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1. Introduction 
Past disease outbreaks have affected humanity, making WHO and national authorities worldwide 

fight these pandemics. The COVID-19 pandemic, first found in Wuhan, China, in December 2019, 

remains a major problem [1]. According to the WHO, 213 nations and territories have COVID-19 [2]. 

COVID-19 can spread through direct physical contact, coughing, or sneezing [3]. In this case, COVID-

19 has a 14-day incubation period, which is key to its spread [4]. Therefore, the precise projection of 

recovered and contaminated COVID-19 cases is essential for monitoring the outbreak and implementing 

effective methods to prevent its spread. 

Biomedical informatics is important to any study attempt to treat COVID-19 patients. Artificial 

intelligence (AI) is becoming more common in healthcare systems to detect diseases [5] and perform 

clinical diagnoses [6]. This outbreak demonstrates the need and viability of utilizing AI to anticipate 

outbreaks. AI tools have excellent feature extraction capabilities [7], which help public health experts 

make decisions. AI can quickly extract information from health reports [8], social media [9], news [10], 

and media [11]. AI approaches have advanced in the recent decade. Machine learning [12] and deep 

learning [13] can automatically extract significant elements from complex data. Moreover, deep learning 
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 The new coronavirus (COVID-19) has spread to over 200 countries, with 

over 36 million confirmed cases as of October 10, 2020. As a result, 

numerous machine learning models capable of forecasting the epidemic 

worldwide have been produced. This paper reviews and summarizes the 

most relevant machine learning forecasting models for COVID-19. The 

dataset is derived from the world health organization (WHO) COVID-19 

dashboard, and it contains official daily counts of COVID-19 cases, 

fatalities, and vaccination use reported by countries, territories, and regions. 

We propose various convolutional neural network (CNN) based models 

such as CNN, single exponential smoothing CNN (S-CNN), moving 

average CNN (MA-CNN), smoothed moving average CNN (SMA-CNN), 

and moving average smoothed CNN (MAS-CNN). Here, MAPE and MSE 

are used to assess the suggested models. MAPE is frequently used to 

compare accuracy across time series with different scales. MSE, the model 

must strive for a total forecast equal to the entire demand. That is, 

optimizing MSE seeks to create a forecast that is right on average and so 

unbiased. The final result shows that SMA-CNN outperformed its 

baselines in both MAPE and MSE. The main contribution of this novel 

forecasting approach is a more accurate result as a base of the strategy of 

preventing COVID-19 spreads.  
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has advanced computer vision [14], robotics [15], medical imaging [16], chemistry [17], and forecasting 

[18]. Several studies in the literature focused on modeling, predicting, and forecasting COVID-19 spread 

based on recorded COVID-19 time series data to comprehend and manage this pandemic. 

Deep learning approaches have gained popularity in time-series modeling and analysis due to their 

generalization and nonlinear approximation [19]. Deep learning models are created by automatically 

combining neural network layers and extracting significant information from vast data [20]. This 

approach has been studied in several machine-learning applications. For example, the LSTM model 

predicts new COVID-19 cases in Canada from January-March 2020 [21]. In Russia, Peru, and Iran, an 

enhanced LSTM model predicts COVID-19 epidemic patterns [22]. Moreover, SVR, LSTM, BiLSTM, 

and GRU are used to forecast COVID-19 time-series data in 10 nations, and the result shows that 

BiLSTM data accessible through June 27, 2020, show higher performance [23]. 

Due to its performance, deep learning has been effectively applied to various real-world prediction 

challenges, including time-series forecasting. They make accurate forecasts despite the noisy and chaotic 

character of time-series forecasting. CNN is a popular, efficient deep learning approach [24]. CNN 

models can filter input data noise and extract more valuable characteristics for the final prediction model 

[25]. Standard CNNs are "feed-forward neural networks" that use filters and pooling layers, well-suited 

for spatial autocorrelation data but not complex and extended temporal relationships. Therefore, 

removing noisy samples improves temporal data representation and forecasting system accuracy by 

highlighting relevant patterns. Smoothing strategies help track data seasonality and improve deep 

learning performance [26]. Due to their simplicity and firm performance in time series forecasting, most 

strategies use moving averages [27] and seasonal exponential smoothing [28]. Smoothing improves 

interpretability and integrates the data series changing pattern into the prediction model. Furthermore, 

a CNN model automatically generates forecasts from the smoothed results. 

This paper proposed various CNN-based models such as CNN, single exponential smoothing CNN 

(S-CNN), moving average CNN (MA-CNN), smoothed moving average CNN (SMA-CNN), and 

moving average smoothed CNN (MAS-CNN). These multi-step CNN models may provide an accurate 

multivariate time-series analysis by modifying CNN to select and optimize the best smoothing 

techniques. The model and the baselines were then implemented in the various time series from the big 

five countries’ COVID-19 dataset. The contribution of the research are. 

• To increase the accuracy of the multivariate time-series forecasting analysis by employing innovative 

CNN in conjunction with smoothing approach optimization. 

• To implement an innovative forecasting model that can adapt to different multivariate time series 

COVID-19 datasets from the United States of America, India, Brazil, France, and Germany. 

• To produce a higher level of prediction accuracy by experimental study and validation of the model 

compared to the CNN, S-CNN, MA-CNN, SMA-CNN, and MAS-CNN. 

The remaining parts of this work are structured as described below. The section titled "CNN-based 

Forecasting Using Smoothing Approach" provides a detailed explanation of the smoothing technique 

used for the CNN time series and an explanation of the experimental design. The dataset, the data 

normalization procedure, the forecasting process, and the key performance indicator are all presented in 

the "Materials and Methods" section. The "Results and Discussion" section presents the findings and 

an in-depth examination of the experiments. A summary of the research is provided here, along with a 

discussion of the numerical experiments. The last section, conclusions, gives a summary of the overall 

findings as well as potential areas for further research. 

2. Method 
To carry out research in a manner that is more methodical, we planned the experiment in the manner 

depicted in Fig. 1. We used a variety of datasets to evaluate the effectiveness of several smoothed CNN 

compared to basic CNN. Fig. 1 shows that the experimental design employed in this investigation 

included five scenarios. The five scenarios are as follows: (1) data is processed directly with CNN; (2) 
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data is smoothed using single exponential smoothing and then processed with CNN (S-CNN); (3) data 

is smoothed using MA and then processed with CNN (MA-CNN); (4) data is smoothed using CNN. 

Smoothing using single exponential smoothing first, then MA (SMA-CNN); and (5) smoothing using 

MA first, followed by smoothing using single exponential smoothing again, which is then processed 

using CNN (MAS-CNN). 

The data quality can be improved by using data smoothing [29]. When applied to time-series data, 

the smoothing method gets excellent results after removing any outliers that could be present in the 

data [30]. This method can be easily comprehended and applied successfully in the new study without 

referring to or taking parameters from previous investigations. By taking the average of the previous 

values in a time series, smoothing processes make predictions more accurate. The algorithm provides a 

weighting value assigned to past observations to reduce noise, smooth the value of fluctuations in the 

data being utilized, and anticipate future values. In general, there are various common types of data 

smoothing. Single exponential smoothing (S) [31] and moving average (MA) [32] are two more frequent 

types of data smoothing. Smoothing is a strategy that can assist researchers in predicting trends when 

they are asked to do a forecasting task. 

The exponential window function is utilized in the single exponential smoothing (S) method, a rule-

of-thumb approach to smoothing time-series data [33]. Exponential functions are used to apply weights 

diminishing at an exponential rate over time. It is easy to understand and apply when making judgments 

based on the user's past assumptions, such as seasonality, and it does not require much time. The Moving 

Average (MA) is a formula used to examine data points [34]. It begins with creating a series of averages 

of various subsets of the complete dataset and then continues connecting those averages in the shape of 

a line. 

 

Fig. 1.  Experimental Design 

The use of single exponential smoothing by itself is not sufficient since it has the drawback of not 

being appropriate for anticipating data in seasonal and long-term periods, and the accuracy obtained is 

still inadequate. This makes the use of single exponential smoothing insufficient. In light of this, the 

motivation for the hybridization of smoothing techniques derived from single exponential smoothing 

with moving average (SMA) or vice versa moving average with single exponential smoothing (MAS) 

stems from the findings of this research. 

2.1. Dataset 
This research used five datasets through the application of COVID-19, which had information from 

five countries with the highest number of instances anywhere in the globe. The dataset was obtained 

from the publicly available WHO website, which may be viewed and downloaded at 

https://covid19.who.int/WHO-COVID-19-global-data.csv. The WHO website is open to the general 

public. The information about the five countries mentioned above is included in Table 1. The time that 

will be looked at for this research starts on January 3, 2020, and goes through August 1, 2022. 

https://covid19.who.int/WHO-COVID-19-global-data.csv


179 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 9, No. 2, July 2023, pp. 176-186 

 

 

 Haviluddin and Alfred (Multi-step CNN forecasting for COVID-19 multivariate time-series) 

Table 1.  Big Five Countries COVID-19 Dataset 

Dataset Country Number of Cases 
1 America 90.213.060 

2 India 44.036.275 

3 Brazil 33.813.587 

4 France 32.881.176 

5 Germany 30.903.673 

The new deaths attribute stores information on the number of deaths that occur each day, while the 

cumulative deaths attribute stores information on the total number of deaths that have occurred. The 

new cases attribute stores information on the number of new cases that occur each day, while the 

cumulative cases attribute stores the cumulative number of additional cases. The data utilized in this 

research is illustrated in Fig. 2, which provides a visual representation of the data. 

 

Fig. 2.  Visualization of Dataset 

2.2. Data Normalization 
 Scaling a character into a particular range required by the activation function can only be 

accomplished through data normalization, an essential component of CNN [35]. The process of data 

normalization is utilized to address this issue. Since one of the primary goals of data normalization is to 

ensure the quality of the data before it is given to any model, its impact on the performance of any model 

is significant. The Min-Max normalization method was utilized in this research. Even though it is 

ineffective in dealing with outliers, the technique ensures that all characteristics have the same scale. 

The Min-Max formula is shown in (1), which produces normalized data with smaller intervals that fall 

inside the range 0–1 [36]. 

𝑥𝑥′ =  (𝑥𝑥−𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥)
(𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥− 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥)

    (1) 

𝑥𝑥′ is the outcome of normalizing the data, 𝑥𝑥 is the data that has to be normalized, 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 is the 

minimum value of all the data, and 𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥 is the maximum value of all the data. 

2.3. Forecasting Process 
In this study, the dataset used for predicting with CNN is first smoothed using single exponential 

smoothing and moving averages. Single exponential smoothing is employed. One may observe the 

equation for single exponential smoothing in (2).  

𝑆𝑆𝑡𝑡 =  𝑆𝑆𝑡𝑡−1 + 𝛼𝛼( 𝑋𝑋𝑡𝑡 −  𝑆𝑆𝑡𝑡−1)   (2) 

The smoothed data 𝑆𝑆𝑡𝑡 is a result of smoothing the raw data {𝑋𝑋𝑡𝑡}. The smoothing factor α, is a 

variable that specifies the smoothing level [37]. The interval for 𝛼𝛼 is between 0 and 1 (0 ≤ 𝛼𝛼 ≤ 1) [38]. 

When α is close to 1, the learning process is accelerated because the smoothing effect is diminished. In 

contrast, values of α closer to 0 have a greater smoothing effect and are less sensitive to changes in the 
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recent past [39]. Not all cases have the same value for 𝛼𝛼. Therefore, we determine the optimal dataset’s 

properties smoothing factor value based on the dataset's properties [40]. The optimal alpha for single 

exponential smoothing is derived from (3). Then there is no need to manually attempt each α value 

from 0 to 1. 

𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚 𝛼𝛼 =
( 𝑋𝑋 𝑚𝑚𝑚𝑚𝑥𝑥−  𝑋𝑋 𝑚𝑚𝑚𝑚𝑚𝑚)−1𝑚𝑚∑  𝑋𝑋𝑡𝑡𝑚𝑚

𝑚𝑚=1

𝑋𝑋 𝑚𝑚𝑚𝑚𝑥𝑥− 𝑋𝑋 𝑚𝑚𝑚𝑚𝑚𝑚
   (3) 

So that the optimum single exponential smoothing (𝑆𝑆𝑡𝑡) to improve the CNN algorithm performance 

used comes from the substitution of (3) to (2) results in the following (4). 

𝑆𝑆𝑡𝑡 =  𝑆𝑆𝑡𝑡−1  +
( 𝑋𝑋 𝑚𝑚𝑚𝑚𝑥𝑥−  𝑋𝑋 𝑚𝑚𝑚𝑚𝑚𝑚)−1𝑚𝑚∑  𝑋𝑋𝑡𝑡𝑚𝑚

𝑚𝑚=1

𝑋𝑋 𝑚𝑚𝑚𝑚𝑥𝑥− 𝑋𝑋 𝑚𝑚𝑚𝑚𝑚𝑚
( 𝑋𝑋𝑡𝑡 −  𝑆𝑆𝑡𝑡−1)   (4) 

In the meantime, smoothing using moving average (MA) considers all of the data and uses a 

somewhat extended backward period. Data from the past are never left out of the computation. However, 

their weight in the final result is relatively minimal due to the nature of the moving average. It can 

illustrate ongoing trends while simultaneously eliminating fluctuations thanks to noise reduction. The 

data is smoothed using a moving average of either one month or thirty days when it is smoothed using 

MA. It is possible to visualize the MA in (5). 

𝑀𝑀𝑀𝑀 = (𝑥𝑥1+ 𝑥𝑥2 + … + 𝑥𝑥𝑚𝑚)
𝑚𝑚

   (5) 

𝑀𝑀𝑀𝑀 is the outcome of smoothing the data using 𝑥𝑥, where 𝑥𝑥 is the definition of each data point, and 

𝑚𝑚 is the number of periods. 

The CNN algorithm is the primary focus of this research. CNN employs the fundamental Neural 

Network (NN) algorithm with additional layers. Because of its effectiveness, CNN has garnered much 

attention in computer vision and image processing. CNN uses a convolution layer that can process the 

spatial information in images, while fully connected layers are equipped with a memory that allows them 

to store information from time-series data. The input given to the model, an image matrix for computer 

vision problems and a 1D array for time series forecasting, is the only thing that differentiates computer 

vision problems from time series problems. The observation sequence can treat the raw input data as a 

one-dimensional array, which the CNN model can then read and filter. Therefore, the use of this theory 

in the time-series analysis is possible. CNN architecture as shown in Fig. 3 

 

Fig. 3.  CNN architecture 

 CNN's architecture comprises the following layers: an input layer, a convolutional layer, a pooling 

layer, a flattening, and a fully connected layer, as well as an output layer. Convolutional and pooling 

layers are designed to filter input data and extract valuable information for a fully connected network 

layer. Convolutional layers use raw input data and kernels to create new feature values. This technique 

was designed to extract image features from structured matrices. The convolution kernel (filter) is a 

narrow window containing coefficient values in matrix form. All these procedures result in a convolved 
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matrix representing a feature value specified by the filter coefficients and dimension size. By applying 

alternative convolution kernels to the input data, additional convolved features can be formed, usually 

more helpful than the original beginning features, boosting the model's performance. 

A nonlinear activation function follows convolutional layers. Two typical activation functions are the 

sigmoid function and the rectified linear unit (ReLU). Both can be stated using (6) and (7) [41]. A 

pooling layer subsamples convolved features to create a lower-dimensional matrix. As with the 

convolutional layer, the pooling layer uses a small sliding window to take the values of each patch of 

convolved features and output one new value. Maximum and average pooling calculate each patch's 

maximum and average values. The pooling layer creates additional matrices that summarize the 

convolutional layer's features. Small input changes will not affect pooled output values, making the 

system more robust. 

𝜎𝜎(𝑧𝑧) =  1
1−𝑒𝑒−𝑧𝑧

   (6) 

𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥 (0, 𝑥𝑥)   (7) 

A list of CNN parameters can be adjusted in several different ways, depending on the application. 

Research [40]  provides the basis for establishing the CNN parameters used in this investigation. In this 

work, we modified the parameter settings in the fully connected layer by optimizing the hyperparameter 

tuning using particle swarm optimization (PSO) [42],  was done so that everything would not be precisely 

the same. The main reason is that the fully connected layer of the CNN reflects a more comprehensive 

set of features than the convolution layer. Each neuron in a fully connected layer is connected to all of 

the neurons in the layer below it [43]. A list of CNN forecast component parameters can be seen in 

Table 2. 

Table 2.  The list of CNN forecast component parameters 

Layer Parameter Value 
Convolutional Type of convolutional Conv1D 

 The number of convolutional 1 

 The number of filters 32 

 The filter size 1 

 The activation function ReLU 

Pooling Type of pooling MaXPooling1D 

 The number of pooling layer 1 

 Size of the pooling window 1 

 Dropout 0.2 

Flattent The number of flatten layer 1 

*Fully connected The number of hidden layers 2 

 The number of units or neuron 64 

 The Activation function output ReLU 

 Loss function MSE 

 Type of optimizer Adam 

 The number of epochs 100 

 The batch size 64 

 

2.4. Key Performance Indicator 
All experiments in this research were evaluated using key performance indicators, mean absolute 

percentage error (MAPE), and mean square error (MSE). In order to display errors in a manner that 

indicates accuracy, the MAPE metric is applied [27]. The MSE is a metric that can be used to detect 

outliers in a prediction system that has been created [44]. The MAPE and MSE values should be lower 

for a more accurate results prediction. The equation of MAPE and MSE can be seen in (8) and (9) [45]. 
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M𝑀𝑀𝑃𝑃𝑃𝑃 =  ∑  |(𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡)|
𝑚𝑚.𝐴𝐴𝑡𝑡

𝑚𝑚
𝑡𝑡=1  𝑥𝑥 100   (8) 

𝑀𝑀𝑆𝑆𝑃𝑃 =  ∑ (𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡)2

𝑚𝑚
𝑚𝑚
𝑡𝑡=1    (9) 

3. Results and Discussion 
All of the data had been smoothed down by the experimental design of this research. At the same 

time,  CNN was applied to the data. The outcomes of the forecasting evaluation were obtained in the 

form of MAPE and MSE, which can be viewed in Table 3 and Table 4. 

Table 3.  MAPE of New Cases 

Method Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 
CNN 10.90335 9.98161 10.56073 9.78018 10.87463 

S-CNN 10.48021 9.73711 9.07266 9.54466 10.77463 

MA-CNN 10.46680 9.41301 9.05266 9.48466 10.71020 

SMA-CNN 10.38977 9.08656 9.03067 9.08466 10.28978 

MAS-CNN 10.53081 9.52832 9.05067 9.22466 10.74021 

 

The MAPE for the new case forecasts is presented in Table 3. According to the table, we can conclude 

that the performance of CNN can be enhanced by utilizing exponential smoothing (S), moving average 

(MA), and its combination. Because of the treatment, there is a decline in the value of the MAPE. 

When applied to Dataset 3, SMA-CNN achieves the most outstanding performance of 9.03067. While 

using CNN, the worst possible acceptable result is 10.90335 for Dataset 1. As a result, SMA-CNN is 

the most effective algorithm for forecasting across all of the datasets included in this research. 

Table 4.  MSE of New Cases 

Method Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 
CNN 0.00283 0.00337 0.00492 0.00431 0.00593 

S-CNN 0.00252 0.00336 0.00432 0.00381 0.00445 

MA-CNN 0.00216 0.00290 0.00402 0.00193 0.00443 

SMA-CNN 0.00199 0.00166 0.00362 0.00185 0.00299 

MAS-CNN 0.00257 0.00298 0.00382 0.00225 0.00312 

 

There is a connection between sensitivity and the application of MSE in performance testing. 

According to Table 4, the MSE is reduced when the utilized algorithm is more complicated. In other 

words, SMA-CNN has a higher sensitivity than any other CNN-based algorithm that was tested for this 

study. Because the value of MSE is not very high, it can be deduced that the algorithm under 

consideration can recognize anomalies within the datasets used for forecasting. The results shown in 

Table 5. 

Table 5.  MAPE of New Deaths 

Method Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 
CNN 10.59285 9.84640 9.63077 9.68018 10.97463 

S-CNN 10.53449 9.31762 9.12146 9.67486 10.87463 

MA-CNN 10.50479 9.20877 9.03994 9.21712 10.77463 

SMA-CNN 10.33826 9.09776 9.02606 9.09712 10.38479 

MAS-CNN 10.57165 9.24941 9.03624 9.13712 10.83463 

 

Table 5 are comparable to those in Table 3. The MAPE that is the lowest is 9.02606, while the 

MAPE that is the greatest is 10.97463 (Dataset 5 using CNN). In every dataset, the performance of 

SMA-CNN was superior to that of CNN, S-CNN, MA-CNN, and MAS-CNN. The value reflects the 
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consistency of the accuracy of the forecast, although, under the same situations (Datasets 1, 2, and 5), 

MA-CNN performs somewhat better than MAS-CNN does. MSE of New Deats as show in Table 6. 

Table 6.  MSE of New Deats 

Method Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 
CNN 0.00602 0.00307 0.00832 0.00257 0.00373 

S-CNN 0.00531 0.00302 0.00553 0.00194 0.00324 

MA-CNN 0.00518 0.00216 0.00323 0.01390 0.00285 

SMA-CNN 0.00456 0.00197 0.00263 0.00174 0.00209 

MAS-CNN 0.00536 0.00243 0.00303 0.00214 0.00305 

 

Table 6 has a similar pattern to Table 4. According to the data presented in the table, SMA-CNN 

has the smallest MSE, with 0.00174 being the best possible result (Dataset 4). This score, which is very 

near zero, indicates that all CNN variations can make accurate predictions. The MSE for SMA-CNN is 

the lowest of all the datasets. 

S-CNN performs more accurately than CNN in most elements of the comparison, resulting from 

the application of optimal alpha, which was carried out [40]. The optimal value of alpha compels the 

process of smoothing to arrive at its optimal state, which results in a result that is both quick and 

accurate. In addition, the PSO hyperparameter tuning can produce an ideal model by applying the 

algorithm, thereby reducing errors in the dataset [42]. This smoothing process focuses more on values 

with the moving average timing in a given period, which can make the data more stable. MA-CNN may 

also improve results because of this smoothing process's attention to these values. It has been 

demonstrated that the smoothing technique known as smoothing moving average (SMA) has a 

performance that, when combined with exponential smoothing and moving average, can make time-

series data prone to high volatility more stable. 

On the other hand, MAS-CNN has been shown to have worse performance than MA-CNN in several 

tests. The series has no choice but to take on a linear form due to the exponential smoothing process 

after the moving average. Because of this condition, the absolute and mean square errors may increase. 

As a result of the MAPE and MSE, the SMA-CNN is considered the most practical combination of the 

moving average and exponential smoothing. We can use other exponential smoothings for further 

research, such as double exponential smoothing and triple exponential smoothing. 

4. Conclusion 
This research aims to improve the efficiency of CNN, an algorithm frequently utilized for image 

processing, by applying a smoothing strategy to its time-series analysis. Based on the investigation 

findings, one may conclude that the SMA-CNN model with the optimal smoothing factor performs 

significantly better than the other CNN-based forecasting smoothing technique techniques. The SMA-

CNN model used in this investigation yields the highest-quality assessment results. The usage of moving 

averages in combination with single exponential smoothing is continued as a data preparation strategy 

since it considerably improves the effectiveness of the forecasting algorithm. Although the results of this 

research have addressed the study's objectives, there are still some limitations. The implementation of 

smoothing techniques that are optimized in CNN methods is the primary subject of this study. As a 

result, research will be conducted shortly to determine how applying this strategy to more sophisticated 

deep learning algorithms (such as LSTM, DBN, and RBF) would affect the results. The next item we 

will concentrate on is conducting a more in-depth study of the various smoothing methods that may be 

implemented using double or triple-exponential smoothing. In the future study that is conducted, both 

beta optimal and gamma optimum will be taken into consideration. 
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