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Abstract: This paper introduces a theoretical framework derived from a deep and detailed 
harmonic analysis of songs composed by Antonio Carlos Jobim, focusing on two 
components, namely, “semantic” (related to the idea of chord type) and “syntactic” (involving 
binary relations between contiguous chords). The research is mainly focused on investigating 
the correlations between compositional style (here related to the harmonic construction) and 
the concepts of probability, expectance, and, especially entropy, being the latter defined as a 
measure of uncertainty or “surprise” of events along time. After a bibliographical review of 
these topics and their applications to music, a section exposes Markov Chains, a 
mathematical tool used to formalize the “semantic-syntactic” harmonic relations statistically 
inferred in the analyzed corpus of Jobim’s works. Then it follows the formalization of a 
probabilistic harmonic space and the concept of probabilistic index, directly associated with the 
entropy of the observed binary relations. This approach opens a new analytical perspective, 
also allowing the generalization of the presented theoretical and methodological technology 
for the examination of other repertoires and posterior comparison, presenting then as a new 
mean of investigation on the nature of style. 

Keywords: Jobim. “Semantic-syntactic” harmonic relations. Entropy and probability. 
Markov chains. Probabilistic Harmonic Space. 

 
Resumo: Este artigo introduz um arcabouço teórico derivado de uma profunda e detalhada 
análise harmônica da integral de canções de Antonio Carlos Jobim, considerando aspectos 
“semânticos” (relacionado à ideia de tipos acordais) e “sintáticos” (envolvendo relações 
binárias entre acordes contíguos). O foco do estudo concentra-se na investigação das 
correlações existentes entre estilo composicional (no caso, relacionado à construção 
harmônica) e os conceitos de probabilidade, expectativa e, especialmente, entropia, definida 
como a medida da incerteza de eventos decorrentes no tempo. Após uma revisão 
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bibliográfica sobre tais tópicos e de suas aplicações em música, uma seção dedicada a 
Cadeias de Markov prepara o exame central do objeto de estudo, a saber, as relações 
harmônicas “semântico-sintáticas” levantadas estatisticamente no repertório analisado das 
canções jobinianas. A formalização de um espaço harmônico probabilístico e do conceito de 
índice probabilístico, diretamente associados à entropia medida referente ao comportamento 
dos acordes das canções abrem uma perspectiva analítica original, permitindo ainda a 
generalização do aparato teórico-metodológico para o exame de outros repertórios e 
posterior comparação, apresentando-se, portanto, como um novo meio de investigação sobre 
a natureza do estilo. 

Palavras-chave: Jobim. Relações harmônicas “semânticas-sintáticas”. Entropia e 
probabilidade. Cadeias de Markov. Espaço Harmônico Probabilístico. 

 

*        *        * 

1. Background on Information Theory 
In 1948, American mathematician and electrical engineer Claude Elwood 

Shannon (1916–2001) published a seminal paper entitled “A Mathematical 
Theory of Communication”, which settled the very basis for what would be later 
known as Information Theory.1 Shannon was especially interested in what he 
considered a “fundamental problem of communication [namely,] that of 
reproducing at one point either exactly or approximately a message selected at 
another point” (Shannon 1948, p. 1). As he stresses in the introduction of his 
work, the notion of a meaning associated with a given message is not particularly 
relevant in his approach, and his goal should be an exclusively engineering 
problem. Despite the theory there developed being sufficiently general to allow 
for more general scenarios, a first approach proposed by Shannon was to 
consider messages produced by a discrete source, to model devices like the 
telegraph. Since messages of interest usually are not unstructured sequences of 
random symbols, a more sophisticated mathematical model for the informal term 
“message” was necessary. Therefore, Shannon’s theory is strongly centered on a 
specific kind of stochastic process, the so-called Markovian process. In short, this 

                                                
1 In 1949 this paper was published as a book with the slightly different title “The Mathematical 
Theory of Communication”. It seems a minor modification, but it indicates the promptly noticed 
generality and importance of the work. Indeed, in 2020 Google Scholar indicates that Shannon 
(1948) is the most cited paper in Mathematics and correlated areas. In Cover 2006, a modern and 
comprehensive introduction to Information Theory is presented. 
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mathematical object is specifically tailored to model and quantify the chance of 
observing a certain symbol after the observation of the preceding ones. More will 
be developed on Markov process further ahead (see Section 2), and for the 
moment let us continue following Shannon’s argumentation. 

Firstly, Shannon introduces the notion of n-gram, which could be defined 
as a sequence of informational unities with a generic number n of elements. He 
then proposes to the reader to imagine a hypothetic generator of typological signs 
with could produce sequences of different sizes over a fixed alphabet, that for 
simplicity, we will assume as the English alphabet composed of 26 letters, not 
making distinction between upper and lower cases: monograms (A, Z, E, O, ...), 
digrams (BC, AK, NW, …), trigrams (VIQ, ZMP, …), and so on. Note that the set 
of n-grams increases exponentially, each containing 26# symbols. 

For the sake of illustration, assume that the production of a given symbol 
by his “machine” (say “J”) does not give any cue for the next one. Put another 
way, the probability of observing any symbol after “J”, including its repetition, 
does not depend on the previous symbol being a “J”. Without an underlying 
language, it is reasonable to assume that all 26 alternatives are equally probable, 

and equal to $
%&
≈ 0.04, for all letters. This can also be extended to larger-size 

grams, which would imply, of course, in dramatic diminution of the magnitude 
of the probabilities. Taken for example trigram “GJQ”: the probability of it to be 
followed by, say, “TTX” would be $

%&+
≈ 0.00006. 

On the other hand, if these structures are contextualized, for example in a 
natural language as English, things change considerably, since symbols are not 
uniformly distributed, and, moreover, succession now is strongly conditioned by 
semantic and syntactic forces. Shannon proposes then the possibility of stochastic 
production of “words” of different sizes in his “machine”, considering distinct 
orders of approximation: zero-order2 (which means that the probability of 
occurrence of a given symbol depends only on its relative frequency within the 
context, being not dependent on the surrounding symbols), and k-order, for 𝑘 ≥
1 (meaning that the probability of observing a given symbol depends on the k 
previously observed symbols). 

                                                
2 Also denoted as zeroth-order expectation by modern authors, like David Huron (2006). The same 
applies to the remaining approximation types of Shannon (i.e., one-order/first-order, etc.). 
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Shannon then demonstrates how his “machine” functions, firstly based 
only on relative frequency of monograms in an English corpus of texts. This 
analysis confirms the two aforementioned aspects, namely: now the letters have 
distinct probabilities of occurrence (for example, usually “E” is many times more 
frequent than “X”), and the context informs about the occurrence of a particular 
symbol (observing a “Q” strongly conditions “U” as the next symbol). After this, 
Shannon shows that the increasing of order of approximation turns the 
production of hypothetical sentences gradually close to normal textual 
constructions. This amazing formulation (in an epoch where computers were 
almost an idealized conception) became one of the very foundations for 
algorithmic creation and machine-learning processes. 

Maybe the most far-reaching aspect of Shannon’s theory is the concept of 
entropy of a random variable. The term, borrowed from the field of 
Thermodynamics (in which is associated with the degree of disorder of a closed 
system), receives in his work a distinct, rather co-related meaning, adapted to the 
context of the Information Theory. For Shannon, the entropy (traditionally 
denoted by ℋ) of a given random variable represents the degree of uncertainty 
with respect to the context it is inserted to. In his words, 

Suppose we have a set of 𝑚 possible events whose probabilities of occurrence 
are 𝑝$, 𝑝%, … , 𝑝4. These probabilities are known, but that is all we know 
concerning which event will occur. Can we find a measure of how much 
“choice” is involved in the selection of the event, or of how uncertain we are 
of the outcome? If there is such a measure, say ℋ(𝑝$, … , 𝑝4), it is reasonable 
to require of it the following properties: 

1. ℋ should be continuous on each 𝑝7. 

2. If all the 𝑝7 are equal, 𝑝7 =
$
4

, then ℋ should be a monotonic increasing 
function of 𝑚. With equally likely events there is more choice, or uncertainty, 
when there are more possible events. 

3. If a choice be broken down into two successive choices, the original ℋ 
should be the weighted sum of the individual values of ℋ (Shannon, 1948, p. 
10). 

Shannon proves that there is only one function that satisfies these three 
axioms, up to a positive multiplicative constant: 

 

ℋ = − 𝑝7. log% 𝑝7

4

7=$

. (1) 
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Regardless of the basis, the quantity −log	(𝑝7) can be interpreted to 
measure the surprise of observing an event of probability 𝑝7. Indeed, observing 
an event of probability one should give no surprise, and on the other hand, the 
occurrence of an impossible event brings an infinite amount of surprise. 
Moreover, this value decreases from infinity to zero as 𝑝7 increases from 0 to 1.3 
Note that this same interpretation also holds if one substitutes the term 
“surprise” by information. Therefore, the entropy of a random variable can be 
interpreted as the average surprise or average information that it carries.  

The logarithmic base chosen (i.e., 2), among other possible (as Shannon 
discusses), has the important advantage to provide a quantification of entropy in 
terms of binary digits (or bits).4 This choice becomes especially important if we 
interpret the entropy as the average number of bits per symbol necessary to encode 
a message written following the probability distribution 𝑝$, … , 𝑝4. This 
interpretation is not so clear at the first sight, but it is an important theorem 
within Information Theory (Cover; Thomas 2006, p. 62).  

Another interpretation of entropy is the average minimal number of 
binary questions that are necessary to identify a particular value observed from 
the probability distribution 𝑝$, … , 𝑝4. Consider, for example, a game that consists 
of trying to guess a number between 1 and 6 before rolling an honest dice by 
means of binary questions, like “is the value contained in set 𝑆?”, and so on. The 
probability of observing any value on the dice is equal to $

&
. If we enter these 

probabilities in Eq. (1) we obtain an entropy of ℋ = 2.585. Now, suppose that 
the dice is someway modified, in such way that some faces become more likely 
than others, according to the following distinct probabilities: 𝑝$ = 0.05; 𝑝% =
0.10; 𝑝C = 0.35; 𝑝E = 0.02; 𝑝F = 0.20; 𝑝& = 0.28. In this case we have ℋ = 2.1699, 
a lower value than that obtained when rolling the honest dice. This means that 
the second experiment is less uncertain than the first one, and therefore, requires, 
in average, less binary questions to guess the observed value. 

 

                                                
3 There are infinitely many continuous decreasing functions from the interval (0,1] to the set of 
real numbers, but in the same spirit of Shannon, it can be proven that the logarithm is the only 
reasonable function that captures the intuition behind the concept of surprise, up to a 
multiplicative constant (Ross 2010, p. 425). 

4 Shannon credits the creation of the nowadays popular abbreviation “bit” to J.W. Turkey. 
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2. Background on Markov Chains 
The history of the Markov Chains dates to the beginning of the 20th 

century when Andrey Andreyevich Markov proposed this mathematical object 
as a counterexample to a statement made by his intellectual rival Pavel Nekrasov. 
Essentially, the same theory was independently rediscovered a decade later by 
Agner Krarup Erlang, a Danish mathematician and engineer, when studying 
queues of telephone calls on a hub. The history of the Markov Chains can be more 
explored in (Carvalho 2019), (Maia 2016), and references therein, and in this 
section, we provide the fundamentals necessary to apply it to modelling 
transition between musical objects. For a brief introduction to Markov Chains, 
with a more probabilistic approach, see Ross 2006, pp. 419–24 and de Groot; 
Schervish 2012, pp. 188–200. 

Intuitively, a Markov Chain is a process where the observed state at some 
time instant statistically depends only on the observed state in the immediately 
preceding time. Consider, for example, a quite boring sequence of pitch-classes 
where the 𝑛-th one can be either the same as the 𝑛 − 1 -th, one semitone above 
or one semitone below it, all with equal probability 1/3 (consider B as the pitch 
class preceding C and C as the pich-class succeeding B). Assume also that the 
initial pitch class is randomly chosen with equal probability 1/12 from the set of 
the twelve pitch-classes. This is a very basic example of a Markov Chain, but it 
can be used to introduce some fundamental concepts of the more general theory: 
the set of all the possible observed states is called the state space, and in this 
example, it is given by Λ =	{C, C#, D, D#, E, F, F#, G, G#, A, A#, B}; vector λ =
1/12…1/12 , containing 12 entries, is the initial probability distribution; and 

finally, the transition probabilities matrix, denoted by 𝑴, is constructed and given 
by: 

𝑴	 = 	

1/3 1/3 0 0 0 0 0 0 0 0 0 1/3
1/3 1/3 1/3 0 0 0 0 0 0 0 0 0
0 1/3 1/3 1/3 0 0 0 0 0 0 0 0
0 0 1/3 1/3 1/3 0 0 0 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0 0 0 0
0 0 0 0 1/3 1/3 1/3 0 0 0 0 0
0 0 0 0 0 1/3 1/3 1/3 0 0 0 0
0 0 0 0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 0 0 0 0 1/3 1/3 1/3 0 0
0 0 0 0 0 0 0 0 1/3 1/3 1/3 0
0 0 0 0 0 0 0 0 0 1/3 1/3 1/3
1/3 0 0 0 0 0 0 0 0 0 1/3 1/3

. 
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The value on the 𝑖-th row and 𝑗-th column is the probability of jumping to 
the pitch class 𝑗 given that the current pitch class is 𝑖, for 𝑖, 𝑗	 ∈ Λ. Therefore, this 
Markov Chain can be abstractly described by the triple Λ, λ,𝑴 . Notice that if the 
set Λ is also abstracted from the musical intuition and being allowed to be any 
generic set with 12 elements, the same mathematical framework holds in several 
distinct scenarios. Endowed with this intuition, we now formulate the Markov 
Chains with more mathematical details. 

Denote by Λ = {𝑥$, … , 𝑥S} a finite set of objects of interest, which will be 
called the state-space and its elements will be called states. Let also 𝑋$, 𝑋%, 𝑋C, … be 
a sequence of variables, assuming values on the set Λ but which specific value 
depends on random factors.5 The sequence 𝑋$, 𝑋%, 𝑋C, … is called a Markov Chain if 
the probability of the variable 𝑋# assuming any particular value on the set Λ 
depends only on the value observed of the variable 𝑋#V$, for all 𝑛	 = 	2, 3, 4, …. In 
mathematical terms, we can write that 

𝑃 𝑋# = 𝑥X 𝑋#V$ = 𝑥7, … , 𝑋$ = 𝑥Y = 𝑃 𝑋# = 𝑥X 𝑋#V$ = 𝑥7 , (2) 

where the symbol | denotes a conditional probability, meaning that the event on its 
left side is considered in the light of the occurrence of the event on the right side. 
At the beginning of the process, there is no “past” to condition on, so the 
probability distribution of the first-time instant 𝑋$ is distinctively denoted by a 
vector of probabilities λ = 𝑝$, … , 𝑝# , composed by positive real numbers that 
sum up to 1. 

Of all these concepts, the most abstract when regarding musical 
applications are the states, because of its genericness. However, it is exactly this 
aspect that makes the Markov Chains theory widely applicable, not only to 
musical scenarios but also in other areas of Science and Engineering as well. The 
researcher can choose whatever it is desirable to use as a set of states, and 
particular instances will be discussed later in this section. For the moment, we 
focus instead on mathematical aspects of the theory. 

The set of probabilities 𝑃 𝑋# = 𝑥X 𝑋#V$ = 𝑥7 , for all 𝑥7, 𝑥X ∈ Λ, are called 
the transition probabilities and abbreviated by 𝑝7X, for 𝑖, 𝑗	 = 	1, … , 𝑁. In this work it 
is assumed that these probabilities are constant along time, and this collection 
can be assembled in the transition probabilities matrix, denoted by 𝑴, where the 

                                                
5 This object is called a random variable in the statistical literature. 
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element on the 𝑖-th row and 𝑗-th column precisely contains the value of 𝑝7X. Notice 
that the sum of each row of this matrix is equal to 1, since it is given by 

𝑝7X

S

X=$

= 𝑃 𝑋# = 𝑥X 𝑋#V$ = 𝑥7

S

X=$

, (3) 

that is, a quantity that describes the situation: “conditioned on departing from 
the state 𝑥7, the probability of arriving at any one of the 𝑛 possible states”. 

The probabilities contained in matrix 𝑴 also allow us to answer the 
following question: “if departing from the state 𝑥7, what is the probability of 
arriving in state 𝑥X in exactly 𝑘 steps?”. For 𝑘	 = 	2, it is easily interpreted that this 
answer is given by: 

𝑝7X
% = 𝑃 𝑋# = 𝑥X 𝑋#V% = 𝑥7

= 𝑃 𝑋# = 𝑥X 𝑋#V$ = 𝑥Y 𝑃 𝑋#V$ = 𝑥Y 𝑋#V% = 𝑥7

S

Y=$

, 
(4) 

 
since the right hand-side of this equation encodes exactly the sentence “the 
probability of transitioning from 𝑥7 to 𝑥Y in one step and then transitioning from 
𝑥Y and 𝑥X also in one step but considered among all the possible values of 𝑥Y, for 

𝑘	 = 	1, … , 𝑁. From the theory of Linear Algebra, the quantity 𝑝7X
%  defined above 

is exactly the entry in the 𝑖-th row and 𝑗-th column of the matrix 𝑴%. It is also 
possible to prove that an analogous result also holds for larger steps, namely the 
Chapman-Kolmogorov equations: “the entry in the 𝑖-th row and 𝑗-th column of the 
matrix 𝑴Y, denoted by 𝑝7X

Y , is exactly the probability of arriving in 𝑘 steps in state 

𝑥X if departing from state 𝑥7”. 
Finally, another important aspect of the Markov Chain theory, especially 

in musical applications, is the order of the chain. The example and formalization 
here presented are for the case of a first-order chain, that is, when the transition 
probability is given only by the previous and current step. In musical 
applications, it is sometimes reasonable to have a dependence on a more distant 
past to some chord passages, for example, and these phenomena are not captured 
by a first-order chain. A possible solution to this issue is to increase the order of 
the chain, by considering probabilities of transition of the following type: 

𝑝7XY = 𝑃 𝑋# = 𝑥Y 𝑋#V$ = 𝑥X, 𝑋#V% = 𝑥7 , (5) 
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which gives rise to a second-order Markov Chain. Clearly this procedure can be 
generalized to any order of interest, but unfortunately it is not the most 
interesting solution, mainly because of the increase in the number of parameters 
to work with, since the size of the probability transition matrix will severely 
increase. A more parsimonious solution and the one adopted in this work is to 
maintain a first-order Markov Chain but with a special focus on modelling the 
state-space with more sophisticated objects than simply chords in such a way 
that the modelling becomes more realistic.  

The first applications of Markov Chains to Music were not endowed with 
this sophistication on wisely modeling the state-space, but no less important, 
mainly because of the pioneering and the promising results obtained. In the 
beginning of the decade of 1950, Harry Olson and Hebert Belar analyzed a corpus 
of 11 melodies by Stephen Foster, properly transposed to the same tonality, and 
estimated transition probabilities of order 0,6 1, and 2 between pitches; the 
rhythmic patterns were analyzed only on its relative frequency of occurrence. 
With this information, they developed the first prototype of a “synthesizer”, that 
generated random music according to these probabilities.  

Previously to the publication of Olson’s and Belar’s work, which occurred 
in the beginning of the decade of 1960, Iannis Xenakis pioneered a theoretical 
study on the limits of generality when modelling the state-space. Indeed, in his 
book Formalized Music he proposes to consider Markov Chains on the set of 
screens, an object that described the frequency occurring at any particular time 
instant on a sonic manifestation. Nowadays the screens can be interpreted in the 
light of the Short-Time Fourier Transform, a powerful tool to perform time-
frequency analysis of audio signals; Xenakis was aware of the existence of this 
concept, through the work of Gabor, but the computational power to make this 
approach practical was not available at the time. So Xenakis circumvented this 
issue by manually creating a set of screens and a probability transition matrix 
among them and used a slight modification of a realization of this chain to 
generate a sequence of screens, which then he transported to usual music 
notation. The result of this experiment are the pieces Analogique A and Analogique 
B. For more detail on the creation of these pieces see Carvalho (2019). 

                                                
6 A Markov Chain of order 0 is described only by the relative frequency of observation of its states. 
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The first experiment using Markov Chains to model harmony dates back 
from 1957, by Lejaren Hiller and Leonard Isaacson. Instead of directly estimating 
the transition probabilities from a corpus of interest they proposed one by giving 
more weight for consonant and smaller intervals. Using this material, they 
composed the Illiac Suite, later renamed to String Quartet No. 4, which is 
considered the first musical score generated by a computer. 

The history of Markov models in music is very extensive and is still under 
development, not only in Music Theory but also in Signal Processing, since 
Hidden Markov Models are widely employed to perform automatic chord 
recognition, among other tasks (Müller 2015). For a more extensive 
bibliographical review on the beginning of this story, see Ames 1989. 

 

3. Information Theory and Markov Chains in Music 
Due to the attractive potentials of Shannon-Weaver’s theory to be 

extended to other fields besides Electrical Engineering, it is not surprising that 
just a few years after its publication Leonard Meyer wrote an article entitled 
Meaning in Music and Information Theory (1957). In his study, Meyer intends, in 
fact, not only to evidence the, in his own words, “striking” parallelism and 
equivalences between the music experience and Information Theory, but mainly 
to investigate a closely related topic, meaning, an aspect, as aforementioned, not 
covered by Shannon. Meyer begins resuming one of his most famous theses,7 
which expresses that meaning in music results from “the arousal and subsequent 
inhibition of expectant tendencies in the shaping of musical experience,” 
connecting it with a general definition of meaning, proposed by the logician 
Morris Cohen: “anything acquires meaning if it is connected with, or indicates, 
or refers to, something beyond itself, so that its full nature points to and is 
revealed in that connection” (Meyer 1957, p. 412). Since music can essentially be 
understood as information transmitted across time, probability has an enormous 
importance in the cognitive process of meaning and style (in fact, the very kernel 
of Meyer’s interest), which orients the subsequent discussion in his work.  

He firstly proposes a subdivision of musical meaning between two 
complementary but interacting categories: designative (or connotative, external 

                                                
7 Introduced in his seminal book Emotion and Meaning in Music (1956). 
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to musical events of a piece), and embodied (referring to events present in the 
musical context in question). Although arguing that designative meaning 
(associated with musical character) also influences the determination of style, 
Meyer prefers to address specifically the latter category in his paper. In this 
context, he defines style as “the universe of discourse within which musical 
meanings arise,” adding that, apart from particularities of epoch, geographic, 
composers, musical systems and idioms, and so on, 

what remains constant from style to style [… is] in fact the psychology of 
human mental processes – the ways in which the mind, operating within the 
context of culturally established norms, selects and organizes the stimuli that 
are presented to it (Meyer 1957, p. 413). 

By adding then that style “is a complex system of probabilities” that arises 
naturally “expectation” (ibid., p. 414), Meyer manages to properly connect his 
study with Information Theory.  

On the other hand, expectation8 can also be classified as latent or active. 
While the former concerns basically “the probability relations embodied in a 
particular musical style” (for example, the strong tendency of the leading tone 
toward the tonic in tonal music), expectation is activated when normality is in 
some way disturbed. As Meyer interestingly emphasizes, “meaning arises when 
an individual becomes aware, either affectively or intellectually, of the 
implications of a stimulus in a particular context” (ibid., p. 415). This leads the 
author to suggest that “musical meaning arises when an antecedent situation, 
requiring an estimate as to the probable modes of pattern continuation, produces 
uncertainty as to the temporal tonal nature of the expected consequent” (ibid., p. 
416). Just after this, Meyer inserts the notion of entropy in his argumentation, 
relating properly meaning and information as dependent on uncertainty: 

Information is measured by the randomness of the choices possible in a given 
situation. If a situation is highly organized and the possible consequents in 
the pattern process have a high degree of probability, then information (or 
entropy) is low. If, however, the situation is characterized by a high degree 
of shuffledness so that the consequents are more or less equi-probable, then 
information (or entropy) is said to be high (ibid., p. 416). 

 

                                                
8 This notion of “musical expectation” can be related to the probabilistic concepts of conditional 
expectation and forecasting, but we will not draw this parallel here. For more details, see 
Temperley 2007. 
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Another central concept of Information Theory that is perfectly applicable 
to the understanding of musical processing is redundancy. Like expectation, 
redundancy is governed by statistical conditions and, in a sense, can be seen as 
much more intense in musical situations.9 As affirmed by Meyer, 

Just as letters can be left out of a written statement or words omitted from a 
message without affecting our ability to understand and reconstruct the 
word or message, so tones can be omitted from a musical passage without 
affecting our ability to grasp its meaning (ibid., p. 418). 

This means that, due to redundancy, one is capable of reconstructing 
musical omitted information given its context (properly associated with stylistic 
norms). Fig. 1 provides a simple illustration of this aspect, depicting an 
archetypical cadential formula10 of a hypothetical piece. Despite lacking the 
necessary elements for an unequivocal analytical labelling of the harmonic 
functions involved (more specifically, pitch classes C in the first chord, B in the 
second, and E and G in the third), anyone minimally familiarized with the 
common-practice conventions would have no difficulties to hear functionally the 
passage as it is expressed in the Roman numerals written below the score.  

 
Figure 1: Example of a perfect authentic cadence with omitted notes 

Redundancy is a common resource of the compositional palette (normally 
associated with manipulation of textures and densities), and it is in general easily 
decoded by listeners (like exemplified above). However, this shared property is 
frequently explored by composers to promote ambiguity, a very useful spice in 
musical construction. Consider, for example, an alternative version of the 

                                                
9 See for example David Huron’s commentaries about the larger amount of redundancy in music 
in comparison with that associated with language, which is almost negligible (Huron 2006, p. 
244). 

10 In more technical terms, a perfect authentic cadence, or PAC. 
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cadence of Fig. 1, in which the high expectancy of tonic resolution provoked by 
the dominant preparation is abruptly frustrated, as shown in Fig. 2. The arrows 
attempt to reconstruct the cognition of the detour: initially, the very surprising 
arrival of the second-inversion B-major triad arouses some confusion. In the 
immediate continuation, the listener recognizes the resumption of the same 
cadential formula, but transposed a semitone downwards; finally, the so-
presumed dominant rooted in G is retroactively reinterpreted as a German-sixth 
chord of the new key of B major, which also implies a functional reinterpretation 
of its constituents: the root G becomes the flatted fifth related to an omitted root 
C#; the previously fifth D is functionally associated with a flatted ninth. The chord 
is completed by two “physically” absent (but inferred) pitch classes, B and F,11 
that have their functions inverted, as seventh and third (in this case, as the 
enharmonically equivalent E#). Using Meyer’s conceptualization, the striking 
break of expectations in this situation arises a new possible meaning for the 
harmonic formula to the surprised hypothetical listener, so far habituated only 
to the default resolution. 

 
Figure 2: Example of ambiguous harmonic situation. Arrows are intended to 

reconstruct the listener’s interpretation. 

                                                
11 Which were, at the first impression, “mistakenly” labeled as third and seventh. 
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Consider now that the same listener, amazed by the new experience, 
becomes interested in knowing other pieces of that composer or style. We can 
conceive that now the listener’s expectancy related to this specific cadence has 
somehow changed. The uncertainty of the formula for him/her was definitively 
increased. Mathematically, we can think that the cadences employed by the 
hypothetical composer are the output of some unknown random variable. As the 
listener hears only the excerpt in Fig. 1, he infers that this is the only possible 
cadence, implying that this random variable has zero entropy.12 But, after being 
aware of the cadence in Fig. 2, he may associate a positive probability to it. 
However, this value should be not as high as that of the first cadence: since in 
this second case the musical content brings more surprise to the listener, its 
probability of occurrence should be quite low. Finally, since now there is some 
uncertainty associated with the observed cadence, the respective random 
variable has more entropy than in the first case.  

This simple example allows us to see musical styles as very complex and 
dynamic systems, formatted by sets of specific norms, but also by the breaking 
of these rules, in distinct degrees of probabilities. As pointed out by Meyer, 
statistical analysis becomes a powerful tool for depicting particularities of a style. 
However, as he says “the mere collection and counting of phenomena do not lead 
to significant concepts. Behind any statistical investigation must be hypotheses 
that determine which facts shall be collected and counted” (Meyer 1957, p. 421). 
In other words, the understanding of the conditions that characterize the 
processes to be studied is a primordial factor for initiating the analysis. 

Several empirical studies followed closely the pioneering explorations of 
Meyer in the confluence between music and Information Theory. In 1958, Joseph 
Youngblood, in an article entitled “Style as Information”, proposed “to explore 
the usefulness of Information Theory as a method of identifying musical style” 
(p. 24). The main goal of his study is to “attempt to determine the extent of the 
restrictions under which certain composers worked; [however] it will not attempt 
to explain why certain combinations were favored and others eschewed” (p. 25). 
Youngblood examines a corpus of 20 pieces (whose melodic lines were previously 
analyzed) composed by Schubert (eight songs), Mendelssohn (six arias), and 

                                                
12 Recall that sure events do not bring any information and no surprise. Mathematically, ℋ 1 =
	−1. log% 1 = 0. 
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Schumann (six songs),13 mainly with respect to first-order probabilities (i.e., 
involving bi-grams, that is, blocks of two contiguous notes), through the 
construction of probability transition matrices. With the zeroth- and first-order 
probabilities associated with each composer, the author calculated then their 
entropies. Additionally, he also calculated the relative entropy (ℋ[) for any case, 
which, as already defined, corresponds in this specific case to the ratio between 
the nominal entropy and the entropy which would result if all chromatic notes 
were equally distributed (i.e., 𝑝(C) = 𝑝(C#) = 𝑝(D) = … = 𝑝(B) = 1/12), which equals 
3.58 bits. Finally, he proposes to quantify redundancy (𝑅) as the difference 
between the maximum probability 1.00 and ℋ[. Table 1 summarizes the data 
obtained by Youngblood. 

 

 zeroth-order first-order (average) 
ℋ ℋ[ 𝑅 ℋ ℋ[ 𝑅 

Schubert 3.13 0.87 0.13 5.37 0.75 0.25 
Mendelssohn 3.04 0.85 0.15 5.54 0.74 0.26 

Schumann 3.05 0.85 0.15 5.52 0.77 0.23 
 

Table 1: Entropy (H), relative entropy (Hr), and redundancy (R) in a corpus of works by 
Schubert, Mendelssohn, and Chopin (adapted from Youngblood 1958, p. 32) 

 
In the article “Information Theory Analyses of Four Sonata Expositions”, 

published in 1966, Lejaren Hiller and Calvert Bean, motivated by the argument 
that “most music not only has an average information level somewhere between 
chaos and total order, but also usually has increases and decreases of information 
during its time duration” (p. 102), propose a statistical analysis of the expository 
sections of the initial  movements of four piano sonatas (Mozart’s K. 545, 
Beethoven’s Op. 90, Berg’s Op. 1,14 and Hindemith’s second sonata), in order to 
investigate if pitch distribution can be in some way associated with structural 
expectations, as preconized by Meyer. Differently from Youngblood, the authors 
take for their universe, rather than 12, 21 pitch classes (that is, disregarding 

                                                
13 He also applies the method in a statistical analysis of selected pieces of Gregorian chant, aiming 
at a comparison with the first corpus. 

14 In this case, the unique movement. 
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enharmonic equivalence), in order to capture with more efficiency certain 
tendencies of notes depending on contextual conditions.15  

In the next year (1967), another article written by Hiller, this time co-
authored by Ramon Fuller, extends the informational analytical approach to 
serial music, by examining Webern’s Symphony Op.21. The alphabet considered 
(that is, the set of symbols under investigation) is formed now by melodic 
intervals, rather than pitch classes. At the end of the study, the authors detect two 
practical limitations of the analytical method, concerning the sizes of the sample 
and of the alphabet. As recognized by them, “if the analyst works with large 
samples and small alphabets, he obtains reliable but generalized results; if he 
works with smaller samples and/or larger alphabets, he obtains more specific but 
less reliable results” (pp. 110–1). Despite this dilemma, they conclude that 
analysis from an Information-Theory viewpoint is a potential valuable tool in the 
investigation of style, given that it can “provide a valuable summary of the effect 
of the number of symbols used, their relative frequency, and their combinatorial 
arrangements upon the structural complexity of a musical composition” (p. 101). 

The problem of the sample length is also a major concern in a paper 
written in 1983 by Leon Knopoff and William Hutchinson. Taking as reference 
Youngblood’s study, the authors argue about the relative size of samples in 
statistical analysis addressing musical styles. The authors pose several questions 
in order to orient their approach, which expands considerably the Youngblood’s 
repertoire.  Limiting the study to zeroth-order probabilities of isolated notes, they 
obtain some discrepant results for entropy considering a same composer 
(Mozart, for example) and different corpora, which allows them for questioning 
the efficacy of the calculation of entropy as a tool for determining style. 

In the work “On the Entropy of Music: An Experiment with Bach Chorale 
Melodies” (1992), Leonard Manzara proposes an experiment to test the capacity 
of listeners for predicting the continuation of a melodic event given an already 
familiarized context. Manzara assumes that “the information content, or 
'entropy', of a piece of music cannot be determined in the abstract, but depends 
on the listener's familiarity with, and knowledge of, the genre to which it 
belongs” (p. 81). For the experiment, Manzara selects Bach’s collection of 371 
                                                
15 That is, the authors differ in this approach flats from sharps, according to the tonal context. For 
example, normally pitch class Bb in F major has a diametrically distinct behavior from its 
enharmonic equivalent A# in B major. 
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chorales as corpus of study and elaborates a computational game, named 
“Chorale Casino”,16 in which a user is asked to guess the proper continuation for 
a given note of the soprano melody of a random chosen chorale.  As in a slot 
machine of a real casino, bets (associated with imaginary money in this case) are 
made according to the individual plausibility that a user has with respect to a 
continuation of the probed event. More specifically, this ingenious experiment 
explores entropy of the distribution of pitches17 (or the information conveyed by 
these) considering the familiarization of listeners with a musical idiom and their 
latent expectation (in Meyer’s terms). Manzara organized then a tournament in 
which fifteen contestants (grouped in three levels of musical experience) 
competed using the program.  Two pieces were selected for the tournament, the 
chorales 61 (in Eb major) and 151 (in G major). Afterwards, Manzara calculated 
the pitch entropy for both melodies: 1.529 (chorale 61) and 1.974 (chorale 151), 
relatively low values that indicate a considerable (average) predictability in both 
cases. He also elaborated instantaneous entropy profiles for the two pieces, aiming 
at a “detailed note-by-note of the melody for each chorale” (p. 86). These profiles, 
plotted graphically, reveal that the lowest values for entropy coincide with the 
fermatas of the scores, which represent cadential reposes matching the end of 
textual verses. More specifically, authentic cadences have, in average, still lower 
entropy than half cadences. 

Among a multitude of relations between music and mathematics studied 
in the first volume of Musimathics, written in 2006 by Gareth Loy, there is a short 
section dedicated to Information Theory, focusing especially on the concepts of 
entropy and redundancy (pp. 343–9). After a review of Shannon’s theory, Loy 
illustrates the relation between entropy and music expectancy with an interesting 
example, addressing motivic construction in a hypothetical piece. Fig. 4 aims to 
reconstruct Loy’s basic idea by including a graphical representation of the 
involved relations and elements. Consider that a listener is exposed to a simple 
eight-note motive, contextualized in the key of D major. For simplicity, this 
motive is assumed as occurring at the very beginning of the piece (that is, no 

                                                
16 Based on a similar experiment organized by T. Cover and R. King, addressing entropy in 
English printed texts. 

17 Since Bach’s chorales are essentially homorhythmic (that is, quarter note is largely the most 
recurrent durational figure in the pieces), Mancara manages to isolate pitch from other 
dimensions, decreasing the number of variables of his empirical study. 
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intraopus information was yet stored in the listener’s memory). Consequently, the 
expectancy of the next “move” (represented in the figure by the level above that 
of the real music events) is virtually null, which means that any possible musical 
situation can, theoretically, follow the motive. In terms of information, entropy 
at this initial moment is relatively high.18 Consider now that a diatonic sequence 
transposed a second higher is played. This new event triggers a series of cognitive 
processes in the listener’s mind: firstly, he/she recognizes retroactively, with the 
help of the short-term memory, that this new melodic fragment is the second 
unity of a model-sequence scheme, and immediately projects the logic 
continuation of the pattern, which will start with F#, the third scalar degree. This 
leads entropy to drop radically. The subsequent matching with listener’s 
expectancy turns entropy even lower since the projection of a new sequence 
(beginning with G) becomes almost a certainty in his/her mind. However, the 
melodic chain is suddenly broken, replaced by an apparently cadential closure. 
The amount of information conveyed by the new fragment is raised to the initial 
level. Memory is not anymore capable of providing support for expectancy of the 
immediate continuation. 

 
Figure 3: Example of entropy in the manipulation of a melodic sequence (adapted from 

Loy (2006, pp. 348–9)) 

                                                
18 For the purposes of this illustration, it is enough the qualification of the entropy, rather than its 
precise quantification. 
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In the introduction of Sweet Anticipation (2006), David Huron affirms his 

intention of revisiting Meyer’s pioneer studies, and to “recast the discussion in 
light of contemporary findings. [Huron’s principal purpose] is to fill in the details 
and to describe a comprehensive theory of expectation” (Huron 2016, p. 3). The 
central aspect of Huron’s comprehensive and deep study lays the notion of 
statistical learning, as “the origin of auditory expectations” (viii), a topic 
supported by many discussions involving original ideas, concepts, premises, and 
experiments, which ultimately associate musical experience with realms like 
evolutionary survival strategies, psychological and cognitive mechanisms, as 
well as cultural conventions. 

The concept of entropy is firstly addressed in the section entitled 
“Subjective probability and uncertainty” (p. 53). After summarizing the basic 
aspects of Shannon’s ideas, Huron presents an interesting experiment made with 
two groups, formed by Balinese and American musicians. An unfamiliar Balinese 
melody played by a peng ugal (a typical instrument with a range of only ten 
possible pitches) is presented, note to note, to both groups. Any subject is asked 
to guess which would be the best continuation at each point. Since there are only 
ten alternatives for each note, maximum entropy (calculated by using Eq. 1 with 

𝑝7 =
$
$]
, for 𝑖 = 1,… , 10) equals 3.22 bits, corresponding to total uncertainty at a 

given point with respect to the next event. This was almost the value estimated 
considering American listeners (3.2 bits) after hearing the first note of the melody. 
In contrast, the estimate of the entropy related to the expectations of Balinese 
listeners after the first note was considerably lower: 2.8 bits, which indicates that 
learning from data is a process with a strong cultural component. As calculated 
by Huron, 2.8 bits corresponds to approximately seven equiprobable states for 
the second note. Continuing the experiment, the estimated entropy decreases as 
the melody is played for Balinese subjects, reaching 2.35 bits at the fifth note 
(roughly, five possible continuations uniformly chosen), while for American 
musicians it is kept in higher values. After this, uncertainty starts to increase for 
Balinese musicians, and at about the tenth note the estimated entropy in both 
groups became almost equal (rounding 3 bits), but near the end of the melody 
they differ again, with a relatively lower entropy experimented by the Balinese.  

In Chapter 13, entitled “Creating predictability”, Huron returns to 
entropy: 
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Using information theory, we might say that what distinguishes one work 
from another are those elements that have a higher entropy than other works, 
but a low entropy in the context of the work itself. Said another way, we 
would look for passages or features that are (1) not commonly found in other 
works, but (2) occur frequently in the work under consideration. Formally, 
we can define a “distinctive feature” to be those passages or figures that 
exhibit a high ratio of external-to-internal entropy. Such measures of 
“distinctiveness” have long been used in quantitative stylistics, such as 
research used to determine the authorship of some text (p. 262). 

The author then comments that after the enormous enthusiasm arisen 
from Meyer’s pioneer study about the potential connections between music and 
the Information Theory, the interest gradually declined over the subsequent 
decades, due to technological limitations, regarding not only computational 
capacity but also the lack of sufficiently large and comprehensive databases 
involving distinct musical repertoires.  Arguing that both obstacles were plainly 
straightforward to overcome in more recent times, Huron advocates the idea of 
statistical learning as one of the most efficient ways for studying and explaining 
musical style and expectations with the necessary deepness.  

Entropy also plays an essential role in David Temperley’s book Music and 
Probability (2007). As stated by the author in the preface, the study was motivated 
by an interest about the cognitive mechanisms involved in the parsing of 
syntactic structures, a well-studied linguistic problem that has been more 
recently also directed to music. For addressing the question, Temperley adopts a 
probabilistic approach, especially associated with Bayesian theory19, which 
provides the necessary elements for the elaboration of several computer-based 
models, both with analytical and compositional purposes, considering metrical, 
rhythmic, harmonic, tonal, and pitch organizations. A general aspect considered 
by Temperley along the book is how some structure of a given musical situation 
(e.g., meter or key) can be perceived (or deduced) by a listener given superficial 
elements, and vice-versa, a task which involves the notion of conditional 
probability, the first also relying on the Bayesian interpretation of probability. In 
the last chapter of the book, the author defines his concept of communicative 
pressure as a decisive way for understanding musical style from the interaction of 

                                                
19 Bayesian Statistics is a branch of the main discipline on which Bayes’ Theorem plays a central 
role, by allowing the probabilistic incorporation of prior knowledge of the researcher and its 
further update as the stream of data arrives and is processed. For more details, see Jaynes 2003. 
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listeners’ and composers’ perspectives in function of probability, bringing some 
refinement to Meyer’s original proposal. With the help of this “powerful tool for 
explaining differences between styles” (p. 184), Temperley addresses perceptual 
discrimination of syncopated and rubato rhythms, especially when both 
categories are combined in a musical context.  

In a further work, Temperley (2009) investigates harmony in common-
practice period, interested on the principles that govern the transition between 
contiguous chords. Motivated by a scarcity of empirical studies on this specific 
subject (in contrast with the more common statistical analysis on frequency of 
chords in different repertoires), the author adopts as database a corpus formed by 
harmonic progressions extracted from 46 excerpts of several common practice 
works (by varied composers, as Bach, Haydn, Beethoven, Grieg, etc.).20After 
encoding and performing the harmonic analysis, Temperley produced a number 
of aggregate statistics, including a counting matrix, whose structure is 
reproduced in Fig. 4.21 

Roman numerals refer to chord roots regardless the associated chordal 
qualities, such that, as exemplified by Temperley himself, ii and V/V are treated 
as the same entity. On the other hand, this strategy allows for normalizing 
transitions occurring in different keys and modes. The rows are occupied by the 
antecedent chords of a transition, while the consequent chords are disposed 
along the columns. A cell represents the number of occurrences of a transition 
formed by the corresponding pair of row and column. For example, I (first row) 
is followed by IV (sixth column) in 45 instances in the corpus. The last column 
(named Σ) contains the sum of the values on each line and represent the total 
number of “departures” from that chord root. After dividing each line by the sum 
of its values we obtain an estimated probability transition matrix, containing the 
estimated transition probabilities between pairs of chord roots within the K-P 
corpus. This matrix is displayed in Fig. 5. 

                                                
20 These progressions come from the workbook that accompanies Stefan Kostka and Dorothy 
Payne’s book Tonal Harmony by McGraw-Hill (1995). Temperley names it the Kotska-Payne 
corpus (K-P corpus for short).  

21 For a detailed description of the processes and conventions adopted, as well as the of several 
explorations of the statistical data, see Temperley (2009). 
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Figure 4: Counting matrix related to K-P corpus, adapted from the data produced by 

Temperley (2015) 

 

 
Figure 5: Transition matrix related to K-P corpus, produced from the matrix of Fig. 4 

Interesting possible usages for the transition matrix, not explored by 
Temperley in this work, is to provide a calculation of entropy associated with the 
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chords in the repertoire. Consider, for example, the eighth row of the matrix, 
which corresponds to the possible continuations for chord V, as shown in Fig. 6. 
This means that in the analyzed corpus, out of 197 transitions initiated by V, this 
chord is followed by I in 167 instances, in no case by bII, in eight by II, and so on. 

 
Figure 6: Eighth row of the matrix of Fig. 4 

The calculating the entropy of V is preceded by the following instructions: 
(1) Form a vector disregarding the zeroed continuations:  

𝑣	 = 	 167, 8, 1, 2, 4, 7, 6, 2 ; 

(2) By dividing each element of vector 𝑣 by the total of continuations, 197 
in this case, transform its values into probabilities. Thus,  

𝑣	 = 	 0.8477, 0.0406, 0.0051, 0.0102, 0.0203, 0.0355, 0.0305, 0.0102 . 

(3) Input 𝑣 in Eq. (1), which returns entropy ℋ = 1.0015 bits.  

The value obtained matches the quite low uncertainty associated with this 
particular chord, that in almost 85% of the cases is followed by the first degree in 
the corpus. On the other hand, if we apply the same algorithm to another chord 
with a more even distribution among continuations, say the bVI, the entropy is 
considerably higher, in the case ℋ = 2.7343 bits. 

For Temperley, the harmony rules support his findings, since the most 
recurrent root motions in his analysis are V–I, I–V, ii–V, and I–IV, which match 
to the general knowledge about these progressions in tonal music. Indeed, this is 
a quite consistent finding of the statistical analysis, related to transitions between 
primary triads and functions, however, the lack of a clear-cut distinction of the 
chords with respect to their qualities (as well as by the presence or absence of 
extensions, like sixths, sevenths, ninths, and so on) represents a considerable 
limitation of his study, preventing it from exploring more high levels of chordal 
relations. Apart from this, Temperley’s analytical method is an important 
reference for the present work, as it will be evidenced in Section 5. 

Recently, a study conducted by Mathieu Barthet and collaborators (2014) 
use modern mining techniques for exploring big database, focusing on harmonic 
progressions of six musical styles (classical, jazz, blues, rock, folk, and reggae). In 
contrast with previous statistical studies on musical aspects, this one works with 
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large-scale corpora (involving about 200,000 progressions) and relies on Music 
Information Retrieval rather than symbolic representation. Although the authors 
are not especially interested in expectancy and entropy issues, some of their 
general goals are quite close of the present study, as to “uncover similarities and 
discrepancies between sets of musical pieces [… and] exemplar or idiomatic 
chord progressions directly from empirical data analyses”, as we as to extract 
necessary “information to find the commonalities and specificities of musical 
styles and composers”. 

Unlike in Temperley’s analysis, Barthet et al discriminated the computed 
chords according to sixteen qualities (comprising also some inversions), which 
resulted into a dictionary of 192 entries (16 × 12 chromatic roots),22 and harmonic 
functions. The analysis identified progressions of different lengths, from two to 
sixteen chords (2- and 16-gram sequences), in each one of the six musical genres 
selected. Considering, for example, the case of the 4-gram unities, jazz music has 
the largest number of distinct sequences (19,820). 

 

4. Probabilistic Description of Harmonic Aspects of Antonio 
Carlos Jobim’s Music 

The Brazilian composer Antonio Carlos Jobim (1927–1994) was one of the 
greatest exponents of Brazilian music, being specially known for his musical 
contributions to the Bossa Nova style. The strong appeal of Jobim’s music among 
both the general and specialized public (i.e., listeners, performers, and music 
theoreticians) is certainly related to its harmony, which can be briefly described 
as a large set of very complex and denser sonorities connected by mainly 
unexpected, idiosyncratic relations. Surprisingly, this rich harmonic universe 
lacks a proper in-depth prospection in strictly structural terms, which motivated 
the pursuing of this research. In a first step, a recently concluded analysis 
addressed the harmonic preferences of Jobim’s music, through an analysis 

                                                
22 Despite of this expansion, 16 qualities seem a very modest number, if we consider the size of 
the corpora in question (especially if inversions are also counted among them). As it will be 
presented, Jobim’s corpus (composed by 146 songs) encompasses 88 distinct chordal qualities. 
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covering a corpus of 145 of his songs,23 from which the present work is a 
continuation.  

The analysis of Jobim’s harmony focused on two basic aspects: (1) the 
structure of the individual chords, which can be seen as a “semantic” 
component,24 and (2) the possible types of relations involving two contiguous 
chords, or binary relations, which corresponds to a “syntactic” component of the 
investigation (Almada 2022), being this latter aspect the focus of the present 
work. Essentially, a binary relation refers not to specific chords, but rather on 
their possible interactions, which involves both their chordal qualities and the 
intervals that separate their roots. 

A secondary, although very meaningful, aspect associated with this 
syntactic analysis addresses the measurement of expectancy for the binary 
relation’s second element, given the first one. This aspect is intimately related to 
how stylistic preferences are formed (recalling Meyer’s pioneering study), which, 
in turn, is strongly dependent on statistical concepts, especially the entropy and 
Markov chains. We now discuss this point in more detail. 

 

4.1 Binary harmonic relations and the augmented transition matrix 

Formally, a binary harmonic relation (BHR) is expressed as the triple 

𝑎 𝑖𝑏 , (6) 

here variables 𝑎 and 𝑏 denote the antecedent and consequent chord types,,25 
respectively, and 𝑖 represents the melodic interval between the roots of 𝑎 and 𝑏, 
measured in semitones, that is, 0 ≤ 𝑖 ≤ 11. Therefore, the relation 𝑎 𝑖𝑏  codify 
the following information: go form chord type 𝑎 to 𝑏, being their roots an interval 
of 𝑖 semitones apart. 
                                                
23 The research team is formed by Carlos Almada (coordinator), Ana Miccolis, Claudia Usai, 
Eduardo Cabral, Igor Chagas, João Penchel, Max Kühn, and Vinicius Braga. For a description of 
goals, theoretical framework, and methodological strategies involved, see Almada et al (2019). 

24 This approach involves the concept of chordal quality chord type (CT). A CT shall be seen as an 
abstraction of a specific chord, considering not the real component notes and root, but only its 
internal intervallic structure. 

25 In this research there exist two possible symbolic notations for expressing concrete 
manifestations of antecedent or consequent chord types: (1) by conventional, alphanumeric chord 
labeling used in popular harmony (“C7”, “Em7.9”, etc.); and (2) by CT genealogic notation (to be 
introduced ahead). For simplicity, this article will use preferentially the former notation. 
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The analysis of a musical corpus allows us to estimate an augmented 
transition matrix26 regarding the binary harmonic relations, which we will denote 
by 𝑴. More specifically, the rows of 𝑴 refer to the antecedent element of the 
binary relation, while the columns are related to the consequent element. 
Therefore, the element in row 𝑗 and column 𝑘 of 𝑴 is relative frequency of 
occurrence of the binary relation 𝑎X 𝑖𝑏 Y  within the considered corpus, being 
this value denoted by 𝑝XY. This structure is summarized in Fig. 7. 

Note that since the elements related to the rows and columns of 𝑴 are 
distinct, we do not expect this matrix to be square. Indeed, the matrix estimated 
with the data from Jobim-corpus’ analysis has 88 rows and 547 columns, which 
gives a total of 48,163 cells or possible binary relations. Therefore, it cannot be 
formally associated with a Markov chain. 

 
Figure 7: Generic structure of matrix M 

 

4.2 Genera of chord types 

Recall that our main object of interest is the harmonic relation between 
successive pairs of chords, so that the key of the music is of lesser importance. 
For example, the cadence <bVII → V7 → I> has the same feeling independently on 

                                                
26 The matrix is integrated only by situations that really occur in the corpus. The adoption of this 
format prevents the matrix from being extremely large and, especially, reduces computational 
cost. A detailed description of the data in question and the structure of the transition matrix is 
addressed in Miccolis et al (2021). 
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which key it is being played. Therefore, a process called normalization was 
employed, which also possess the advantage of reducing the size of matrix 𝑴. It 
is described as follows, when regarding a window of analysis consisting of two 
consecutive chords (see Fig. 8):  

1) Transpose chord 𝑎 such that its root becomes C (pitch class 0), which 
corresponds to the chord’s prime form, according to the adopted 
terminology;  

2) Transpose chord 𝑏 by same interval used in step (1);  

3) Compute interval 𝑖 between 𝑎 and b.  

4) Compose the formula 𝑎(𝑖𝑏), which represents the occurrence of that 
particular binary relation, converting it into the previously defined 
intervallic ambit (0 ≤ 𝑖 ≤ 11), if necessary;  

5) Re-write the formula using codes for the specific chord types of 𝑎 and 
𝑏, returning the formal notation of the binary relation.27 

Regarding the latter step, the need for concision and compactness of data 
for the computational process led to the elaboration of an encoding system for 
the chord types. The importance of this strategy can be easily perceived when 
one becomes aware of the total of qualities employed by Jobim in the corpus, not 
more than 88 distinct types. This number becomes still more striking if compared 
with the universe of possibilities in usage in popular music, namely 184 chord 
types.28 

The encoding system consists of the conversion of an ordinary chord label 
(considering its prime-form version, that is, with root “C”) into a string that 
combines a letter and an order number. According with the Chord-Type Genera 
Theory, there are ten basic CTs (named proto-chords, anyone heading a genus), 
from which derived types are obtained through recursive transformations by 
application of three sorts of operations (substitution, addition, and alteration). 
For avoiding confusions with the alphabetic convention for naming roots, the 
genera are identified with the alphabet backwards, adopting uppercase for 

                                                
27 The encoding process is described ahead. 

28 A detailed discussion about this and other related aspects of this theoretical model, entitled 
Chord-Type Genera Theory, is presented in a book about Jobim’s harmony, written by the Carlos 
Almada, currently in editorial preparation.  
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naming major-third qualities (Z, Y, X, W, and V), and lowercase for the minor 
ones (z, y, x, w, and v). 

 

 
Figure 8: Algorithm for encoding binary relations 

The basic information related to the encoding system for the chord types 
is summarized in Table 2. Observe that “zero” subscripts added to the letters 
denote them as proto-chords, which shall be seen as both representative of the 
respective CT genera, and potential generators of chord-type variants. Put another 
way, CM7, encoded as Z0, is the proto-chord that represents genus Z, containing 
all chord types of “major-with-major-seventh” quality, and can be taken as basis 
for the production of variants, such as C6 (Z1), CM7.9 (Z2), CM7.9(#11) (Z2.2), and 
so on, by the action of transformational operators. 

From the results obtained in the analysis, several derived approaches were 
initiated or just idealized, basically subdivided into analytical and compositional 
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applications.29 Among these, a very special point of interest in the research 
concerns a stylistic investigation about Jobim’s preferences concerning harmonic 
construction. The next section describes how the notions of entropy and chordal 
expectations can be related to the findings of the analysis. 

 

Chord label 
(prime form)30 

Pitch-class 
content Code  

CM7 {0,4,7,11} Z0 

C7 {0,4,7,10} Y0 
C(b5)7 {0,4,6,10} X0 
C(#5)7 {0,4,8,10} W0 

C {0,4,7} V0 
Cm7 {0,3,7,10} z0 

CØ {0,3,6,10} y0 
C°7 {0,3,6,9} x0 

Cm(M7) {0,3,7,11} w0 
Cm {0,3,7} v0 

 
Table 2: List of the ten proto-chords, considering prime-form label (root C), pitch-class 

content (4 refers to major third, 3 to minor), and their respective genealogical codes 
adopted in the system 

 

5.  Entropy and Expectation in Jobim’s Harmony 
As depicted in Fig. 7, any cell of the matrix 𝑴 informs the estimated 

probability of occurrence of the respective binary relation in the corpus. Consider, 
for example, the seventh row of M (referred to chord type “C6” or Z1),31 as shown 
in Fig. 9. Note how some cells depict zero occurrences (actually, zeroed cells 
represent most of the cases, regardless of the chosen row), meaning that such 
alternatives are entirely absent in the repertoire.32 It shall be recalled that we are 

                                                
29 For a study on composition of original harmonic sequences based on statistical modeling of 
Jobim’s practice, see Miccolis et al (2021). 

30 The conventions for labelling chords adopted in this system are described in the book 
mentioned in footnote 28. 

31 As it can be observed in Fig. 9, the rows and columns of 𝑴 are not ordered. 

32 It is a quite relevant fact for the understanding of Jobim’s harmonic preferences that only 2,695 
cells of 𝑴 have non-zero values (4.8% of the total of possible relations considering the 88 chord 
types).  
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dealing here with prime forms, rather than concrete chord labels. Take, for 
example, the binary relation #76, “C6→A7.13” (or, in the formal notation of the 
binary relations, Z1(9Y4). This means that not only this special progression, but 
also all twelve transpositions of it33 (i.e., “C#6→A#7.13”, “D6→B7.13”, …, 
“B6→G#7.13”) are absent in the corpus. 

 
Figure 9: Occurrences expressed in 𝑴 of binary relations initiated by chord type Z1 

(“C6”) considering the Jobim’s corpus: (a) counting of transitions; (b) relative frequency 

Similarly to what was experimented with the transition matrix of the K-P 
corpus in Temperley’s study, 𝑴 can be seen as a source of data for the calculation 
of the entropy associated with each one of the 88 chord types detected in the 
analysis (and listed in 𝑴’s rows). As discussed in the first section of this article, 
the entropy (or, equivalent to say, the measure of uncertainty) of a given event 
depends on the number of possible immediate continuations for it, as well as on 
the distribution and magnitude of the probabilities of these continuations.  

Consider once again “C6” as an illustration of this process. By plugging 
the values on the row of 𝑴 corresponding to “C6” into Eq. (1), we obtain an 
estimated entropy of ℋ = 	5.913. By considering that only 117 entries of this line 
are non-null, the maximum value attained by the entropy would be 6.870, if the 
distribution were uniform over these values.34 Therefore, the estimated entropy 
indicates a quite high uncertainty associated with chord type “C6” in Jobim’s 
corpus. 

                                                
33 Considering enharmonic equivalence for roots. 

34 Since the other 430 transitions were not observed on the analyzed corpus, it is not reasonable to 
include them even in hypothetical scenarios to compare the estimated entropy. 
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The estimated transition probabilities also provide a visual identification 
of the possible continuations for a selected chord type. This kind of 
representation is exemplified in Fig. 10, by selecting chord type “C6” again for 
exam. Aiming at a faster visual understanding, the edges connecting the central 
chord type to its possible continuations are proportionally adjusted to the 
respective estimated transition probabilities, being disposed in a spiral-like 
trajectory (for clarity, only the twelve more frequent transitions are depicted). 
The procedure can evidently be replicated for any chord type of the corpus. 

 
Figure 10: The twelve most probable continuations for chord type “C6” considering the 

Jobim’s corpus 

The scheme reveals, for example, that in this particular case (considering, 
of course, the repertoire analyzed), the most recurrent continuation (“B4.7”) is 
almost three times more probable than the second alternative (“Dm7”). 

Fig. 11 compares the entropy and the number of possible continuations of 
the most populous genus (thirty members) Y, the class of dominant-seventh 
chord types. The central axis (dashed line) separates the number of possible 
continuations (left) and the entropy (measured in bits, right) of the respective 
member of genus Y (along the lines). Observe that, although there seems to be a 
positive correlation between these two quantities (that is, the greater the number 
of continuations, the greater tends to be the entropy), this is not always true. 
Indeed, entropy tends to increase when the diversity of continuations also 
increases, but the distribution of the probabilities also plays an important role. 
This becomes very clear if we compare, for example, types “C4.7” and “C7(b9. 
#11)”, framed in Fig. 11. Despite the discrepant numbers of possible continuations 
(respectively, 133 and 11), their entropies are considerably similar, 3.311 and 
3.279 bits, respectively. 
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Figure 11: Entropy (measured in bits) and number of possible continuations of chord 
types member of quality class Y (“dominant seventh”), considering the Jobim’s corpus 



 
ALMADA, C. L.;       Entropy, Probabilistic Harmonic Space, and the  
CARVALHO, H.       Harmony of Antonio Carlos Jobim      
 
 

100 

This apparently controversial situation is easily explained through the 
exam of the probability vectors of the two chord types, as shown in Table 3. For 
a better visualization, the entries of the two vectors were ordered from the largest 
to the smallest value. If we focus on both probability distributions, it is possible 
to perceive a much more intense asymmetry in the case of “C4.7”, since the first 
continuation (C7) concentrates almost half of the total probability mass. On the 
other hand, the probabilities of the eleven continuations of “C7(b9. #11)” are more 
evenly distributed, which contributes to elevate the uncertainty of this chord 
type, in spite of the relatively low number of alternatives for connection it has, in 
the comparison with the previous case. Indeed, the maximum entropy on this 
second case is 3.459, where the probability distribution is uniform over the 
eleven transition possibilities, close to the estimated value of 3.279.35 

 
Table 3: Comparison between chord types “C4.7” and “C7(b9.#11)” concerning the 

probabilities of their possible continuations, considering the Jobim’s corpus 

 

 

 

                                                
35 Notice that the approach here presented does not consider functional relations between 
consecutive chords. However, functionality is slightly embedded in the assembling of the Jobim 
corpus since some instances of chords needed to be reinterpreted regarding their functional 
context. 

case of “C4.7”, since the first continuation (C7) concentrates almost half of the total probability 

mass. On the other hand, the probabilities of the eleven continuations of “C7(!9."11)” are more 

evenly distributed, which contributes to elevate the uncertainty of this chord type, in spite of 

the relatively low number of alternatives for connection it has, in the comparison with the 

previous case. Indeed, the maximum entropy on this second case is 3.459, where the probability 

distribution is uniform over the eleven transition possibilities, close to the estimated value of 

3.279.35 

 
Table 3: Comparison between chord types “C4.7” and “C7(!9."11)” concerning the probabilities of their possible 

continuations, considering the Jobim’s corpus.  
 

 C4.7 C7(b9.#11) 
continuations chord-type ( chord-type ( 

1st  C7 0.4340 Dm7 0.1906 
2nd  F 0.1319 F4.7.9 0.1429 
3rd  C7(b9) 0.0833 C4.7 0.1429 
4th  F4.7.9.13 0.0660 C7.9 0.0952 
5th  FM7 0.0347 C 0.0952 
6th  FM7.9 0.0208 Em(M7) 0.0952 
7th  C(#5)7 0.0208 FM7 0.0476 
8th  F6 0.0174 Gm7 0.0476 
9th  BbM7 0.0174 C7 0.0476 
10th  EbM7.9 0.0174 Cm7.9 0.0476 
11th  (plus 123 alternatives) F#6 0.0476 

  1.0000  1.000 
 

6 A Probabilistic Harmonic Space 

Motivated by Meyer’s reflections about the formation of the style of a composer, as 

resulting from choices facing a set of possible alternatives within a determined cultural context, 

we propose to use the notions of entropy and probability in an analytical model destined to 

evidence how idiosyncrasies (in different degrees of intensity) of harmonic paths can in some 

way be linked to stylistic characterization.  

Firstly, we define a structure called the probabilistic harmonic space as a conceptual 

construct that congregates the repertoire of all harmonic choices made by a given composer in 

respect to a representative corpus of his/her works, considering both material (chord types) and 

relations (the manner which the material elements are connected to each other), forming a 

                                                
35 Notice that the approach here presented does not consider functional relations between consecutive chords. 
However, functionality is slightly embedded in the assembling of the Jobim corpus since some instances of chords 
needed to be reinterpreted regarding their functional context. 
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6. A Probabilistic Harmonic Space 
Motivated by Meyer’s reflections about the formation of the style of a 

composer, as resulting from choices facing a set of possible alternatives within a 
determined cultural context, we propose to use the notions of entropy and 
probability in an analytical model destined to evidence how idiosyncrasies (in 
different degrees of intensity) of harmonic paths can in some way be linked to 
stylistic characterization.  

Firstly, we define a structure called the probabilistic harmonic space as a 
conceptual construct that congregates the repertoire of all harmonic choices 
made by a given composer in respect to a representative corpus of his/her works, 
considering both material (chord types) and relations (the manner which the 
material elements are connected to each other), forming a particular subset of the 
universe of harmonic possibilities. Mathematically, a probabilistic harmonic 
space can be described by the pair 𝒮,𝒫 , where 𝒮 is a set of elements used to 
describe the harmonic objects employed by the composer, and 𝒫 is a stochastic 
process on the set 𝒮. This is a very general definition, and in this particular 
context, the data conveyed by matrix 𝑴 together with the set of all observed 
binary relations is a possible description to Jobim’s probabilistic harmonic space 
(evidently, concerning the corpus analyzed). This section aims to present this 
space in a more formal approach, adopting some of graph-theory tools. 

Fig. 12 introduces the most basic element that integrates this space, 
corresponding to a generic chord type, in a neuron-like representation (it can also 
be alternatively referred as unit or node). A unit is visually identified by three 
complementary information: label (at the center),36 entropy (in bits, at the top), 
and number of possible continuations (bottom). The diamond geometry of a node 
is especially designed to facilitate the understanding of the relations between the 
chord types. The leftmost vertex (marked by a black circle) is reserved as input 
slot, used for connection with the previous unit. The remaining vertices are used 
to connect the node with three of its continuations,37 selected according to the 

                                                
36 Although only traditional chord labels are in the examples of this article, alternatively 
genealogical symbols (Z2, w3.1, etc.) can also be employed. 

37 The number “three” was chosen as the optimal alternative since, normally, the three first 
continuations of a given chord type concentrate more than half of the total probability. The 
increase of the number of connections would provoke exponential growth of the network (see 
ahead), which would turn unfeasible any analysis. 
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magnitude of the probabilities. For convention, the order of preference for the 
linkages is indicated by the type of line of the respective arrows: filled (for the 
highest probability), dashed (for the second place), and dotted (for the third).38 

 
Figure 12: Generic model of a node inhabitant of a probabilistic space 

We define a unit-seed as the chord type that launches a harmonic sequence 
(or path) mapped in the space, graphically denoted by a black circle in the input 
slot with a “X” inside (symbolizing a closed entry). Evidently, a harmonic path 
can be constructed with different lengths, from two to an undefined number of 
units. In the terms of the Information Theory (see the introduction), this means 
that sequences can be formed as digrams, trigrams, and so on. Nodes will be then 
connected to each other forming probabilistic harmonic networks (or PHN, for 
short), visually representing a very tiny portion of the whole space. 

Let us start with the simplest instance of PHN, a digram, selecting, for 
example, chord type “C6” as unit-seed (Fig. 13). We can read this graph as a kind 
of map that offers three possible routes departing from a starting point (“C6”), in 
order of preference, established by the magnitude of probabilities (or weights),39  
leading to: (1) a suspended-fourth-dominant chord type one minor second lower; 
(2) a minor-with-seventh chord type a major second higher; and (3) a minor-with-
sixth chord type with same root. 

                                                
38 Eventually, the dotted-line arrow can also refer to options beyond the third.  

39 Unlike customary paths in graph theory, here the highest weight corresponds to the simplest 
(and, therefore the best) path. 
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Figure 13: Three most probable paths of chord type “C6” considering the Jobim’s 

corpus 

Complexity highly increases with the inclusion of just one layer to a 
digram PHN (and, therefore, forming a trigram), since the three probable 
continuations of anyone of the three first branches are also added to the network. 
Fig. 14 illustrates this situation by electing another chord type, “Cm7”, for unit-
seed. As it can be observed, there exist nine (3 × 3) possible harmonic paths in 
this very simple PHN.40 For the sake of clarity, the path formed by the first-default 
choices in each layer is indicated by the “activation” of the corresponding nodes 
(which is represented by the thicker frames). 

                                                
40 Generically, the number of harmonic paths (ℎ) in a 𝑛-gram PHN is obtained by the formula ℎ =
3#V$. Given this, a sequence of eight elements (8-gram), for example, would be represented by a 
probabilistic network with not less than 2,907,152 possible paths. 
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Figure 14: Possible 3-gram paths departing from seed “Cm7” (considering the Jobim’s 

corpus) 

With the purpose for elaborating a strategy for quantification of the paths 
within probabilistic terms, we propose the creation of a probabilistic index, which 
is calculated by the following formula 

𝑞 = −𝑙𝑜𝑔% 𝑝Y

l

Y=$

, (7) 
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where q is the probabilistic index of a given path, 𝐾 is the path’s length (i.e., the 
number of relations in question, or of edges travelled along the path), and 𝑝Y is 
the probability of the binary relations considered. Likewise in the calculation of 
the entropy, the adoption of the logarithmic function is a necessity, considering 
the extremely low results obtained in multiplications of probabilities. Notice that 
it is only reasonable to compare probabilistic indexes for paths of the same 
length. A possible way to circumvent this issue is to define 𝑞 as an average, by 
dividing Eq. (7) by 𝐾, but since in this work only paths of the same length are 
being compared, this definition was not adopted, for simplicity. 

Another measure aiming systematization of the analytical process 
concerns a precise and simple method for identification of the paths. They will 
be expressed as vectors formed by the sequence of the numbers that represent 
the order of choice at each layer (“0” indicates the unit-seed).41 Table 4 lists the 
information conveyed by the PHD of Fig. 14, including the new elements, path 
notation and index q. It reveals that the simplest path (i.e., which has the highest 
value for q) does not correspond to the first-default path 0.1.1 (“Cm7-F7-BbM7”), 
as it would be expected, but rather to path 0.3.1 (“Cm7-F7(b9)-Bbm7”), which is 
due to the highest probability in the network (0.2069) that occurs with the last 
linkage. 

 
Table 4: Calculation of index q for paths depicted in Fig. 14 

Let us take it a step further and consider a lengthier sequence, under a 
different standpoint. This time, instead of exploring possibilities of connections 
from a selected seed in the probabilistic harmonic space, we will use the structure 

                                                
41 For avoiding eventual confusions (when paths involve numbers greater than 9), the entries of 
the vector are always separated by dots. 

With the purpose for elaborating a strategy for quantification of the paths within 

probabilistic terms, we propose the creation of a probabilistic index, which is calculated by the 

following formula 

! = −$%&' ()
*

)+,
, (7) 

where q is the probabilistic index of a given path, . is the path’s length (i.e., the number of 

relations in question, or of edges travelled along the path), and () is the probability of the binary 

relations considered. Likewise in the calculation of the entropy, the adoption of the logarithmic 

function is a necessity, considering the extremely low results obtained in multiplications of 

probabilities. Notice that it is only reasonable to compare probabilistic indexes for paths of the 

same length. A possible way to circumvent this issue is to define ! as an average, by dividing 

Equation (7) by ., but since in this work only paths of the same length are being compared, 

this definition was not adopted, for simplicity. 

 Another measure aiming systematization of the analytical process concerns a precise 

and simple method for identification of the paths. They will be expressed as vectors formed by 

the sequence of the numbers that represent the order of choice at each layer (“0” indicates the 

unit-seed).41 Table 4 lists the information conveyed by the PHD of Figure  14, including the new 

elements, path notation and index q. It reveals that the simplest path (i.e., which has the highest 

value for q) does not correspond to the first-default path 0.1.1 (“Cm7-F7-B!M7”), as it would 

be expected, but rather to path 0.3.1 (“Cm7-F7(!9)-B!m7”), which is due to the highest 

probability in the network (0.2069) that occurs with the last linkage. 
	

Table 4: Calculation of index q for paths depicted in Figure . 

seed p1 path Layer 1 p2 path Layer 2 q 

Cm7 

0.1113 0.1 F7 
0.0945 0.1.1 BbM7 6.571 
0.0630 0.1.2 Bbm7 7.156 
0.0630 0.1.3 Fm7 7.156 

0.0661 0.2 F7.9 
0.0743 0.2.1 BbM7 7.783 
0.0700 0.2.2 F7(b9) 7.869 
0.0530 0.2.3 Fm7.9 8.271 

0.0580 0.3 F7(b9) 
0.2069 0.3.1 Bbm7 6.381 
0.1410 0.3.2 BbM7 6.934 
0.062 0.3.3 Bbm7.9 8.119 

 

                                                
41 For avoiding eventual confusions (when paths involve numbers greater than 9), the entries of the vector are 
always separated by dots. 
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of the model for comparing functionally equivalent harmonic progressions by 
their respective probabilistic properties.  Fig. 15 depicts two 5-grams that, despite 
describing quite different trajectories, have the same general syntactic goal, 
namely, to prepare the arrival of BbM7, supposedly a stable harmonic point in a 
hypothetical piece.  For clarity, the networks were summarized only by the 
chosen alternatives. While the probabilistic path in (a) is constructed by the first- 
and second-default choices at each station, the sequence (b) adopts in all but one 
case very low-rated options. Consequently, the probabilistic indices of the two 
cases diverge by a factor of two: 𝑞o = 10.807 and 𝑞p = 22.677. 

 
Figure 15: Two alternative 5-gram paths arriving at chord “BbM7” (considering the 

Jobim’s corpus) 

	
Another attractive possibility is to evaluate graphically how the corpus 

“behaves” with respect to selected harmonic formulas. This model plots the 
sequential elements (on the horizontal axis) according to accumulated value of q 
(vertical axis). Therefore, the greater the slope of the edge that departs from a 
given chord (evidenced by the formed angle), the lower will be the probability of 
the following chord (or, alternatively, the more surprising it will be in face of 
other possible continuations).  
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This technology can therefore be applied for the exam of specific 
progressions in the repertoire, leading to a more profound investigation on 
stylistic issues. Fig. 16 compares hexagrams (i.e., harmonic progressions formed 
by six chords), referred to four well-known of Jobim’s songs: Desafinado, Ela é 
carioca, Insensatez, and Triste.42 All progressions correspond to the first six chords 
of each song. Functioning as a control for the comparison, the graph also includes 
a six-chord enriched cadence, a relatively common formula shared by composers 
of same context. The sequences are depicted in Table 5.  

 

 
Figure 16: Comparison of hexagrams of the starting measures of four Jobim’s songs: 
Ela é carioca, Desafinado, Triste, and Insensatez. An idiomatic cadence plays the role of 

control 

 
Table 5: The hexagrams considered in Fig. 16; all initial chords were transposed to C 

 

                                                
42 Insensatez and Ela é carioca are co-authored by Vinicius de Moraes. Desafinado is 
co-authored by Newton Mendonça. 
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Figure 16: Comparison of hexagrams of the starting measures of four Jobim’s songs: Ela é carioca, Desafinado, 
Triste, and Insensatez. An idiomatic cadence plays the role of control. 

 

Table 5: The hexagrams considered in Figure 16. All initial chords were transposed to C. 
 

 1 2 3 4 5 6 

Ela é carioca CM7.9 Am7 D7.13 D7(b13) Dm7 Bbm6 

Desafinado CM7 D7(#11) Dm7 G7 E Ø A7(b9) 

Triste CM7 AbM7(#11) CM7 C6 Em7 A7(b13) 
Insensatez Cm7 B°7 Bbm6 Eb7 F7 Ab6 

Control  C7.13 C7(b13) F7.9 F7(b9) Bb7 EbM7 
 

                                                
42 Insensatez and Ela é carioca are co-authored by Vinicius de Moraes. Desafinado is co-authored by Newton 
Mendonça. 
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Maybe the most interesting aspect in this view concerns the fluctuations 
of probabilities in the change of chords, depicted graphically by the slopes of the 
respective edges. If we compare, for example, the initial transitions of the five 
trajectories, we observe that Triste has the most unexpected beginning (a 
mediantic chromatic relation Z0(8Z3)), while in the control-cadence it corresponds 
to a very common internal flattening of the tension 13 in a dominant chord 
(Y4(0Y4.1)). By contrast, in the transition between chords 3 and 4, the control 
solution (F7.9 | F7(b9)), again an internal voice-leading adjustment in a dominant 
chord, is comparatively more expected than the two-five formula Dm7 | G7 that 
occurs at the same point in Desafinado. In sum, entropy fluctuates in different 
rates in any case, but the final values for q at the matching point (the sixth chord, 
in this example) establish an average ranking that allows us to make 
comparisons. Thus, we can say, for example, that Insensatez – among this 
restricted group of songs – has in average and considering the sequence of the 
initial six chords the highest entropy. We could even venture to say that this song 
is more idiosyncratic than its exemplified counterparts (again, considering only 
the six fix chords), which suggest that the q scale could be roughly seen as a 
possible measure for style. Higher q values (when compared with compatible 
ones) may indicate that a song (or a selected passage) has a more personal 
harmonic construction, or near of a “dialectal” usage, using a linguistic analogy. 
Conversely, low values for q could be associated with a shared practice (as the 
cadential formula of our example), having a more “idiomatic” nature. 

 

7. Concluding remarks and future work 
This article explored a new and very promising field of investigation on 

the realm of popular-music harmony.43 Based on the studies of Shannon, Meyer, 
Huron, Temperley, among others, the strong correlations between probability, 
expectancy, and entropy formed a solid framework from which the ideas of the 
Probabilistic Harmonic Space and the probabilistic index emerged. The 
application of these concepts on the data obtained from the statistical analysis of 

                                                
43 Evidently, we are considering the context inhabited by Jobim and his counterparts. Basically, 
this universe is characterized by the use of complex, dense chords (normally enriched with one 
to three tensions) connected by expanded or diluted functional relations, frequently involving 
remote tonal regions. 
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Jobim’s corpus, mediated by the augmented transition matrix (whose 
mathematical formalization will be the subject of a future article), provided the 
necessary means for qualifying and quantifying harmonic progressions through 
an entirely original bias, namely, as paths on an infinite space of possibilities. 

Although Jobim was chosen as the starting point for the present 
investigation (and we think that we could not find a better name for this!), the 
model is plainly generalizable and can be easily applied to other repertoires, 
since the methodological apparatus needs only to be fed by harmonic sequences 
(in midi format) to produce the related data (including a transition matrix). The 
possibility of comparison of distinct corpora with respect to the distribution of 
chord-type entropy is maybe the most obvious continuation for the research, as 
well as a very exciting perspective. 

Finally, and especially, the present study reinforces one of the most 
important of Huron’s and Meyer’s formulations, that compositional styles are 
strongly dependent on statistical learning. In this sense, to compose could be seen 
not only as the art of making (good consequential) choices among uncountable 
options, but especially choices that have also a past sedimented in a terrain of 
other and other good choices. We believe, in sum, that the style of a composer 
(like Jobim) is slowly formed in this way, carving deeply the paths that will build 
his/her personal and unique probabilistic space. 
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