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Abstract: Optical coherence tomography (OCT) has attracted attention in dermatology applications
for skin disease characterization and diagnosis because it provides high-resolution (<10 µm) of
tissue non-invasively with high imaging speed (2–8 s). However, the quality of OCT images can
be significantly degraded by speckle noise, which results from light waves scattering in multiple
directions. This noise can hinder the accuracy of disease diagnosis, and the conventional frame
averaging method requires multiple repeated (e.g., four to six) scans, which is time consuming and
introduces motion artifacts. To overcome these limitations, we proposed a lightweight U-shape Swin
(LUSwin) transformer-based denoising pipeline to recover high-quality OCT images from the noisy
OCT images by utilizing a fast one-repeated OCT scan. In terms of the peak signal-to-noise-ratio
(PSNR) performance, the results reveal that the denoised images from the LUSwin transformer (26.92)
are of a higher quality than the four-repeated frame-averaging method (26.19). Compared to the
state-of-the-art networks in image denoising, the proposed LUSwin transformer has the smallest
floating points operation (3.9299 G) and has the second highest PSNR results, only 0.02 lower than the
Swin-UNet, which has the highest PSNR results (26.94). This study demonstrates that the transformer
model has the capacity to denoise the noisy OCT image from a fast one-repeated OCT scan.

Keywords: optical coherence tomography (OCT); image denoising; deep learning

1. Introduction

The skin is the largest organ in direct contact with the external environment and is the
first barrier to preventing the entry of harmful substances into the bodies of humans and
other vertebrates [1]. In dermatology clinics, the diagnosis of a skin disease usually relies
on physical examination, followed by a histological biopsy. Nevertheless, a skin biopsy
is an invasive method that can be performed by shaving, punching, or incision to obtain
sufficient tissue volume for interpretation, which is low repeatable and brings injury to
the patients. Optical coherence tomography (OCT) is a non-invasive, label-free, real-time
in vivo imaging device. With broadband LASERs in infrared wavelength, the OCT can
provide micron-level resolution (~5 µm) tomographic images with depth information up to
3 mm in biology tissue [2]. Through analyses of skin signatures (definition of the epidermal–
dermal junction, ovoid structures, etc.), most studies confirmed OCT significantly improved
the sensitivity and specificity [3–6]. However, the speckle noise in the OCT scan seriously
degraded the quality and contrast of the skin structures in the OCT image, reducing the
accuracy of the skin disease diagnoses [7]. It is a challenge to recover the high-quality OCT
structure image from the speckle noise. High-repeated (e.g., four to six repeated) OCT scans
in the same location are a common method to suppress the noise in the OCT image [8].
However, this method introduces motion artifacts to images because of the longer scan
time, while reducing the repeated scan (e.g., one-repeated) can lead to low contrast and
high speckle noise results. Regarding the denoising algorithms, a series of denoising
filters were applied to the OCT images to reduce the speckle noise [9,10]. However, these

Photonics 2023, 10, 468. https://doi.org/10.3390/photonics10040468 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics10040468
https://doi.org/10.3390/photonics10040468
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0001-6287-8079
https://doi.org/10.3390/photonics10040468
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10040468?type=check_update&version=2


Photonics 2023, 10, 468 2 of 18

filters are complexly designed and might remove the slight skin tissue signal, losing the
high-frequency details (low sharpness) of the images [11].

Recently, based on convolution neural networks (CNN), a series of neural networks
with different architectures were proposed to denoise the high-quality OCT images from the
counterpart low-quality image [11–15]. These methods achieved good competitive results
in OCT image denoising but cannot meet the requirement of high-quality OCT image
denoising and reconstruction. Since the CNN-type model is based on the convolution
operation, which has a limited receptive field (e.g., 3 × 3) and is based on the local feature
extraction, it cannot learn long-term information during the image denoising. Moreover,
due to the convolution operation, the checkboard-like artifacts will be obvious in the
denoised and reconstructed images if using the deconvolution layer, such as the encoder–
decoder architecture model [16]. In terms of the application, current research is focused on
the retina OCT images denoising in the field of ophthalmology; hence, rather than solely
concentrating on reducing noise, the CNN model must relearn the different signatures
from skin OCT structure images in dermatology.

By flattening the 2-dimensional (2D) image into 1-dimension (1D) sequences, a vision
transformer (ViT) can provide good performance in image classification by using a large
receipt field (i.e., 16× 16) and global information [17]. However, a large amount of data (e.g.,
300 M images JFT300 datasets) are required for ViT fine-tuning and training. By introducing
the hierarchical shifted windows (Swin) into the transformer, the Swin transformer can
better utilize the neighbor content information and achieve a better performance than
the ViT in the ImageNet2K classification task [18]. With the Swin transformer, Swin-IR
was proposed for image restoration and achieved a better performance than the CNN-
based methods in natural image reconstruction and super resolution. By combining the
encoder–decoder architecture and the Swin transformer, Swin-UNet [19] achieved a good
performance in medical image segmentation, while the requirement of the computation
cost is lower than that of the Swin-IR. Compared with the U-Net [20], the fully connected
layer took the place of the deconvolution layer to upscale the shape of the feature maps,
reducing the potential checkboard-like artifacts. However, the network size of Swin-IR
and Swin-UNet is so large that it requires a high computational resource. Additionally,
Swin-UNet was first proposed for segmentation, which is different from denoising. Hence,
a lightweight model is desired to reduce the computational cost while providing high
denoising performance.

Inspired by the success of the Swin transformer and Swin U-Net, this paper proposes a
lightweight U-shape Swin (LUSwin) transformer model that allows the developer to use a
low-computational cost network for OCT image denoising, and the denoising and network
training pipeline is shown in Figure 1. The LUSwin Transformer has an encoder–decoder
architecture that allows for efficient learning. To improve the network generalization of
the noise reduction, the OCT images from a series of positions of the skin with various
textures and signatures were collected from the participants. Concretely, our contributions
can be summarized as follows: (1) We proposed a low computational cost pipeline to
enhance the image quality of the noisy OCT skin image based on the fast one-repeated
OCT scan. (2) Based on the Swin transformer, we proposed an LUSwin transformer, which
has a symmetric encoder–decoder architecture and less computational cost than U-Net
and Swin-UNet, to denoise the skin OCT images. (3) We conducted an investigation of
the perceptual loss on the neural network training for skin OCT image denoising. (4). A
comparative study between the CNN- and transformer-type models in skin OCT image
denoising was performed.
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Figure 1. The OCT structural image denoising pipeline including the training pipeline. The noisy
structural image is generated based on the single OCT-scanned B-frame. The high-quality image
is generated by the frame averaging method [8] with six-repeated OCT-scanned B-frames. In the
training stage, the denoised image from the denoise network was used to calculate the loss for the
neural network’s trainable weights updating. In the test stage, the denoised image is compared with
the high-quality image to evaluate the performance of the denoise network based on validation sets.

2. Materials and Methods
2.1. Swept-Source OCT and Data Acquisition

A lab-built swept-source OCT (SSOCT) system was utilized to non-invasively visualize
the skin structure with a hand-held probe, and Figure 2 shows the system schematic of
the SSOCT used in this study. The swept-source laser (SL132120, Thorlabs Inc., Newton,
MA, USA) used in this system has a wavelength of 1310 nm, a bandwidth of 100 nm, and a
200 kHz swept rate. More details of the SSOCT system are described in [21]. This system
has a theoretical axial resolution of 7.4 µm in air, and the penetration depth of skin with
this system is ~2 mm.

Figure 2. The system schematic of the swept-source (SS) OCT system in this study. The data
acquisition card used in the personal computer (PC) is an ATS9371 from AlazarTechTM, and the
sample lens in the system is an LSM03 from Thorlabs with a 35 mm focus length. (a) A demonstration
of the data acquisition with a flexible hand-held scan probe, which is built-in in the SSOCT system.
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Regarding the data acquisition from the participants, a hand-held scan probe was used
during the data sampling to simulate the clinic data acquisition procedure, as described in
Figure 2a. The scan positions were palm thenar, back of the palm, forearm (arms), neck,
and face for each participant. The selected positions are areas that are easily exposed to
sunshine, which means skin diseases are prominent in these areas [22]. To reduce the
influence of the motion artifacts between the hand-held probe and the participants, each
position was scanned three times, and high-quality data with the least motion artifacts
were manually selected. To further eliminate motion artifacts in human skin, an image
registration method, including rigid affine and non-rigid B-spline, was applied based on
the Matlab (MathWorks, Inc., Natick, MA, USA) open-source image registration toolbox
Elastix [23,24]. Regarding the scanning protocol to obtain six-repeated OCT signals, each
OCT volume has a size of 6 × 600 × 600 × 300 (n, x, y, z), where n is the repeated scans of
the OCT volume, x and y are the transverse axis, and z is the axial axis. The field of view
was set at approximately 5 mm × 5 mm. There were sixteen healthy participants ranging
in age from 20 to 35, none of whom had any skin disease or skin condition. After the data
acquisition and manual selection to remove low-quality OCT data, a total of 29 six-repeated
OCT signals were collected from the participants, and the details of the OCT signals are
shown in Table 1.

Table 1. Selected six-repeated OCT signals from the participants and relative scan positions.

Participant ID Scan Positions Number of Data Biological Sex

#001 Palm Thenar 1 Male
#002 Palm Thenar 2 Male

#003
Forearm (Arm) 2

FemaleNeck 2
#004 Palm Thenar 1 Female

#005
Neck 1

MaleFace 1
#006 Palm Thenar 2 Male
#007 Palm Thenar 1 Male

#008
Back of Palm 2

FemaleForearm (Arm) 2
#009 Neck 2 Female
#010 Face 2 Male
#011 Face 1 Male
#012 Palm Thenar 2 Male
#013 Palm Thenar 1 Female

#014
Palm Thenar 1

FemaleForearm (Arm) 1
#015 Palm Thenar 1 Male
#016 Palm Thenar 1 Female

In terms of image pre-processing for network training, the image registration and
frame average algorithms mentioned above were used to generate high-quality OCT images
based on the six-repeated OCT signals. In the meantime, the noisy image was generated
based on the first volume (size is 1 × 600 × 600 × 300 (n, x, y, z)) of each six-repeated
OCT signal. With a split rate of 0.8 for the training data and 0.2 for the validation data,
6 independent OCT signals from #004, #005, #011, and #014 were used to generate the
validation data, and the remaining 23 OCT signals were used to generate the training
data. Then, the processed high-quality and noisy OCT images were split into 2D B-frame
(600 × 300) images. Considering that the shape of one B-frame image is too large for neural
network training with a GTX1080 Ti graphics card (11 GB) in this study, each B-frame image
was split into three 192 × 192 images to prevent the out-of-memory situation. Finally, a
total of 52,200 B-frame images were extracted as high-quality images and noisy images,
respectively. Among them, 41,400 pairs of high-quality and noisy images were used as the
training dataset, and the remaining 10,800 as the validation dataset.
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The data acquisition of the volunteers was approved by the School of Science and
Engineering Research Ethics Committee of the University of Dundee (Approval Number:
UOD_SSREC_PGR_2022_003), which also conforms to the tenets of the Declaration of
Helsinki. Informed consent was obtained from the participants before the data collection,
and all the participants were informed that the collected data would be used in this article.
The collected data were anonymized, and the participants’ identification was removed.

2.2. Definition of OCT Image Denoising

The data collection and pre-processing to obtain the counterpart high-quality images
(IHQ) and noisy OCT images (INoisy) were mentioned in the above paragraph. Two types of
OCT image denoising were involved in this study, those being the frame averaging and
deep-learning-based methods. Assuming there is a four-repeated scan OCT signal that
composes of four volumes (V1, V2, V3, V4), the frame averaging method can be written as:

I f rame−averaging =
1

NR ∑n
i=1

(
Vi

1 + Vi
2 + Vi

3 + Vi
4

)
(1)

where n represents the total pixels of the volume and Vi
1 means the no. i pixel of the first

volume. NR is the number of repeated scans in the OCT signal. The more repeated scans,
the higher the quality of the output OCT images, but this also results in a longer data
acquisition time and more unpredictable motion artifacts.

Additionally, the deep-learning-based method aims to learn the mapping relationship
between the IHQ and INoisy and reduce the noise in the INoisy while maintaining significant
structural signals. The denoised processing of the neural networks can be written as:

IDenoised = HW
(

INoisy
)

(2)

where HW is the denoised neural network with trainable weights W and IDenoised is the
output denoised image from the denoised network. As demonstrated in Figure 1, the INoisy
is extracted from the single OCT scan. By calculating the loss with IHQ, the loss is then
used to calculate the gradience for the neural network’s weights updating with the help of
the optimizer algorithm, such as step gradient descent and Adam [25].

2.3. Lightweight U-Shape Swin Transformer

Figure 3 outlines the architecture of the proposed lightweight U-shape Swin (LUSwin)
transformer. Assuming the shape of the LUSwin transformer model input is H ×W, the
first patch extraction layer will split the input image with patch size 4 × 4 without over-
lapping. Hence, the shape of the patch extraction layer output is H/4 ×W/4 × (4 × 4).
A position embedding layer with C features is then applied to the output image patches,
and the output shape is H/4 × W/4 × C, where C is set as 64 in this study. The em-
bedding output is then sent into a Swin transformer block (STB), which will not change
the shape of the feature maps. In the encoder part, the patch merging layer is used to
downsample the shape of the feature map and increase the feature dims of the feature
map (e.g., input shape is H/4 ×W/4 × C, and output shape is H/8 ×W/8 × 2 C). The
bottleneck has two STBs, and the output from the bottleneck is fed into the decoder. The
expanded layer is aimed at upsampling the feature map and reducing the feature dims (e.g.,
from H/8 ×W/8 × 2 C to H/4 ×W/4 × C). The latest expanded layer in the decoder can
4× upsample the feature map, and the final linear projection layer has a hidden size of 1 to
match the channel output.
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Figure 3. The architecture of the lightweight U-shape Swin transformer, which consists of an encoder
(blue zone), bottleneck (organ zone), and decoder (red zone). W and H are the width and height
of the image and feature map, respectively. C is the channel of the tensor, which is set to 64 in this
study for the proposed LUSwin transformer. The bold dotted line between the encoder and decoder
is a skip connection to provide residual learning and improve the training efficiency [26]. Patch
merging is used to downsample the shape of the feature map, while the expanded layer is used to
upsample the feature map. (a) The Swin transformer block (STB) used in the LUSwin transformer.
(b) The demonstration of self-attention [17]. Q, K, and V are the sequences from the linear projection
operation. In multi-head attention, Q, K, and V are split into multi-head and then sent into the
self-attention layer. d is a parameter with a numerical value of 1/

√
dims o f Q, and the output of the

rescale is Q×KT√
dims o f Q

.

2.3.1. Swin Transformer Block

In Figure 3a, the Swin transformer block (STB) [18,19] contains a window multi-head
attention layer (WMA), a shift-windows multi-head attention layer (SWMA), a series of
layer normalization (LN) layers, and two feed-forward networks (FFN). Taking X1 as the
input of the STB, the processing procedure of the STB can be written as follows:

ŷ1 = WMA(LN1(X1)) + X1 (3)

Y1 = FFN1(LN2(ŷ1)) + ŷ1 (4)

ŷ2 = SWMA(LN3(Y1)) + Y1 (5)

Y2 = FFN2(LN4(ŷ2)) + ŷ2 (6)
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where FFN contains two linear projection layers with a GeLU activation layer. The WMA
and SWMA layers are based on shifted windows operation. Different from the standard
multi-head attention (MA), the shifted window can provide relative information between
the neighbor pixels and increase the training efficiency. Given an input (X) with shape
H ×W × C for WMA, the WMA will first extract the window patch of the input and
reshape it to HW

W2 ×W2 × C, where W is the size of the window in STB. Then, a standard
self-attention layer (Figure 3b) is operated on each separate window patch with a shape
W2 × C. In this stage, the Q, K, and V sequences have the shape of W2 × C, and the
attention score of each window patch can be written as:

Attention Score(Q, K, V) = Softmax

(
QKT
√

d
+ P

)
V (7)

where d is a parameter with a numerical value of 1/
√

dims o f Q and P is the trainable
relative position encoding representing the position of each pixel. However, the perfor-
mance of STB will be low if the window patch extraction is applied on the same position in
WMA and SWMA; hence, a shift window is used in SWMA to provide the cross-window
connections [18]. The shift size of the windows in SWMA is (W/2, W/2) in this study.

2.3.2. Patch Merging and Expand Layer

Patch Merging. Assuming the input patch (Pinput) has a shape of H × W × C, the
patch will be first divided into four parts (P1, P2, P3, P4), and each part of the patch will be
resampled to H/2 ×W/2 × C by regaining the height (H) and width (W). The regaining
operation is performed by sampling the elements by a position interval of 2 in the row
and column direction [18]. After the resampling operation, these four parts with the shape
H/2 ×W/2 × C will be concatenated into a new patch (PC) with shape H/2 ×W/2 × 4 C.
Finally, a linear projection layer with feature dim 2 C is used to reduce the size of PC, and
the output patch (Poutput) of the patch merging layer has a shape of H/2 ×W/2 × 2 C.

Expand Layer. Distinct from the patch merging layer, the aim of the expand layer is to
upsample the shape of the input patch (Pinput). Assuming the shape of Pinput is H ×W × C,
a linear projection layer with a feature dim of 4 C is first applied to Pinput to expand the size
of the channel dims of Pinput, and the output patch PE has a shape of H ×W × 4 C. Then,
processing by a reshaped layer, the output patch of the expanded layer Poutput has a shape
of 2 H × 2 W × C. A layer normalization layer is then applied to the Poutput to increase the
efficiency of the training.

2.4. Loss Function

Supervised training was used in this experiment. The combination of the L2 loss (also
known as mean square error (MSE)) and perceptual loss [27] were utilized as similarity
metrics between the high-quality OCT images and the denoised images from the network.
The L2 loss is aimed at comparing two images pixel-by-pixel, as demonstrated in the
following formula:

L2
(

I, Î
)
= ∑N

i=1

(
Ii − Îi

)2 (8)

where I is the high-quality image and Î is the denoised image from the networks. N is all
the pixels in the images. The perceptual loss was then introduced to the network training
and enhancement of the high-frequency details in the denoised images [28,29]. Different
from the proposed implementation of perceptual loss in [27], the ImageNet2K pre-trained
VGG19 network [30], which has a better performance than the original VGG16 network,
was used to extract the feature map for perceptual loss calculation, as (9) shows:

LP
(

I, Î
)
= ∑N

i=1

(
φ(I)− φ

(
Î
))2 (9)
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where φ is the ImageNet2K dataset pre-trained VGG19 network for feature map extraction,
I is the high-quality image, and Î is the denoised image from the networks. N is all the
pixels in the extracted feature maps. Finally, the combined loss function (LC) is formulated
as follows:

LC
(

I, Î
)
= η ×L2

(
I, Î
)
+ µ×LP

(
I, Î
)

(10)

where I is the high-quality image and Î is the denoised image from the networks. η and µ
are control parameters for the LC function.

2.5. Implementation Details

The training of all the networks was based on TensorFlow 2.8.0 backend [31]. The
training took place on an Nvidia GTX1080 Ti (NVIDIA Corporation, Santa Clara, CA,
USA) with 11 GB memory. We trained our LUSwin transformer using 1000 epochs. The
batch size was 16. An Adam [25] optimizer with a learning rate of 0.0001, beta1 = 0.9,
and beta2 = 0.99 was used as the training optimizer. The loss function was LC, which is
mentioned in Equation (10), with η = 1 and µ = 0.01, and the setting of the weights is based
on the experiment performed in [28]. An early stop strategy was used to save the best
performance network trainable parameters when the metrics loss was not decreased in
5 epochs. Furthermore, to enhance the robustness of the trained network, a series of data
argumentation methods were performed to train datasets during the network training,
including image flipping horizontally by a random factor between 0 and 0.2, image shifting
by a random factor between 0 and 0.2, and random adding of Gaussian noise with factors
of mean = 0 and standard deviation = 0.1.

Regarding the initialization of the proposed LUSwin transformer, as shown in Figure 3,
the C is set as 64, and the separate heads numbers for each Swin transformer block are
2, 4, 8, and 16 from shallow to deep (e.g., the 1st Swin transformer block with 1 × C has
2 heads, and the Swin transformer block in the bottleneck area with 8 × C has 16 heads).
The window size for all Swin transformer blocks is 8 with a shifting size of 4.

2.6. Performance Comparison Methods
2.6.1. Comparison with the Neural Networks

To evaluate the denoising performance of the proposed LUSwin transformer, a series
of trainable neural networks were trained with the same datasets for comparison, including
DnCNN [32], U-Net [20], SRGAN [28], ESRGAN [29], TransUNet [33], and Swin-UNet [19].
Among them, SRGAN and ESRGAN were proposed for natural image super-resolution.
To reduce the influence of the network training details, the implementation details of
DnCNN, SRGAN, and ESRGAN are the same as the published one given. In terms of U-
Net, TransUNet, and Swin-UNet, which are first proposed for medical image segmentation,
use the same loss function (i.e., Lc in (10)) as the proposed LUSwin transformer. In terms
of the optimizer, epochs, batch size, early stop strategy, and data argumentation, all the
compared used networks have the same setup that was discussed in Section 2.5.

2.6.2. Comparison of the Loss Function

As indicated in Equation (10), the loss function used in this study is combined with
L2 loss and perceptual loss. Although perceptual loss has proven that it can enhance the
reconstructed image’s high-frequency details in natural image reconstruction and super-
resolution tasks, there is still a lack of study on how perceptual loss can influence the
trained network denoised performance with an OCT structural images dataset. Hence, we
performed a comparison study on the loss function LC with a different setup of the weights
parameters. In this stage, the η to control the L2 loss is maintained at 1, and the µ to control
the perceptual loss is set as 1, 0.1, 0.01 (proposed implementation details), and 0.001 for the
comparison study.
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2.6.3. Ablation Study on LUSwin Transformer

To investigate the denoising performance of the proposed LUSwin transformer under
a reducing neural network size, we further performed an ablation study in terms of the
channel size (i.e., C in Figure 3) and the number of pairs of downsample–upsample blocks
(i.e., blue and red blocks in Figure 3), and the details of the setup of the ablation study are
given in Table 2. The control group has the same implementation details as Section 2.5,
and the L2-loss (Equation (8)) is used to reduce the influence of the loss function in the
ablation study.

Table 2. Ablation study setup of the proposed LUSwin transformer.

Experiments Channel Size (C) Pairs of Downsample–Upsample Blocks

Control Group 64 4

Channel-48 48 * 4

Channel-32 32 * 4

Block-3 64 3 *
* The parameter marked in bold is the different setup from the control group.

2.7. Quantitative Image Quality Assessment

In this study, the peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) are used to quantitatively compare the performance of the different meth-
ods. In this stage, the ground-truth image generated by a six-repeated OCT scan was used
as the reference image. The formulation of the PSNR is shown as Equation (11)

PSNR
(

I, Î
)
= 10 log

(
I2
max

MSE
(

I, Î
)) (11)

where I is the reference image and Î is the denoised image from the different methods.
Imax is the maximum numerical value of the image; in this study, the maximum value
is normalized to 1. MSE is the mean square error between the reference image and the
denoised image. Different from the PSNR, SSIM is an objective evaluation method based on
luminance, contrast, and structure to evaluate the similarity between the reference image
and the denoised image [34], as shown in the following (12):

SSIM
(

I, Î
)
=

[
2µIµ Î + C1

µ2
I + µ2

Î
+ C1

]α

L

×
[

2σIσÎ + C2

σ2
I + σ2

Î
+ C2

]β

C

×
[

σI Î + C3

σIσÎ + C3

]γ

S
(12)

where C1, C2, and C3 are the constants to stabilize the calculation. σI means the variance
of the image and σIσÎ represents the covariance of the denoised image and the reference
image. µ is the mean operation of the image. α, β, and γ are the values > 0 to adjust the
weights between the luminance (L), contrast (C), and structure (S).

3. Results

To evaluate the denoising performance, quantitative comparison and visual observa-
tion are used in this section. The comparison data are based on the validation datasets
mentioned in Section 2.1, which are separated from network training datasets. In quantita-
tive and visual comparison, six-repeated OCT signals were used as the ground-truth image
for PSNR and SSIM calculation. The first four-repeated OCT signals from the six-repeated
OCT signals were selected to generate the baseline reference image by the frame averaging
method. The inputs of the denoised networks were low-quality OCT images from the one-
repeated scan. Furthermore, in the visual observation comparison, we used the B-frame
images with a shape of 600 × 192 (transverse axis × axial axis).
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3.1. Comparison of the Different Networks

Table 3 demonstrates the quantitative comparison between the different methods. The
floating-point operations (FLOPs) and network parameters (Params) are used to compare
the computational cost of the networks. In the comparison of the results, except for the
DnCNN, all the neural networks can provide better mean PSNR results than the base-
line reference (mean PSNR: 26.19). Among them, Swin-UNet has the best PSNR (26.94)
performance, but the difference with the LUSwin transformer (26.92) is slight, while the
second best LUSwin transformer has the smallest FLOPs (3.9299 G), which is approximately
three times smaller than Swin-UNet. Among the CNN-type networks that employ residual
connections, SRGAN (mean PSNR: 26.42) and ESRGAN (mean PSNR: 26.45) outperform
DnCNN (mean PSNR: 25.32) and achieve more competitive results. In contrast, UNet has
a higher PSNR (26.73) result than ESRGAN, while the FLOPs (59.882 G) are significantly
smaller than ESRGAN (FLOPs: 258.51 G). TransUNet has smaller FLOPs (23.014 G) than
UNet and higher SSIM (0.796), but contrarily performs worse than UNet in PSNR (26.68) re-
sult. Nevertheless, the frame averaging method with a four-repeated scan has a higher
SSIM (0.858) result compared to all the denoised images by neural networks.

Table 3. Quantitative comparison (average ± standard deviation) with different methods.

Method Type Repeat Scan FLOPs * (G) Params * (M) PSNR SSIM

Input Image N/A 1-Repeated N/A N/A 21.28 ± 1.09 0.746 ± 0.047
Reference N/A 4-Repeated N/A N/A 26.19 ± 1.23 0.858 ± 0.035

DnCNN [32] CNN

1-Repeated

40.924 0.557 25.32 ± 0.01 0.787 ± 0.040
SRGAN [28] CNN 41.684 0.567 26.42 ± 0.91 0.792 ± 0.038

ESRGAN [29] CNN 258.51 3.506 26.45 ± 1.15 0.765 ± 0.051
UNet [20] CNN 59.882 34.565 26.73 ± 0.63 0.789 ± 0.044

TransUNet [33] Transformer 23.014 52.351 26.68 ± 0.01 0.796 ± 0.037
Swin-UNet [19] Transformer 16.117 50.283 26.94 ± 0.58 0.795 ± 0.040

LUSwin Transformer Transformer 3.9299 11.922 26.92 ± 0.70 0.796 ± 0.040

* FLOPs: Floating point operations, the amount of calculation in the network. Smaller FLOPs mean faster neural
network processing speed. The FLOPs calculation in this study is based on an input shape of 192 × 192 × 1.
* Params (M): Parameter of the neural networks (unit: million).

Figure 4 is the visual comparison between different methods. After comparing the
denoised images by networks with the ground truth (A) and reference (C), we observed that
they exhibit higher contrast and fewer noises. We believe that this improvement is due to the
use of the L2 loss function, which is also supported by [35]. In terms of visual observation,
the difference between the neural networks is slight; however, excluding the DnCNN,
the denoised images from the networks have a higher PSNR than the reference image (C)
(PSNR: 26.16). Among them, the result from Swin-UNet (I) is the best (PSNR: 27.23) and
the LUSwin transformer (J) is the second-best (PSNR: 27.17). Nevertheless, the SSIM results
from neural networks are lower than the reference (C) (SSIM: 0.89), which has a similar
situation to the quantitative results in Table 3. Our supposition is the cause of the higher
contrast in the denoised images by neural networks. Additionally, to present the robustness
and advanced denoising performance of the LUSwin transformer, two alternative denoised
B-frame results that represent two different scan positions (i.e., face and neck) are presented
in Appendix A Figures A1 and A2.
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Figure 4. The visual comparison between the different methods. The image is selected from par-
ticipant #004, representing the neural network performance on the palm thenar. (A) High-quality
ground-truth image with six-repeated scans. (B) Low-quality input image with one-repeated scan.
(C) High-quality reference image with four-repeated scans. (D–J) are the neural networks’ denoised
results from (D) DnCNN, (E) SRGAN, (F) ESRGAN, (G) UNet, (H) TransUNet, (I) Swin-UNet, and
(J) LUSwin transformer. The white label is a scale bar with 400 µm.

3.2. Comparison of the Different Loss Functions

Table 4 is a quantitative comparison of the LUSwin transformer trained under different
loss functions. Compared with the L2-only result and other compared used setups of the
Lc loss function, the LUSwin transformer trained with the proposed Lc has a higher mean
PSNR (26.92) and SSIM (0.796) results. With respect to the visual comparison, in Figure 5,
the proposed Lc result (C) (PSNR: 27.23) and Lc with µ = 0.1 (F) (PSNR: 26.91) can provide
less noise than the L2-only result (D) (PSNR: 26.84), while all of them have a higher contrast
than the ground truth (A) and input (B).

Table 4. Quantitative comparison of the loss function based on the LUSwin transformer.

Loss Function η µ PSNR SSIM

L2 (µ = 0) 1 0 26.77 ± 0.53 0.792 ± 0.04

LC (µ = 1) 1 1 26.35 ± 0.54 0.793 ± 0.04

LC (µ = 0.1) 1 0.1 26.71 ± 0.56 0.794 ± 0.04

LC (proposed) 1 0.01 26.92 ± 0.70 0.796 ± 0.04

LC (µ = 0.001) 1 0.001 26.76 ± 0.48 0.792 ± 0.04
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Figure 5. The visual comparison between the different utilization of the loss function. The image is
selected from participant #014, representing the neural network performance on the palm thenar.
(A) High-quality ground-truth image with six-repeated scans. (B) Low-quality input image with
one-repeated scan. (C) The denoised output from the LUSwin transformer with the proposed loss
function and implementation details (η = 1, µ = 0.01). (D) The denoised output from the LUSwin
transformer with L2-only loss function (η = 1, µ = 0). (E) The denoised output from the LUSwin
transformer with Lc (η = 1, µ = 1) loss function. (F) The denoised output from the LUSwin transformer
with Lc (η = 1, µ = 0.1) loss function. (G) The denoised output from the LUSwin transformer with Lc

(η = 1, µ = 0.001) loss function. The white label is a scale bar with 400 µm.

3.3. Ablation Study Result

Table 5 presents a quantitative comparison between the proposed LUSwin transformer
(control group) and its lighter variants, which employ different initialization parame-
ters (i.e., the channel size) and architectures (i.e., the number of pairs of downsampled–
upsampled blocks). The details of the experimental setup for each group can be found in
Table 2, and the validation dataset is the same as mentioned in Table 3.

Table 5. Quantitative comparison of the different setups of the LUSwin transformer.

Experiments * FLOPs (G) Params (M) PSNR SSIM

Control Group 3.9299 11.922 26.77 ± 0.53 0.792 ± 0.04

Channel (C)-48 2.2561 6.726 26.72 ± 0.57 0.791 ± 0.04

Channel (C)-32 1.0447 3.013 26.61 ± 0.51 0.788 ± 0.04

Block (B)-3 2.9267 2.985 26.71 ± 0.53 0.791 ± 0.04
* Experiments. As mentioned in Table 2, channel C represents the channel size in Figure 3, and block B represents
the number of pairs of downsampled (blue)–upsampled (red) blocks in Figure 3. The name of the experiments is
thereby written as C-48, C-32, and B-3 in the main text.



Photonics 2023, 10, 468 13 of 18

In the comparison of the results, the C-32 group demonstrates the lowest FLOPs
(1.0447 G), but also the worst denoising performance (PSNR: 26.61; SSIM: 0.788). Both
C-48 (PSNR: 26.72) and B-3 (PSNR: 26.61) groups exhibit similar performance, but the
C-48 achieves a smaller FLOPs value (2.2561 G compared to 2.9267 G in B-3). Among
them, the control group that utilizes the proposed implementation details achieved the best
performance in terms of PSNR (26.77) and SSIM (0.792).

4. Discussion

In this study, we proposed a lightweight U-shape Swin (LUSwin) transformer to form
an OCT image denoising pipeline for a fast one-repeated OCT scan in skin application.
The results of the experiments demonstrate that the proposed LUSwin transformer has
achieved a good denoising performance. Compared to the best performance Swin-UNet in
this study, the LUSwin transformer has an approximately three times lower neural network
size and FLOPs, while the degradation of the denoising performance is slight. In terms of
network robustness and generalization, the LUSwin transformer has demonstrated that
it can provide good denoising performance for noisy OCT images generated from five
different scan positions (i.e., palm thenar, back of palm, forearm, face, and neck). Moreover,
we introduced perceptual loss to improve the performance of the LUSwin transformer and
enhance the training efficiency. Finally, the proposed LUSwin transformer has the lowest
FLOPs among a series of state-of-the-art networks in image denoising, while providing
advanced denoising performance.

Table 3 shows the quantitative comparison among the different methods, and most of
the denoising networks improved the PSNR of the one-repeated noisy OCT image better
than the four-repeated frame-averaging method, except the DnCNN. Of the denoising net-
works in this study, the proposed LUSwin transformer has the lowest computational cost
as measured by FLOPs (3.9299 G), while achieving the second highest PSNR (26.92) and the
highest SSIM (0.796). Regarding the utilization of the transformer, the comparison between
the TransUNet (represents the pure transformer) and the LUSwin transformer (represents
the Swin transformer) shows that the Swin transformer can enhance the denoising perfor-
mance in terms of PSNR (26.92 > 26.68) while reducing the FLOPs (23.014 G > 3.9299 G) and
network size (Parameters: 52.351 M > 11.922 M), and those advantages also exhibit in the
comparison between Swin-UNet and TransUNet. Among the various CNN-type networks
considered, UNet exhibits the highest PSNR (26.73) and SSIM (0.789). While SRGAN and
ESRGAN have shown competitive performance in natural image super-resolution, our
results demonstrate that in the denoising task, these methods underperform relative to
UNet in regard to SSIM and PSNR. Our analysis suggests that the four-repeated frame
averaging method exhibits limited performance in improving PSNR due to its calculation
of the mean individual pixel intensity over the temporal frames, which preserves speckle
information. Among the denoised results by the networks, TransUNet (SSIM: 0.796) and
LUSwin transformer (SSIM: 0.796) have best improved the SSIM of the one-repeated noisy
image. Nevertheless, the frame averaging method has a higher SSIM than all the denoised
images by neural networks, and we hypothesize that this is because of the higher contrast
in the network denoised images, as Figure 4D–J shows.

Figures 4, A1 and A2 show that the B-frame images denoised by neural networks can
improve contrast and noise reduction based on the input low-quality noisy image (B). We
conjecture that this is because of the L2 loss function, which is also supported by the results
presented by Liu et al. [35]. Although the SSIM results of all the network-denoised images
are lower than the reference (C), all of them can provide a higher contrast regarding the
visual observations. Among them, the Swin-UNet (I) and LUSwin transformer (J) achieve
the best quantitative results in terms of PSNR.

Table 4 and Figure 5 indicate that the introduced perceptual loss with the proposed
implementation details can improve the denoising performance of the LUSwin transformer.
Furthermore, our comparative study of the loss function (LC) recommends that the optimal
perceptual loss weight is around 0.01. Since the weight is too large or too small (i.e., µ = 1



Photonics 2023, 10, 468 14 of 18

or µ = 0.001), it will decrease the denoising performance and training efficiency of neural
networks. Although the training with the proposed loss function (i.e., Lc) requires an
additional computation resource to output the feature maps from the VGG19 networks,
which requires more time for training, the processing speed of the denoising operation is
not influenced, and the utilization of the proposed Lc is worthwhile.

Table 5 presents an ablation study that investigates the performance of the proposed
LUSwin transformer when the network size is reduced. The comparison between different
channel size setups indicates that decreasing the channel size (i.e., from 64 to 32) negatively
impacts the denoising performance, with the PSNR dropping from 26.77 to 26.61. Moreover,
reducing the number of downsampled–upsampled block pairs from 4 to 3 also leads to
decreased denoising performance (PSNR from 26.77 to 26.71). In the comparison between
the C-48 and B-3 results, reducing the channel size while maintaining the network depth
(i.e., pairs of the downsampled–upsampled blocks) can provide a better denoising perfor-
mance (PSNR: 26.72 > 26.71), while the FLOPs is smaller (2.2561 G < 2.9267 G). However, it
is important to note that decreasing the neural network size of the LUSwin transformer can
lead to a lower denoising performance. Consequently, we recommend using the LUSwin
transformer with the proposed implementation details for optimal results in this study.

Our work has limitations in the training strategy. During the experiment stage, we
found that the adversarial training for OCT image denoising will bring an unstable situation
of network training and result in lower performance in the PSNR results. Although we in-
vestigated the strategies of relativistic average standard (RaS)-GAN [36], a label-smoothing
method for discriminator, and Wasserstein GAN [37], the instability of the network training
was not solved for encoder–decoder type networks (i.e., UNet, TransUNet, Swin-UNet, and
LUSwin transformer). Therefore, we will investigate a more stable and higher efficiency
method to introduce adversarial loss into the proposed LUSwin transformer and obtain a
better competitive result in OCT image denoising.

5. Conclusions

In this study, we proposed an LUSwin transformer to build up an OCT image de-
noising pipeline for skin applications. The proposed LUSwin transformer achieved good
competitive denoising results (PSNR: 26.92; SSIM:0.796) among different state-of-the-art
networks while having a lightweight size design. In terms of network generalization and
robustness, the denoising pipeline can perform stable denoising processing on five different
positions of skin, representing different skin features. The proposed denoising pipeline
can reduce the noise of the one-repeated noisy OCT images and improve the contrast and
PSNR performance, which is useful for a fast OCT scan in skin applications.
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Appendix A

Figure A1. The visual comparison between the different methods. The image is selected from
participant #011, representing the neural network performance on the face. (A) High-quality
ground-truth image with six-repeated scans. (B) Low-quality input image with one-repeated scan.
(C) High-quality reference image with four-repeated scans. (D–J) are neural networks denoised
results from (D) DnCNN, (E) SRGAN, (F) ESRGAN, (G) UNet, (H) TransUNet, (I) Swin-UNet, and
(J) LUSwin transformer. The white label is scale bar with 400 µm.
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Figure A2. The visual comparison between the different methods. The image is selected from
participant #005, representing the neural network performance on the neck. (A) High-quality
ground-truth image with six-repeated scans. (B) Low-quality input image with one-repeated scan.
(C) High-quality reference image with four-repeated scans. (D–J) are neural networks denoised
results from (D) DnCNN, (E) SRGAN, (F) ESRGAN, (G) UNet, (H) TransUNet, (I) Swin-UNet, and
(J) LUSwin transformer. The white label is scale bar with 400 µm.
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