated disorders by impairing 
adipocyte browning and mitochondrial health via inflam-
matory pathways.

In vivo assessment of the relationship between endo-
toxin and adipocyte browning was investigated by 
exploring in patient correlations pre- and post-bariatric 
surgery, as well as modelling analysis with an artificial 
neural network inference. This revealed that endotoxin 
was negatively correlated with brown fat genes in WAT, 
and BAT-related genes were directly negatively influ-
enced by inflammatory genes. This highlights the poten-
tial for increased fat storage to impact on WAT browning 
capacity via inflammation. Accordingly, our studies 
monitored the expression of BAT-related genes in both 
lean and obese human primary adipocytes in vitro when 
exposed to endotoxin alongside the browning agent, 
rosiglitazone. Endotoxin consistently reduced the expres-
sion of BAT-related genes in both lean and obese adipo-
cytes, indicating that less browning occurs in adipocytes 
following exposure to endotoxin. This suggests that indi-
viduals with increased circulating levels of endotoxin, 
such as those noted in individuals who are overweight 
or have obesity, may have a reduced ability to produce 
BRITE adipocytes. With impaired capacity for fatty acid 
oxidation due to depleted BRITE adipocytes, this may 
lead to increased ectopic lipid accumulation and subse-
quent insulin resistance and related comorbidities [45]. 
In addition, rosiglitazone promoted the expression of 
BAT-related genes in lean adipocytes to a much higher 
level than in obese adipocytes. As such, adipocytes 
from individuals with obesity may be less susceptible 
to a browning stimulus than those from lean individu-
als. A possible reason for this could be the increased 
level of inflammation in obesity, which has been shown 
to impair adipocyte browning [46]. Additionally, fibro-
blast growth factor 21 (FGF21), a key mediator of fatty 
acid oxidation and lipid metabolism, which has been 
demonstrated to enhance WAT browning, is reduced in 
obesity [47]. GLP-1 and β3-adrenergic receptor agonists, 
such as Liraglutide and Mirabegron, result in BAT acti-
vation and have been shown to reduce fat mass [48, 49]. 
The findings we report have implications in the search for 
potential obesity treatments, since agents that are shown 
to induce browning in lean individuals may not have the 
same capacity in individuals with obesity. Importantly, 
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browning of AT and stimulation of BAT induced by bari-
atric surgery and/or drugs, may counteract a reduction in 
metabolic rate frequently associated with energy restric-
tion and weight loss [50].

Moreover, to determine the impact of endotoxin on 
non-shivering thermogenesis of BRITE adipocytes, the 

responsiveness of adipocytes to adrenergic stimulation 
following exposure to endotoxin was monitored. Dif-
ferentiating with endotoxin consistently reduced the 
adrenergic response of both lean and obese adipocytes, 
indicating that endotoxin impairs the ability of BRITE 
adipocytes to induce non-shivering thermogenesis at the 

Fig. 7  The Impact of Endotoxin (LPS) on Mitochondrial Biogenesis. Primary human adipocytes were differentiated with or without rosiglitazone 
(Rosi), 100 ng/mL lipopolysaccharide (LPS100) or a combination of the two. Mitochondrial biogenesis genes DNA polymerase gamma (POLG), 
nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) were measured using RT-PCR, with L19 as a housekeeping 
control. Data represent mean ± SEM. The two-way ANOVA test was used to test significance; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 
compared to control, † p < 0.05, †† p < 0.01, ††† p < 0.001, †††† p < 0.0001 compared to Rosi treatment, x p < 0.05, xx p < 0.01, xxx p < 0.001, xxxx 
p < 0.0001 compared to LPS
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transcription level when required. As a result, increased 
levels of endotoxin are likely to reduce the metabolic 
rate, as energy is stored as lipids instead of being dissi-
pated through heat, further promoting obesity and met-
abolic dysfunction. To our knowledge, this is the first 
study showing such results in human primary adipo-
cytes, which are in line with previous studies in mice [28, 
51–53]. Furthermore, adipocytes from lean individuals 
were more responsive to the adrenergic stimulus with-
out endotoxin than those from individuals with obesity. 
This is consistent with our previous findings, as well as 
the relevant literature, which indicates that individuals 
with obesity have blunted non-shivering thermogenesis 
response under the same cold stimulation compared with 
lean individuals [54]. This reduced responsiveness to 
induce non-shivering thermogenesis may, at least partly, 
be linked to the endotoxaemia present in obesity, as our 
results indicate that endotoxin impairs the adrenergic 
response.

Since non-shivering thermogenesis in brown and 
BRITE adipocytes relies on functional mitochondria, our 
studies investigated the impact of endotoxin on the func-
tion, biogenesis and dynamics of mitochondria, which is 
indicative of their health. Rosiglitazone increased maxi-
mal respiration of the mitochondria whilst endotoxin 
impaired such increase, indicating that endotoxin nega-
tively impacts the ability of mitochondria to cope with a 
physiological energy demand. Rosiglitazone also upregu-
lated biogenesis genes, as well as fission and fusion genes, 
in lean individuals, but had no effect on those with obe-
sity. Alongside results on BAT-related gene expression, 
this indicates that, whilst rosiglitazone induces some 
browning in adipocytes from individuals with obesity, 
these adipocytes do not have the same increase in mito-
chondrial biogenesis and dynamics as those in adipo-
cytes from lean individuals. This provides further insight 
as to why adipocytes from individuals with obesity were 
observed to have a reduced adrenergic response, since 
studies suggest that thermogenesis is regulated by mito-
chondrial dynamics in brown adipocytes [45, 55]. Fur-
thermore, endotoxin treatment impaired the increase 
in mitochondrial biogenesis and dynamics genes in 
response to rosiglitazone in lean adipocytes, to the point 
that they were displaying a more obese genotype. This 
reduction in both mitochondrial biogenesis and dynam-
ics means that quality control is impaired, and damaged 
mitochondria are not able to be replaced at an adequate 
rate. Similarly, the mitochondria have a diminished abil-
ity to adapt to cellular stresses and metabolic demands 
[33]. As such mitochondrial dysfunction occurs, which 
has been proposed as a cause of AT inflammation and 
is known to contribute to the risk of developing obesity-
related comorbidities [56]. 

To investigate endotoxin as a mediator of inflammation, 
in vitro studies assessed the impact of endotoxin on lean 
and obese primary human adipocytes. As it is known that 
circulating endotoxin levels increase with BMI [57], this 
study assessed pro-inflammatory markers in vivo in lean, 
overweight and obese cohorts. As expected, the expres-
sion of pro-inflammatory markers was increased in over-
weight and obese groups compared with lean, in both 
Sc and Om AT, which is consistent with previous stud-
ies [58]. Furthermore, a strong negative correlation was 
observed between BMI and BAT-related genes in both Sc 
and Om AT. These findings are consistent with the exist-
ing relevant literature and highlight the possibility that 
pro-inflammatory genes may be associated with BAT-
related gene expression [12, 13]. Whilst these correlations 
have been shown before, this is the first study to follow 
up with an investigation into the relationship between 
BAT and inflammatory genes. Indeed, further investiga-
tion revealed strong negative correlations between BAT 
and inflammatory genes in Om AT, with weaker negative 
correlations in Sc AT. This is possibly due to the higher 
levels of inflammation noted in Om compared to Sc AT 
[59, 60]. ANN analysis provided further insight, high-
lighting the direct relationship between inflammatory 
and BAT genes, indicating that inflammation as a down-
stream factor of endotoxin can also prevent the browning 
of adipocytes. Whilst we have considered IL6 as a pro-
inflammatory marker, there is also evidence to suggest 
it can influence adipocyte browning [61], however the 
results observed with IL6 in this study were in line with 
the other pro-inflammatory markers assessed.

Our study is limited by only including female partici-
pants, who are at lower risk of developing metabolic dis-
ease than males until menopause. Future studies should 
include males in order to explore the effects of metabolic 
endotoxemia on adipocyte browning in men vs women. 
A longitudinal study of participants who did not undergo 
bariatric surgery would be preferred in order to allow 
each subject to act as their own control, however this was 
not possible.

Conclusions
Based on these findings, it is proposed that endotoxin 
may prevent adipocyte browning and impair mitochon-
drial respiration, biogenesis and dynamics in human adi-
pocytes, thus contributing to obesity-related metabolic 
dysfunction, including dyslipidaemia and ectopic AT 
deposition in T2DM. Targeting endotoxin may therefore 
be a viable option to prevent the development of obesity-
related cardio-metabolic diseases by enhancing mito-
chondrial health and efficiency in adipocytes, whilst also 
increasing the number of BRITE adipocytes and improv-
ing their function.
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TGs	    �Triglycerides
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