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ABSTRACT
This study is focused on the synthesis and characterization of cotton straw residue. Nanocellulose was 
synthesized by chemical method and followed by ultrasonication and cryocrushing. The results of the 
present study show that the cotton straw residue consists of lignin (27%), hemicellulose (15%), cellulose 
(32%), and ash content  (2.3%). Nanocellulose was characterized by FTIR, XRD, FESEM, TEM, DSC, TGA, 
and AFM.  Two aromatic rings were observed at wavelength 1650.47cm-1 and  1436.53 cm-1 which 
indicates that there is a presence of cellulose in the prepared sample which was characterized by FTIR. 
The structural analysis shows that the material was amorphous and the nanocellulose crystallinity is 23 
%. The morphological analysis using FESEM indicates even elongated fiber with a smooth surface and it 
contains pore in the nanocellulose of cotton residue. TEM analysis indicates that nanocellulose has an 
irregular shape with a circular rod-like structure of different sizes. The enthalpy of nanocellulose changes 
at 168.48℃ due to endothermic transition. TGA results show that the nanocellulose is degraded in the 
temperature range 300-355℃ and low thermal stability was observed during the experiment. AFM  result 
shows the needle shape particle ( root square mean roughness = 0.1738nm) and the size of nanocellulose 
was observed 7.1 nm.

Keywords: Nanocellulose, Cotton Fiber, Acid Hydrolysis, Cryocrushing, Nanocellulose characterization, 
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 INTRODUCTION
Cotton is one of the most important commercial 

cash crops in India which is produced in more than 
12 states and Gujarat is the leading cotton-producing 
state in India. Major cotton-producing nations are 
China, USA, Pakistan, India, Uzbekistan, Australia, 
Egypt, Argentina, Greece, etc. India holds 1st rank 
in the refinement of cotton fiber [1]. Cotton crop 
residue has many other applications such as fuel 
for cooking food and fodder for animals [2], pulp 
and paper [3], energy production [4],  heavy metal 
removal [5], removal of organic matter [6], etc. A 
few researchers have used effectively cotton crop 

residue in order to upgrade soil nourishment to 
further develop crop usefulness by utilizing rice-
based harvest practices [7].

 Cotton straw consists of constituents such as 
lignin, cellulose, and hemicellulose. Cellulose is 
a straight-chain polysaccharides unit made up of 
numerous glucose monosaccharide units which 
are linked with ꞵ(1-4) linkage of the D-glucose 
unit with a hydrogen bond[8]. Cellulose could 
be extracted from a diversity of sources such as 
firewood, bast filaments, greenswards, bud fiber, 
seed strings, invertebrates, microorganisms, etc. 
These sources are mainly categorized into industrial 
and agricultural waste [9]. Hemicellulose has 
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distinct monosaccharide units of glucose, galactose, 
mannose, xylose, and arabinose which are isomers 
of each other[10]. Lignin which is a complex 
structure derived from wood and an integral 
part of the secondary cell wall of the plant acts as 
gluing the cellulose units together. It helps in water 
transportation, provides mechanical strength, and 
is insoluble in water[11-12]. Hemicellulose is allied 
with hydrogen bonds and lignin with a covalent 
bond [13]. Lignin, cellulose, and hemicellulose are 
interlinked which shows that the fiber is arranged 
in a crystalline and disorderly manner as shown in 
Fig. 1.

 Various extraction methods of nanocellulose 
such as mechanical (High-pressure homogenization 
[14], chemical methods,hammer milling [15], 
Cryocrushing, high shear homogenization[16-17], 
high-speed blending [18],micro-fluidization [19], 
grinding [20] high-intensity ultrasonication [21], 
and alive enzymes [22] are reported in the literature.

In  Northern states, mainly Haryana, after 
harvesting cotton crops, a lot of residues which 
include stalks, locules, cotton bolls, leaves, and 
roots are left in the fields. In the absence of 
adequate sustainable management practices, a 
huge quantity of residue is being burnt on-farm 
to clear the field for sowing the next rabi crops 
(mainly wheat and mustard). Crop residue burning 
has become a major environmental challenge that 
causes health issues due to the emission of CO2, 
CO, CH4, NOX, and SOX which is contributing to 
global warming[23].

This research paper mainly emphasizes the 
utilization of cotton crop straw for nanocellulose 
extraction by the chemical method followed by 
ultrasonication and Cryocrushing. It also focuses 
on how we overcome the cotton crop residue 
burning problem to minimize global warming and 

the best utilization of cotton crop residue.

Novelty of research
In the absence of an adequate sustainable 

management plan for the reuse of agro-waste, the 
farmers burn their crop residue on the farm in 
huge quantities. This burning of the crop has many 
environmental problems caused by the emission 
of various gases which results in global warming 
and climate change. Due to the facts mentioned 
above, the present study was conducted in order 
to handle crop residue by extracting cellulose from 
the agricultural biomass.

MATERIALS AND METHODS
Materials

The cotton straw (Bt-cotton) was collected, cut 
into small pieces, and washed with tap water. The 
raw material was washed and dried in sunlight. 
After drying, the same was grinded and sieved 
from a 80μm size sieve. The raw powder sample 
was oven-dried and kept in PVC bottles for further 
treatment. AR grade chemicals were used in the 
whole experimentation.

Estimation of Lignocellulosic constituents
Cellulose, hemicellulose, lignin, and ash content 

were evaluated according to Goering and Van Soest 
method(1991) [24-25].

Synthesis of Nanocellulose
The powder raw sample was soaked into 

4%(w/v) sodium hydroxide (NaOH )and stirred 
at 80℃ for 2 hr. pH level was increased by adding 
NaOH, and to maintain their pH, the sample 
was washed with double distilled water. At last, 
strained excess of cotton straw was collected and 
alkaline treatment refine hemicellulose and lignin. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The binding pattern and structure of lignocellulosic biomass
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In bleaching treatment, the filtrate of the previous 
experiment was treated at 80℃ by subsequently 
adding sodium hypochlorite (NaOCl) 80% (w/v) 
solution until the bleached white fiber was attained 
and this process was repeated 4 to 5 times. The 
sample was cooled, filtered, and washed with 
distilled water till the pH of the sample become 
neutral. A white color bleached cellulose fiber was 
collected and dried at 40-50℃ in a hot oven for 
10-12 hours. This action liberates lignin and other 
impurities from the processed sample. To extract 
nanocellulose fiber, acid hydrolysis was given to 
cellulose fiber to disrupt the severe arrangement 
of cellulosic constituents. A 40%(w/v) H2SO4 was 
added to the bleached cellulose fiber and was 
heated at 40℃ for 1 hour. To obtain nanocellulose 
fiber, the sample was washed with distilled water 4 
to 5 times to remove excess acid and maintain the 
pH neutral. In the sonication process, water was 
separated from the sample of nanocellulose fiber 
at 60℃ for 1 hour and then further centrifuged 
the sample at 4000 rpm. After centrifugation, 
the Cryocrushing process was accomplished to 
increase the further surface area of nanocellulose 
fiber in the nanometer. The Liquid Nitrogen (LN2) 
was added which solidify the sample and then 
immediately crushed the material with mortar and 
pestle. The sample was dried and stored in a PVC 
bottle for further characterization. Fig. 2 showed 
the extraction process of nanocellulose.                                                 

Characterization of cotton straw nanocellulose
Fourier Transform Infrared Spectroscopy(FTIR)

FTIR is an analytical technique that is used by 
a material analyst to know a substance’s chemical 
composition. Perkin Elmer spectrums, BX-II 
(FTIR) spectrophotometer were used. Spectra were 
recorded of raw material, alkali-treated, bleached 
and acid hydrolyzed material.

The different processed samples were mixed 
with KBr, mechanically grinded, and formed a 
film. Spectrum was obtained in the range of 4400-
500 cm-1.

Structural property(XRD)
X-ray diffraction (XRD) was performed on 

a Rigaku Miniflex-II diffractometer at room 
temperature with a copper anti cathode operated at 
40 kV and 40 mA to check whether the structure 
of samples is crystalline or amorphous. Diffraction 
was executed on power samples spread smoothly 
on a neutral quartz glass sample holder and expose 

k-alpha radiation source and scanned in the range 
of 10° to 80º at 2 theta angles. The Segal method 
was used to calculate the crystallinity index (CrI)
[26][26].

( ) ( )

( )

002

002

100AMI I
CrI

I
−

= ×   
     
                                  
Where: (002) is the extreme crystallinity value 

and (am) is for the amorphous part of the sample. 
Higher intensity is diffracted at an angle 2θ = 22° 
and low-intensity peak is scattered at 2θ =18º angle.

 Microscopic study
Field Emission Scanning electron microscope 

(7610F plus/JEOL) was used to analyze the shape, 
dimension surface morphology of the sample. 
The sample was assessed at two stages before and 
after the chemical treatment. The voltage was 
accelerated at 30 kV and the sample was coated with 
sputter coater before treatment. TALOS HR-TEM 
(Thermofisher) at 200 kV was used to analyze TEM 
for particle size and shape and their morphology.

Differential Scanning Calorimeter (DSC)
Three mg of sample were placed in the platinum 

container and heated from 0 to 400ºC at 5ºC/min 
in a helium atmosphere. Thermo-analysis was 
performed on Q-10, TA Instruments Waters.

Thermal Gravimetric Analysis (TGA)
To know the thermal degradation, the 

sample was analyzed by using SDT Q 600 
thermogravimetric equipment. The temperature 
range for analysis was 25℃-900℃ at a heating rate 
of 10℃/min under a nitrogen atmosphere (10ml/
min).

Atomic Force Microscopy (AFM)
The sample was treated with methanol/ethanol 

mix for dissolving. Bruker multimode 8 AFM was 
used for AFM analysis.                                

          
RESULT AND DISCUSSIONS
Mechanism of lignocellulosic biomass

The raw cotton straw has 27% lignin, 32% 
cellulose, 15% hemicellulose, and 2.3 % ash content 
(shown in Table 1). For nanocellulose extraction, 
the raw material was chemically treated. The 
alkaline treatment( Sodium hydroxide ) removes 
a certain amount of lignin and hemicellulose 
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Fig. 2. Extraction of nanocellulose

Crop Residue Lignin Cellulose Hemicellulose Ash content References 
Cotton stalk 29.4 40.10 13.60 - [27] 
Corn straw 07.3 42.04 41.02 - [29] 
Cotton stalk 30.9 - - 1.8 [15] 
Rice straw 19.64 38.6 19.7 18.67 [30],[31] 

Wheat straw 18.8 52.4 18.2 3.7 [32] 
Bagasse 20-30 32-48 19-24 1.5-5 [33] 

Cotton straw 27.0 32.0 15.0 2.3 Present study 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 1. Lignocellulosic biomass content in Percent (%)
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depending on treatment time and concentration. 
When sodium hydroxide is treated with raw 
cotton straw, sodium hydroxide break down into 
sodium ions and hydroxide ion then they attach 
with lignin, cellulose, and hemicellulose and 
sodium ions are left into solution. Now, fiber had 
an effective surface to treat with sodium chlorite 
(Bleaching agent). The material was treated with 
sodium chlorite for the extraction of pure cellulose. 
Hydroxyl compounds are replaced with chlorite 
ions and form white smooth surface material. 
Again the material is neutralized with distilled 
water to overcome the bleaching process. At last, 
when the extracted material is treated with 40% 
H2SO4 then, the material starts to degrade and the 
Chlorite molecule was replaced with OSO3

2- the 
material is turned into yellow color due to acid 
concentration. When we did acid workup then 
all OSO3

2- were replaced with hydroxide ion and 
pure cellulosic material is formed. Acid hydrolysis 
follows the reaction given below: 

2 4 4H SO H HSO+ −→ +

2 2
4 4 3  HSO H SO or OSO− + − −→ +

2
3 2 2 4OSO H O OH H SO− + → +                                                            

Here, H2SO4 is acidic but when we treated it 
with cellulose material then it loses H+ ion become 
basic by forming OSO3

2- as a product. Now, OSO3
2-  

is replaced with OH- ion when we neutralize the 
solution with distilled water (shown in Fig. 3). 

 Characterization of Nanocellulose
The extracted material was characterized by 

FTIR (Fourier Transform Infrared Spectroscopy) 
for chemical composition, XRD (X-ray Diffraction) 
for the crystallinity of material, and FESEM (Field 
Emission Scanning Electron microscopy) for surface 
morphology analysis, TGA(Thermogravimetric 
analysis)  to measure the thermal stability, DSC 
(Differential scanning calorimetry) to measure the 
energy absorbed and released by a sample.TEM 
(Transmission Electron Microscopy) for size and 
structural morphology.

 Fourier Transform Infrared-Spectroscopy 
Five spectra were examined for raw material 

(C1), alkali treatment (C2), bleaching treatment 
(C3), acid treatment (C4), and nanocellulose(C5)  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Mechanism of Nanocellulose Extraction
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common peaks were obtained at different 
wavelengths as shown in Table 2. The wavelength 
of  1436.53cm-1 indicates the presence of cellulose 
(shown in Table 2 and Fig. 4) which shows 
approximately the value recorded in the extraction 
process of cotton straw nanocellulose analysis from 
500 to 4400 cm-1 wavelength. 

                          
X-ray Diffraction

 (XRD) is a fast methodical procedure used 
to generate a diffraction pattern whether the 

material is crystalline or amorphous. The lower 
peak defines that the crystal is arranged in random 
order and the higher peak shows the desired crystal 
orientation. To characterize the crystallinity, 
the sample was scanned at  0°to 80°with 2 theta 
angle. Cotton straw recorded the high-intensity 
diffraction peak approx.at diffraction angle  
2θ=22° and scattered at amorphous part of sample 
approx at 2θ=18°. Similar results of diffraction 
peak 2θ=20̊,22, 15.1˚ (110), 16.9˚ (110), and 23.0˚ 
(200) are recorded in nanocellulose which was 

 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
  

Frequency 
Functional 

group 

Raw 
Material        

(C1) 

Alkali 
Treatment 

(C2) 
Bleaching (C3) 

Acid 
Treatment 

(C4) 
Nanocellulose (C5) 

 
Reference 

4000-3000 
OH 

stretching 
3422.19 
3857.28 

3419.43 
3863.31 
3742.71 
3432.99 

3385.50 
3857.28 
3421.42 

[34] 

3000-2500 C-H 2928.64 2922.61 2928.64  2901.82 [2] 
2000-1650 C=O 1737.85 1728.81 1725.80 1725.80 1734.83 [35] 
1670-1600 C=C 1632.92 1638.41 1641.43  1650.47 [36] 

1600-1300 N-O 1436.53 
1433.52 
1352.16 

1430.50  
1436.53 
1319.02 

[37] 

1400-1000 O-H bonding 
1243.69 
1108.09 
1053.37 

1231.63 
1162.33 
1111.11 
1053.79 

1165.34 
1053.78 

1288.88 
1168.36 
1050.84 

1165.34 
1114.12 
1057.88 

 

[38] 

1000-650 
ꞵ-glycosidic 

linkage 

900.18 
822.87 
657.76 

891.14 
665.16 

827.87 
668.17 

885.12 
851.97 

894.13 
668.17 

[39] 

Table 2. FTIR Reading of Cotton Straw Material

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. FTIR analysis of processed samples
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extracted from cotton cellulose with high-pressure 
homogenization[39-40]. In XRD data, raw material 
and alkali treatment material are amorphous 
which indicates the reflection or diffraction is not a 
particular place. Bleached fiber shows crystallinity 
at high-intensity peaks which resulted in the 
material being arranged in a specific order. Again 
Crystallinity is disappeared when we treated the 
material with 40 %(w/v) H2SO4.So, nanocellulose 
has a slight amorphous structure due to the 
arrangement of particles in random order and 
this was shown by low intensity and broad peaks 
while high-intensity peak shows the crystallinity 
of the material. CrI value was calculated with the 
equation such as:

( ) ( )

( )

002

002

100AMI I
CrI

I
−

= ×   

Whereas, I(Cr) measure for crystallinity of 
material and I(am) for the amorphous nature of the 
material. The results of CrI value and crystallinity 
structure are shown in (Table 3 and Fig. 5).

                                      
Field Emission Scanning Electron Microscopy

FESEM helps to analyze the shape, dimensional 
structure and recorded the surface morphology of 
cotton straw residue at 2 different stages Fig. 6(a) 
raw material and 6(b) nanocellulose extracted by 
acid hydrolysis with 40% (w/v) H2SO4 at 40℃ for 
1-hour FESEM records even and elongated fiber 
in the raw material of cotton waste. Fig 6(a) shows 
the raw material is recorded as a rough surface by 
using  10kV energy for FESEM analysis and Fig. 
6(b) was recorded the surface is smooth and pores 
are present on the surface. In Tables 4(a) and 4(b) 
surface morphology was calculated by using Image 
J software of raw material in the standard form at 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The XRD pattern of a processed sample

 
 
 
 
 
 

Sample CrI(%) 

Raw material 43% 

Alkali treatment 26% 

Bleaching fibers 31% 

Acid hydrolysis 6% 

Nanocellulose 23% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 3. CrI value of cotton straw material
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Fig. 6. (a) Raw material, (b)  Nanocellulose

 

 
  

 Label Area Std.Dev. Perimeter Angle Circularity Integrated Density Median 

1  113846.154 41.834 2000 -3.18 0.358 21677379.03 208.444 

2  187692.308 11.988 3330.05 29.982 0.213 13938051.22 70.5 

3  166153.846 17.591 2928.901 -127.304 0.243 23221994.16 131.729 

4  193846.154 24.123 3417.601 -103.134 0.209 22633087.3 109.364 

5  224615.385 42.618 3993.841 0 0.177 30929230.77 133 

6  193846.154 6.716 3446.291 -3.691 0.205 11177866 55.871 

7  286153.846 11.294 5110.472 27.121 0.138 11776654.04 40.06 

8 Mean 195164.835 22.309 3461.022 -25.744 0.22 19336323.22 106.996 

9 SD 52694.112 14.664 952.328 63.063 0.069 7288043.893 57.751 

10 Min 113846.154 6.716 2000 -127.304 0.138 11177866 40.06 

11 Max 286153.846 42.618 5110.472 29.982 0.358 30929230.77 208.444 

 
 

 Label Area Std.Dev. Perimeter Angle Circularity 
Integrated 

Density 
Median 

1  236923.077 110.474 2000 -3.18 0.744 44892307.69 255 

2  483076.923 14.491 4320.969 -119.197 0.325 33129230.77 69 

3  203076.923 26.17 1775.041 0 0.81 21553846.15 114 

4  335384.615 32.111 2892.962 122.471 0.504 28366153.85 101 

5  483076.923 22.474 4217.181 -178.493 0.341 28707692.31 55 

6  415384.615 19.987 3672.769 -25.017 0.387 37043076.92 90 

7  587692.308 20.652 5114.083 -40.601 0.282 51430769.23 79 

8 Mean 392087.912 35.194 3427.572 -34.86 0.485 35017582.42 109 

9 SD 140462.545 33.643 1250.381 95.608 0.212 10327147.15 67.308 

10 Min 203076.923 14.491 1775.041 -178.493 0.282 21553846.15 55 

11 Max 587692.308 110.474 5114.083 122.471 0.81 51430769.23 255 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4(a). FESEM image analysis of raw material

Table 4(b). FESEM image analysis of nanocellulose
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magnification (5.00 kX) is 2000nm with electron 
high tension value at 20kV [42]. The mean area of 
raw material is 195164.835 and its mean integrated 
density is 19336323.22 (is the multiply of the area 
and mean gray value). If the Circularity value is 
1 that indicates the material is perfectly circular, 
but here the value was recorded less than 1 which 
means the particle is in an irregular shape.

Transmission Electron Microscopy 

To know the morphology, size, compositional 
structure, and texture of the material and the 
sample was magnified at 500 nm.TEM image of 
cotton straw nanocellulose pores was present on 
the surface as shown in Fig. 6(b). Crystals were 
arranged regularly. 

TEM micrograph (a) exhibits polycrystalline 
material because of grain particles arrangement 
that shows irregular shape structure and small size 
particles. The particles are oriented in a different 
direction and arranged in random order. In the 
image (b) the particle is connected in a random 
order this is a magnified image to know the 
structure particle orientation. There are some pores 
at the surface which we already recognized before 
in the FESEM image and these pores are found all 
over the material so, both porous structure and 

hollow structure are highly visible in the image (c). 
The structure of particles has irregular shapes with 
circular rod-like structures of different sizes.

                                                                                 
Differential Scanning Calorimetry

It is used to measure the enthalpy variation 
or the behavior of the material as a function of 
temperature. The equipment measures the heat 
flow produced in a sample when it is heated, cooled, 
or held isothermally at a constant temperature. 
Nanocellulose was analyzed by using a platinum 
container and a 3g sample at 0-400℃ with a 
heating rate of 10℃/min in Q-1, TA Instrument 
held in a helium atmosphere. Cotton straw 
nanocellulose showed a crystalline structure with 
enthalpy (411.33J/g) at 168.48℃  and melting peak 
due to endothermic transition (shown in Fig. 8) 
and the similar result of Rosselle fiber has also been 
observed at 277.32-289.57℃ [43].

Thermogravimetric Analysis
TGA used for the analysis of mean weight loss 

of the material is recorded as a function of weight 
and temperature, when the substance is heated at 
the final stage during the ignition then the weight 
of the substance is decreased with increasing the 
temperature. The thermal stability of nanocellulose 
is lower than lignocellulosic biomass such as 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Transmission Electron Microscopy analysis of the cotton straw nanocellulose.
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lignin, hemicellulose is eliminated after chemical 
treatment[36]. Four stages of thermal degradation 
were observed during the experiment (Fig. 9(a) and 
(b)). The weight loss  (0.619%) was noticed at 25-
150℃  in the initial stage of the experiment. This 
may be due to the evaporation of moisture content.
No degradation was observed between 150-190℃ 
and a similar result has also been observed in 
lignocellulose biomass [44]. In the second stage 
during depolymerization, the weight loss (6.0488%)  
was noticed at the temperature range  200-375℃. 
At the third stage, samples were degraded from 
375- 525℃ with a weight loss of (0.619%). Finally, 
a rapid degradation with weight loss of (0.446%) 

was noticed after 525℃. In Fig. 9(b) DTG curve 
was recorded the nanocellulose has major thermal 
stability at  346.23℃ and similar results have also 
been observed in jackfruit peel [45]. 

      
Atomic Force Microscopy

The surface was characterized by atomic force 
microscopy (AFM) at ambient temperature. 
Silicon tip with a diameter of 10 nm was used to 
scan the surface in tapping mode. Cotton straw 
nanocellulose is uniformly distributed, due to the 
treatment of 40% acidic solution [46]. The resolution 
for AFM images was 256×  256 pixels. After 
imaging, the surface was flattened and analyzed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Differential Scanning Calorimetry of nanocellulose
 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9. (a) Thermogravimetric analysis (b) Differential Thermogravimetric analysis
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using WSxM software [47] to obtain the real height 
and phase image. The average height (1.2003 nm) 
of nanocellulose was calculated from the software. 
This indicates the ultra-smoothness of the surface. 
The root means square roughness(0.1738 nm) of 
the nanocellulose surface was calculated. This small 
value of roughness confirms the smoothness of the 
nanocellulose surface [48]. The size (7.1 nm )of 
nanocellulose was confirmed from AFM  shown in 
Fig. 10. The detail of the topographic image, phase 
image, three-dimensional structure, and roughness 
surface variation is shown in Fig. 10(a-d).

                                                                                                            
CONCLUSION

The following conclusion has been made from 
the present study

1.	 Nanocellulose is extracted successfully with 
chemical method followed by ultrasonication 
and cryocrushing which helps the material to 
become nanosized with 23% crystallinity.

2.	 1436.53cm-1 shows the presence of cellulose 
content extracted from cotton straw which has 
smooth surface morphology.

3.	 Particles of nanocellulose are irregular in shape 
with a circular rod-like structure.

4.	 Maximum weight loss of nanocellulose is found 
at 300-355℃.

5.	 Due to the removal of lignin, hemicellulose 
the thermal stability of crystalline material is 
decreased.

6.	 The size of nanocellulose was obtained at 7.1 
nm.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig .10. AFM image of nanocellulose

Fig .10. (a) Topographic image, (b) Phase image, (c) Three-dimensional structure,(d)     Roughness surface variation
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