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Abstract—Many contemporary applications feature multi-
megabyte instruction footprints that overwhelm the capacity of
branch target buffers (BTB) and instruction caches (L1-I), caus-
ing frequent front-end stalls that inevitably hurt performance.
BTB capacity is crucial for performance as a sufficiently large
BTB enables the front-end to accurately resolve the upcoming
execution path and steer instruction fetch appropriately. More-
over, it also enables highly effective fetch-directed instruction
prefetching that can eliminate a large portion L1-I misses. For
these reasons, commercial processors allocate vast amounts of
storage capacity to BTBs.

This work aims to reduce BTB storage requirements by
optimizing the organization of BTB entries. Our key insight is
that storing branch target offsets, instead of full or compressed
targets, can drastically reduce BTB storage cost as the vast
majority of dynamic branches have short offsets requiring just
a handful of bits to encode. Based on this insight, we size the
ways of a set associative BTB to hold different number of target
offset bits such that each way stores offsets within a particular
range. Doing so enables a dramatic reduction in storage for
target addresses. Our final design, called BTB-X, uses an 8-way
set associative BTB with differently sized ways that enables it
to track about 2.24x more branches than a conventional BTB
and 1.3x more branches than a storage-optimized state-of-the-art
BTB organization, called PDede, with the same storage budget.

I. INTRODUCTION

Contemporary server applications feature massive instruc-
tion footprints stemming from deeply layered software stacks.
These footprints may far exceed the capacity of the branch
target buffer (BTB) and instruction cache (L1-I), resulting
in the so-called front-end bottleneck. BTB misses may lead
to wrong-path execution, triggering a pipeline flush when
misspeculation is detected. Such pipeline flushes not only
throw away tens of cycles of work but also expose the fill
latency of the pipeline. Similarly, L1-I misses cause the core
front-end to stall for tens of cycles while the miss is being
served from lower-level caches.

BTB stands at the center of a high-performance core front
end for three key reasons: it determines the instruction stream
to be fetched, it identifies branches for the branch direction
predictor, and it affects the L1-I hit rate. Specifically, by
identifying control flow divergences, the BTB ensures that the
branch direction predictor can make predictions for upcoming
conditional branches. For predicted-taken and unconditional
branches, the BTB supplies targets to which instruction fetch
should be redirected. Finally, the BTB together with the
direction predictor enables an important class of instruc-
tion prefetchers called fetch-directed instruction prefetchers

(FDIP) [30]–[32], [43], which rely on the BTB to discover
L1-I prefetch candidates.

Considering the criticality of capturing the large branch
working sets of modern workloads, commercial CPUs feature
BTBs with colossal capacities, a trend also observed by [24].
With each BTB entry potentially requiring 8 bytes or more
(Section II), BTB storage costs can easily reach into tens
and even hundreds of KBs. Indeed, the Samsung Exynos M6
mobile processor allocates a staggering 529KB of on-chip
storage to BTBs [21]. Not only the BTB storage cost is high,
it is increasing at a rapid pace. For example, the Samsung
Exynos BTB storage budget increased nearly six fold (98.9KB
to 561.5KB) from M2 to M6, over a period of about eight
years [21]. While such massive BTBs are effective at capturing
branch working sets, they do so at staggering area costs.

To reduce the BTB storage cost, prior work [47]–[49] has
focused on compressing the branch targets as they account for
the majority of BTB storage budget as shown in Figure 1.
Concretely, Seznec [47], [48] observes that all branch targets
within a page share the same page number and BTB storage
requirements can be significantly reduced by storing the page
number only once per page instead of once per target. To ex-
ploit this observation, he partitions the BTB in two structures,
Main-BTB and Page-BTB, each storing different portions of
branch targets. The Main-BTB stores the page offset and a
pointer to the Page-BTB entry that stores the page number.
The state-of-the-art BTB organization, PDede [49], further
observes that target addresses span significantly fewer regions
than pages, where a region is a group of contiguous pages.
Therefore, it partitions the BTB even further and introduces
a Region-BTB that lowers page number storage cost as the
region number for all pages inside a region is stored only once.
By storing page/region numbers only once for all branches in
a page/region, these BTBs avoid information duplication, thus
reducing storage requirements.

Though, these designs significantly reduce BTB storage
requirements, they introduce several complexities that increase
their access latency and power requirements. First, these
designs introduce a level of indirection, i.e., on a BTB access,
Main-BTB is accessed first to get the pointers to the Page-BTB
and Region-BTB and only then these BTBs can be accessed.
This sequential access, Main-BTB followed by Page/Region-
BTBs, increases the overall BTB access latency which either
requires a two-cycle BTB lookup or a longer clock period.
Both of these alternatives incur a performance penalty. Second,
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Tag: 12 Type: 2 Target: 46Valid: 1 Rep_policy: 3

Fig. 1: Composition of an entry in conventional BTB. The
numbers are the number of bits required to encode each field.

on allocating a new BTB entry, Page-BTB and Region-BTB
need to be searched to check if the page/region number
for the target address is already present or not. As the
page/region number can be anywhere in Page/Region-BTB,
a fully-associative associative search is required [48] which
increases BTB power requirements. An alternative is to restrict
the locations where a page/region number can be stored in
Page/Region-BTB [49]; however, it increase the likelihood of
conflict misses.

This work seeks to reduce BTB storage requirements with-
out increasing BTB complexity. To that end, we propose to
store target offsets, defined as delta between the address of
the branch instruction and that of its target, instead of full
or compressed (i.e., page offset, page number, and region
number) targets. Our key insight is that target offsets are
unevenly distributed but tend to require significantly fewer bits
to represent than full and even compressed target addresses.
Our analysis reveals that 54% of dynamic branches require
only 6 bits or fewer for offset encoding, while a meager 1%
of branches need 25 bits or more to store their offsets.

Based on this insight, we propose to store target offsets
in the BTB rather than compressed or full target addresses,
which can be up to 64 bits long depending on the size of
virtual address space. To accommodate the varied distribution
of target offsets, we size different ways of a set associative
BTB to hold different number of offset bits such that each
way stores only those branches whose target offsets can be
encoded with a certain number of bits. In doing so, we not only
significantly reduce BTB storage requirements but also avoid
the complexities, indirection and fully-associative searches of
the state-of-the-art BTB designs.

This paper introduces BTB-X, a simple yet highly storage-
effective BTB organization, that incarnates our idea of storing
target offsets. BTB-X is a set associative BTB with its ways
sized to store different sized target offsets. Our evaluation
shows that BTB-X can track about 2.24x more branches than
a conventional BTB storing full targets and about 1.3x more
branches than PDede, a state-of-the-art BTB organization, with
the same storage budget. Conversely, BTB-X can accommo-
date the same number of branches as conventional BTB and
PDede while requiring 2.24x and 1.3x less storage. This work
makes the following key contributions:

• We show that storing branch target offsets, instead of full
or compressed target addresses, can provide drastic BTB
storage savings because about 54% of branches require
only 6 bits or fewer to encode their offsets. A further
22% of branches require between 7 and 10 bits.

• We show that the target offset sizes are unevenly dis-
tributed with 0-6 bits, 7-10 bits, and 11-25 bits required
to encode the offsets of 54%, 22% and 23% of branches

respectively. Therefore, a single size offset field cannot
provide storage optimal solution.

• We introduce BTB-X, a simple and highly storage-
effective BTB organization, that stores target offsets
instead of targets themselves. Furthermore, BTB-X ways
are sized to hold different sized target offsets.

• We demonstrate that, with the same storage budget, BTB-
X can accommodate about 2.24x and 1.3x more branches
than a conventional BTB and PDede, a state-of-the-art
BTB. Our evaluation further shows that BTB-X outper-
forms the conventional BTB even when provisioned with
just half the storage budget.

II. BACKGROUND AND MOTIVATION

Branch prediction unit predicts the program control flow and
supplies a stream of instruction addresses/program counters
(PCs) on the predicted path to the fetch unit which fetches
the corresponding instructions to feed the rest of the core. As
branch instructions disturb the otherwise sequential control
flow, the branch prediction unit needs to identify them to
predict the upcoming control flow. However, whether an in-
struction is a branch or not can only be determined after it has
been fetched and decoded. To avoid the latency of fetching and
decoding instructions before generating next PCs, the branch
prediction unit employs a special hardware structure, called
branch target buffer (BTB), to identify branch instructions
solely from their PCs before the instructions themselves are
even fetched.

A. Branch Target Buffer (BTB)

Figure 1 presents the conventional BTB organization. Each
BTB entry consists of valid, tag, type, target, and rep policy
fields. Figure 1 also shows the typical number of bits needed
for these fields. The tag field usually stores only a partial tag,
which is generated by hashing the full tag, to reduce storage
cost while introducing minimal aliasing. The number of bits
for target field depends on the size of virtual address space
and instruction set architecture (ISA). We assume a 48-bit
virtual address space and ARMv8 ISA to calculate target field
size in Figure 1. As ARMv8 instructions are always 32-bits
and 4-byte aligned, the least significant two bits of a PC are
always zeros. Therefore, we only need 46-bits for the target
field. The valid bit indicates whether the entry contains valid
information or not, while rep policy bits choose one of the
existing branches for eviction when a new branch is inserted
in the BTB.

To check whether a PC corresponds to a branch instruction,
the BTB is indexed, i.e. accessed, with the low order PC bits.
The high order PC bits are hashed, using the same function
that is used to generate partial tags, and compared to the tag
field of the indexed BTB entry. A match indicates that the PC
belongs to a branch.

A branch instruction simply implies the presence of a
potential control flow divergence point in program execution.
However, whether or not the divergence actually happens
depends on the type of branch, i.e. call, return, conditional,
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Fig. 2: FDIP microarchitecture

or unconditional branch, which is stored in the type field
of a BTB entry. Call, return, and unconditional branches
always cause control flow divergence as they are always taken.
Conditional branches, in contrast, are not always taken and a
direction predictor is used to predict their direction.

If a branch is predicted to be taken, the target field in
the BTB entry provides the address for the next instruction,
except for returns. This is because the return address is call-site
dependent and a given function can be called from different
call sites. Therefore, a return address stack (RAS) is typically
employed to record return addresses at call-sites. On a function
call, the call instruction pushes the return address to RAS,
which is later popped by the corresponding return instruction.

B. The cost of a BTB miss

A BTB miss for a branch instruction means that the branch
is undetected and the front-end continues to fetch instructions
sequentially. Whether or not the sequential path is the correct
one depends on the actual direction of the missed branch.
Unless the missed branch is a conditional branch that is not
taken, the sequential path is incorrect. When the wrong path
is eventually detected by the core, all the instructions after the
branch that missed in the BTB are flushed, fetch is redirected
to the branch target and pipeline is filled with correct-path
instructions. BTB misses are thus highly deleterious to per-
formance as they result in a loss of tens of cycles of work and
expose the pipeline fill latency.

C. BTB’s role in instruction prefetching

Fetch-directed instruction prefetchers are a class of powerful
L1-I prefetchers that intrinsically rely on BTB to identify
prefetch candidates. These prefetchers are highly effective
and, when coupled with a sufficiently large BTB, outperform
the winner of the recently-concluded Instruction Prefetching
Championship [1] and approach the performance of an ideal
L1-I, as reported by Ishii et al. [24]. Variants of these prefetch-
ers have been adopted in commercial products, for example in
IBM z15 [45], ARM Neoverse N1 [41] etc.

Figure 2 shows a canonical organization of a fetch-directed
instruction prefetcher (FDIP) [43]. As originally proposed,
FDIP decouples the branch-prediction unit and the fetch en-
gine via the fetch target queue (FTQ). This decoupling allows
the branch prediction unit to run ahead of the fetch engine and
discover prefetch candidates by predicting the control flow far

TABLE I: BTB storage cost in Samsung Exynos processors

CPU BTB Storage
M1/M2 98.9KB
M3 175.8KB
M4 288.0KB
M5 310.8KB
M6 561.5KB

into the future. With FDIP, each cycle, the branch prediction
unit identifies and predicts branches to anticipate upcoming
execution path and inserts corresponding instruction addresses
into the FTQ. Consequently, the FTQ contains a stream of
anticipated instruction addresses to be fetched by the core. The
prefetch engine scans the FTQ to identify prefetch candidates
and issue prefetch requests.

For FDIP to be effective, the BTB needs to accommodate
the branch working set, otherwise frequent BTB misses will
cause FDIP to prefetch the wrong path as FTQ will be filled
with wrong path instruction addresses. This is one of the key
reasons why commercial processors deploy massive BTBs, as
also observed by [24]. These massive BTBs incur astronomical
storage overheads. Also, not only the BTB storage overhead
is high, it is increasing at a rapid pace. For example, Table I,
presents the BTB storage cost in several generations of Sam-
sung Exynos processors. As the table shows, the BTB storage
cost nearly doubled in each generation, except between M4
and M5. Overall, the storage cost increased nearly six fold
(98.9KB to 561.5KB) from M1 to M6, over a period of about
eight years [21].

As the instruction footprints of server applications continue
to expand, a trend also reflected in Google Web Search
workload whose instruction footprint is growing at annualized
rate of 27% [25], the BTB sizes and their storage overheads
are destined to increase in future. Therefore, there is an
urgent need to investigate storage-effective BTB organizations
to combat the front-end bottleneck without necessitating pro-
hibitive area budgets.

III. BRANCH TARGET DISTANCE ANALYSIS

The storage cost of branch targets accounts for a major
fraction of BTB storage requirements. For example, in a
conventional BTB, as depicted in Figure 1, the target field
accounts for about 72% (46 of 64 bits) of the total BTB
storage requirements. We analyze the number of bits required
for branch target offsets to assess if storing the offsets, instead
of the full or compressed targets, can reduce BTB storage
requirements. We define the target offset as the n least signif-
icant bits of target address, with n being the position of most
significant bit that differs among branch PC and target. As

Bit position 48 ... 9 8 7 6 5 4 3 2 1
Branch PC 0 ... 1 0 1 1 0 1 0 0 0
Branch Target 0 ... 1 0 1 1 1 1 0 0 0
Target Offset ... 1 1 0 0 0

Fig. 3: Branch target offset example
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Fig. 4: Distribution of branch target offsets in different workloads.

an example, for the branch PC and target shown in Figure 3,
the most significant bit that differs among them is at position
five, whereas all bits at positions higher than five are same.
Therefore, the target offset for this branch PC and target pair
is ‘11000’, i.e., the target bits from position 5 to 1. Also,
as our modelled ARM v8 ISA aligns instructions at 4-byte
boundaries, the two least significant bits of a target are always
zeros. Therefore, we only need to store ‘110’ as offset in the
BTB.

An advantage of defining an offset as n lower order target
bits, instead of the numerical distance between branch PC and
target (i.e., target - PC), is that the full target can be recovered
by simply concatenating the shifted branch PC with the offset
retrieved from BTB. In contrast, using numerical distance as
offset would require a 48-bit adder to recover the full target
from offset.

Figure 4 plots the distribution of branch target offsets in the
branch working sets of our workloads. The data includes both
conditional and unconditional branches; hence, it comprehen-
sively covers the full branch working set. The X-axis shows
the number of bits required to store offsets, while the Y-axis
plots the fraction of dynamic branches covered.

As the figure shows, short offsets dominate the distribution
with 54% of branches requiring only six bits or fewer for
their offsets. A further 22% of branches only require between
7 and 10-bits to represent their offsets. The reason why
such a high fraction of offsets is short is that conditional
branches dominate the dynamic branch working set, and they
tend to have short offsets [32]. This is because conditional
branches generally guide the control flow only inside a func-
tion; meanwhile, software engineering principles favor small
functions, thus restricting conditional branch target offsets to
short distances. Furthermore, as discussed in Section II, return
instructions get their target from RAS, thus they do not need
to store any target bits in BTBs. Therefore, for the purpose of
this analysis, we assume 0-bit offsets for return instructions.

Perhaps surprisingly, Figure 4 also shows that very few

branches require a large number of bits for their offset. Indeed,
a meagre 1% of branches requires more than 25 bits for their
offsets. The sum of these results indicates that reserving space
for the full 46-bit target address results in an appalling under-
utilization of BTB storage, since 99% of branches need at
most half the number of bits needed to represent the full target
address if offsets are used instead.

We gain two key insights from this analysis:
Key Insight 1: The targets of most branches lie relatively
close in the virtual address space to the branch itself. As a
result, storing the distance to the target, in the form of an
offset from the branch instruction can provide drastic storage
savings.
Key Insight 2: The target offset sizes are unevenly distributed
with 0-6 bits, 7-10 bits, and 11-25 bits required to encode
the offsets of 54%, 22% and 23% of branches respectively.
Therefore, a single size offset field cannot provide storage
optimal solution.

IV. STATE-OF-THE-ART BTBS AND THEIR LIMITATIONS

Prior work has proposed several BTB organizations that aim
to reduce the storage cost by compressing branch targets. This
section presents the most representative BTB organizations
and analyzes their limitations.

A. Reduced BTB:

Seznec [47] made a critical observation that all branch
targets within a page share the same page number and only
differ in page offsets. Thus, storing full target addresses in
a BTB results in massive duplication of page numbers and
wastage of storage capacity. To eliminate this duplication,
Seznec proposed Reduced BTB (R-BTB), a variant of which
was also used in ITTAGE [48]. The key innovation of R-BTB
is to store a pointer to the page number rather than storing the
page number itself in BTB.

Figure 5 presents the logical organization of R-BTB and
the composition of its entries. R-BTB is composed of two
partitions: Main-BTB and Page-BTB. For each branch target,
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Fig. 5: Reduced BTB Organization.

apart from page offset, Main-BTB stores a pointer to the page
number. The page number itself is stored in Page-BTB. If two
or more branches have their targets in the same page, their
Main-BTB entries will hold pointer to the same Page-BTB
entry. As the number of pages is significantly smaller than
number of branch targets, fewer bits are needed to hold Page-
BTB pointers than page numbers themselves. Consequently,
by storing a page number only once in Page-BTB, R-BTB
avoids duplication and reduces storage requirements.

B. PDede:

PDede [49] is the state-of-the-art BTB organization that
comes with three different variants. Figure 6 depicts the most
storage effective and best performing PDede variant, called
PDede-Multi Entry Size. It improves over R-BTB in two
aspects. First, it reduces the cost of storing page numbers in
the Page-BTB. PDede observes that server applications, due to
their large instruction footprints, touch a large number of pages
thus increasing Page-BTB storage requirements. They further
observe that, as different libraries get dynamically mapped to
different locations in address space, the pages tend to form
spatial regions, where a region consists of multiple contiguous
pages. Just like branch targets inside a page share the same
page number, the page numbers inside a region share the same
region number. To eliminate the duplication of region numbers,
as shown in Figure 6 PDede introduces a Region-BTB which
stores the region number while Main-BTB stores a pointer to
it just like it stores a pointer to page BTB.

Second, for the same-page branches, i.e., when the branch
and its target are in the same page, PDede does not store
page/region numbers as they can be recovered from branch
PC. PDede reserves half of the ways in a set associate BTB
for same-page branches. As the ways reserved for same-page
branches do not need to store Page-BTB and Region-BTB
pointers, as shown in Figure 7, PDede achieves additional
storage savings.

C. Limitations of the state-of-the-art:

Though R-BTB and PDede achieve significant storage sav-
ing by avoiding page and region number duplication, they
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Fig. 6: PDede BTB Organization.
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Fig. 7: Different- and same-page PDede entry composition.

increase BTB complexity by introducing a level of indirection
and associative searches in Page- and Region-BTB. These
complexities lead to increased access latency and power re-
quirements. In addition, the state-of-the-art BTB designs are
suboptimal in utilizing the available storage budget.
Indirection: As Figures 5 and 6 show, the access to Main-
BTB only provides a part of the target address, i.e., page
offset. The other parts have to be retrieved from Page-BTB and
Region-BTB. Also, Page- and Region-BTB cannot be accessed
in parallel with Main-BTB because the Main-BTB access pro-
vide the pointers to them. As a result, the sequential Main-BTB
and Page-/Region-BTB accesses increase the overall BTB
access latency. This additional latency either enforces a two-
cycle BTB lookup or necessitates a longer clock period. Both
of these alternatives are detrimental to performance. PDede
does avoid this indirection penalty to some extent because the
same-page branches do not need to access Page-/Region-BTB
rather they get their page and region number from the branch
PC itself. However, the different-page branches, i.e., where
branch PC and target address lie in different pages, do need
to pay the indirection penalty.
Associative searches: On allocating a new BTB entry, all
BTB partitions (Main-BTB, Page-BTB, and Region-BTB) may
need to be updated. The replacement policy chooses the entry
to be replaced in Main-BTB. However, Page- and Region-BTB
need to be searched to check if the page/region number for the
incoming target is already present or not. As the page/region
number can be present anywhere in the Page/Region-BTB,
ITTAGE [48] uses fully-associative searches which increase
the power requirements especially when the number of entries
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grows. PDede (partially) solves this limitation by restricting
the number of entries where a page number can reside for a
given branch target to 16. However, limiting the number of
entries increases the likelihood of conflict misses.
Suboptimal storage utilization: Though R-BTB and PDede
significantly improve storage utilization over conventional
BTB, they still miss plenty of opportunity. This is because,
in case of R-BTB, it uses a fixed size target representation
for all branches, i.e., a 10-bit offset plus a fixed sized page-
BTB pointer. In contrast, our analysis of Section III shows a
large variance in target offset sizes that naturally makes the
single sized organization of R-BTB storage inefficient as it
needs to be sized for the largest target offset. For example,
as shown by Figure 4, 54% of target offsets fit in six or
fewer bits; however, R-BTB needs to use all 10+ bits for these
branches, thus resulting in a high storage under-utilization.
PDede provides slightly better storage utilization than R-BTB
as it has differently sized entries for Same-page and Different-
page branches. However, BTB entries of only two different
sizes, i.e. Same-page and Different-page, are not enough to
capture the large offset size variance (Figure 4) observed in
server applications.

V. BTB-X

BTB-X is a simple and storage-effective BTB organization.
Building on the insights gained in Section III, it stores target
offsets, instead of full targets, to minimize storage require-
ments while also accounting for the large variance in target
offset sizes. Its microarchitecture and entry/set composition
are shown in Figure 8.

A. BTB-X Organization

The offset field in BTB-X needs to accommodate the uneven
distribution of target offset sizes as observed in Section III. In
principle, this field should be sized such that the BTB can store
the largest target offset. However, as the largest offset can be
nearly as large as the full target, sizing the offset field this

way would nearly eliminate the potential storage saving from
storing offsets. An attractive alternative is to size the offset
field such that it can store the majority of offsets. Looking at
Figure 4, an offset field of 25-bits would capture more than
99% of branch target offsets as they requires 25-bits or fewer.
However, there are two major drawbacks to this scheme. First,
it still leads to poor storage utilization. This is because, as
Figure 4 implies, 54% of branches would waste more than
three quarters of offset storage capacity as they require only 6-
bits or fewer for their offsets. Another 25% of branches would
waste nearly half of the offset storage as their offsets fit in 7-
12 bits. Second, all branches that need more than 25 bits for
their offsets can not fit in the BTB and will always cause BTB
misses. Though, as there are very few such branches (¡ 1%),
their impact is likely to be small.

To minimize the storage under-utilization, we size different
ways of a set associative BTB-X to hold different sized target
offsets. A branch is allocated to a way whose offset field is at
least as large as the number of bit required to store the target
offset. We use an 8-way set associative BTB-X and leverage
the data in Figure 4 to appropriately size the offset field of
each way such that each way covers about 12.5% dynamically
executed branches. Figure 4 shows that, on average, 0-, 4-, 5-,
7-, 9-, 11-, 19-, and 25-bit offsets cover about 20%, 36%, 46%,
61%, 72%, 79%, 90%, and 99% dynamic branches. Therefore,
we size the 8-ways of BTB-X ways to hold 0-, 4-, 5-, 7-
, 9-, 11-, 19-, and 25-bit target offsets respectively. Notice
that about 20% of dynamic branches that require 0-bits for
their offset are return instructions that read their target from
RAS, as discussed in Section II. Therefore, way-0 of BTB-X
does not feature any storage for target offsets. Though return
instruction do not get their target from BTB, they still need to
be allocated BTB entries so that the branch prediction unit can
identify them and pick their target from RAS while generating
instruction stream to be fetched.

BTB-X covers 99% of the dynamically executed branches
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and we employ a very small conventional direct-mapped
BTB, called BTB-XC, that stores full target addresses for
the remaining 1% branches. Reserving a way in BTB-X
for such branches would unnecessarily increase the storage
requirements as these branches require much fewer entries than
the number of sets in BTB-X. Indeed, based on our analysis,
we size BTB-XC to store 64x fewer entries than BTB-X, i,e,
8x fewer entries than the number of sets in BTB-X.

B. Accessing BTB-X

BTB-X Lookup: A BTB-X lookup is very similar to a
conventional BTB lookup as shown in Figure 8. It is accessed
with the index bits of a PC and all eight ways are looked up in
parallel. Also, BTB-XC is looked up in parallel with BTB-X.
The main difference between a conventional BTB lookup and
BTB-X lookup is that a BTB-X lookup provides target offset,
rather than full target address, if the lookup hits in way-1
to way-7. Thus, target offset needs to be concatenated with
branch PC to get the full target address. The number of bits
to be concatenated from branch PC depends on the BTB-X
way in which the lookup hits. For example, a hit in way-1
provides 4 lower order bits of target while the rest needs to be
concatenated from branch PC. Further, a hit in way-0 implies
that the full target is in RAS, while a hit in BTB-XC provides
the full target address.

BTB-X Allocation: As with any existing BTB organization,
BTB-X entries are allocated (or updated) as branch instruc-
tions retire. The number of bits required to represent a branch
target offset determines the way(s) where a branch can be
allocated an entry. For example, return instructions can be
allocated entries in any of the ways, based on replacement
policy’s decision, as they have no offset and can fit in all
ways. Other branches have fewer ways where they can be
allocated entries that are determined by the minimum number
of bits required to store their offsets. For example, if a branch
requires 20 bits for its target offset, it cannot be allocated in
way-0 to way-6.

BTB-X uses a slightly modified least recently used (LRU)
replacement policy. Concretely, we modify it to compare the
LRU counters of only the entries that can accommodate the
target offset and replace the one that is least recently used
among them. All other aspect of LRU, such as counter updates,
stay exactly the same as in baseline policy.

VI. EVALUATION

A. Methodology

We use ChampSim [4] to evaluate the efficacy of BTB-X
on server and client workload traces provided by Qualcomm
for the first Instruction Prefetching Championship (IPC-1) [1].
We warm up microarchitectural structures for 50M instructions
and collect statistics over the next 50M. The microarchitectural
parameters for the modeled processor, resembling Intel Sunny
Cove [5], are listed in Table II.

We improved two important aspects of Champsim to eval-
uate the baseline, state-of-the-art, and proposed BTB orga-
nizations. First, being a trace-driven simulator, Champsim

TABLE II: Microarchitectural parameters

Parameter Value
Fetch 6-wide, 128-instruction FTQ

Branch Predictor Hashed Perceptron
Return address stack 64 entries

Scheduler 128 entries
Re-order buffer 352 entries

Load queue 128 entries
Store queue 72 entries

L1-I 32 KB, 8-way,
4 cycle latency, 8 MSHRs

L1-D 48 KB, 12-way,
5 cycle latency, 16 MSHRs

L2 512 KB, 8-way,
14/15 cycle latency, 32 MSHRs

LLC 2MB, 16-way,
34/35 cycle latency, 64 MSHRs

TABLE III: BTB-X storage requirements. The numbers in
parentheses are for BTB-XC.

Entries Sets Set size Storage
256(4) 32(4) 224(64)-bits 0.9KB
512(8) 64(8) 224(64)-bits 1.8KB
1K(16) 128(16) 224(64)-bits 3.6KB
2K(32) 256(32) 224(64)-bits 7.25KB
4K(64) 512(64) 224(64)-bits 14.5KB
8K(128) 1024(128) 224(64)-bits 29KB
16K(256) 2048(256) 224(64)-bits 58KB

detects branches by consulting the information available in
the traces, rather than looking up a BTB. This essentially
translates to Champsim using an ideal BTB. Therefore, we
first implement a realistic conventional BTB (Conv-BTB),
presented in Section II, in Champsim. Second, Champsim re-
solves all branches in execute stage, i.e., branch mispredictions
are detected and the fetch is resteered to correct path only
when a mispredicted branch instruction reaches the execute
stage. Such branch resolution overestimates the misprediction
penalty of unconditional direct branches. This is because such
branches can be resolved in the decode stage (hence, fetch can
be resteered sooner) as they are always taken, thus the PC of
the next instruction can be compared to the target encoded
in the branch instruction to detect mispredictions. Further,
taken conditional branches that miss in BTB but are correctly
predicted by the direction predictor, can also be resolved in
the decode stage. To do so, the fetch stage passes the direction
prediction for all instructions, despite BTB hit/miss, to decode
stage. If decode identifies a branch that missed in the BTB
but predicted taken by the direction predictor, it resteers the
fetch to the target encoded in the branch instruction, thus
reducing BTB miss penalty. Given that the direction predictors
are highly accurate, this optimization reduces average BTB
miss penalty. Overall, we improve branch resolution so that
the unconditional direct branches and the taken conditional
branches that miss in BTB are resolved in the decode stage.
Finally, BTB is updated at commit stage by only the taken
branches (both conditional and unconditional).
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TABLE IV: Number of branches in different BTB organizations at various storage budgets.

Storage BTB-X + BTB-XC PDede Conv-BTB

0.9KB
1.8KB
3.6KB

7.25KB
14.5KB

29KB
58KB

Branches
256 + 4
512 + 8
1K + 16
2K + 32
4K + 64

8K + 128
16K + 256

Page-BTB budget Main-BTB budget Entry Size Branches
0.078KB 0.817KB 32-bits 210
0.156KB 1.645KB 32.5-bits 415
0.312KB 3.3KB 33-bits 820
0.625KB 6.6KB 33.5-bits 1617

1.25KB 13.2KB 34-bits 3190
2.5KB 26.5KB 34.5-bits 6292

5KB 53KB 35-bits 12405

Entry Size Branches
64-bits 116
64-bits 232
64-bits 464
64-bits 928
64-bits 1856
64-bits 3712
64-bits 7424

B. Storage breakdown

We first assess the number of branches different BTB orga-
nizations (Conv-BTB, PDede, and BTB-X) can accommodate
in a given storage budget compared to each other. We use
storage budgets required for storing 256, 512, 1K, 2K, 4K,
8K, and 16K branches in BTB-X as presented in Table III.
Our calculations assume a 48-bit virtual address space and
BTB-X entry compositions presented in Figure 8. To double
the number of entries in BTB-X, we double the number of
sets while keeping the associativity same. Notice that Table III
presents set size instead of entry size. This is because BTB-X
features different sized entries in different ways; however, the
set size remains constant.

Table IV presents the number of branches the different BTB
organizations can track at different storage budgets. PDede
distributes the overall BTB storage budget among its Main-
BTB, Page-BTB, and Region-BTB. We follow the distribution
used by its inventors [49] to allocate the budget among
different PDede BTBs as shown in Table IV. Accordingly, for
29KB storage budget, we configure PDede to use 1K Page-
BTB entries and about 6K Main-BTB entries. While halving
the storage budget to lower values, we halve the number of
entries in the Main-BTB as well as the Page-BTB. Halving
the number of Page-BTB entries reduces the number of bits
required to store Page-BTB pointer in the Main-BTB. Thus,
the Main-BTB entry size reduces with the reduction in storage
budget. Further, we use four Region-BTB entries across all
storage budgets, so Region-BTB requires a fixed storage of
0.0107KB. Also recall that PDede reserves half of the ways
in a set for same-page branches while the other half can store
both same-page and different-page branches. Therefore, its
entries are of two different sizes. The PDede entry size shown
in Table IV is the average of two sizes.

As the table shows BTB-X stores significantly more
branches than any other BTB organizations. Concretely, it
stores 2.24x more branches than a conventional BTB organiza-
tion. Compared to PDede, BTB-X stores 1.24x more branches
at 0.9KB storage budget and 1.34x more branches at 58KB
storage budget. BTB-X’s advantage over PDede increases with
storage budget because PDede entries require more bits at
higher budgets to accommodate larger Page-BTB pointers.

C. BTB MPKI

To understand the advantage of higher BTB-X branch
density, we measure misses per 1000 instructions (MPKI)
that different BTB organizations incur on client and server
workloads. Since BTB misses for not-taken branches do not

hurt performance, we only consider the BTB misses for taken
branches. For this analysis, we assume a BTB storage budget
of 14.5KB that corresponds to 4160-, 3190-, and 1856-entries
in BTB-X, PDede and Conv-BTB respectively. The results are
presented in Figure 9.

As the figure shows, server workloads experience signifi-
cantly higher MPKI compared to client workload due their
massive instruction and branch footprints. The figure also
shows that BTB-X provides a much lower MPKI compared
to both conventional BTB and PDede especially on server
workload. Concretely, on average, conventional BTB incurs
25 MPKI on server workload as it stores the least amount
of branches among the three organization for a given storage
budget. PDede is able to lower the MPKI to 13.7 while BTB-
X brings it further down to 9.5. The advantage of BTB-X over
other organizations is particularly evident on very high MPKI
workloads, i.e., server 023 to server 035, where it provides
much lower MPKI compared to conventional BTB and PDede.

D. Performance

To assess how the reduced MPKI translates to performance,
we compare the performance of the three BTB organizations
on client and server workloads. Recall from Section II that
a larger BTB delivers two distinct benefits: 1) it reduces
the incidence of pipeline flushes by detecting branches in
the upcoming control flow and 2) it facilitates instruction
prefetching when coupled with FDIP. Thus, we compare the
performance gains achieved by the three BTB organizations
by evaluating them with FDIP.

Figure 10 presents the performance gains obtained on server
and client traces. The results are normalized to the perfor-
mance of the Conv-BTB without any instruction prefetching.
The figure shows three bars for each workload. The first
bar presents performance gain achieved by Conv-BTB when
copuled with FDIP. The second and third bars present the
performance gains achieved by PDede and BTB-X respec-
tively. The PDede and BTB-X bars divide the performance
gain into contributions from fewer pipeline flushes and from
better instruction prefetching stemming from capturing more
branches in the BTB.

Looking at the overall performance gain with instruction
prefetcher (FDIP), the figure shows that BTB-X provides
a geometric mean gain of 39% over baseline on server
workloads. In comparison, PDede and Conv-BTB deliver a
performance gain of only 33% and 24% on these workloads.
Looking at individual workloads, BTB-X comprehensively
outperforms PDede and Conv-BTB on server 023 to sever 32.
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Fig. 9: BTB MPKI experienced by different BTB organizations.
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Fig. 10: Performance gain obtained by conventional BTB (with FDIP), PDede and BTB-X (with and without FDIP) over the
conventional BTB without FDIP. The three bars for each workload correspond to Conv-BTB, PDede, and BTB-X respectively.

For example, on server 032, BTB-X provides 83% speedup
over baseline whereas PDede and Conv-BTB achieve only
60% and 32% performance gain. This is because the branch
working set of these workloads starts to fit in BTB-X due to its
higher branch capacity. As a result, BTB MPKI lowers which
not only reduces pipeline flushes and but also keeps FDIP on
correct prefetch path for longer intervals.

Looking at the results without instruction prefetcher, Fig-
ure 10 shows that BTB-X provides 13% performance gain
over the baseline Conv-BTB whereas PDede is achieves 8%
gain. On individual workloads, BTB-X achieves significantly
high gain over Conv-BTB and PDede on workloads from
server 23 to server 32 even without FDIP. Figure 10 also
shows the FDIP by itself performs better with more number of
BTB entries. For example, on server 32 FDIP with Conv-BTB
provides 32% performance gain. With PDede, the performance
gain from prefetching increases to 42% and with BTB-X it
further increases to 51%.

These results show that by accommodating more branches

TABLE V: Energy requirements of different BTB designs.

BTB Access Type Energy #Accesses Energy
(Per access) (Total)

Conv-BTB
Read 13.2pJ 1.60E+08 2122µJ
Write 25.2pJ 4.36E+06 110µJ
Total Energy 2232µJ

PDede

Main-BTB Read 8.4pJ 1.24E+08 1047µJ
Main-BTB Write 12.5pJ 5.74E+05 7µJ
Page-BTB Read 0.9pJ 2.01E+06 2µJ
Page-BTB Write 0.8pJ 2.04E+04 0.02µJ
Page-BTB Search 6.2pJ 2.14E+05 2µJ
Total Energy 1058µJ

BTB-X
Read 8.5pJ 1.16E+08 994µJ
Write 11.4pJ 4.03E+05 5µJ
Total Energy 999µJ

in a given storage budget, BTB-X not only reduces pipeline
flushes but also improves instruction prefetching, both lead to
better performance.

Finally, Figure 10 shows that all three BTB organizations
perform similar on client workloads. This is because their
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Fig. 11: Performance gains for conventional BTB, PDede, and BTB-X on (a) server and (b) client workloads over a conventional
BTB with 0.9KB storage budget. X-axis label is storage requirements of 256-, 512-, 1K-, 2K-, 4K-, 8K-, and 16K-entry BTB-X.

branch working sets mostly fit in the baseline Conv-BTB and
the additional entries in PDede and BTB-X do not bring much
performance benefit.

E. Energy and delay analysis

We use Cacti 7.0 [35] to analyze the energy requirements
and access latencies of Conv-BTB, PDede, and BTB-X at 22
nm, which is the most recent technology node supported by
Cacti. For this analysis we assume the same storage budget, i.e.
14.5KB, as used in Section VI-D for the performance analysis.

Energy requirements: Table V shows the per access read
and write energy requirements of different BTB designs. As
the table shows, BTB-X and PDede’s Main-BTB incur very
similar per access read and write energy cost. However, in
addition to Main-BTB, PDede also needs to access Page-
BTB for different-page branches, i.e., the branches that have
their targets in a different page than the branches themselves.
Further, the Page-BTB needs to be searched on a BTB write
to check if the target page number is already in Page-BTB or
not. Consequently, PDede’s per access read and write energy
for different page branches reaches 9.3 pico Joules (pJ) and
19.5 pJ, respectively, compared to 8.5pJ and 11.4 pJ of BTB-
X. PDede also features a Region-BTB; however, its energy
requirements are negligible and, thus, not shown in Table V.
Finally, Conv-BTB’s per access energy cost is significantly
higher than BTB-X as its each read and write access requires
13.2pJ and 25.2pJ respectively.

Table V also shows the number of read/write accesses, aver-
aged across the workloads, and the total energy consumption.
Despite very similar per access energy cost, PDede’ Main-
BTB consumes considerably higher energy than BTB-X. This
is because PDede often goes on the wrong execution path
due to its higher MPKI. These additional wrong path BTB
accesses, reflected in higher BTB reads in Table V, result in
higher energy consumption. Further, PDede needs to handle
more BTB writes than BTB-X because it holds fewer branches,

which results in frequent replacements. Thus, the total energy
consumption of PDede reaches 1058µJ compared to 999µJ of
BTB-X. Finally, the energy requirements of Conv-BTB are
significantly higher, 2232µJ, than BTB-X because of higher
per access energy and higher number of total accesses.

Overall, this analysis shows that BTB-X not only delivers
better performance than PDede but also consumes less energy,
thus providing much better energy efficiency.

Access Latency: Our analysis shows that the Conv-BTB
requires about 0.36ns to complete an access. As discussed
in Section IV-B, PDede’s access latency is the sum of Main-
BTB and Page-BTB access latencies as these two structures
are accessed sequentially. Our analysis shows that the Main-
BTB and Page-BTB accesses require 0.34ns and 0.13ns, re-
spectively, thus resulting in an overall PDede access latency of
0.47ns which is considerably higher than Conv-BTB latency.
To address this, PDede employs multi-cycle BTB accesses: the
Main-BTB is accessed in the first cycle, and the Page-BTB is
accessed in the next cycle only if the branch is predicted to
be taken and it’s target is in a different page than the branch.
Thus, the same page branches need one cycle and the taken
different page branches need two cycles to get their target
address from PDede. Finally, our analysis shows that a BTB-X
access takes only 0.33ns. In summary, this analysis shows that
BTB-X provides better storage efficiency without any adverse
effects on the access latency.

F. Performance variation with BTB storage budget

To further understand the performance advantage of BTB-X
over PDede and Conv-BTB, we compare their performances
across different storage budgets. Figure 11 presents the per-
formance gains obtained on server and client workloads. The
results are normalized to the performance of Conv-BTB with
0.9KB storage budget. Instruction prefetching is enabled in all
designs including baseline.
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Fig. 12: Target offset distribution in CVP-1 and IPC traces.

As the figure shows, on server workloads, BTB-X pro-
vides significantly higher performance than the Conv-BTB
and PDede for equal storage budgets of up to 29KB and
14.5KB respectively. The performance advantage of BTB-X is
pronounced on server traces whose large instruction footprints
pressure the BTB and L1-I. For instance, BTB-X provides
35% performance gain over the baseline compared to 29%
and 20% of PDede and Conv-BTB respectively at 14.5KB
budget. At large BTB storage budgets, the branch working
sets of many workloads start to fit in the available BTB
capacity, at which point the performance gap between BTB-X
and the other two designs diminishes. Also, the performance
gap between the three BTB organizations levels off earlier on
client trace due to their smaller instruction working sets.

A key take-away from this figure is that BTB-X outperforms
the conventional BTB even when it is given just half the
storage budget of its conventional counterpart. For example,
in Figure 11a, the Conv-BTB improves performance by 20%
with a 14.5KB budget whereas BTB-X provides a 24% im-
provement with just 7.25KB. The reason for this phenomenon
is that BTB-X accommodates 2.24x more entries than Conv-
BTB of equal storage budget; thus, halving BTB-X’s budget
still gives a slight capacity advantage over Conv-BTB.

G. Analyzing target offset distribution in more workloads

We study the target offset distribution in 750+ Qualcomm
server traces that were provided for the first Championship
Value Prediction(CVP-1) [6]. The results, presented in Fig-
ure 12, show that their offset distribution is very similar to the
distribution in IPC-1 traces presented in Figure 4. This study
confirms that such an offset distribution is a consequence of
how the applications are written and the resulting control-flow
behavior. As discussed in Section III, such offset distribution
stems from the fact that the conditional branches dominate
dynamic branch working set and they tend to have short
offsets. This is because conditional branches guide the control-
flow inside functions, and software engineering principles
favor small functions. Consequently, short offsets dominate
the branch offset distribution.

In addition to CVP-1 traces, we analyze five more server ap-
plications - Wordpress [53], Mediawiki [52], and Drupal [51]
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Fig. 13: Target offset distribution in x86 compiled server
applications and Arm64 IPC traces.

from Facebook’s HHVM OSS-performance benchmarks [8],
Kafka [50] from Java DaCapo [14], and Finagle-HTTP [7]
from Java Renaissance [42]. Further, these applications are
compiled to x86 (CVP-1 and IPC-1 traces are compiled to
Arm64) which also enables us to assess the impact of ISA on
target offset distribution. The results presented in Figure 13
show that the offset distribution in these applications is also
very similar to that in IPC-1 traces. The only difference is
that x86 traces require slightly larger offsets (1 or 2-bits more)
to achieve a similar dynamic branch coverage as the Arm64
(CVP-1 and IPC-1) traces. For example, 6-bit offsets cover
about 54% branches in Arm64 traces, whereas x86 offsets
need 8-bits to achieve 58% branch coverage. This is because
x86 offsets specify the distance between branch PC and target
in number of bytes because x86 instruction are variable size.
In contrast, Arm64 offsets specify this distance in number of
instructions because all instructions are 4-bytes, thus saving 2
offset bits.

As BTB-X needs to store slightly larger offsets for x86
than Arm64, we reassess its storage advantage over PDede
and Conv-BTB for x86 architectures. As each way in 8-way
BTB-X needs to cover about 12.5% of branches, we size its
ways to store offset of 0-, 5-, 6-, 7-, 9-, 12-, 20-, and 27-bits
based on the offset distribution in x86 applications shown in
Figure 13. Thus, each set needs 86-bits for offsets compared
to 80-bit in Arm64. Consequently, BTB-X’s storage advantage
is slightly lower for x86 than Arm64. However, BTB-X still
stores 2.18x more branches than Conv-BTB for x86 (2.24x
for Arm). Compared to PDede, BTB-X stores 1.21x more
branches (1.24x for Arm64) at 0.9KB storage budget and 1.31x
more branches (1.34x for Arm64) at 58KB storage budget.
(Section VI-B presents this analysis of Arm64 traces.)

VII. RELATED WORK

Mitigating BTB misses: BTB was first disclosed by
Losq [36] and was further expanded by Lee et al [33]. Since
BTB lies on the critical path for instruction delivery, there has
been several proposals to increase its effectiveness. Instead of
accessing BTB with the PC of each individual instruction, Yeh
et al. [54] proposed to access it with basic-block address and
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store not only the target but also the fall-through address in the
BTB. In case the branch is predicted to be not taken, the fall-
through address is used, after fetching the current basic-block,
as the next PC for both instruction fetch as well as for the
next BTB access. The advantage of such a BTB organization
over the conventional BTB organization is that it reduces
BTB bandwidth and power requirements as a single access
provides the next control flow divergence point, whereas the
conventional organization requires as many accesses as the
number of instructions until the next branch. Whereas the
initial proposal on basic-block-based BTB [54] stores full fall-
through address, the later work [44] proposed to store the
delta between two sequential basic-block addresses. Fagin [18]
proposed to use the BTB storage more effectively by storing
only the partial tags. To further amortize the tag storage cost,
some designs proposed to share a BTB entry among multiple
branches that reside in the same cache block [2], [27]. Though
these BTB designs aim to improve different aspects of BTB
management, they all share a common trait, i.e., they store full
target addresses. Thus, the key idea of BTB-X can be applied
to all of these BTB designs to reduce their target storage cost.

Prior work [10], [11], [23], [47]–[49] has also explored
mechanisms to reduce the storage cost of branch targets.
Seznec [47], [48] proposed to break the target address into
page number and offset; and store a pointer to the page
number, along with the page offset, in the BTB while the
page number itself is stored in a separate structure. It reduces
the storage cost as a pointer to page number is smaller than
the page number itself, and the page number for all the targets
in a page is stored only once. Hoogerbrugge [23] proposed to
size some of the entries in a set for storing small target offsets,
thus reducing BTB storage requirements.

The state-of-the-art BTB design, PDede [49], combines
these two ideas to address their individual limitations. Con-
cretely, Sezenc’s design is sub-optimal for same-page branches
as it unnecessarily stores (pointer to) their target page number
even though it is same as the page number of their branch
PCs. In contrast, Hoogerbrugge’s design is sub-optimal for
inter-page branches as it stores their full targets. Inspired from
Hoogerbrugge’s design, PDede sizes some entries in a set to
store same-page branch targets; and similar to Seznec’s design,
for inter-page branches, it stores pointers to page numbers
instead of page numbers themselves. PDede further reduces the
inter-page target storage cost by dividing the page number into
page- and region-number. However, as it is based on Seznec’s
design, it also has to pay the addition latency cost of indi-
rection between main-BTB and the page-/region-BTB. Micro
BTB [22], proposes a flexible BTB entry structure where each
entry can store either one branch, if its offset is large, or two
branches if their offsets are small. We show that all these
designs are sub-optimal in exploiting the storage optimization
opportunity presented by the uneven branch offset distribution.
BTB-X not only captures this opportunity but also avoids the
BTB indirection of the state-of-the-art.

Apart from optimizing BTB organization, prior work [15],
[16], [28], [31], [32] has also explored BTB prefilling/prefetch-

ing to mitigate BTB misses. The state-of-the-art in BTB
prefetching is a profile guided software prefetcher, called
Twig [28]. It analyzes an application’s execution profile to
identify critical BTB misses and then injects software prefetch
instructions. The prefetch instruction takes compressed branch
PC and target as operands and its execution fills this informa-
tion in BTB. These prefetching techniques are complementary
to BTB organization and, thus, can be used along with BTB-X.
Mitigating L1-I misses: As L1-I misses continue to be a
major performance limiter in server applications [12], [25],
[46], prior work has proposed both hardware and software
mechanisms to mitigate L1-I misses. On the hardware side,
state-of-the-art temporal stream prefetchers [19], [20] record
the L1-I miss/access history and replay it to discover prefetch
candidates. While such prefetchers are highly effective, their
huge metadata storage cost renders them impractical despite
recent attempts to address this weakness [26], [27]. Fetch-
directed prefetchers use in-core structures (BTB and branch
direction predictor) to run ahead of the fetch unit to find
prefetch candidates. While the early work [43] focused on L1-I
prefetching only, the state-of-the-art fetch-directed prefetchers
[31], [32] also prefill into the BTB.

Several purely-software based approaches to instruction
prefetching and improving the L1-I capacity has also been
proposed [9], [13], [17], [29], [34], [37]–[40]. These methods
use data from application profiling to perform either compile-
time, link-time or post-link time optimizations. Since these
methods are software-only they will benefit from the increased
BTB capacity provided by the BTB-X organization.

VIII. CONCLUSION

The multi-megabyte instruction footprints of contemporary
server applications cause frequent BTB and L1-I misses,
which have become major performance limiters. Because BTB
capacity greatly affects front-end performance by dictating
pipeline flush rate and the efficacy of fetch-directed instruction
prefetching, commercial products allocate tens to hundreds of
KBs of storage to BTBs. We observe that the single largest
contributor to the BTB storage cost is the cost of storing
branch target. We further observe that BTB storage cost can
be drastically reduced by storing target offsets instead of full
or even compressed targets. This is because targets of most
branches lie relatively close to the branches themselves and
our analysis shows that more than 99% of offsets can be
represented with at most half the bits required to store the full
targets. Based on these observations, we propose a storage-
effective BTB organization, called BTB-X, that stores target
offsets in place of target address. Furthermore, BTB-X, an
8-way set associative BTB, uses differently sized ways with
each storing offsets of a different length, thus accounting
for the uneven distribution of offset lengths. Overall, BTB-
X is capable of storing about 2.24x more branches than a
conventional BTB and 1.3x more branches than a state-of-
the-art BTB organization within the same storage budget.
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APPENDIX A
ARTIFACT APPENDIX

A. Abstract

We implement BTB-X in Champsim simulator. Our artifacts
provide the following: 1) BTB-X implementation in Champ-
sim, 2) Link to workload traces, 3) Scripts for generating
configuration files, launching simulations, and collecting re-
sults, and 4) Excel file for plotting the most important results.
We identify three key results for artifact evaluation: a) Branch
Target Offset distribution (Figure 4), b) BTB MPKI reduction
(Figure 9), and c) Performance improvement (Figure 10).

B. Meta-information

• Compilation: Tested with GCC 8.5.0. It should also
work with other recent GCC versions.

• Code/Workloads: Download code/workloads from the
provided link.

• Experiments: Modify the provided scripts (as described
below) to run simulations.

• Metrics: IPC, BTB MPKI, Branch Target Offset distri-
bution.

• Time needed to run experiments: Less than 30 minutes
when running all traces in parallel.

• Plotting graphs: Excel file, BTBX artifact results.xlsx,
is provided to plot graphs.

C. Access to artifacts

• Code: Download BTB-X implementation from [3].
• Workloads: The workloads can be downloaded from

https://drive.google.com/file/d/1qs8t8-YWc7lLoYbjbH
d3lf1xdoYBznf/view?usp=sharing
Place the workloads in <Path to code/dpc3 traces/.

• Excel file: For plotting the graphs, download excel file,
BTBX artifact results.xlsx, from [3].

D. System requirements

Any hardware capable of running Champsim is sufficient.
SLURM is recommended to run simulation on a cluster. The
scripts are written in bash.

E. Experiment workflow

• Compilation: Champsim needs to be compiled with
three BTB designs (convBTB, pdede, and BTBX) and
two instruction prefetchers (no, fdip). Follow the instruc-
tions at [3] to compile the code.
Important note on compilation: IFETCH BUFFER
needs to be 128 entries when compiling with “fdip”
prefetcher and “FETCH WIDTH*2” entries when com-
piling with “no” prefetcher. This is because of how
instruction fetch is implemented in baseline Champ-
sim. IFETCH BUFFER size is defined in line 63 of
<Path to code>/inc/ooo cpu.h.

• Generating configuration files: Go to directory
<Path to code>/launch/scripts/. In the script file
createConfig.sh, point PATH TO CHAMPSIM to
<Path to code>. Run this script (./createConfig.sh) to
generate config files needed by Champsim.

• Running simulations:
Running all workloads: Go to the directory
<Path to code>/launch/. In script file launch.sh,
replace the line <cluster launch command here>(line
64) with the command to run experiments on your cluster.
A sample command is given that runs experiments on
our cluster. Running this script (./launch.sh) will run
simulations, and the stats will be stored in directory
<Path to code>/results 50M/.
Running a single workload: An example command to run
simulation for a single workload is provided at [3].
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F. Results

• Collecting results: Go to <Path to code>/collectStats/.
Run the script getResults.sh, and it will collect results
from all workloads and save them in a file all res.

• Plotting Results: Download the all res file. Open the
provided excel file BTBX artifact results.xlsx. Click on
“Data” in MS-Excel top menu bar. Click on “Refresh All”
in “Queries and Connections” ribbon, go to the folder
where you stored all res and double click on all res.
Now “Offset Distribution”, “MPKI”, and “Performance”
sheets in the excel file should have plots for Figure 4,
Figure 9, and Figure 10 respectively.
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