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Abstract

Summary: Data integration workflows for multiomics data take many forms across academia and industry. Efforts with
limited resources often encountered in academia can easily fall short of data integration best practices for processing
and combining high-content imaging, proteomics, metabolomics, and other omics data. We present Phenonaut, a
Python software package designed to address the data workflow needs of migration, control, integration, and auditabil-
ity in the application of literature and proprietary techniques for data source and structure agnostic workflow creation.

Availability and implementation: Source code: https://github.com/CarragherLab/phenonaut, Documentation: https://
carragherlab.github.io/phenonaut, PyPI package: https://pypi.org/project/phenonaut/.

1 Introduction

As academic drug discovery efforts further embrace multiparametric
assay technologies and multiomic dataset generation (Hasin et al.
2017), the management of data integration pipelines becomes in-
creasingly critical. This is addressed in industrial drug discovery
efforts driven by compliance requirements and resource availability.
Early-stage academic efforts are typically less well supported, tack-
ling targets and diseases areas with different risk/reward profiles
(Tralau-Stewart et al. 2009) and playing to the strengths of individ-
ual groups whilst affording more freedom and less oversight. This
encourages ad hoc analysis with scientists often acting to collect,
process, and interpret data with single-use workflows, lacking over-
sight, tracking, and validation. We present Phenonaut, a Python
package for the analysis of multiomic biological data in a compliant
and reproducible manner. With a focus on multiparametric multio-
mic data, Phenonaut differentiates itself from other available soft-
ware packages, such as BIOVIA Dassault Systèmes’ Pipeline Pilot,
KNIME (Berthold et al. 2009), Core Life Analytics’ StratoMineR,
TIBCO SpotfireVR , Pycytominer (Way et al. 2019), SCANPY (Wolf
et al. 2018), and SnakeMake (Köster and Rahmann 2012), all of
which are limited by their cost, closed nature, or focus on one specif-
ic omics technology. In the hope to revolutionize featurized multio-
mics workflows in the same way that SnakeMake has revolutionized
bioinformatics workflows, Phenonaut addresses the following data
needs; (i) Migration—use of the rich Python ecosystem allows access

to many formats and protocols. (ii) Control—use of the Python API
or YAML workflow mode allows automation, control, testing, and
deployment in HPC and cloud environments. (iii) Integration—
Phenonaut is designed to work with multiomics data, taking mul-
tiple views into an underlying biological system e.g. imaging accom-
panied by proteomics. (iv) Auditability; Phenonaut runs are
accompanied by cryptographic hashes proving reported inputs and
workflows produced certain outputs.

2 Implementation

Written in Python, Phenonaut is a pip-installable package for data
integration and workflow generation. Users do not have to be profi-
cient in the Python programming language, as Phenonaut imple-
ments a workflow mode using simple YAML files. See
Supplementary Information for user guide with further details as
well as online API documentation. Although initially developed for
the analysis of phenotypic screening campaigns featurized with
CellProfiler (Carpenter et al. 2006), Phenonaut is input data struc-
ture agnostic, allowing users to describe the structure of data. This
flexible approach allows diverse formats to be processed and used in
multiomics workflows. Multiomic capabilities are exemplified in
Fig. 1, example 1 (lower left), whereby The Cancer Genome Atlas
(Weinstein et al. 2013) loaded as a packaged dataset included in
Phenonaut is used with the predict submodule to assess a range of
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machine learning techniques against all possible combinations of
methylation, miRNA, mRNA, and reverse phase protein array data
in predicting the one-year survival rate of tumour donors. This
profiling can easily be adapted to hit calling/phenotype assignment
within multiomics datasets, enabling scientists without coding ex-
perience to access and optimize state-of-the art methods. Output
from this profiling process with user-defined or inbuilt metrics con-
sists of performance heatmaps highlighting best view/predictor com-
binations in bold, boxplots for each view combination and a PPTX
presentation file allowing easy sharing of data, along with machine-
readable CSV/TSV and JSON results. A second example in Fig. 1
(lower right) showcases the use of the Connectivity Map (Lamb
et al. 2006) for the evaluation of commonly used phenotypic metrics
(Warchal et al. 2016). See Supplementary Information for further in-
formation on given examples.

3 Conclusions

With continued use, development, promotion, and community en-
gagement, we anticipate the implementation of further novel and
established literature techniques integrated into Phenonaut, as well as
inviting community contributions via email or GitHub pull requests.
We envision Phenonaut becoming a gold standard workflow integra-
tion tool for multiparametric multiomics data within the fields of
phenotypic screening, biomarker discovery, and beyond.

Supplementary data

Supplementary data is available at Bioinformatics online.
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Figure 1 Phenonaut exemplified using its packaged dataset loaders. Lower left: Multiomics dataset combinations for the Cancer Genome Atlas are profiled with hyperpara-

meter optimized classifiers to predict 1 year donor survival rate. Lower right: Phenotypic metrics are profiled against A549 cell line CRISPR repeats in Connectivity Map and

assessed via AUROC scores to as to their repeat enrichment in ranked hit lists
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