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Université de Lille,
France

Reviewed by:
Susan Laird,

Sheffield Hallam University,
United Kingdom
John D. Aplin,

The University of Manchester,
United Kingdom

*Correspondence:
Rupsha Fraser

rupsha.fraser@ed.ac.uk

Specialty section:
This article was submitted to

Cancer Endocrinology,
a section of the journal

Frontiers in Endocrinology

Received: 25 March 2022
Accepted: 16 May 2022
Published: 27 June 2022

Citation:
Fraser R and Zenclussen AC (2022)
Killer Timing: The Temporal Uterine

Natural Killer Cell Differentiation
Pathway and Implications for Female

Reproductive Health.
Front. Endocrinol. 13:904744.

doi: 10.3389/fendo.2022.904744

REVIEW
published: 27 June 2022

doi: 10.3389/fendo.2022.904744
Killer Timing: The Temporal Uterine
Natural Killer Cell Differentiation
Pathway and Implications for Female
Reproductive Health
Rupsha Fraser1* and Ana Claudia Zenclussen2

1 Centre for Reproductive Health, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,
2 Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany

Natural killer (NK) cells are the predominant maternal uterine immune cell component, and
they densely populate uterine mucosa to promote key changes in the post-ovulatory
endometrium and in early pregnancy. It is broadly accepted that (a) immature, inactive
endometrial NK (eNK) cells in the pre-ovulatory endometrium become activated and
transition into decidual NK (dNK) cells in the secretory stage, peri-implantation
endometrium, and continue to mature into early pregnancy; and (b) that secretory-
stage and early pregnancy dNK cells promote uterine vascular growth and mediate
trophoblast invasion, but do not exert their killing function. However, this may be an overly
simplistic view. Evidence of specific dNK functional killer roles, as well as opposing effects
of dNK cells on the uterine vasculature before and after conception, indicates the
presence of a transitory secretory-stage dNK cell (s-dNK) phenotype with a unique
angiodevelopmental profile during the peri-implantation period, that is that is functionally
distinct from the angiomodulatory dNK cells that promote vessel destabilisation and
vascular cell apoptosis to facilitate uterine vascular changes in early pregnancy. It is
possible that abnormal activation and differentiation into the proposed transitory s-dNK
phenotype may have implications in uterine pathologies ranging from infertility to cancer,
as well as downstream effects on dNK cell differentiation in early pregnancy. Further,
dysregulated transition into the angiomodulatory dNK phenotype in early pregnancy will
likely have potential repercussions for adverse pregnancy outcomes, since impaired dNK
function is associated with several obstetric complications. A comprehensive
understanding of the uterine NK cell temporal differentiation pathway may therefore
have important translational potential due to likely NK phenotypic functional implications
in a range of reproductive, obstetric, and gynaecological pathologies.
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INTRODUCTION

The uterine mucosa undergoes dynamic cyclical tissue breakdown,
regeneration and remodelling, leading to a carefully timed and
defined period duringwhich an embryo is able to attach and invade
into a receptive uterus (1, 2). In the human endometrium,
decidualisation is a dynamic, multistep progression of events,
which begins in the secretory stage of the uterine cycle (luteal
phase of the menstrual cycle) in response to rising ovarian steroid
hormones (progesterone and estradiol) produced by the corpus
luteum following ovulation, and is marked by the differentiation of
fibroblast-like endometrial stromal cells (ESCs) into large,
secretory, ‘decidual’ cells. Implantation of a conceptus takes place
in the mid-secretory endometrium during a transient embryo-
receptive period known as the ‘window of implantation’ (3). The
induction of this receptive endometrial phenotype is reliant on an
acute pro-inflammatory decidualisation initiation phase that leads
to secretory and phenotypic changes in the uterine epithelium, and
is also associated with the accumulation of maternal leukocytes in
the endometrium and angiogenic growth of the spiral arteries (the
terminating branches of the uterine arteries) in preparation for
implantation (3, 4). Decidualisation is maintained after
implantation, mainly under the influence of progesterone, and is
required for the maintenance of pregnancy (3, 5, 6). In this review,
we will focus on events in the human uterus, while referring, where
appropriate, to relevant evidence from mouse models.

Innate lymphoid cells (ILCs; lymphocytes that do not express
diverse antigen receptors) are the most prevalent leukocytes
populating the uterine mucosa during the menstrual cycle and in
early pregnancy. ILC subsets are categorised according to their
cytokine profiles and transcription factor expression: ILC1s express
T-bet and secrete IFN-g; ILC2s express GATA-3 and secrete IL-5,
IL-9 and IL-13; and ILC3s, which include a lymphoid tissue
inducer-like subset, are defined by their expression of RORgt and
secrete IL-17 and IL-22. Natural killer (NK) cells are known as key
members of the ILC family, although it remains to be clarified
whether tissue-resident NK cells in the uterine mucosa constitute a
unique NK cell population or denote a population that includes
ILC1s and ILC3s (7, 8). NK cells represent the predominant
maternal immune cell component in the secretory stage
endometrium and comprise up to 70% of leukocytes in first
trimester decidua: they promote critical changes in the uterine
microenvironment both during the ‘window of implantation’ and
in early pregnancy (9–11), and uterine NK numbers subsequently
diminish from mid-gestation to term (12).

Inactive NK cells proliferate and become activated in the
decidualising secretory-stage endometrium, and then further
expand in pregnancy (13, 14). Recent evidence also suggests
that the uterine NK niche may be replenished from the
circulation (15). While it was historically believed that the
same NK cells that are activated during the secretory stage,
expand and continue in pregnancy, evidence from several studies
over the last decade indicate progressive NK cell differentiation
within the uterine mucosa in response to the local environment
during both endometrial regeneration and pregnancy (2, 15–17).
However, it is still widely accepted that, despite their name, NK
cells in the uterine mucosa do not kill, but are pro-angiogenic
Frontiers in Endocrinology | www.frontiersin.org 2
(18–22). Activated uterine NK cells do, nevertheless, live up to
their name, and induce apoptosis of distinct cellular populations
pre- and post-conception, to promote implantation, placentation
and uterine vascular remodelling, thus ensuring pregnancy
success (9, 10), despite producing several immunosuppressive
molecules that may contribute to the establishment of maternal-
fetal immune tolerance (23). Uterine NK cells are predominantly
CD56brightCD16– (as opposed to peripheral blood NK cells,
which are largely CD56dim/–CD16bright), and once activated in
the secretory stage, produce cytotoxic proteins and thus have
cytolytic capacity (21, 24), but do not cause cytotoxicity of
healthy placental cells (22). Further, while secretory-stage dNK
cells do indeed stimulate growth and development of the spiral
arteries to ensure an adequately vascularised endometrium for
implantation (20, 25), dNK cells in early pregnancy bestow
destabilising and pro-apoptotic effects on vascular cells to
initiate the spiral artery remodelling process requisite for
increased vascular provision to the developing fetus (10, 11,
26–30). At this time, uterine NK cells also promote trophoblast
invasion, which is when specialised placental-derived cells
(trophoblasts) invade the decidua towards the spiral arteries in
order to remodel them (10, 31). Further, pre- and post-
conception uterine NK cells display different secretory profiles
that support distinct uterine vascular processes (25, 26, 29).
Thus, uterine NK cells exhibit divergent immune profiles and
functions before and after pregnancy, that are both indirectly and
directly influenced by the temporal endocrine adaptions within the
local uterine tissue environment (9–11, 26, 29, 32–35). Indeed, a
recent murine study investigating the early pregnancy uterine
transcriptome has demonstrated that endocrine and paracrine
regulators of immune responses and different cellular behaviours
exhibit differential region-specific expression patterns within the
uterus (36), further emphasising the contributory role of the local
uterine microenvironment in mediating cellular phenotypic and
functional profiles. Here, we describe the disparate functional
profiles of NK cells in the uterine mucosa during the ‘window of
implantation’ and in early pregnancy. These divergent NK
characteristics indicate a pivotal but transitory angiodevelopmental
uterine NK cell phenotype that also implements endometrial
reconstruction in the peri-implantation endometrium; which is
functionally distinct from the equally essential, angiomodulatory
uterine NK cell phenotype in early pregnancy that induces vessel
structure destablisation, vascular cell apoptosis and trophoblast
invasion, to facilitate uterine vascular remodelling and placentation
for successful pregnancy outcomes (Figure 1).
TIMINGOFNKCELL PROLIFERATION IN
THE UTERINEMUCOSA: SECRETORY
STAGE VS. EARLY PREGNANCY EXPANSION

Temporally and physiologically distinct vascular processes
during the secretory and early pregnancy are necessary to
provide an adequate oxygen and nutrient supply to the
placental unit, to meet the demands of a rapidly developing
fetus. Successful implantation and establishment of pregnancy
June 2022 | Volume 13 | Article 904744
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rely on uterine vascular development and expansion, whereby
decidual capillaries and spiral arteries undergo vascular growth
and development, in response to coordinated progesterone and
estradiol secretion (20, 37, 38). Subsequently, in early pregnancy,
the uterine spiral arteries must be remodelled into large-
diameter, high-flow vessels with low resistance, facilitating an
approximately 10-fold increase in blood supply into the
intervillous space for placental uptake (39). These disparate
vascular processes correspond to two separate bursts of uterine
NK cell proliferation that are mediated by temporal endocrine
and immunological adaptations within the uterine environment:
there is a significant increase in number during the peri-
implantation period in the secretory stage endometrium,
followed by a further increase in early pregnancy (35, 37, 40).

Rapid proliferation of uterine NK cells is concurrent with
secretory-stage ESC decidual transformation and growth of the
uterine vasculature. Under the action of ovarian steroid hormones,
an acute pro-inflammatory ESC response leads to the production
of adhesion molecules in the overlying epithelium, which renders
the uterus transiently receptive for embryo implantation (18, 41).
During this time, the NK cells within the uterine mucosa undergo
post-ovulatory phenotypic changes, and display distinctive gene
and protein expression profiles, although neither the progesterone
receptor (PR) nor estrogen receptors (ERs) are expressed by
human uterine mucosal NK cells (32, 42, 43). Instead, the
previously inert endometrial NK (eNK) cells are activated by
ESC-derived interleukin 15 (IL-15) (35, 42): the mid-secretory
endometrium begins to express high levels of IL-15, which is
upregulated by progesterone as decidualisation progresses, and
Frontiers in Endocrinology | www.frontiersin.org 3
promotes their proliferation, activation, and maturation into
decidual NK (dNK) cells (44–49). If there is no fertilisation, the
corpus luteum will regress, resulting in progesterone (and
estradiol) withdrawal, and in turn, IL-15 withdrawal. This leads
to death of the activated dNK cells and subsequent decline of
dNK-derived soluble factor products that maintain vascular
integrity, thereby contributing to spiral artery constriction and
endometrial ischemia, and ultimately causing ESC cell death and
menses (40, 41, 50, 51). If pregnancy ensues, the uterine
microenvironment remains abundantly rich in IL-15 throughout
the first trimester of pregnancy, until placentation and uterine
vascular remodelling are complete (33, 34). Subsequently, IL-15
levels decline, corresponding to waning dNK numbers from mid-
gestation to term (12, 34).

The post-ovulatory dNK cell proliferative surge and activation is
explained by increased IL-15 levels in the peri-implantation
endometrium. However, the further dramatic dNK cell
expansion in early pregnancy remained unexplained until it was
demonstrated that extensive post-implantation dNK proliferation
can be induced by human chorionic gonadotropin (hCG), one of
the earliest proteins secreted by trophoblast cells (35). hCG is a
heterodimeric glycoprotein with an identical alpha subunit to
luteinizing hormone (LH), and hence binds the LH receptor
(LHR); and both mature hCG and LH are modified by N-linked
carbohydrate side chains that are important for the stability and
assembly of the proteins, although the carbohydrate side chains
between the two proteins are not identical (52, 53). Thus, while NK
cells in uterine mucosa do not express the LHR, they do express the
mannose receptor (MR; also known as CD206), a cell surface lectin
FIGURE 1 | Proposed temporal natural killer cell differentiation pathway within the uterine mucosa. Following ovulation, progesterone upregulates the production of
IL-15 by ESCs in the secretory stage endometrium decidualisation progresses. IL-15 stimulates the proliferation, activation, and maturation of inert eNK cells into a
transitory angiodevelopmental s-dNK phenotype that induces uterine vascular growth and mediates endometrial reconstruction to facilitate embryo implantation.
Following implantation, placental-derived hCG drives further NK proliferation, and EVT-derived immunomodulatory factors promote their differentiation into a terminal
angiomodulatory dNK phenotype, with destabilising and pro-apoptotic effects on vascular cells and pro-invasive effects on EVT, to initiate the uterine vascular
changes crucial for successful pregnancy outcomes.
June 2022 | Volume 13 | Article 904744
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that binds glycoproteins with N-linked carbohydrate side chains
(54). The uterine NK cell MR can therefore recognise carbohydrate
moieties in glycosylated proteins. As such, hCG-carbohydrate-side
chain recognition by dNK-expressed MR may induce non-
canonical hCG signalling to stimulate dNK proliferation in early
pregnancy (35). However, since hCG and LH do not share identical
N-linked carbohydrate side chains (53), the pre-ovulatory LH surge
(which induces ovulation) is likely unable to promote eNK
activation and maturation into dNK cells, as indicated by the
lack of uterine NK proliferation reported upon LH stimulation in
vitro (35). This is also consistent with the significant rise in
secretory-stage uterine NK number occurring several days after
ovulation, when decidualisation begins. The second surge in dNK
cell number, which occurs during early pregnancy and
placentation, corresponds to the exponentially rising hCG levels
that peak at around 10 weeks of gestation (55); levels then decline
until approximately 16th week of gestation and remain relatively
constant thereafter until term (55), consistent with declining dNK
numbers from mid-gestation to term (12). Notably, failing
pregnancies have been associated with lower daily rates of
increase in hCG, with low circulating hCG concentrations
predictive of pregnancy loss (56). Interestingly, a unique dNK
population has been identified in the decidua of multigravid
women, termed pregnancy-trained decidual NKs (PTdNKs),
whose activation may foster proper placentation, demonstrating
the trained memory function of dNK cells in enhancing
placentation (57).
NK CELLS IN THE SECRETORY STAGE
UTERINE MUCOSA

Endometrial neoangiogenesis and rapid endometrial growth take
place during the estradiol-mediated proliferative phase of the
uterine cycle to regenerate the endometrium after menstruation;
and following ovulation, rising levels of progesterone and estradiol
initiate the decidualisation process during secretory stage of the
uterine cycle (9, 37, 58). Decidualisation is characterised by
differentiation of ESCs into specialised decidual cells, NK cell
accumulation within the uterine mucosa, uterine vascular growth,
and local edema (3, 4). A sufficiently decidualised stroma, with
increased vascularisation of the endometrium, is essential for
invasion of the blastocyst and embryo implantation (37).
Successful implantation in humans also requires a receptive
epithelium for initial attachment of the conceptus, which is
reliant on a pro-inflammatory endometrial environment (59–
64). The presence of NK cells in the endometrium prior to
conception is unique to humans, and the functional profiles of
secretory-stage dNK cells demonstrate their prominent roles in
mediating endometrial reconstruction, promoting growth and
development of the uterine vasculature, as well as contributing
to an inflammatory endometrial phenotype that is essential for
implantation (65).

Decidual transformation is not static, but a dynamic process that
begins after ovulation, during the secretory stage of the uterine cycle.
It encompasses three critical transitory phases: an acute pro-
Frontiers in Endocrinology | www.frontiersin.org 4
inflammatory decidualisation initiation phase, which subsequently
transitions to an anti-inflammatory secretory phase during which
time embryo implantation takes place, followed by a final resolution
phase. The transient pro-inflammatory decidualisation initiation
response that is crucial for the induction of endometrial receptivity,
is accompanied by a surge of free radical production, and the
secretion of various cytokines, growth factors and angiogenic factors
(4, 61, 66, 67). However, the rapid pre-ovulatory endometrial
proliferation (post-menstruation endometrial regeneration)
prompts replication stress in a subpopulation of ESCs that are
consequently unable to differentiate into specialised decidual cells
during the decidualisation initiation phase, but instead undergo
acute cellular senescence (a tightly coordinated biological process
implicated in embryo development, wound healing and tissue
repair) (9). These senescent ESCs, in turn, secrete a host of
inflammatory mediators that signal to induce the production of
epithelial adhesion molecules involved in endometrial receptivity.
Acute decidual senescence, through its stimulation of an acute pro-
inflammatory decidual phenotype, thus contributes to the induction
of key receptivity gene expression in the overlying endometrial
epithelium (9, 61), and may therefore be fundamental to the
acquisition of a receptive endometrial phenotype. Concomitant
systematic clearance of acutely senescent decidual cells, regulates
endometrial reconstruction (rejuvenation and remodelling of ESCs)
that is necessary ensure a mature decidual cell environment for
embryo implantation. Secretory stage dNK cells are pivotal to this
process, as they target and eliminate senescent cells through granule
exocytosis. Senescent decidual ESC clearance by midsecretory-stage
dNK cells, coincident with the ‘window of implantation’, thereby
exerts a role in maintaining tissue homeostasis from cycle to cycle,
and may directly assist embryo implantation in the presence of a
conceptus (9). In addition, secretory stage dNK cells also release
prokineticin 1 during the ‘window of implantation’, which regulates
the expression of several implantation-related genes, and has
therefore been proposed as a marker of endometrial receptivity
(68, 69).

Peri-implantation growth and development of the spiral
arteries (branching, elongation and vascular maturation)
increases the uterine vascular surface area in preparation for
pregnancy, and is prerequisite for implantation and placentation
to proceed (37, 70, 71). Secretory-stage dNK cells produce a range
of angiogenic mediators including vascular endothelial growth
factor (VEGF)-A, VEGF-C, placental growth factor (PlGF), and
angiopoietins 1 and 2 (25). The VEGF family constitutes seven
distinct proteins, which include VEGF-A, VEGF-C and PlGF.
VEGF-A is a key regulator of decidual angiogenesis and the
maintenance of vascular integrity, and when genetically ablated
in mice, causes embryonic lethality (20, 25, 72). VEGF-C has been
characterised as a selective growth factor for lymphatic vessels and
was found to affect the migration and proliferation of endothelial
cells (25). VEGF signaling is mediated via interactions with two
structurally related tyrosine kinase receptors, VEGFR-1/fms-like
tyrosine kinase I (Flt-1) and VEGFR-2 (Flk-1) (73). Upregulation
of VEGF-A and its cognate receptors that act on the uterine
microvasculature during the secretory stage, may lead to increased
vascularity and blood flow, in turn, enhancing the vascular
June 2022 | Volume 13 | Article 904744
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conditions for implantation (74). PlGF is also heavily expressed in
human pregnancies, binds to both Flt-1 and Flk-1, and promotes
the further expression of angiogenic factors such as VEGF-A, basic
fibroblast growth factor, platelet-derived growth factor beta,
matrix metalloproteinases (MMPs) (20, 75). The release of
VEGF and PlGF can be further triggered by NK-cell activating
receptors NKp30 and NKp44, both of which are expressed by IL-
15-activated dNK cells, while inert pre-ovulatory eNK cells lack
NKp30 and NKp44 expression (13, 31). These receptors are also
upregulated by prolactin (48), levels of which rise in the late
secretory stage and are high throughout pregnancy (49).
Angiopoietins can also work in collaboration with VEGFs, to
control vascular growth and integrity, and can influence the stability
of spiral arteries (25). Thus, peri-implantation dNK cells in the
secretory stage uterine mucosa have an angiodevelopmental
secretome, playing a central role in supporting growth and
elongation of the uterine vasculature for subsequent remodelling
into enlarged uteroplacental vessels (25, 70).

The profound changes that take place in the secretory stage
endometrium are not only important for implantation success, but
aberrant decidual transformation can cause endometrial functional
inadequacy, which has been implicated in infertility/reproductive
disorders, gynaecological disorders, female reproductive tract
cancers, and several obstetric complications (4, 28, 62, 76–88).
dNK cell functions undoubtedly play fundamental roles during the
secretory stage, and any impairment of the immune-endocrine
network (including NK cellular functions) at this time could lead to
primary reproductive failure, or uterine pathologies such as
endometriosis (characterised by the ectopic growth of
endometrial tissue) and its associated infertility (69, 89). Further,
phenotypic and functional impairment of uterine NK cells
(rendering them unable to exert their classical anti-tumour
actions) has been demonstrated in endometrial cancer, likely
resulting from a dysregulated and imbalanced endocrine-immune
network (19, 90).

Abnormal dNK cell activation and differentiation during the
secretory stage can also directly interfere with implantation (69).
Depending on the extent of dNK functional dysregulation, this may
cause implantation failure, or contribute to anomalous elongation
of the ‘window of implantation’ to permit abnormal/delayed
embryos to implant, and may also lead to downstream
repercussions along the continuum of disorders that have their
origins in implantation and placental development (including
recurrent miscarriage, pre-eclampsia, intrauterine growth
restriction and preterm birth). Indeed, recurrent miscarriage has
been associated with a significantly altered secretory-stage dNK
phenotype compared to fertile women (91). While some studies
show no differences in percentage of total secretory-stage dNK cell
numbers detected in women with recurrent miscarriage compared
to those without, others report increased dNK levels in the
endometrium of women with recurrent miscarriage, with further
differences in women with primary versus secondary pregnancy
loss (91–95). The lack of consensus of these studies indicates a
distinct lack of predictive value of secretory-stage dNKnumbers for
subsequent pregnancy outcome. Secretory-stage dNK phenotypic
and functional studies may therefore be more informative.
Frontiers in Endocrinology | www.frontiersin.org 5
NK CELLS IN THE EARLY PREGNANCY
UTERINE MUCOSA

The production of pro-angiogenic factors is fundamental for
appropriate vascular development in the peri-implantation uterus
and in the very early stages of pregnancy. However, while peri-
implantation dNK cells demonstrate vascular constructive functions
and have a pro-angiogenic profile with no apoptotic effects on
vascular cells (20, 25), anti-angiogenic effects may be required as
pregnancy progresses, to permit the physiological change in spiral
arteries to take place (26, 29). Spiral arteries consist of several outer
layers of vascular smoothmuscle cells (VSMC) and an inner layer of
endothelial cells (ECs); and spiral artery remodelling involves
removal of VSMCs and the replacement of ECs with extravillous
trophoblasts (EVTs), which are specialised placental cells arising
from the trophectoderm-derived cytotrophoblast. Following
implantation, the trophectoderm (the outer layer of the blastocyst)
gives rise to the cytotrophoblast, which differentiates along either a
villousoranextravillouspathway: villous cytotrophoblasts give rise to
the placental villi, across which maternal-fetal gas and nutrient
exchange take place; and EVTs migrate and invade through the
decidua towards the spiral arteries in order to remodel them.
Insufficient spiral artery remodelling and impaired trophoblast
invasion have been associated with a range of obstetric
complications, recurrent miscarriage, late spontaneous abortion,
including pre-eclampsia, intrauterine growth restriction (IUGR),
preterm birth, and placental abruption (collectively referred to as
the ‘great obstetric syndromes’) (96–101).

Spiral artery remodelling takes place in two stages: an EVT-
independent, followed by an EVT-dependent stage. The initial EVT-
independent stage of this physiological change in the spiral arteries
include VSMC hypertrophy, disorganisation and dedifferentiation,
EC activation and vacuolisation, as well as breaks in the VSMC and
EC layers: these events take place in the presence of leukocytes, ahead
of trophoblast invasion (30, 102–104). Indeed, histological studies of
first trimester decidua have detected early apoptotic changes in
vascular cells of the spiral artery in the presence of maternal
leukocytes but not EVT (103, 104), and VSMC dedifferentiation
(30). Further, dNK cells isolated from 9–14-week decidual tissue
(from elective termination of normal pregnancies) induced caspase-
dependent apoptotic changes in VSMCs and ECs via a Fas signalling
pathway, while dNK cells isolated from abnormally remodelling
pregnancies (with high resistance to blood flow, and therefore at
higher riskofdevelopingpre-eclampsia)producedsignificantly lower
levels of pro-apoptotic factors and failed to induce vascular cell
apoptosis (10). In addition, dNK cells isolated from normally
remodelling first-trimester pregnancies were found to secrete
factors that induced endothelial activation and the disruption of
endothelial integrity, thus further contributing to the early vascular
changes during spiral artery remodelling; whereas dNK cell-secreted
factors from abnormally remodelling pregnancies did not promote
EC activation and destabilisation (11). Finally, dNK secretion of
angiogenic growth factor levels during pregnancy decreases with
increasing gestational age (29), and notably, elevated angiogenic
factor secretion by dNK cells has been demonstrated in abnormally
remodelling pregnancies (26). These lines of evidence demonstrate
June 2022 | Volume 13 | Article 904744
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the essential roles that dNK cells play in initiating vascular
remodelling of the maternal uterine spiral arteries (10, 11, 30, 39,
103); and EVT subsequently complete the remodelling process
instigated by the dNK cells, to create uteroplacental vessels that
provide the fetal blood supply (77, 102, 103, 105). Indeed, anomalous
NK cell receptor gene expression has been linked to aberrant
remodelling of the uterine vasculature and the primary stage of
several human gestational pathologies, and compromised functional
capacity of dNK cells in early pregnancy has been associated with
recurrent miscarriage and pre-eclampsia, and other disorders that
implicate defective spiral artery remodelling (106–110).

In addition to their direct effects on vascular remodelling, dNK
cells in early pregnancy also produce a large repertoire of cytokines,
growth factors and proteases that can promote EVT motility and
invasion (10, 31). For example, dNK cells produce interleukin (IL)-8
and interferon g-induced protein (IP)-10, while EVTs express their
receptors, CXCR-1 and CXCR-3, respectively, which promotes EVT
recruitment andmigration to the spiral arteries (31). Further, in vitro
studies demonstrated that dNK cells were able to promote the
invasive behaviour of EVTs through a hepatocyte growth factor-
mediated mechanism, which was found to be impaired in dNK cells
isolated from abnormally remodelling pregnancies at higher risk of
developing pre-eclampsia, which also secreted lower levels of several
factors with known stimulatory effects on trophoblasts (urokinase
plasminogen activator, heparin-binding epidermal growth factor,
CXCL16, IL-1b and IL-8) (10). Additionally, as well as directly
promoting EVT invasion, dNK cells also influence the
differentiation of EVT into an invasive phenotype via their
secretion of cytokines and chemokines that can alter the EVT
adhesion molecule repertoire, whilst also promoting EVT survival
(111–114). However, abnormally remodelling pregnancies
demonstrate impaired dNK chemoattraction for EVT, as well as a
reducedability topromoteEVTdifferentiation (115). It isnoteworthy
to add that dNK production of proteases (e.g. matrix
metalloproteinases or urokinase plasminogen activator), as well as
factors that mediate the upregulation of proteases (IL-1b, IL-6, IL-8,
IL-10, leptin and TNF-a), can promote the breakdown of the elastic
fibres at the basal sections of decidual spiral arteries and confer
changes in the extracellular matrix, to support EVT invasion (116–
120). Additionally, dNK-derived VEGF-C may also generate
protective effects by conferring EVT resistance to cytotoxicity, as
well as stimulating the assembly of EVT into networks of tube-like
structures (18, 121).Thus,whiledNKpromote theseEVTphenotypic
and functional characteristics that are requisite for successful
trophoblast invasion (including EVT survival, differentiation,
migration, motility and invasion); EVT, as they migrate and invade
through the decidua, influence dNK phenotype and functions, in
addition to the placental induction of dNK proliferation through
non-canonical hCG signalling. These dNK-trophoblast interactions
in early pregnancy therefore represent an interdependent
relationship through reciprocal actions, as well as via several
functional similarities to promote vascular remodelling (27).

dNK cells can interact with invading EVT through their
expression of human leukocyte antigen (HLA)-binding cell-
surface receptors and that bind to HLA molecules expressed by
EVT. For example, EVT-derivedmembrane-boundHLA-G and its
Frontiers in Endocrinology | www.frontiersin.org 6
soluble form (sHLA-G; secreted by EVT) have been shown to
stimulate NK cell proliferation and cytokine stimulation, to
promote uterine vascular modelling (122, 123). Additional
actions of the homodimer form of the sHLA-G, via binding to
KIR2DL4 (one of the killer-cell immunoglobulin (Ig)-like receptors
expressed by NK cells), increases dNK secretion of IL-6, IL-8 and
TNF-a (124). Upregulation of these cytokines may directly
contribute to spiral artery remodelling, as well as having
stimulatory effects on trophoblast invasion (11, 31, 111, 112, 120,
125, 126). Further, specific dNK-trophoblast interactions through
dNK KIR and fetal EVT HLA-C are of particular importance, as
certain KIR–HLA-C combinations have been associated with an
increased risk of pre-eclampsia, recurrent miscarriage and IUGR
(108–110). The repertoire of KIRs is heterogeneous, with two
haplotypes: A and B. The A haplotype has seven KIR loci with
only one activating receptor, KIR2SD4; however, despite being an
activating receptor, the most common allele of KIR2SD4 has a
deletion, resulting in individuals with two A haplotypes having no
activating receptors. The B haplotypes are characterised by the
incidence of extra loci that are not present on the A haplotype,
consisting of activating receptors KIR2SD1, 2, 3, 5 and KIR3SD1,
and the inhibitory receptors KIR2DL2 and KIR2DL5. HLA-C
expresses both maternal and paternal antigens, resulting in two
allotypes, HLA-C1 and HLA-C2 (109, 127). In pregnancies where
dNK cells with the AA KIR genotype (lacking most or all of the
activating receptors) are paired with EVT expressing the HLA-C2
allotype, there is a high risk of pre-eclampsia development (109).
Conversely, dNK cells expressing activating KIRs enhance
placentation and confer protection against reproductive and
obstetric disorders (108, 128, 129), and altered dNK interactions
with fetal HLA-C and HLA-G have been observed in abnormally
remodelling pregnancies, which may compromise several
components of the spiral artery remodelling process (130).

As stated previously, there is broad consent that NK cells in the
uterine mucosa do not kill. However, we have described here the
killing functions of dNK cells found both in the secretory stage
endometrium and in early pregnancy. Further, accumulating
evidence indicates that dNK cells can also kill infected cells in the
presenceofviruses (131–133). Indeed, in vitro studiesdemonstrated
that dNK cells are able to invade trophoblast organ culture, co-
localise with placental cells, degranulate and kill virally infected
trophoblasts, as well as selectively kill intracellular bacteria in EVT
without killing the trophoblast (132–134).
PERI-IMPLANTATION VS. EARLY
PREGNANCY DNK CELLS: PHENOTYPE
AND FUNCTION

The divergent functional profiles of dNK cells before and after
conception demonstrate that the temporal endocrine and
immunological fluctuations in the uterine microenvironment
strongly influence dNK phenotype. Timely differentiation into
appropriate dNK phenotypes within the uterine mucosa during the
secretory stage and in early pregnancy are crucial for endometrial
June 2022 | Volume 13 | Article 904744

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Fraser and Zenclussen Temporal dNK Cell Differentiation Pathway
reconstruction, implantation, and successful pregnancy outcomes.
Indeed, we have described here the numerous reproductive and
obstetric disorders, including recurrent implantation failure,
recurrent miscarriage, pre-eclampsia, IUGR and preterm birth, that
have been associated with the absence of appropriate NK cell
activation and function (10, 11, 20, 26, 106–110, 115, 130). Further,
impaired dNK functional capacity has also been indicated in several
uterine pathologies (19, 69, 89, 90). We therefore propose (i) a
transitory angiodevelopmental secretory-stage dNK (s-dNK) cell
phenotype during the ‘window of implantation’, whose phenotype
and functional roles are fundamental for uterine vascular
developmental growth and endometrial reconstruction, under
indirect progesterone control. This is followed by an
immunomodulatory shift in early pregnancy, stimulated by hCG
and other placental-derived immunomodulatory factors, into (ii) a
terminal angiomodulatorydNKphenotypewithdestabilising andpro-
apoptotic effects on vascular cells, and pro-invasive effects on EVT, to
initiate and support uterine vascular remodelling into enlarged
uteroplacental vessels (Figure 1).

CONCLUDING REMARKS

It isprobable thatuntimelyorabnormal activationanddifferentiation
into the transient angiodevelopmental s-dNK phenotype is
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implicated in a wide range of reproductive, gynaecological, and
obstetric disorders; and disruption of further differentiation in early
pregnancy into the appropriate angiomodulatory dNK phenotype
withpro-apoptotic effects onvascular cells andpro-invasive effects on
EVT,will also have serious implications in several adverse pregnancy
outcomes. A comprehensive understanding of the stepwise NK cell
temporal differentiation pathway within the uterine mucosa could
thereforehave substantial translationalpotential due to the important
functional roles of s-dNK and dNK cells in normal vs. complicated
pregnancies, as well as in a spectrum of uterine pathologies (10, 11,
49), and warrants further investigation.
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