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This paper incorporates the homogenization theory into non-penalized Smooth-Edged Material
Distribution for Optimizing Topology (SEMDOT) algorithm to conduct the design of cellular structures
with the maximum shear modulus. The parametric study and comparison with existing results obtained
by BESO are carried out. The numerical examples in 2D and 3D demonstrate the effectiveness of non-
penalized SEMDOT in generating smooth cellular structures with the maximum shear modulus.
Compared to BESO, SEMDOT can achieve comparable results and smoother boundaries. Smooth bound-
aries obtained by SEMDOT can facilitate the manufacturing of obtained cellular structures in 3D or 4D
printing.
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1. Introduction

Engineering and industrial applications are becoming sustain-
able in the era of industry 4.0 as the design and manufacturing
of products pursue less material usage, simpler manufacturing pro-
cesses, and less energy consumption while satisfying the func-
tional requirements of products [1]. The light-weight design
plays a crucial role in the development of industry 4.0, and cellular
structure design is an important branch of the light-weight design.
Compared to solid structures, cellular structures have superior
mechanical and thermal properties, such as low density and high
energy absorption [2]. Some examples of cellular structures are
honeycomb, foam, trabecular bone, and wood [1]. Cellular struc-
tures and materials have potential applications in the aerospace
industry, civil engineering, biomedical sensors, optics, and semi-
conductors. In addition, 3D and 4D printed cellular structures are
extensively used in the vibration isolation, buckling control and
energy absorption [3–6]. Topology optimization (TO) is a powerful
virtual tool that can find the optimal material distribution and
geometry within a predefined design domain, and it is widely used
to automatically obtain unit cell designs [7–9].
This work uses a typical elemental volume fraction-based algo-
rithm named Smooth-Edged Material Distribution for Optimizing
Topology (SEMDOT), which is proposed by Fu et al. [10,11], to con-
duct the topological design of cellular structures. Here, the non-
penalization version of SEMDOT in [12] is adopted to yield more
reasonable topological layouts and to reduce the total number of
optimization iterations required for convergence. In addition, the
advantages of the non-penalization material model in material
design problems are comprehensively discussed by Li and Huang
[7], which motivates the use of non-penalized SEMDOT for this
research. Compared to traditional element-based algorithms such
as Solid Isotropic Material with Penalization (SIMP) [13] and Bi-
directional Evolutionary Structural Optimization (BESO) [14], the
obvious advantage of using SEMDOT is that smooth topological
boundaries can be directly formed, and hence the smoothing
post-processing method is not needed before manufacturing.

Cellular structures and materials with high shear modulus are
of particular interest since the shear sliding under pressure is
one of their main failure modes [15]. Therefore, this work takes
the shear modulus maximization problem as an example to show
the capability of SEMDOT in generating cellular structures.
geniza-
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2. Homogenization SEMDOT and optimization problem

The homogenization theory presented in [16,17] is incorporated
into non-penalized SEMDOT to design topological configurations
with periodic boundaries and repetition of representative unit
cells. This work aims to maximize the shear moduli of cellular
structures. It is noted that the design variable in SEMDOT is the
element volume fraction, Xe, instead of the elemental density in
SIMP and BESO. The homogenized elasticity tensor is formulated
as [18]

Eijkl ¼ 1
jV j

Z
V
Epqrsðe0ðijÞpq � eðijÞpq Þðe0ðklÞrs � eðklÞrs ÞdV ð1Þ

where Vj j is the unit cell volume fraction, Epqrs is the locally

varying stiffness tensor, e0 ijð Þ
pq is the predefined macroscopic strain

field, and e ijð Þ
pq is the locally varying strain field induced by imposing

e0 ijð Þ
pq on the boundaries of the unit cell.
Because of the discretization for FEA in SEMDOT, the homoge-

nized elasticity tensor can be rewritten as

Eijkl ¼ 1
Vj j

XN
e¼1

u ijð Þ
e

� �T
k1u klð Þ

e ð2Þ

where e is the number of the element, N is the total number of

elements in the unit cell, u klð Þ
e is the elemental displacement solu-

tion to the unit test strain field, and k1 is the elemental stiffness
matrix.

In SEMDOT, elemental Young’s moduli are estimated using a
linear interpolation between the two phases of solid and void:

E Xeð Þ ¼ 1� Xeð ÞEmin þ XeE1 ð3Þ
where E1 is the elastic modulus of the solid material and Emin is

the elastic modulus of the void material, which is a small value (for
example, 0.001).

Based on Eqs. (2) and (3), the sensitivity of the homogenized
elasticity tensor in non-penalized SEMDOT is calculated by

@Eijkl

@Xe
¼ 1

Vj j 1� Xeð ÞEmin þ XeE1ð Þ u ijð Þ
e

� �T
k1u klð Þ

e ð4Þ

Here, periodic boundary conditions and square symmetry are
taken into account for the design of cellular structures. Therefore,
the following relationships exist: E1111 ¼ E2222 and E1122 ¼ E2211

for 2D cases and E1111 ¼ E2222 ¼ E3333,
E1122 ¼ E2211 ¼ E2233 ¼ E3322 ¼ E3311 ¼ E1133, and
E2323 ¼ E3131 ¼ E1212 for 3D cases.

In terms of 2D cases, the shear modulus related to the material
response to the shear strain is

G ¼ E1212 ð5Þ
The sensitivity of the shear modulus with respect to Xe for 2D

cases can be easily calculated by

@G
@Xe

¼ @E1212

@Xe
ð6Þ

For 3D cases, the shear modulus is

G ¼ 1
3

E2323 þ E3131 þ E1212ð Þ ð7Þ

The sensitivity of the shear modulus with respect to Xe for 3D
cases is

@G
@Xe

¼ 1
3

@E2323

@Xe
þ @E3131

@Xe
þ @E1212

@Xe

� �
ð8Þ
2

3. Numerical examples

The parameters of SEMDOT in [10–12] are used for all numeri-
cal cases. The Method of Moving Asymptote (MMA) proposed by
Svanberg [19] is used as the optimizer, and the move limit in
MMA is set to 0.5 for both 2D and 3D cases. In addition, a mesh
of 100� 100 and filter radius of rmin ¼ 5 are used to investigate
the effects of different volume fractions (i.e., V=0.5, 0.45, 0.4,
0.35, 0.3, and 0.25) on optimized 2D cellular structures and the
maximum shear moduli. In terms of the initial design for all 2D
cases, the four elements in the middle of one cell are defined as
voids, as schematically illustrated in Fig. 1. It should be noted that
the initial design is not limited to the one presented in Fig. 1. The
selection of the initial design should depend on the optimization
problem.

The resulting 2D cellular structures and their maximum shear
moduli are shown in Fig. 2 where different topological configura-
tions are obtained, and reducing the volume fraction results in a
lower value of the maximum shear modulus. The results shown
in Fig. 3, which was obtained by Huang et al. [8] using BESO, are
used for comparison. It is noted that the same parameter setting
(i.e., a mesh of 100� 100 and rmin ¼ 5) is used in [8], which can
guarantee the fairness of comparison. Fig. 3 shows that the maxi-
mum shear moduli subjected to V = 0.45, 0.35, and 0.25 are
0.124, 0.093, and 0.065, respectively. Fig. 2 shows that the maxi-
mum shear moduli subjected to V = 0.45, 0.35, and 0.25 are
0.1231, 0.0935, and 0.0657, respectively. It can be concluded that
SEMDOT and BESO can obtain close results in terms of the maxi-
mum shear modulus.

Another case subjected to a mesh of 120� 120 and V ¼ 0:25 is
taken into account for the further comparison of the solutions
obtained by SEMDOT and BESO presented in [20]. As shown in
Fig. 4, a higher value of the shear modulus (0.0659) is obtained
by SEMDOT compared to the one (0.0651) obtained by BESO in
[20], and similar cellular structures are obtained. Zigzag bound-
aries generated by BESO are observed in Figs. 3 and 4b, which
requires extra efforts to smooth the boundary before fabrication.
By contrast, cellular structures obtained by SEMDOT have smooth
boundaries, which makes the obtained cellular structures more
manufacturable.

From the discussion above, it can be seen that the value of the
maximum shear modulus obtained by SEMDOT is generally higher
than that obtained by BESO. There are some reasons that cause the
difference between the results of SEMDOT and BESO methods. The
first and the most important reason is that the new version of SEM-
DOT does not use the material penalization scheme, whereas BESO
needs to use the penalty coefficient. The second reason is that SEM-
DOT can use the MMA optimizer, whereas BESO has to use the
Optimality Criteria (OC)-like optimizer. Generally, MMA has better
performance than OC. At last, SEMDOT is a continuum method
Fig. 1. Initial design for 2D cases.



Fig. 2. Resulting unit cells under different volume fractions.

Fig. 3. Unit cells under different volume fractions in [8].

Fig. 4. Comparison of solutions obtained by SEMDOT and BESO [20] under a mesh of 120 � 120 and V ¼ 0:25.
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with the design variables from 0 to 1, however BESO is a discrete
method with the design variables of 0 and 1. This means that SEM-
DOT has more options of the optimal solution compared to BESO.
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The effect of the mesh size (i.e., 60� 60, 80� 80, 120� 120, and
160� 160) on optimized cellular structures and the maximum
shear moduli is investigated. The results are shown in Fig. 5 where
different cellular structures are achieved, and a coarse mesh of



Fig. 5. Resulting unit cells under different mesh sizes subjected to V ¼ 0:4.
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60� 60 results in a lower value of the maximum shear modulus
(0.1065) compared to fine meshes (0.1077 for 80� 80, 0.1084 for
120� 120, and 0.1090 for 160� 160). Taking the case with a mesh
of 160� 160 and V ¼ 0:4 as an example, the convergence process
and obtained 2� 2 base cell are shown in Fig. 6. It can be seen from
Fig. 6a that although there is a sudden drop during optimization, a
steady state is reached after 100 iterations. In Fig. 6a, the topolog-
ical boundary error indicates the accuracy of the smooth boundary,
and generally a value lower than 0.001 is acceptable. The cellular
structure in Fig. 6b can be further extended by repeating the unit
cell in horizontal and vertical directions.

A 3D case with a mesh of 20� 20� 20, rmin ¼ 1:5, and V ¼ 0:3 is
used to evaluate the effectiveness of SEMDOT in designing 3D cel-
lular structures. The convergence process and 3D initial and result-
ing unit cells are shown in Fig. 7. Fig. 7a shows that the
optimization process converges after 105 iterations at the maxi-
mum shear modulus of 0.06. Although the 3D initial unit cell
shown in Fig. 7b is selected, other initial designs can be used. In
terms of maximizing the shear moduli of 3D cellular structures,
the initial design depicted in Fig. 7b is sufficient. Despite using a
coarse mesh, the smooth 3D unit cell is still obtained by SEMDOT,
as shown in Fig. 7c.
4. Concluding remarks and future work

This work extended general SEMDOT to a homogenization ver-
sion for cellular structure design considering periodic boundary
conditions and square symmetry. The effects of the volume frac-
tion and mesh size on optimized cellular structures and the maxi-
mum shear moduli were investigated. Comparison with the results
obtained by BESO was conducted. The numerical results show the
capability of SEMDOT in forming smooth 2D and 3D cellular struc-
Fig. 6. Convergence process and 2� 2 base cell su
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tures. Smooth boundaries formed by SEMDOT facilitate the manu-
facturing of topologically optimized cellular structures in 3D or 4D
printing technologies.

In the future, accurate FEA will be used to simulate the mechan-
ical behavior of topologically optimized cellular structures, as well
as related experimental validations.
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(a) Convergence process

(b) 3D initial unit cell (c) 3D resulting unit cell

Fig. 7. Convergence process and 3D initial and resulting unit cells.
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