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In the present study, the numerical solution of the time period of a Simple Pendulum under a 

magnetic field investigated. The analytical solution presented for the given problem. The numer-

ical solution for the problem achieved by using two numerical quadrature methods, namely, Simp-

son’s 3/8 and Boole’s method. The period of a simple pendulum with a large angle is presented. 

The results of the numerical quadrature have been compared to the exact solution. Absolute and 

relative mistakes of the problem have been presented. The Matlab program 2013R has created a 

numerical method to analyze the outcome. Moreover, it is established that the comparison results 

guarantee the present method's ability and accuracy. 
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1. Introduction 

In last decades, Differential equations are used in a wide variety of disciplines, Partial differential 

Equation(PDE) and Ordinary Differential Equations(ODE) are play a major role in other fields such as 

medical, chemistry, physics, engineering, finance, physics and seismology [1-7]. They have several ap-

proximation methods which are different from each other [8-12]. Many numerical methods have been ap-

plied for solving linear and non-linear differential equations [13-16]. One of the most popular physical 

models encountered in undergraduate courses is the simple pendulum and the differential equation describ-

ing its motion [14, 15, 17-25]. Historically, the equation arises when studying the oscillations of a pendulum 

clock, but also appears in various other areas of physics, since problems often can be reduced to a differen-

tial equation similar to that describing the pendulum [16, 21, 22, 26, 27]. The exact solution to the equation 
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of motion of the undamped pendulum is well known in the literature and involves the Jacobi elliptic func-

tions [15, 21, 22, 28].  

He et al., presents a Periodic property and instability of a rotating pendulum system [27], Moatimid 

and Amer presents an analytical solution  and stability analysis for pendulum in  [25]. Li et al., studies 

Theoretical, numerical, and experimental in a vibrator–pendulum coupling system   [28] 

Simple pendulum is a simple mechanical system in terms of setup, but it is difficult to calculate the 

factors that act on its motion, such as time period, amplitude, angle of oscillation, acting forces, and energy 

[23]. This simple mechanical system oscillates with a symmetric force due to gravity acting on it as a 

restoring force, as illustrated in (Fig. 1)[19]. Its equation of motion is given by:  

𝑑2𝜃

𝑑𝑡2
+

g

𝐿
𝑠𝑖𝑛𝜃 = 0                                                                         (1) 

Figure 1. Scheme of a simple pendulum motion [22] 

In The present study, we will describe numerical solution for the time period of a simple pendulum 

under influence of magnetic which presented in [22], as shown in Figure 2 . 

Figure 2. Pendulum system under action of double magnets [22] 
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2. The Proposed Method 

Ma and Zhang in [22], presented a periodic solution for the pendulum under magnetic action[29]. 

They have modelled pendulum under magnetic action as follow: 

𝑇 =
4

√1−𝐴2 
∫ (1 + 𝑘 sin2 𝑡 )−

1

2 𝑑𝑡
𝜋

2
0

            (2) 

Where 𝑘 =
𝐴2

2(1−𝐴2)
, The period of integration is stated as [0,

𝜋

2
] in (Ma & Zhang, 2022). 

In this study, we will examine two different numerical quadrature methods for (2), after that we will 

compare numerical results with exact solution that have been presented in [22] A numerical solution can 

be found and compared with the results in [22]. 

There are many numerical integration methods to evaluate composite integrals; in this paper, we use 

two numerical quadrature methods, Simpsons 3/8 method, and Boole’s method [16, 30-34]. 

If we set, 𝑐 =
4

√1−𝐴2 
, 𝑓(𝑡) = (1 + 𝑘 sin2 𝑡 )−

1

2 for the integral in Eq. (2), and applying Simpson’s 3/8 

method, we obtain: 

𝑐 ∫ 𝑓(𝑡) 𝑑𝑡

𝜋
2

0

= 𝑐
3ℎ

8
[∑ 𝑓3𝑖−3 + 3 (𝑓3𝑖−2 + 𝑓3𝑖−1) + 𝑓3𝑖

𝑛/3

𝑖=1

] + 𝑂(ℎ4)                       (3) 

where 𝑂(ℎ4) = −
𝜃𝑀

80
ℎ4𝑓4(ζ), where 0 ≤ ζ ≤ θM.  where θM is the maximum angle 

Similarly, by applying Boole’s method, we get: 

𝑐 ∫ 𝑓(𝑡) 𝑑𝑡

𝜋
2

0

= 𝑐
2ℎ

4
[∑ 7(𝑓4𝑖−4 + 𝑓4𝑖) + 32(𝑓4𝑖−3 + 𝑓4𝑖−1) + 12𝑓4𝑖−2

𝑛/4

𝑖=1

] + 𝑂(ℎ6)              (4) 

where 𝑂(ℎ6) = −
2𝜃𝑀

945
ℎ6𝑓6(ζ), where 0 ≤ ζ ≤ θM. 

3. Numerical Calculation 

 The present work focused on the time period of simple pendulum under magnetic action as a function 

of its starting amplitude at a large angle numerically., for both integral equations (3) and (4), the results of 

Simpson’s 3/8 and Boole’s method will be compared with the exact results in [22] which counted as  an-

alytical solution of the problem, and absolute errors (𝐸𝐴) and relative errors (𝑅𝐴) are calculated by the 

following,: 
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𝐸𝐴 = |𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|      𝑎𝑛𝑑             𝑅𝐴 =
𝐸𝐴

𝐸𝑥𝑎𝑐𝑡 𝑉𝑎𝑙𝑢𝑒
 

 The Matlab program have been implemented for comparison between exact and approximation solu-

tions [16, 21, 22, 35, 36],  absolute error and relative error have been calculated, the following Tables shows 

the comparison between numerical methods in the present study and the results in [22]. 

Table 1. Numerical results in (3) compared with the exact solution in paper [22], in different values of A, 

where n=60. 

Method A=0.1 A=0.5 A=0.9 

Simpson’s 3/8 method in eq. (3) 6.30702032830215 6.98268054764193 10.6604517372438 

Results in [22] 6.30688812487383 6.97832699208398 10.61923418562900 

Absolute error 1.3220 × 10−4 4.3536× 10−3 4.1218× 10−2 

Relative error 2.0962× 10−5 6.2387× 10−4 3.8814× 10−3 

 

Table 2. Numerical results in (4) compared with the exact solution in paper [22], in different values of A, 

where n=60. 

Method A=0.1 A=0.5 A=0.9 

Boole’s method in eq. (4) 6.30702032829067 6.98268054740341 10.6604517383238 

Results in [22] 6.30688812487383 6.97832699208398 10.61923418562900 

Absolute error  1.3220× 10−4  4.3536× 10−3  4.1218× 10−2 

Relative error  2.0962× 10−5   6.2387× 10−4  3.8814× 10−3 

From Table 1. and Table 2. We obtain that the numerical results have good accuracy. Both methods 

has a same accuracy approximately and have a difference after 9 digits, that errors can be neglected.  

Table 3. Numerical quadrature method in (3) and (4) are compared with the exact solution in paper [22], 

in different values of A, where n=600. 

Method A=0.1 A=0.5 A=0.9 

Simpson’s 3/8 method in eq. (3) 6.30690135098058 6.97876252252756 10.6233569517113 

Boole’s method in eq. (4) 6.30690135098058 6.97876252252756 10.6233569517113 

Results in [22] 6.30688812487383 6.97832699208398 10.61923418562900 

Absolute error  1.3226× 10−5   4.3553× 10−4  4.1228× 10−3 

Relative error  2.0971× 10−6  6.2412× 10−5  3.8824× 10−4 

In Table 3, Both methods have been applied for eq(2), in differen values of A, From the results we 

can conclude that both numerical quadrature methods are accurate and suitable for solving simple pendulum 
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integra eqs. (2). Absolute error and relative which gives the results in table 3. these table show the accuracy 

of the methods. However, the accuracy of the results depends on increase iteration number n. We can notice 

that while the number of iterations n are increased, then better more accurate have been found, as well as 

both methods have same results when number of n increased to 600. 

4. Conclusion 

In this study, we presented approximation solutions for a Simple Pendulum under a magnetic field. 

Two different numerical quadrature methods have been presented. The result was obtained using a numer-

ical integration technique based on Simpson’s and Boole’s methods. The analytical solution has been com-

pared with the numerical solution, and the agreement is very good. Matlab software has been implemented 

for calculation. Absolute error and Relative error have been calculated. The results guarantee the accuracy 

and applicability of both presented methods. 
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