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ABSTRACT
In this study, pectin/γ-Fe2O3/gl nanocomposite was synthesized using a single-step chemical precipita-
tion method and used as an eco-friendly adsorbent to remove Cd2+ and Pb2+ from aqueous solution. The 
nanocomposite was characterized by FE-SEM, EDX, FTIR, XRD, VSM, and TEM analyses. The effect of var-
ious parameters such as solution pH (2 to 5), contact time (0 to 60 min), initial ion concentration (10 
to 200 mg. L-1), and adsorbent dosage (0.1 to 0.4 g.L-1) on the removal efficiency was investigated. The 
maximum adsorption capacity of Cd (II) in the conditions (pH: 5, dose of adsorbent: 0.2 g.L-1, and contact 
time:40 min, initial concentration: 50 mg.L-1 ) and Pb (II) in the conditions (pH: 4.5, dose of adsorbent: 
0.1g.L-1, and contact time:30min, initial concentration: 50 mg.L-1 ) was 470 and 325 mg. g-1, respectively. 
The adsorption kinetics was studied using several kinetic models including Langmuir isotherm, Freundlich 
isotherm, Sips isotherm, and Temkin isotherm. Results indicated that the adsorption mechanism could be 
well represented by the pseudo-second-order model. The equilibrium data of Cd (II) and Pb (II) adsorption 
were reasonably described by the Sips and Langmuir isothermal models. The positive value of delta H and 
negative values of delta G exhibit the endothermic and spontaneous nature of the adsorption process.
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INTRODUCTION
With the rapid expansion of industrialization, 

the extensive use of metals for various applications 
has also increased. Industrial activities such as 
refinery, dyeing, electroplating, printing, mining, 
and tanning generate a huge amount of wastewater 
containing heavy metals and other tenacious 
contaminants [1, 2]. Particularly, heavy metals 
such as Pb(II) and Cd(II) have become one of the 
major environmental problems universally because 
of their nonbiodegradable trait, aggregation, and 
toxicity even at trace levels [3]. The discharge of 
heavy metals into the aquatic ecosystems has been 
known as the cause of various health difficulties 
in humans and other living organisms [4]. Lead 
is highly toxic and can cause various health 

problems such as mental disorders, decreased 
hemoglobin production, brain damage, and 
associated retardation. It also affects vital parts 
of the body, such as the reproductive system, the 
nervous system, and is associated with problems 
with high blood pressure and anemia[5]. Cadmium 
(Cd) is a carcinogen in humans, which affects the 
lungs, kidneys, liver, and reproductive organs [6]. 
The US Environmental Protection Agency (EPA) 
for drinking water has determined the allowable 
amount of lead and cadmium to be less than 0.015 
and 0.005 mg.L-1, respectively [7]. To address this 
problem, numerous treatment technologies, such 
as chemical oxidation, membrane separation, 
ion exchange, precipitation, and adsorption have 
been developed [8]. Most of these techniques 
require high operational energy and related 
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cost; Moreover, they also bring environmental 
aftereffects linked to energy utilization [9]. Among 
these available techniques, adsorption is the most 
promising method, because of its high yield, low 
cost, convenience, and easy regeneration of the 
adsorbent [10, 11]. 

In recent years, various studies have 
been conducted to develop adsorbents from 
environmentally friendly materials[12-16]. 
Adsorbents of agricultural origin have polymeric 
groups like lignin, cellulose, hemicellulose, proteins, 
and pectin as active centers for metal uptake [17]. 
Pectin is a complex acidic polysaccharide in the 
middle lamella and the cell wall of higher plant 
tissues, with unparalleled attributes such as non-
toxicity, biodegradability, and having hydroxyl and 
carboxyl functional groups for chelation of metal 
ions. [18-20]. Various fruit wastes such as pomelo 
peel, banana peel, nutmeg rind, passion fruit rind, 
and citrus peel are rich sources of pectin [19, 
20]. Although pectin can be extracted from these 
sources at a low cost, it can hardly be used directly 
as an adsorbent. The main deficiencies of the 
extracted pectin as an adsorbent for the removal of 
heavy metal and dye are its low stability, difficulty in 
separation from aqueous solution, and dissolution 
in acidic media [21]. To address these deficiencies 
and to obtain a high adsorption performance,  
pectin has been modified, before being used 
directly for adsorption.  Wang et al. used (pectin 
/ activated carbon microspheres) as adsorbents, 
prepared by a simple gel method without chemical 
bonding to adsorb Pb2+ ions [22]. Badalamoole et 
al. Used pectin nanocomposite as an adsorbent to 
remove dyes and divalent metal ions from aqueous 
solutions.The maximum adsorption capacity was 
1950 mg.g-1 for CV, 111 mg.g-1 for Cu2+ and 130 
mg.g-1 for Pb2+[23].

There is still very limited information about 
the adsorption capacity of pectin after chemical 
modifications. Typical techniques such as 
centrifugation and filtration for the separation of 
the adsorbent from the liquid medium result in 
adsorbent loss and emancipation of adsorbent in 
water [3]. Using a magnetic field to separate the 
solid phase from the liquid is an effective method 
with high separation efficiency without the need 
for filtration and centrifugation. In this research, 
a new nanocomposite based on pectin-coated 
maghemite nanoparticles was synthesized and 
used to remove hazardous metals from an aqueous 
solution. This nanocomposite possesses both the 

properties of pectin as a good adsorbent as well 
as iron oxide as a good magnetic material. The co-
precipitation method followed by the encapsulation 
of the maghemite with pectin and cross-linking 
with calcium ions was employed to produce a 
pectin-coated iron oxide magnetic nanostructure.  
Consequently, modification of pectin/g-Fe2O3 
by chelation groups of N-H was carried out. The 
synthesized adsorbent was characterized by Fourier 
transform infrared (FTIR) spectroscopy, X-ray 
diffraction (XRD), Scanning electron microscopy 
(FESEM), transmission electron microscopy 
(TEM), and vibration sample magnetometer (VSM) 
analyses. The adsorption demeanor of the modified 
pectin–iron oxide magnetic adsorbent was studied 
to remove Pb (II) and Cd (II). The effect of various 
parameters such as pH, initial concentration of 
Pb(II) and Cd (II) ions, contact time, adsorbent 
dosage, and temperature was studied through 
batch adsorption experiments. Also, kinetic 
and thermodynamic studies were carried out to 
determine the mechanism which governs the 
adsorption process. Adsorption isotherms were 
also used to interpret the adsorption behavior of the 
metal ions on the pectin/g-Fe2O3 nanocomposite. 

MATERIALS AND METHODS
Chemicals

Mature sour oranges (Citrus aurantium) were 
collected from a local market in Amol, Mazandaran, 
Iran. Iron(II) chloride tetrahydrate (FeCl2.4H2O), 
iron(III) chloride )FeCl3(, hydrochloric acid 
(HCl), ammonium hydroxide (25%)(NH4OH), 
lead(II) nitrate (Pb(NO3)2), cadmium(II) nitrate 
(Cd(NO3)2), anhydrous calcium chloride (CaCl2) 
and sodium hydroxide (NaOH) were purchased 
from Merck, Germany, and all the solutions were 
prepared using distilled water. All chemicals were 
analytical grade and used directly without further 
purification. Stock solutions of 500 mg.L-1 Pb(II) 
and Cd(II) were prepared from the Pb(NO3)2 and 
Cd(NO3)2.4H2O (Merck) precursors in the distilled 
water. These solutions were consequently diluted to 
obtain the required concentration. 

Preparation of sour orange residue
 At first, all sour oranges were washed to remove 

contaminants with hot water (near boiling point). 
The skin of the oranges was carefully taken so that 
the albedo (the white spongy layer attached to the 
colorful skin) was not taken. The oranges were then 
squeezed to separate the juice.  The residues were 
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then crushed using a crushing machine. To remove 
foreign materials, they were boiled in 20% ethanol 
for 20 min while stirred at 500 rpm and then 
filtered. Eventually, the filtered solid residues were 
dried in an oven at 80 °C. The dried residues were 
sealed off and stored at 25 °C for later use.

Pectin extraction
For pectin extraction, 20 g of dried albedo 

powder was added to a container containing 500 ml 
(solid/liquid ratio of 1:25) of distilled water. In the 
next step, by adding hydrochloric acid (2 M), the pH 
of the solution was adjusted to 2. Then the mixture 
was stirred on a magnetic stirrer at 400 rpm and 80 
°C for 90 min. After that, the mixture was filtered 
to separate the solids. After cooling, the filtrate was 
mixed with an equal volume of ethanol (99%) for 
precipitation. The samples were then centrifuged at 
6000 rpm for 20 min to separate the sediment from 
the alcohol and finally, the precipitate was dried in 
an oven at 45 °C for 24 h[18]. 

Preparation of g-Fe2O3 magnetic nanoparticle
The g-Fe2O3 nanoparticles were prepared via a 

one-step chemical precipitation method.  Briefly, 2 
ml of HCl (2M) and 20 ml of distilled water were 
added to 5.33 g FeCl2.4H2O under magnetic stirring 
to dissolve completely. A specific amount of 6.22 g 
FeCl2 was dissolved in 38 ml of distilled water under 
stirring conditions for 30 min and added to the 
previous solution. Later, 600 ml of 2 M ammonium 
hydroxide solution was added dropwise to the 
solution in an ultrasonic bath at room temperature, 
which immediately brown precipitate appeared. 
Then, the precipitate was washed several times 
with ethanol and distilled water to remove the 
residual reagents. After separation with a magnet, 
the resultant product was dried under vacuum at 
40 °C for 24 h.

Preparation of pectin/g-Fe2O3 nanocomposite
Pectin/g-Fe2O3 nanocomposite was fabricated 

by chemical oxidation polymerization. In this 
process, 1 g of pectin was dissolved in 100 ml 
distilled water (1.0% w/v) and stirred continuously 
for 24 h. Afterward, 0.2 g of g-Fe2O3 nanoparticles 
were dispersed in a water distillation using an 
ultrasonic bath and added to the pectin solution. 
Then, 50 ml of CaCl2 solution as a cross-linking 
agent was added to the solution dropwise. The 
resulting solution was then stirred at 500 rpm 
for 6 h. The magnetic nanocomposite was then 

separated using a magnet and washed several times 
with distilled water and finally dried in an oven at 
40 °C for 24 h. 

Modification of pectin/g-Fe2O3 nanocomposite
The main purpose of this modification is to 

increase adsorption sites and improve adsorption 
properties. Firstly, 0.1 g of nanocomposite 
was dispersed in 50 ml of distilled water in an 
ultrasonic bath. Then, 1 ml glutaraldehyde was 
added to the solution and stirred at 300 rpm for 
30 min. In the next step, 1 ml ethylene amine was 
added to the solution. To accelerate the reaction, 
2 ml of hydrochloric acid was added dropwise to 
the solution. Then, using a magnet, the modified 
nanocomposite was separated and washed several 
times with distilled water. Finally, it was dried at 50 
°C for 24 h and used as an adsorbent.

Characterization 
The functional groups presented in the pectin 

and nanocomposite were identified by Fourier–
transform infrared spectrophotometry (FTIR, 
Spectrum Two, USA) in the range of 400–4000 cm-

1. The phase and crystallinity were analyzed using 
powder X-ray diffraction (XRD) analysis obtained 
by an X-ray diffractometer (X’ Pert Pro, Nederland) 
in the range of 2θ=10–80°. The mean crystallite 
size of g-Fe2O3 nanoparticles was quantitatively 
determined from XRD data by employing Debye-
Scherrer’s equation:
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where D is the average crystallite size, K=0.9 
is the shape factor, λ is the X-ray wavelength 
(in nm), θ is the Bragg diffraction angle, and β is 
the full width at half maximum (FWHM) of the 
intense peak (in radians). The hysteresis curves of 
bare maghemite, pectin/g-Fe2O3, and the modified 
nanocomposite were obtained using a vibrating 
sample magnetometer (VSM, Meghnatis Daghigh 
Daneshpajouh, Iran). Field emission scanning 
electron microscopy (FESEM) (SIGMA VP-500, 
Czech Republic) was used to observe the surface 
morphology of the maghemite nanoparticles 
and the nanocomposite. Also, energy-dispersive 
X-ray spectroscopy  (SIGMA VP-500, Czech 
Republic ) was used to identify the elements of the 
nanocomposite. To investigate the structure and 
measure the particle size of the nanocomposite, 
a transmission electron microscope (TEM, 
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Zeiss-EM10C-100 KV, Germany) was used. The 
concentration of Pb(II) and Cd(II) in the solutions 
was measured by atomic absorption spectroscopy 
(Buck Scientific, 210-VGP, USA). 

Batch adsorption experiments
The efficiency of the adsorption process 

depends on different factors. To determine the 
optimum condition, it was necessary to investigate 
the influence of these factors on the efficiency of 
the adsorption process. For this purpose, the one-
factor-at-the-time (OFAT) approach was used 
where one parameter was changed while others 
were kept constant. In the adsorption experiments, 
the amount of adsorbent (0.1 to 0.4 g. L-1), the initial 
concentration of lead and cadmium solutions 
(10 to 200 mg. L-1), the solution pH (2 to 5), and 
contact time (0 to 60 min) were varied according 
to the OFAT approach. A specific amount of the 
adsorbent was mixed with 20 ml of the metal 
solution at 25 °C and stirred at 12000 rpm. After 
reaching the equilibrium, the adsorbents were 
separated magnetically from the aqueous solution 
by an external magnet (Nd-Fe-B), then the 
residual concentration of metal ions was analyzed 
immediately by atomic absorption spectrometry. 
The removal percentage (%) and the adsorption 
capability (qe) of heavy metal ions were obtained 
from the following equations [24]:
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where qe (mg. g-1) is the amount of ion 
adsorbed at equilibrium, C0 (mg. L-1) is the 
initial concentration of ions, Ce(mg.L-1) is the 
concentration of ions at equilibrium, V (L) is the 
solution volume, M (g) stands for the mass of the 
adsorbent and R represents the removal efficiency.

pHPZC  measurement
To measure pHPZC values in sequential order 

of co-precipitation process after each surface 
modification, the pH drift method was applied. pH 
drift is preferred over other conventional methods 
such as titrations because it is less time-consuming, 
results can be obtained in a few steps using 
common laboratory apparatuses which indeed 
lowers the overall expenditure of the experiment 

and the results are perfectly in accordance with 
the ones obtained from other applied methods. 
According to this method, solutions of 0.01 mol.L−1 
NaCl in 10 ml test tubes were adjusted to pH values 
of 2 to 8 (pHinitial) using 0.1 mol.L−1 NaOH and 0.1 
mol. L−1 HCl. Then, 30 mg of pectin/g-Fe2O3/gl 
were added to test tubes and shaken at 250 rpm at 
25 °C. After 48 h the final pH (pHfinal) of samples 
were measured using a microprocessor pH meter 
(Hanna Instruments, Inc.) and plotted against 
initial pH. The intersection point of the resulting 
curve with the line passing origin (pHfinal=pHinitial) 
gives pHPZC[25].

RESULTS AND DISCUSSION
Characterization of pectin/g-Fe2O3/gl

The FTIR spectra of the extracted pectin, 
magnetic nanoparticles, and nanocomposite are 
shown in Fig.1(a). In the spectrum of pectin, the 
prominent broad peak located between 3200 
and 3600 cm-1 was assigned to O-H stretching 
vibrations [20], and the peak at around 2934 cm-1 
was attributed to C-H of CH, CH2, and CH3 groups 
[26]. The adsorption bands at 1646 and 1452 cm−1 
were ascribed to the asymmetric and symmetric 
vibrations of free carboxyl groups (COO-) [26]. 

In the spectrum of iron oxide nanoparticles, 
the characteristic peaks at 445 and 562 cm-1 were 
ascribed to the stretching vibration of Fe-O in 
maghemite. The peaks at 1637 and 3398 cm-1 were 
attributed to the stretching vibrations and bending 
hydroxyl functional groups of water molecules [27, 
28]. Meanwhile, the existence of these mentioned 
peaks in the spectrum of the pectin/g-Fe2O3 
nanocomposite, could confirm the successful 
coating of pectin over the g-Fe2O3 surface. The 
stretching vibration of N-H was observed at 3400 
cm-1, which verified the introduction of amide 
groups on the surface of the nanocomposite [29].

The XRD patterns of g-Fe2O3 and pectin/
g-Fe2O3/gl are illustrated in Fig.1(b). The 
characteristic diffraction peaks at 2θ=30.22°, 
35.64°, 43.33°, 53.79°, 57.26°, and 62.87° which 
correspond to the (220), (311), (400), (422), (511) 
and (440) indices, respectively, were observed 
for both samples. These diffraction peaks are 
consistent with the characteristic crystalline spinel 
structure of Fe3O4 in the database (JCPDS 88-
0315), revealing that g-Fe2O3 nanoparticles were 
successfully incorporated in the nanocomposite 
matrix [30]. It also shows that the crystalline 
structure of the compounds did not change during 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjYp4fWvufdAhWqposKHQeDD6QQFjAAegQIBRAB&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAtomic_absorption_spectroscopy&usg=AOvVaw2VQ9kXiOYThcoCsPtlWObm
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the synthesis of pectin/g-Fe2O3/gl. The reduction 
of peak intensities in nanocomposites is due to 
the coating of iron nanoparticles with pectin. The 
calculated average crystallite size of g-Fe2O3 was 
equal to 14 nm which was consistent with the 
reported value in the literature [25]. 

The magnetic property of g-Fe2O3 nanoparticles 

and pectin/g-Fe2O3/gl composite was studied using 
VSM analysis. The results are depicted in Fig. 2. 
The saturation magnetization magnitudes (Ms) of 
g-Fe2O3 and pectin/g-Fe2O3/gl were found to be 
66.10 and 26.58 emu. g-1, respectively. The lower 
saturation magnetization of pectin/g-Fe2O3 was 
attributed to the magnetically inactive pectin [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Fig. 1. (a) FTIR spectra of pectin, maghemite nanoparticles, and pectin/γ-Fe2O3/gl nanocomposite (b) XRD patterns of maghemite 
nanoparticles and pectin/γ-Fe2O3/gl nanocomposite.
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Fig. 2. Magnetization curves of (a) maghemite nanoparticles, and (b) modified pectin/γ-Fe2O3/gl nanocomposite.
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The residual magnetization and coercivity were 
zero when the applied magnetic field approached 
zero. As presented in Fig. 2, the remanence (residue 
magnetization) and coercive force are close to zero, 
and the hysteresis loops of g-Fe2O3 and pectin/g-
Fe2O3/gl composite showed the superparamagnetic 
property. The results indicated that g-Fe2O3 was 
successfully incorporated into the pectin, and the 
prepared magnetic adsorbent was expected to be 
separated easily by external magnetic fields [31, 
32]. 

The particle size and surface morphology of the 
synthesized g-Fe2O3 nanoparticles and pectin/g-
Fe2O3/gl nanocomposites investigated by FESEM 
analysis is shown in Fig. 3a. Fig. 3(a) displays 
g-Fe2O3 nanoparticles with a diameter in the range 

of 17 to 30 nm, which were almost spherical and 
well dispersed. As clearly seen in Fig. 3(a), pectin/
g-Fe2O3 nanocomposite exhibited a rough surface 
with granular morphology and the diameter 
size was in the range of 27 to 45 nm. This image 
indicates that pectin was successfully coated on the 
g-Fe2O3 nanoparticles. 

The EDS spectrum of pectin/g-Fe2O3/gl to 
identify the elements in the nanocomposite is 
depicted in Fig. 3(b). The existence of pectin 
and g-Fe2O3/gl in the nanocomposite could be 
confirmed by the peaks of C, O, and Fe. The 
percentage composition of the elements was found 
to be in the following order: Fe>O>C. Also, the EDS 
spectra of the spent adsorbents (after adsorption) 
revealed the presence of lead and cadmium metals 
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Figure 3 a. The FESEM images of  maghemite nanoparticles, pectin/γ-Fe2O3 nanocomposite, and pectin/γ-Fe2O3/gl nanocomposite
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on the adsorbent surface.
Fig 4 shows the TEM micrograph of the 

pectin/g-Fe2O3 nanocomposite. The dark spots 
correspond to the magnetic core, while the gray 
contrast indicates the pectin coated on the g-Fe2O3 
nanoparticles. The images show that the g-Fe2O3 
nanoparticles were uniformly dispersed inside 
the pectin matrix. Based on the TEM analysis, 
it can be observed that the size of pectin/g-Fe2O3 
nanocomposite is less than 50 nm

Adsorption of lead and cadmium ions
pHPZC values

Fig.5 shows the pHfinal curves in pHinitial terms 
for the nanocomposite, where the pHPZC values 

obtained are about 5. For pH values below the zero 
charge point, a positive pH shift occurred and for 
values greater than a zero charge point, a negative 
pH shift occurred. In other words, at pH> pHPZC, 
protonation of surface functional groups increases 
the concentration of H+ ions in the environment 
and on the other hand increases the concentration 
of O- ions on the nanocomposite surface, resulting 
in a negatively charged nanocomposite surface 
[25].

Effect of solution pH
The adsorption of metal ions on the adsorbents 

significantly depends on the solution pH because 
pH influences the adsorbent surface charge and the 
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Fig. 3 b. The EDS spectra of adsorbent before adsorption, after adsorption of lead ions, and after adsorption of cadmium ions.
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protonation degree and speciation of ions in the 
solution [3]. The effects of the solution pH on lead 
and cadmium removal at pH 2-6are shown in Fig. 
6 with conditions (initial concentration:100 mg.L-1, 
dose of adsorbent: 0.1g.L-1, and contact time: 24h). 

As lead ions precipitate at pH>5, hence, the effect 
of pH on lead removal efficiency was investigated at 
solution pH<5. As shown in Figure 5, the removal 
percentage of metal ions is enhanced by an increase 
in the solution pH. Within the studied pH range, the 
removal percentage of Cd (II) and Pb (II) increased 
from 5 to 70%, and 20 to 95%, respectively. This 
behavior could be attributed to the protonation 

of the amino and carboxyl groups at low pH, and 
competitive adsorption of H+ and H3O

+ ions with 
lead and cadmium ions for similar binding sites. In 
other words, at low pH, the removal efficiency was 
less owing to repulsion between positive charges of 
both adsorbent surface and metal ions.  At low pH 
pectin/g-Fe2O3/gl remains in fully protonated form 
and functions as weak chelating sorbent. However, 
as the operating pH approaches pHZPC, the surface 
becomes charge-less and adsorption is triggered 
due to the existence of strong chelating groups, like 
carboxylate, hydroxyl, and amines. Obviously, at 
high pH values, the deprotonation of the surface 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. TEM images of pectin/γ-Fe2O3 nanocomposite.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The pHPZC content of the pectin/γ-Fe2O3/gl nanocomposite.
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adsorption sites enhanced the adsorption of heavy 
metal ions [33, 34]. Based on the obtained results, 
the most efficient removal of Cd(II) and Pb(II) on 
the adsorbent occurred at pH 5 and 6, respectively, 
which were applied for further studies. 

Effect of contact time 
The removal time of pollutants is an important 

parameter for the selection of a suitable wastewater 
treatment method. The effect of contact time 
on the removal percentage of Cd (II) and Pb 
(II) (100 mg. L-1) using the pectin/g-Fe2O3/gl 
adsorbent was investigated in the range of 0–60 

min at room temperature, while the solution pH 
was 5 and 6 for the Cd (II) and Pb (II) solutions, 
respectively. Results regarding the effect of contact 
time on the removal of cadmium and lead ions are 
depicted in Fig. 7 with conditions (pH:5, initial 
concentration: 100 mg.L-1, and dose of adsorbent: 
0.1g.L-1). The removal percentage of Cd (II) and 
Pb (II) increased rapidly within the first 5 min. 
The removal percentage then gradually reached a 
plateau after approximately 30 min for cadmium 
and 40 min for the lead. Afterward, no appreciable 
changes in terms of separation efficiency were 
noticed indicating the equilibrium was reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Effect of pH on the removal percentage (±1.5) of Cd (II) and Pb(II) by pectin/γ-Fe2O3/gl (initial concentration:100 mg.L-1, dose 
of adsorbent: 0.1g.L-1, and contact time: 24h).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Effect of contact time on the removal percentage (±0.4) of Cd(II) and Pb(II) by pectin/γ-Fe2O3/gl (pH:5, initial concentration: 
100 mg.L-1, and dose of adsorbent: 0.1g.L-1).
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Fast uptake of Pb (II) and Cd (II) during the first 
few minutes of the adsorption was attributed to 
the availability of a large number of vacant active 
sites on the adsorbent surface. Cadmium and lead 
ions occupied most of the available active sites 
within the first 30 and 40 min of the adsorption, 
respectively. The reduction of the adsorption rate 
after these times was due to the decrease of active 
binding sites on the nanocomposite surface and 
saturation of the adsorbent. Thus, the optimum 
contact time was considered as 30 and 40 min for 
the further adsorption tests for Cd (II) and Pb (II), 
respectively.

Effect of initial metal ions concentration
The effect of the initial concentration of Cd (II) 

and Pb (II) on their removal percentage by pectin/
g-Fe2O3/gl composite was evaluated in the range 
between 10 to 200 mg. L-1. As illustrated in Fig. 8 
with conditions (pH: 5, dose of adsorbent: 0.1g.L-

1, and contact time:30-40 min), when the initial 
concentration of heavy metal ions was increased 
from 10 to 200 mg. L-1, the removal percentage of 
Cd (II) and Pb (II) encountered a reduction from 
95 to 48%, and 85 to 38%, respectively. This can 
be explained that at lower initial concentrations, 
cations could easily access a large number of active 
sites on the adsorbent surface. While at higher 
initial concentrations, the access of metal ions to 
the active sites is limited because the number of 
binding sites remains the same, and the removal 
percentage decreases[35].

Effect of adsorbent dosage
The effect of pectin/g-Fe2O3/gl nanocomposite 

dosage on the removal of heavy metal ions was 
investigated and the results are shown in Fig. 9 with 
conditions (pH:5, initial concentration: 50 mg.L-1, 
and contact time: 30-40 min). It was observed that 
the heavy metal removal efficiency increased up 
to an optimum dosage of 0.1 and 0.2 g. L-1 for Pb 
(II) and Cd (II), respectively, beyond which the 
removal percentage did not change remarkably. 
This result was expected because, for a certain 
initial concentration of metal ions, increasing the 
adsorbent dosage provides more active adsorption 
sites for the adsorbate. On the other hand, by 
increasing the adsorbent dosage, the number of 
unsaturated binding sites increases, reducing the 
adsorption capacity per unit mass of the adsorbent 
[36].

Adsorption kinetics
In order to investigate the kinetics of Cd (II) 

and Pb (II) ions adsorption on the pectin/g-Fe2O3/
gl nanocomposite, two kinetic models, namely 
pseudo-first-order and pseudo-second-order 
models, were adopted to fit the experimental data 
(Fig. 10).

The linearized form of the pseudo-first-order 
model is expressed:

( ) 1e t eln q q lnq k t− = −
�

(4)

The linearized form of the pseudo-second-

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Effect of Cd(II) and Pb(II) initial concentrations on the removal percentage (±1) by pectin/γ-Fe2O3/gl (pH: 5, dose of adsorbent: 
0.1g.L-1, and contact time:30-40 min).
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order model is described as: 

2
2

1 1

t e e

t t
q k q q
= +

�
(5)

where qe and qt (mg. g-1) is the amount of 
adsorbed Cd (II) and Pb (II) ions at equilibrium 
and contact time t (min), respectively. k1(min−1) 
and k2(g.mg-1.min-1) are the pseudo-first-order and 
pseudo-second-order rate constants, respectively 
[37]. The corresponding kinetic parameters and 
correlation coefficients (R2) of these models are 
listed in Table 1. The pseudo-second-order model 
fitted the experimental data better than the pseudo-

first-order model, as illustrated by the higher 
correlation coefficient. Also, the theoretical values 
of qe from the pseudo-second-order kinetic models 
were much closer to the experimental ones. Similar 
results have been reported for the adsorption of 
cadmium and lead ions. According to these results, 
the Cd(II) and Pb(II) adsorption process was 
dominated by chemical reactions through sharing 
or exchanging of electrons [38].

Adsorption isotherms
In order to determine how cadmium and 

lead ions interact with the pectin/g-Fe2O3/gl 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Effect of adsorbent dosage on the removal percentage (±0.7) of Cd(II) and Pb(II) (pH:5, initial concentration: 50 mg.L-1, and 
contact time: 30-40 min).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. (a) Pseudo-first-order kinetic model and (b) pseudo second-order kinetic model for Pb(II) and Cd(II) adsorption on pectin/γ-
Fe2O3/gl nanocomposite.
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nanocomposite, adsorption isotherms were used. 
Four of the most frequently applied adsorption 
isotherms including Langmuir, Freundlich, Sips, 
and Temkin were considered.

Langmuir isotherm
Langmuir isotherm predicts the formation of 

a monolayer on the adsorbent and assumes that 
adsorption occurs at a fixed number of well-defined 
sites; each active site can retain one ion. All active 
sites are energetically equipollent, and there is no 
interaction between the metal ions. This isotherm 
determines a limiting adsorption capacity; when 
the monolayer envelopment is achieved, the uptake 
is no longer influenced remarkably by the adsorbate 
transport. The maximum absorption capacity is 
obtained when the surface is coated by a monolayer 
of the adsorbate. The Langmuir isotherm is given 
by:

1
max l e

e
l e

q k Cq
k C

=
+ �

(6)  

where qmax is the maximum adsorption capacity 
of the adsorbent (mg.g-1) and kl is the Langmuir 
constant (L.mg-1).To describe the affinity between 
the adsorbent and heavy metal ions, a dimensionless 
factor is expressed using the following equation 
[39]: 

0

1
1  L

l

R
k C

=
+

�
(7)

where kl is the Langmuir constant, C0 is the 
initial concentration of metal ions (mg. L-1), and RL 
indicates the favorability of the isotherm. Values of 
RL >1, RL= 1, 0<RL< 1 and RL= 0 show unfavorable, 
linear, favorable and irreversible adsorption, 
respectively. In the present case, for both metals, RL 
had a value 0< RL< 1, which indicates a favorable 
adsorption process.

Freundlich isotherm
The Freundlich isotherm is based on the 

assumption that the active adsorption sites are 
dispensed exponentially concerning the heat of 
adsorption. It also considers that the more potent 
adsorption active sites are employed first, and the 
binding strength declines with the increase in site 
occupation. This model can be used for describing 
reversible and non-ideal adsorption. This isotherm 
represents the heterogeneous surface and 
multilayer adsorption. The Freundlich isotherm 
model is given by [39]: 

1/n
e f eq k C=

�
(8)

where qe (mg.g-1) is the equilibrium metal 
uptake capacity, Ce (mg.L-1) is the residual metal ion 
concentration, 1/n and KF refer to the intensity of 
adsorption, and Freundlich constant, respectively. 
The values of n ranging from 2 to 10 demonstrate 
good adsorption capacity, 1–2 moderate adsorption 
capacity, and less than one low adsorption capacity. 
The calculated parameters of Freundlich adsorption 
models are reported in Tables 2 and 3. 

Sips isotherm
The sips model is a combination of the 

Freundlich and Langmuir isotherms for forecasting 
heterogeneous adsorption and is accurate for 
local adsorption without adsorbent-adsorbent 
interactions. This model indicates that, at low 
initial concentrations, equilibrium data follow the 
Freundlich curve, while they follow Langmuir’s 
trend at higher initial concentrations. The Sips 
isotherm model is expressed as below:

1

1
( )

1 ( )

s

s

n
s S e

e
n

S e

q k Cq
k C

=
+

�

(9)

In this equation, qS (mg.g-1) and kS (L.mg-1) have 
the same meanings as qmax and kl in the Langmuir 
isotherm, whereas 1/ns is a potency introduced 
from the Freundlich isotherm to demonstrate 
the heterogeneity of the adsorption sites [33]. 
For 0<ns<1, the adsorption phenomenon is 

Heavy 
metals 

C0 (mg.L-1) 
qe,exp 

(mg.g1) 

Kinetic models 
pseudo-first order Pseudo-second-order 

qe 

(mg.g-1) 
k1 × 102 

(1.min-1) 
R2 

qe 

(mg.g-1) 
k2 × 103 

(g.mg-1. min-1)   
R2 

2+Pb 50 241 133.35 3.0 0.946 273.22 0.8 0.996 
2+Cd 50 362 48.64 5.0 0.931 409.83 4.0 0.999 

 
 
 
 
 
  

Table 1. Kinetic parameters of Cd(II) and Pb(II) adsorption onto modified pectin/γ-Fe2O3.
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heterogeneous with possible multisite adsorption. 
Also, for ns=1, the adsorption phenomenon 
represents homogeneous active surfaces and the 
Sips isotherm model tends to the Langmuir model. 
Finally, for ns>1, several adsorbate layers are formed 
on the adsorbent surface [40]. 

Temkin isotherm
The Temkin isotherm model takes into 

account the effects of indirect adsorbate/adsorbate 
interactions on the adsorption process. This model 
represents how indirect adsorbent-adsorbate 
interactions affect the adsorption process [41]. The 
Temkin isotherm equation may be expressed as 
follows:

( )   e T T eq Ln k Cβ=
�

(10)

where KT is the Temkin isotherm constant 
(L. g−1), and Tβ  is a constant related to the heat 
of sorption (kJ.mol−1). The adsorption of heavy 
metal ions in an aqueous solution is dependent 
on the temperature. The effects of temperature on 
the adsorption of Cd (II) and Pb (II) at different 
initial concentrations are demonstrated in Fig. 11 
and 12. These figures indicate that the adsorption 
capacity enhanced as the temperature increased. 
The rise of adsorption capacity with an increase 
in temperature indicates that the adsorption of 
Cd (II) and Pb (II) ions by pectin/g-Fe2O3/gl was 
an endothermic process. At high temperatures, 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  
  

Adsorption isotherms T ( °K) 295 308 318 

 
Langmuir isotherm model  

)1-(L.mg Lk 0.00305 0.00391 0.00879 
)1-(mg.g maxq 1408 1216 768 

LR 0.868 0.836 0.649 
2

R 0.998 0.997 0.997 

 
Freundlich isotherm 

model  

1/n-)1-.(L.mg1-mg.g(F k 6.5 8 15 

1/n 0.843 0.812 0.678 
2

R 0.996 0.992 0.981 

 
Sips isotherm model  

)1-(mg.gSq 776 576 512 
1/ns 0.875 0.843 0.812 

2
R 0.996 0.992 0.981 

 
Temkin isotherm model  

𝜷𝜷𝜷𝜷𝑻𝑻𝑻𝑻 128 136 136 
𝐊𝐊𝐊𝐊𝐓𝐓𝐓𝐓 0.097 0.97 0.11 

2
R 0.930 0.937 0.977 

 
 

Adsorption isotherms T ( °K) 295 308 318 

Langmuir isotherm model  

)1-(L.mg Lk 0.0029 0.0038 0.0044 
)1-(mg.g maxq 2176 1920 1856 

LR 0.873 0.840 0.819 
2

R 0.948 0.964 0.979 

Freundlich isotherm model  

)1/n-)1-.(L.mg1-(mg.gF k 8.5 11 13.5 
1/n 0.875 0.843 0.812 

2
R 0.911 0.931 0.953 

Sips isotherm model  

)1-(mg.gSq 544 576 672 

s1/n 2.875 2.473 2.06 
2

R 0.999 0.998 0.999 

Temkin isotherm model  

𝜷𝜷𝜷𝜷𝑻𝑻𝑻𝑻 272 288 288 
𝑲𝑲𝑲𝑲𝑻𝑻𝑻𝑻 0.060 0.062 0.070 

2
R 0.994 0.997 0.998 

 
 
 
  
  

Table 2. Isotherm model parameters for Pb(II) adsorption onto modified pectin/γ-Fe2O3/gl.

Table 3. Isotherm model parameters for Cd(II) adsorption onto pectin/γ-Fe2O3/gl
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the rate of heavy metal ions diffusion within the 
adsorbent network increases, thus the adsorption 
process accelerates. The initial concentration of 
heavy metals in the aqueous solution is a vital 
parameter to provide the driving force for mass 
transfer between the liquid and solid phases in 
the adsorption process [42]. To examine this 
parameter, different initial concentrations were 
chosen for the batch adsorption of Cd (II) and Pb 
(II) at three different temperatures; the results are 
depicted in Fig.11 and 12. The obtained results 
indicate that the amount of adsorbed metal ions 
sharply increased when the initial concentration 
was increased; after that, a gradual enhancement 
in the adsorption capacity occurred. This could be 
due to the unoccupied binding sites at lower initial 
concentrations, but at a higher concentration, 
they are saturated. The calculated parameters of 

Langmuir, Freundlich, Temkin, and Sips isotherm 
models fitted to the collected data at three different 
temperatures (295, 308, and 318 K) for Cd (II) 
and Pb (II) are summarized in Tables 2 and 3. The 
results depict that the Sips model with the highest 
R2 value (0.996) is more suitable than the other 
models to describe the adsorption of cadmium 
ions satisfactorily. According to the Sips isotherm 
model, the maximum monolayer Cd (II) adsorption 
capacity for the nanocomposite was found to be 
544 mg. g-1. This value indicates that the developed 
nanocomposite is a good adsorbent for cadmium 
removal from aqueous solutions. Also, the fitting of 
experimental data for lead adsorption onto pectin/
g-Fe2O3/gl to the four isotherm models indicated 
that the Langmuir isotherm had the best correlation 
with the experimental data with an R2 value of 
0.996. It can be concluded that the Langmuir 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Langmuir, Freundlich, Sips, and Temkin isotherm models for the adsorption of Pb(II) onto modified pectin/γ-Fe2O3/gl nano-
composite at different temperatures.
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isotherm is the best isotherm model to describe the 
adsorption of Pb (II) ion onto the pectin/g-Fe2O3/
gl adsorbent. The maximum adsorption capacity of 
Pb (II) on the pectin/g-Fe2O3/gl from the Langmuir 
model was 1408 mg. g-1.

Adsorption thermodynamics
The thermodynamic of adsorption was studied 

by calculating the changes in Gibbs free energy 
(DG°), enthalpy (DH°), and entropy change (DS°). 
For this purpose, the adsorption of Cd(II) and 
Pb(II) on the adsorbent was investigated at various 
temperatures. The values of DG°, DH°and DS° were 
calculated using the following equations:
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where KL is the distribution coefficient, R is 
the universal gas constant (8.314 J.mol-1. K-1) and 
T is the absolute solution temperature (K). The 
values of DH° and DS° were obtained from the 
slope and intercept of Van’s Hoff plot of lnKL versus 
1/T, respectively. The calculated thermodynamic 
parameters are given in Table 4 and the linear plot 
of lnKL versus 1/T is illustrated in Fig.13.

The negative values of DG° for the adsorption 
of lead and cadmium ions on the magnetic 
nanocomposite indicate the spontaneous and 
favorable behavior of the adsorption process. Also, 

 

 

 

 

   

 

 

 

 

 

 

 

Fig. 12. Langmuir, Freundlich, Sips, and Temkin isotherm models for Cd(II) adsorption onto modified pectin/γ-Fe2O3/gl nanocom-
posite at different temperatures.
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the positive values of DH° show the endothermic 
adsorption of Cd (II) and Pb (II) ions on pectin/g-
Fe2O3/gl, where the adsorption capacity grew by 
increasing the temperature. Due to the fact that the 
enthalpy for adsorption of lead ions is between 40 
and 80 kj.mol-1, the adsorption process is governed 
by a combination of physical and chemical 
adsorption, while for cadmium ions the enthalpy is 
less than 40 kj.mol-1, and the adsorption process is 
governed by physical adsorption. Also, the positive 
value of DSº demonstrates a system disorder due 
to an increase in randomness at the solid-liquid 
interface during the Cd (II) and Pb (II) adsorption 
process.

Comparison with other works
The pectin/g-Fe2O3/gl nanocomposite 

exhibited magnetic properties along with improved 
efficiency for the removal of Cd (II) and Pb (II) 
ions; this could be associated with the higher 
affinity of the carboxyl, hydroxyl and amino groups 

to form complexes with heavy metal ions[43]. 
The maximum theoretical adsorption capacity 
of pectin/g-Fe2O3/gl for lead and cadmium ions 
was specified by the Langmuir isotherm model 
that was 1408 and 2176 mg. g-1, respectively.  The 
values of maximum adsorption capacity (qm) 
for Cd (II) and Pb (II) ions by other adsorbents 
are listed in Table 5. As shown in Table 5, the qm 
values differ considerably for various sorbents. By 
comparison, the pectin/g-Fe2O3/gl nanocomposite 
is a promising alternative for the removal of lead 
(II) and cadmium (II) ions from aqueous solutions. 

CONCLUSION
In this study, a new magnetic pectin 

nanocomposite was synthesized via the 
precipitation method for the adsorption of 
cadmium and lead in an aqueous solution. The 
morphology, structure, and magnetic properties of 
the synthesized nanocomposite were characterized 
by various techniques such as FESEM, EDS, TEM, 

 
 
 
 

Heavy metals T (𝐊𝐊𝐊𝐊°) ∆𝐆𝐆𝐆𝐆° 
(kJ.mol-1) 

∆𝐒𝐒𝐒𝐒° 
(kJ.mol-1.K-1) 

∆𝐇𝐇𝐇𝐇° 
(kJ.mol-1) 

 
Pb2+ 

295 -7.10   

303 -9.10 232 63.85 
313 -11.8   

 
Cd2+ 

295 -8.70   
303 -9.80 96.85 20.366 
313 -10.51   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 4. Thermodynamic parameters for Cd(II) and Pb(II)  adsorption by pectin/γ-Fe2O3/gl.
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 Fig. 13. Van’t Hoff plot for Cd (II) and Pb(II) adsorption on pectin/γ-Fe2O3/gl nanocomposite.
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XRD, and FTIR. The synthesized sorbent revealed 
a fast kinetic process for cadmium and lead ions. 
The synthesized adsorbent has a magnetic property 
that results in easy separation by a magnetic field. 
The data obtained for cadmium and lead ions 
adsorbed onto pectin/Fe2O3 was best described by 
the pseudo-second kinetic model. The isothermal 
studies demonstrated that the adsorption data 
of Cd(II) and Pb(II) were consistent with Sips 
and Langmuir isotherm models, respectively. 
The maximum adsorption capacity of Cd(II) and 
Pb(II)  was 470 and 325 mg.g-1, respectively. These 
values are higher than most of the other adsorbents 

reported. Also, the thermodynamic study revealed 
that the adsorption process was spontaneous and 
endothermic.  The results of the present work show 
that pectin/g-Fe2O3/gl nanocomposite has great 
potential to utilize as a nonhazardous and bio 
adsorbent for effective adsorption of cadmium and 
lead ions in aqueous solution.
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Metal 
ions 

Adsorbent 
Adsorption capacity 

(mg.g-1) 
Reference 

Cd2+ 

Graphene oxide 
modified with 2,20-dipyridylamine 

257.201 
[44] 

 

Nano-zerovalent iron particles 769.2 
[45] 

 
Polyacrylic acid modified magnetic 

mesoporous carbon 
406.6 

[46] 
 

Magnetic layered double hydroxide/guar gum bio 
nanocomposites 

258 
[47] 

 

MoS2/SH-MWCNT 66.6 
[48] 

 
L-cystein modified bentonite-cellulose nanocomposite 

(cellu/cys-bent) 
16.12 [49] 

Purified clays 1005 [50] 

Poly amidoamine dendrimer grafted magnetic graphene 
oxide nanosheets 

 
435.85 

 
[51] 

 
Alginate/graphene oxide composite aerogel 183.6 [52] 

Pectin/γ-Fe2O3/gl nanocomposite 470 In this study 

Pb2+ 

Fe3O4/SiO2-GO 385 [53] 
Pistachio Shell Carbon (PSC) 7.9 [54] 

L-cystein modified bentonite-cellulose nanocomposite 
(cellu/cys-bent) 

18.52 [49] 

groundnut husk modified with Guar Gum 9.76 [55] 
Luffa acutangula (LAPR) 24 [56] 

MnO2@Fe3O4/ poly(m-phenylenediamine) 438 [57] 
GO-MnFe2O4 673 [58] 

L-methionine MMT encapsulated guar gum-g-
polyacrylonitrile (GPCM) hybrid nanocomposite 

125 [59] 

SrHPO4/Fe3O4 magnetic nanocomposite 1215.5 [60] 
 Mentha piperita carbon (MTC) 18 [61] 

Aminosilane modified- 
SnO2/Porous silica nanocomposite 

653.62 
[38] 

 
Esterified hydroxyapatite (n-EHAP) nanocrystals 2398.33 [62] 

Polyacrylic acid grafted magnetic chitosan 1476.9 [63] 
Fe@MgO magnetic nanocomposites 368.2 [52] 

Alginate-Au-Mica bio nanocomposite 300 [64] 

Pectin/γ-Fe2O3/gl nanocomposite 325 In this study 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Comparison of qm values for Cd(II) and Pb(II) ions adsorption on different adsorbents.
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