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a b s t r a c t

The increase in data volume is challenging the suitability of non-distributed and non-scalable algo-
rithms, despite advancements in hardware. An example of this challenge is clustering. Considering
that optimal clustering algorithms scale poorly with increased data volume or are intrinsically non-
distributed, accurate clustering of large datasets is increasingly resource-heavy, relying on substantial
and expensive compute nodes. This scenario forces users to choose between accuracy and scalability. In
this work, we introduce HiErArchical Data Splitting and Stitching (HEADSS), a Python package designed
to facilitate clustering at scale. By automating the splitting and stitching, it allows repeatable handling,
and removal, of edge effects. We implement HEADSS in conjunction with HDBSCAN, where we achieve
orders of magnitude reduction in single node memory requirements for both non-distributed and
distributed implementations, with the latter offering similar order of magnitude reductions in total
run times while recovering analogous accuracy. Furthermore, our method establishes a hierarchy of
features by using a subset of clustering features to split the data.1

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

As a result of continuous increases in data volume, scalable
nd distributed analysis techniques are essential. The plethora
f incoming data affects all aspects of our lives, from personal
ata to scientific research. An illustration of this is in the field of
stronomy. Over the last two decades, the volume of incoming
ata has scaled from a few Terabytes to hundreds of Petabytes,
ncreasing to Exabytes over the next few years (Zhang and Zhao,
015). In many fields, it is insightful to cluster these datasets
or a range of applications including but not limited to outlier
etection, pattern recognition and even physical clustering.
Unfortunately, clustering algorithms require significant com-

utational resources as, generally, each data point must be eval-
ated against every other data point resulting in a complexity fac-
or of O(n2), which is unsuitable for big data analysis. Clustering
big data poses many challenges and no single approach performs
well against all evaluation metrics (Ajin and Kumar, 2016). K-
means clustering scales favourably with complexity O(nk), where
n is the number of data points and k is the number of clusters (Na
et al., 2010). There are also works that improve the scalability of
K-means clustering through the construction of coresets in Lucic

∗ Corresponding author.
E-mail address: dennis.crake@ed.ac.uk (D.A. Crake).

1 Source code and examples are available at https://github.com/D-Crake/
EADSS
 i

ttps://doi.org/10.1016/j.ascom.2023.100709
213-1337/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
et al. (2016), or a distributed implementation in Balcan et al.
(2013). However, K-means clustering has certain characteristics
which can limit its suitability for certain datasets. The most
prominent constraint is that the number of centroids must be
defined, requiring a known number of clusters before analysis.
Furthermore, K-means clustering is a form of the Expectation
Maximisation (EM) algorithm (Moon, 1996), which is optimal for
spherical clusters. There are approaches to reduce the impact
of these limitations, but none fully eradicate these fundamental
issues (Singh et al., 2011).

Another algorithm to consider is DBSCAN, which can identify
an unspecified number of arbitrary-shaped clusters of specific
density. The full algorithm is outlined in Ester et al. (1996) and
solves the major hurdles in K-means clustering. DBSCAN defines
clusters by analysing the neighbouring points within a defined
distance (ϵ), and if the number of neighbours exceeds the selected
minimum cluster size the object becomes a central cluster point.
This process is repeated until the edge of the cluster is defined,
otherwise, the object is classed as noise. However, the rigidity of
ϵ reduces overall accuracy as DBSCAN cannot identify clusters of
varying densities. Furthermore, DBSCAN has a complexity issue,
even in the best case, it cannot achieve sub-O(n log n), with the
worst-case scenario reaching O(n2). An issue exacerbated by the
act the full dataset must be loaded to memory and evaluated by
single node (Ali et al., 2010). McInnes et al. (2017) presents a
ierarchical Python implementation, known as HDBSCAN, allow-

ng the identification of varying cluster densities through various

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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alues of ϵ. Nevertheless, HDBSCAN continues to have the same
heavy computational requirements as the standard DBSCAN. The
complexity limitations of big data clustering with DBSCAN and
the limitations of K-means clustering discussed above force users
to decide between accuracy and scalability.

As clustering is a common task, there are methods for scal-
ng specific algorithms within the literature. Such examples in-
lude methods for scaling Hierarchical Agglomerative Cluster-
ng (Sumengen et al., 2021), linkage-based hierarchical algo-
ithms (Bateni et al., 2017) and several k-means or centroid-
inkage algorithms in Lattanzi et al. (2020).

The astrophysical challenge that inspired the current work
s identifying stellar clusters within the Milky Way. Clustering
−dimensional stellar data (three positional and two velocity
easurements), represents the first full-scale result obtained by
EADSS. The full details are to be described by Crake et al. (In
rep). The challenge represents an ideal dataset due to relatively
mall clusters than the total feature space and is representative
f numerous physical clustering challenges. Research revealed
lack of easily repeatable approaches within the wider scien-

ific community, with HEADSS aiming to correct this through a
ser-friendly package.

.1. Splitting of data

A simple method to avoid the complexity and memory re-
uirements is partitioning the data into manageable regions
nown as ‘‘partitions’’ henceforth. Partitions are comparable to
he concept of canopies for clustering and ‘‘blocking’’ in record
inkage clustering, which identifies pairs of records that represent
he same entity. Both techniques act as a preprocessing strategy
esigned to reduce the number of comparisons. Blocking acts
s a preprocessing filter to partition data to avoid comparisons
etween distinctly unrelated records reducing computational re-
uirements. Record linkage is commonly used for matching en-
ries between catalogues and the blocking criteria can be trained
hrough supervised techniques using a set of labelled datasets,
s described in Michelson and Knoblock (2006) or identified
y unsupervised methods as described in O’Hare et al. (2019).
anopy clustering can be considered a density-based analogue to
EADSS. The process of canopy creation is as follows:

• Select a random data point not associated with a canopy to
act as a new canopy centre.

• All data points within a distance, T1, are part of the canopy.
• All data points within a greater distance, T2, are associated

with the canopy but may join other canopies.
• Repeat these steps until all data is within a canopy.

The effectiveness of canopy clustering relies on suitable pa-
ameters and is subject to dimensionality issues (Kumar et al.,
014; Sagheer and Yousif, 2021; McCallum et al., 2000). The
pproach of partitioning data using either of these methods or
EADSS allows the use of complex algorithms on big data with
he same hardware. Nonetheless, partitioning can cause issues
o arise, most often on the extremities of a cluster, with several
ossible edge effects arising.
For this work, we define edge effects as any artefact, loss of

roup members or inconsistency introduced by partitioning the
eature space that would otherwise not be present if the complete
ataset was analysed. Additionally, an edge effect can be defined
s any change in result that disproportionately affects a specific
egion of the feature space, i.e. along the threshold of a partition.
ypically, edge effects are caused by clusters spanning multiple
artitions leading to potential data loss. As HDBSCAN requires a
inimum cluster size to be defined, the partial clusters are at
2

isk of dropping below the threshold resulting in incompleteness
esulting in clusters with non-physical boundaries. Conversely,
lusters large enough to be partially identified in multiple par-
itions are also problematic, as accurately differentiating valid
ergers from neighbouring clusters is challenging at scale.
The prevention and handling of edge effects that occur from

plitting data are the fundamental issues this work aims to ad-
ress by setting a standard approach. Our software, HiErArchical
ata Splitting and Stitching (HEADSS henceforth), provides both
he position for cuts and stitching boundaries that maximises the
istance of any given point from an edge boundary, eradicating
dge effects in a range of representative datasets and allow-
ng compatibility with all clustering algorithms. Additionally, the
oftware provides functionality to handle the split, clustering and
titching process using HDBSCAN as an example clustering algo-
ithm. Furthermore, where individual clusters span a significant
raction of the feature space, it handles the processing mergers
efined by three hyperparameters. HEADSS is an algorithm that
orks in conjunction with existing clustering algorithms and
orks with a variety of common clustering algorithms, ensuring
he clustering of big data remains accurate, reliable and repeat-
ble with no direct user judgement required during the splitting
r stitching phase.

. Introducing HEADSS

In this Section, we outline the basic principles and assump-
ions of HEADSS. This work reduces complexity by partitioning
he data, reducing the number of objects clustered in a given
artition. We refer to this process as ‘‘splitting’’. When splitting
he data by a subset of features, this naturally establishes a
ierarchy. This work splits data into evenly sized partitions across
our complementary layers. Due to the symmetry of the feature
pace and the repeating patterns, up to four layers are required
or any given N , where N defines the number of partitions in the
ase layer for each feature to be split. The base layer represents a
udimentary partition by a simple ND grid, where N is the number
f splits in each feature and D is the number of features used for
plitting. Hence, for 2 features, the feature space is split into a
×N grid. This establishes multidimensional partitions with each

ength equal to FR/N , where FR refers to the ‘‘Full Range’’ of a
iven feature in the whole dataset. The Secondary layer offsets the
ase layer by FR/2N , creating a (N −1)D grid, centred where four

partitions intersect in the base layer. The Tertiary layer partitions
centre where two base layer partitions meet perpendicular to
the nearest axis. Similarly, the Quaternary layer partitions centre
where two base layer partitions meet parallel to the nearest axis.
A 2D visualisation of the layers for N = 2, 3 & 4 respectively can
be seen in Fig. 1. Since the clustering partitions occupy an equal
fraction of the total feature space, we assume the data does not
predominantly occupy a small area of the full feature space.

The amalgamation of these layers allows a single feature space
where any point resides at least FR/2N distant from any boundary.
HEADSS also establishes the splitting layer that maximises the
distance from any boundary for the full feature space, a process
we refer to as ‘‘stitching’’. This process selects cluster centroids
that maximise distance from a boundary while dropping repeated
clusters. For the selected centroids, the full cluster remains in-
cluding the individual members that span beyond the stitching
boundary. An assumption at this stage is that clusters do not span
a large fraction of the total feature space (specifically less than
FR/2N). By ensuring the centroid, not the members, resides as
far from a cut as possible, we minimise the occurrence of partial
clusters and avoid a single point occupying multiple clusters pro-
vided our assumptions hold for the underlying distribution. Fig. 2
visualises the optimal stitching partitions for the N = 2, 3 & 4
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Fig. 1. 2D Visualisation of the splitting layers for N = 2, 3 & 4 base layer (Top to bottom). For N = 2 the Quaternary layer remains unused. Darker colours indicate
verlapping partitions in a single layer.
Fig. 2. Visualisations of 2D stitching partitions with N = 2, 3 & 4 (left to right). The colour of each partition represents the splitting layer which maximises the
istance to any boundary. The white dashed line indicates the base layer cuts for reference.
plits seen in Fig. 1. The central partitions cover identical fractions
f feature space, while the outer partitions extend to the edge of
he full feature space due to a lack of boundaries introduced by
he splitting process.

Minimising the number of cuts and dimensionality (features)
inimises overhead requirements and artefacts. HEADSS has a
omplexity of O(Npartitions), where Npartitions is the number of par-
titions. Npartitions scales as (2N − 1)D, where N = number of
base layer cuts and D = number of features. The complexity
scales unfavourably with the number of features (D), but remains
reasonable for N . The extent of scaling is visualised in Fig. 3,
compounding the importance of reducing dimensionality. As each
partition is analysed independently, the clustering can occur in
parallel across multiple nodes, whereas the splitting and stitching
can also be distributed with software such as Apache Spark.
In summary, our algorithm works as follows:

3

• Split the data into evenly sized partitions across four com-
plementary layers, see Fig. 1.

• Cluster partitions independently using user selected cluster-
ing approach.

• Identify duplicate clusters and select the partition that max-
imises cluster centroid from an edge, see Fig. 2.

under the assumption that the clusters do not span a large frac-
tion of the feature space (< FR/2N) and a small number of
clustering features (or a subset of features) exists to partition the
data.

In the following sections, we shall show examples of the
HEADSS API before exploring the performance of our algorithm
across a range of test datasets selected to challenge our assump-
tions, showcase the performance and highlight the results when
the assumptions do not hold. In Section 5, we demonstrate a
modified workflow that handles clusters that do span a significant

fraction of the feature space.
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Fig. 3. Scaling of the number of partitions required for increasing base layer size with 2 features (left) and number of features with an N = 2 base layer (right)
ighlighting the importance of establishing a small subset of features for the splitting process.
1
1
1

.1. Quick start guide

The GitHub, linked above, contains a series of user guides,
ncluding a quick start guide and all the code required to repro-
uce the analysis in this work. However, there are two major
se cases to consider, those that use the integrated clustering
lgorithm and those which use alternative clustering algorithms
hich require greater user input but offer greater flexibility,
uch as running partitions concurrently. Currently, HDBSCAN is
he sole integrated algorithm, with analysis performed with the
ollowing code:

1 import numpy as np
2 import pandas as pd
3 import HEADSS
4
5 # import full dataset for clustering
6 data = pd.read_csv(filepath)
7
8 # Perform split, clustering & merge using HEADSS.
9 merge = headss_merge(df = data, N = 2, merge = False

,
0 split_columns = [’col1’, ’col2’

],
1 cluster_columns=[’col1’,’col2’

],)
2
3 # clustering result returned as a pandas.DataFrame.
4 merged_df = merge.members_df

isting 1: Simple HEADSS example.

All clustering parameters inherited from HDBSCAN and for
erging, described in Section 5, are omitted but shown in the
ser guide. The API is designed for the integrated use case,
hereas the functionality for splitting and stitching is shown in
he user guides. The most common function will be retrieving
he partitioning and stitching boundaries which can be obtained
sing a few lines of code:

1 import numpy as np
2 import pandas as pd
3 import HEADSS
4
5 # import full dataset for clustering
6 data = pd.read_csv(filepath)
7
8 # Calculate regions to split
9 head = headss_regions(N = 2, df = data,
0 split_columns=[’col1’,’col2’])
1
2 # Return DataFrame of data with partition id.
3 partitions = head.split_data
4
5 # Get partition boundaries
6 part_bound = head.split_regions
4

7
8 # Get stitch boundaries
9 stitch_bound = head.stitch_regions

Listing 2: HEADSS example for returning splitting and stitching
boundaries.

This code showcases two splitting approaches; either allow
HEADSS to assign a ‘‘partition’’ column to the entire database,
or for particularly large datasets, head.split_regions provides the
split boundaries. If the dataset is too large for memory, HEADSS
can calculate the suitable partitions using the maximum and
minimum values for each feature. This approach allows the user
to split and cluster by partition, while the head.stitch_regions
provides the boundaries for stitching regions for the resulting
cluster centroids.

3. Example datasets

We have selected ten examples from Fränti and Sieranoja
(2018) that demonstrate and push the limits of our software
while representing various potential use cases. Fig. 4 shows the
selected datasets. They range from the highly-dense birch1 and
worms with approximately 100,000 data points to the sparsely
populated flame, pathbased, spiral and jain each with around 300
data points. This selection of datasets contains examples with
numerous compact clusters while others contain sparse clusters
that span a large fraction of the feature space. This work has
been developed with the physical clustering of astronomical data
in mind, where a3, D31 and birch1 are the most representative
and satisfy our assumptions in Section 2. Our test datasets are
introduced in one of the following papers Gionis et al. (2007),
Kärkkäinen and Fränti (2002), Fu and Medico (2007), Chang and
Yeung (2008), Veenman et al. (2002), Zhang and Zhao (2015), Jain
and Law (2005), Karypis et al. (1999), Sieranoja et al. (2019).

4. Performance

To evaluate the performance of HEADSS, we need a baseline
with no splitting of the data. Due to the reasons outlined earlier
in Section 1, we select HDBSCAN throughout the remainder of
this paper, but any algorithm can be implemented if preferred.
Using the hyperparameters in Table 1, we identify the clusters
shown in Fig. 5. We see good agreement with visual classifications
for 7 of the datasets for the major clusters, with the exceptions
being worms, pathbased & jain. Worms is a dataset with clusters of
varying density and noise. Overall, the majority of clusters appear
partially identified with a significant fraction lost as noise. Jain
performs well separating the two curves, however, half of the
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Fig. 4. Example datasets used to evaluate the performance of HEADSS in conjunction with HDBSCAN.
Fig. 5. Clusters identified by HDBSCAN on the full dataset.
Table 1
HDBSCAN hyperparameters for complete dataset clustering.
Dataset min_samples allow_single_cluster cluster_method min_cluster_size

Aggregation 20 False leaf 20
a3 20 False leaf 20
flame 5 False leaf 20
pathbased 10 False eom 5
spiral 10 False leaf 5
D31 20 False leaf 20
birch1 10 False leaf 200
jain 1 False eom 50
t4.8k 10 False eom 20
worms 200 False leaf 200
t
a
t
a
i
c

c
f
p

structure in the upper curve is lost due to low density. Finally,
the worst performance by far is pathbased, the outer ring is poorly
dentified with sections merging with the central clusters.

Recall that we do not aim to improve on the baseline re-
ults in Fig. 5 as our aim is that HEADSS seamlessly assists
mplementation but does not impact the clustering results. We
valuate the performance for an N = 2 implementation due to
he limited size of the example datasets. In this implementation,
ith two features, each partition covers 25% of the total feature
pace. In the datasets where clusters span a significant fraction
25% of the feature space, our assumptions do not hold, meaning
e anticipate partial clusters occurring. To minimise data loss
nd account for the new projections, we adjust the clustering
yperparameters to those seen in Table 2.
 t

5

In Fig. 6, the resulting clusters from the splitting and stitching
process show promising results. Exploring the target datasets
(a3, D31 and birch1), we observe near-identical performance to
he non-split clustering. Considering these best represent the
stronomical data that inspired this work and optimal use cases,
he basic splitting and stitching functions are suitable when the
bove assumptions hold. Nonetheless, to broaden the potential
mpact of this work the seven remaining datasets must also be
onsidered.
The noisy worms dataset predominantly identifies the same

lusters as the baseline as the clusters do not span a sufficient
raction of the feature space to cause edge effects. Initial im-
ressions of the remaining six datasets are that the known clus-

ers are broadly identified but with excessive edge effects. The
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Fig. 6. Clusters identified by HDBSCAN with an N=2 implementation of HEADSS.
Table 2
HDBSCAN hyperparameters for N=2 HEADSS region clustering.
Dataset min_samples allow_single_cluster cluster_method min_cluster_size

Aggregation 10 False eom 10
a3 20 False leaf 20
flame 5 True eom 5
pathbased 1 True eom 30
spiral 1 True leaf 3
D31 20 False leaf 20
birch1 10 False leaf 200
jain 1 False eom 5
t4.8k 30 False eom 30
worms 200 False leaf 100
edge effects are directly caused by splitting the dataset and in-
dependently clustering each partition. Therefore, further evalu-
ating these datasets is impossible without first correcting the
significant edge effects.

5. Removing artefacts

As mentioned above, the remaining six datasets (Aggregation,
lame, pathbased, spiral, jain and t4.8k) all show a significant
eviation from the baseline clusters. Typically, identifying cluster
ergers is extremely difficult and often requires considerable
uman input or sophisticated algorithms when partitioning the
ata. Human input signifies the process is not scalable nor re-
eatable, whereas a sophisticated algorithm can interfere with
he clusters or require additional resources to be available. With
EADSS, potential mergers have a subset of mutual members
rom at least two independent splitting layers. This region of
otential mutual members enables a numerical evaluation of
imilarity between neighbouring clusters.
The merging process applies as follows:

• Identify clusters that potentially overlap.
• Compare mutual members in overlapping clusters.
• Quantify defined overlapping parameters to determine suit-

able mergers.

This numerical evaluation requires a cross-match of members
or all clusters that potentially overlap. As cross-matches are
omputationally expensive, it is vital to identify potential merges
fficiently. HEADSS achieves this by evaluating the cluster limits
or overlaps, which currently has complexity O(k2) where k is
he number of clusters rather than the number of data points.
rom this point, we can cross-match only the partitions that
otentially overlap defined by the split and stitch boundaries
escribed in Section 2. This process creates three further hyperpa-
ameters which quantify merges; ‘‘overlap_threshold’’, the fraction
6

of mutual members within the overlap region, total_threshold,
the fraction of mutual members within the whole cluster and
minimum_members, the minimum mutual members to allow a
merge. Each parameter protects from a few rogue points or small
clusters falsely merging large sections of the feature space.

At this point, we have created a tree of cluster interactions
with pair matches and chains of long clusters linking, despite
not all interacting. An example of this is a horseshoe or crescent
pattern such as those in t4.8k. By iterating the list of merger
identifiers, rather than the members, we ensure all chains merge
to a single identifier minimising the complexity of the merging
process dramatically. Fig. 7 shows the final result from HEADSS
with merging hyperparameters from Table 3.

HEADSS, with a subsequent merge, generally matches the
baseline results in Fig. 5 for the majority of the datasets, partic-
ularly those with high density. Merging has performed best on
t4.8k, successfully connecting the six dominant clusters. Aggrega-
tion also performs well, but the rightmost conjoined clusters have
merged and a small amount of data loss in the largest cluster.
The merge has improved the results for spiral, but merging cannot
reverse the loss of data in two of the spiral arms caused by the
splitting process. Jain is a unique case where the completeness
is improved but the ability to identify the full cluster is reduced
compared to the baseline. Splitting the data successfully identifies
the lost region in the upper curve while splitting the lower curve
into several smaller clusters. The lower curve again shows the
splitting of different densities first highlighted in a3. The merge
reduces the divisions across partition boundaries in the lower
curve, but cannot merge clusters split by the differing densities.
Finally, we have flame and pathbased. Neither return ideal perfor-
mance, practically identifying a single large cluster due to their
low density. The space between clusters is less defined when split
into partitions, yielding clusters which span the gap causing the
single cluster after merging. While those results are not ideal,
neither dataset represents a realistic use case. For a sparse cluster
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Table 3
Merging hyperparameters for test datasets.
Dataset total_threshold overlap_threshold minimum_members

Aggregation 0.10 0.90 3.0
flame 0.10 0.50 1.0
pathbased 0.10 0.50 1.0
spiral 0.01 0.01 1.0
jain 0.10 0.70 1.0
t4.8k 0.10 0.50 10.0
worms 0.10 0.50 1.0
Fig. 7. Clusters identified by HDBSCAN with an N = 2 implementation of HEADSS including the merger capabilities.
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o span a large fraction of the total feature space and remain
dentifiable, the dataset is either not very large (HEADSS would
ot be required) or obscured by other clusters and noise.
These results show the merging capability provides a stark

mprovement in the impact and suitability of HEADSS over the
esults in Fig. 6 where the merging capabilities are not used.
erging is best suited for clusters with well-defined boundaries,
articularly dense clusters. Merging clusters in HEADSS is espe-
ially successful in two of the example datasets and somewhat in
further two, representing a wide range of potential use cases.
he only use cases where merging was detrimental to the per-
ormance were designed to be challenging and do not represent
realistic clustering application where complexity is a concern.
onsidering these results are solely evaluated with HDBSCAN,
e may improve performance on specific datasets with other
lustering algorithms leading to further suitable use cases.

. Computational performance

In addition to the standardisation of big data clustering, the
mbition of the HEADSS software is to reduce the peak computa-
ional requirements. The two factors are the single-node memory
equirements and computational runtime. In the following sec-
ion, we shall explore the theoretical reduction of these factors
or an optimal use case.

Peak memory requirements are dependent on the number of
bjects within a single clustering calculation. For HEADSS, the
ptimal dataset is evenly distributed across the entire feature
pace, meaning the number of objects with each partition is pro-
ortional to the fraction of feature space covered. In this scenario,
EADSS offers an expected reduction in memory requirements by
factor of O(ND), where N is again the number of splits in each

feature, and D is the number of dimensions. Considering many
clustering algorithms have complexity between n log(n) and n2,
here n = number of objects. When N = D = 2 HEADSS offers a

∼ 4−16× reduction in peak requirements, where n is the number
f points to cluster. The exact factor of reduction depends on the
7

clustering algorithm used, the number of splits and the overall
distribution of the data. If the data densely populates a sub-region
of the feature space, consider splitting across an alternative set of
features. If no such features exist, further partitions in the dense
regions or an alternative approach, such as canopy clustering,
should be considered.

Theoretical runtimes depend on many factors, including but
not limited to the choice clustering algorithm, the IO bandwidth
and the dataset distributions. However, using empirical analysis,
we can evaluate the impact of HEADSS on runtimes. The runtime
of all clustering algorithms is dominated by the number of ob-
jects to cluster. As HEADSS facilitates the clustering of smaller
partitions, for large datasets (number of objects > 106) the
educed clustering runtimes easily offset the additional overheads
ntroduced. The top panel of Fig. 8 visualises the non-distributed
untimes of HEADSS compared to a baseline HDBSCAN implemen-
ation. The performance is for a 2-Dimensional clustering, with
EADSS becoming required from roughly 106 objects. Below this
hreshold, the overheads introduced by spitting and stitching the
ata account for a significant fraction of the runtime. Nonethe-
ess, due to the short overall runtime, the increase for HEADSS
untimes is to the order of 10’s seconds. Above the threshold, the
ncrease in clustering runtimes negates the overhead, allowing
omparable or even better runtimes as early as 107 objects, a
omparatively small clustering task.
The analysis has shown that HEADSS successfully reduces

eak memory requirements for a clustering task with comparable
untimes to HDBSCAN on a non-distributed deployment with
educed memory requirements. Yet, a substantial advantage of
his package is the ability to run the independent clustering anal-
sis concurrently, essentially distributing the clustering phase.
n a deployment with concurrent clustering, the total runtime
s determined by the most populated partition. The theoretical
ossible runtimes are shown in the bottom figure of Fig. 8, which
s the top plot scaled by a factor of ND, which introduces an
ssumption that the data is evenly distributed and all compu-
ation is done in parallel. In conclusion, HEADSS offers orders
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Fig. 8. Top: Non-distributed runtimes for HEADSS with multiple N values compared to the standard HDBSCAN implementation for a 2−dimensional feature space
ith an increasingly large catalogue. Bottom: Theoretical distributed runtime for HEADSS (runtimes from the top plot are scaled by a factor of ND), assumes a fully
oncurrent implementation and evenly distributed dataset.
f magnitude improvement in theoretical runtimes with as little
s 107 objects with a considerable reduction in peak memory

requirements for a single process.

7. Broader impact

Clustering is commonplace within science, with physical in-
erpretations and theories forming from the outcome (Xu and
unsch, 2010; Dumont et al., 2018; Kounkel and Covey, 2019).
his work brings a standard implementation that produces reli-
ble and repeatable results for any clustering algorithm. To our
nowledge, this is the first available package that formalises this
rocess. Due to the careful consideration of complexity and mem-
ry requirements throughout, we have also ensured scalability by
educing the data size of a given partition and reduced run times
ven in single-threaded implementations, see Fig. 8. In testing
he memory limit for HDBSCAN is reached, whereas, in HEADSS
his limit represents the largest partition possible defining the
inimum value of N . Furthermore, there is great potential for

urther improvements in run times through the utilisation of
orkflow managers such as Slurm (Yoo et al., 2003).
Scaling HEADSS for very large datasets is relatively straightfor-

ard. Sufficiently large datasets can be split across a proportion-
lly large number of partitions, reducing the peak computational
equirements to sensible levels. In practice, the optimal N used
for splits depends on many factors including the composition of
features, number of compute nodes, size of compute nodes and
the importance of runtime. In practice, a large dataset of 1012
8

entries with a fixed N = 5 split across two features results
in 81 partitions, each with ∼ 1010 entries. This scale remains
a considerable task, hence splitting over three or four features
results in 729 or 6561 partitions respectively. Such a split over
four features has reduced our peak requirements from clustering
one trillion data points to roughly 200–300 million. Alternatively,
if only two suitable splitting features exist, we could partition the
data with N = 16, creating 961 partitions, each with approxi-
mately 1 billion data points. The only caveat to these extremes
is that the largest scale structure is likely to be lost, although it
is likely possible to identify this structure using lower-resolution
data. A good example would be using maps of stellar positions
stars to identify galaxy filaments. In practice, the galaxy positions
would be more suitable and represent a much smaller catalogue.

Returning to the challenge that inspired this work, identifying
stellar clusters and co-moving groups within the Milky Way
plane. HEADSS offers an opportunity to influence clustering with
prior domain and scientific knowledge. The clustering of stellar
clusters requires both positional (coordinates) and velocity data
(proper motions). Nonetheless, there is a fundamental under-
standing that the positional association outweighs the velocity
connections, i.e. objects moving in the same direction but scat-
tered across the Milky Way are not part of a common stellar
cluster. The solution offered by HEADSS is splitting the data by the
positional data and continuing to cluster using both data types
does not negatively affect the clusters identified. Essentially, the
proper motion data increases the accuracy, but as a secondary
subset of features for this dataset have a lower feature impor-
tance. Clustering the Milky Way plane offers an excellent use
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ase for HEADSS due to the natural feature importance hierarchy
nd natural distribution across the positional feature space. The
esults, to be published as part of Crake et al. (In Prep), represent
true scientific use case with a dataset of ∼ 108 objects. For
se in other datasets, a general rule is to partition the data along
eatures with the highest importance.

. Conclusions

This work presents HEADSS, a package designed to facilitate
he accurate clustering of big data. We aimed to make any cluster-
ng algorithm scalable and repeatable while retaining its accuracy
nd reducing the size of required compute nodes. We have shown
EADSS represents an improvement in both scalability and run
imes, using HDBSCAN as an example, across a range of datasets
epresenting a plethora of potential use cases. We also provide
process of merging clusters to expand the potential impact of

his work way beyond the specific use cases first envisioned. We
o not explore the limitations of HEADSS for high dimensionality
s the process is optimised for splitting along minimal features
hilst allowing the selected algorithm to cluster on additional

eatures.
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