

Edinburgh Research Explorer

Conjunctive Queries with Free Access Patterns under Updates
Citation for published version:
Kara, A, Nikolic, M, Olteanu, D & Zhang, H 2023, Conjunctive Queries with Free Access Patterns under
Updates. in F Geerts & B Vandevoort (eds), Proceedings of the 26th International Conference on Database
Theory (ICDT 2023). vol. 255, LIPIcs – Leibniz International Proceedings in Informatics, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 17:1-17:20, The 26th International Conference on
Database Theory, 2023, Ioannina, Greece, 28/03/23. https://doi.org/10.4230/LIPIcs.ICDT.2023.17

Digital Object Identifier (DOI):
10.4230/LIPIcs.ICDT.2023.17

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 26th International Conference on Database Theory (ICDT 2023)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. May. 2023

https://doi.org/10.4230/LIPIcs.ICDT.2023.17
https://doi.org/10.4230/LIPIcs.ICDT.2023.17
https://www.research.ed.ac.uk/en/publications/542d44c5-f19a-4220-a17e-1dabdc7481f7

Conjunctive Queries with Free Access Patterns1

under Updates2

Ahmet Kara #3

University of Zurich, Switzerland4

Milos Nikolic #5

University of Edinburgh, United Kingdom6

Dan Olteanu #7

University of Zurich, Switzerland8

Haozhe Zhang #9

University of Zurich, Switzerland10

Abstract11

We study the problem of answering conjunctive queries with free access patterns under updates. A12

free access pattern is a partition of the free variables of the query into input and output. The query13

returns tuples over the output variables given a tuple of values over the input variables.14

We introduce a fully dynamic evaluation approach for such queries. We also give a syntactic15

characterisation of those queries that admit constant time per single-tuple update and whose output16

tuples can be enumerated with constant delay given an input tuple. Finally, we chart the complexity17

trade-off between the preprocessing time, update time and enumeration delay for such queries. For18

a class of queries, our approach achieves optimal, albeit non-constant, update time and delay. Their19

optimality is predicated on the Online Matrix-Vector Multiplication conjecture. Our results recover20

prior work on the dynamic evaluation of conjunctive queries without access patterns.21

2012 ACM Subject Classification Theory of computation → Database query processing and optim-22

ization (theory); Information systems → Database views; Information systems → Data streams23

Keywords and phrases fully dynamic algorithm, enumeration delay, complexity trade-off, dichotomy24

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2325

1 Introduction26

We consider the problem of answering conjunctive queries with free access patterns under27

single-tuple updates to the input database. Restricted access to data is commonplace [26, 27,28

25]: For instance, the flight information behind a user-interface query can only be accessed29

by providing values for specific input fields such as the departure and destination airports in30

a flight booking database. Access patterns are also present due to built-in predicates, e.g.,31

a + b = c or fun(a, b, c), where a and b are input variables, c is an output variable, and fun is32

a function mapping a and b to c.33

We formalise such queries as conjunctive queries with free access patterns (CQAP for34

short): The free variables of a CQAP are partitioned into input and output. The query yields35

tuples of values over the output variables given a tuple of values over the input variables.36

CQAPs in databases correspond to conditional queries in probabilistic graphical models [23]:37

The latter ask for (the probability of) each possible value of a tuple of random variables38

(corresponding to CQAP output variables) given specific values for another tuple of random39

variables (corresponding to CQAP input variables). Prior work on queries with access40

patterns considers a more general setting than CQAP: There, each relation in the query body41

may have input and output variables such that values for the latter can only be obtained42

if values for the former are supplied [14, 31, 10, 4, 5]. In this more general setting, and in43

© Ahmet Kara, Dan Olteanu, Milos Nikolic and Haozhe Zhang;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:56

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kara@ifi.uzh.ch
mailto:milos.nikolic@ed.ac.uk
mailto:olteanu@ifi.uzh.ch
mailto:zhang@ifi.uzh.ch
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Conjunctive Queries with Free Access Patterns under Updates

sharp contrast to our simpler setting, a fundamental question is whether the query can even44

be answered for a given access pattern to each relation [26, 27, 25].45

We introduce a fully dynamic evaluation approach for CQAPs. It is fully dynamic in the46

sense that it supports both inserts and deletes of tuples to the input relations. Our approach47

computes a data structure that supports the enumeration of the output tuples and maintains48

it under single-tuple updates to the input data. Our analysis of the overall computation49

time is refined into three components. The preprocessing time is the time to compute the50

data structure before receiving any updates. Given a tuple over the input variables, the51

enumeration delay is the time between the start of the enumeration process and the output52

of the first tuple, the time between outputting any two consecutive tuples, and the time53

between outputting the last tuple and the end of the enumeration process [11]. The update54

time is the time used to update the data structure for one single-tuple update. (We do not55

allow updates during the enumeration; this functionality is orthogonal to our contributions56

and can be supported using a versioned data structure.) The preprocessing step may be57

replaced by a sequence of inserts to the initially empty database. However, as shown in58

prior work on conjunctive queries under updates [19, 22], bulk inserts, as performed in the59

preprocessing step, may take asymptotically less time than a sequence of single-tuple inserts.60

There are simple, albeit more expensive alternatives to our approach. For instance, on61

an update request we may only update the input relations, and on an enumeration request62

we may use an existing enumeration algorithm for the residual query obtained by setting63

the input variables to constants in the original query. However, such an approach needs64

time-consuming preparation for each enumeration request, e.g., to remove dangling tuples65

and possibly create a data structure to support enumeration. In contrast, our approach66

maintains state between requests and can readily serve enumeration requests for any values67

of the input variables.68

The contributions of this paper are as follows.69

Section 3 introduces the CQAP language. Two new notions account for the nature of70

free access patterns: access-top variable orders and query fractures.71

An access-top variable order is a decomposition of the query into a rooted forest of72

variables, where: the input variables are above all other variables; and the free (input and73

output) variables are above the bound variables. This variable order is compiled into a tree74

of views, which is a data structure that compactly represents the query output.75

Since access to the query output requires fixing values for the input variables, the query76

can be fractured by breaking its joins on the input variables and replacing each of their77

occurrences with fresh variables within each connected component of the query hypergraph.78

This does not violate the access pattern, since each fresh input variable can be set to the79

corresponding given input value. Yet this may lead to structurally simpler queries whose80

dynamic evaluation admits lower complexity.81

Section 3 also introduces the static and dynamic widths that capture the complexities of82

the preprocessing and respectively update steps. For a given CQAP, these widths are defined83

over the access-top variable orders of the fracture of the query.84

Section 4 introduces our approach for CQAP evaluation. Computing and maintaining85

each view in the view tree accounts for preprocessing and respectively updates, while the86

view tree as a whole allows for the enumeration of the output tuples with constant delay.87

Section 5 gives a syntactic characterisation of those CQAPs that admit linear-time88

preprocessing and constant-time update and enumeration delay. We called this class CQAP0.89

All queries outside CQAP0 do not admit constant-time update and delay regardless of the90

preprocessing time, unless the widely held Online Matrix-Vector Multiplication conjecture [17]91

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:3

fails. Our dichotomy generalises a prior dichotomy for q-hierarchical queries without access92

patterns [6]. The q-hierarchical queries are in CQAP0, yet they have no input variables. The93

class CQAP0 further contains cyclic queries with input variables. For instance, the edge94

triangle detection problem is in CQAP0: Given an edge (u, v), check whether it participates in95

a triangle. The smallest query patterns not in CQAP0 strictly include the non-q-hierarchical96

ones and also contain others that are sensitive to the interplay of the output and input97

variables. Proving that they do not admit constant-time update and delay requires different98

and additional hardness reductions from the Online Matrix-Vector Multiplication problem.99

Section 6 charts the preprocessing time - update time - enumeration delay trade-off for100

the dynamic evaluation of the class of CQAPs whose fractures are hierarchical. It shows101

that as the preprocessing and update times increase, the enumeration delay decreases. Our102

trade-off reveals the optimality for a particular class of CQAPs with hierarchical fractures,103

called CQAP1, which lies outside CQAP0: The complexity of CQAP1 for both the update104

and delay matches the lower bound Ω(N 1
2) for queries outside CQAP0, where N is the size of105

the input database. This is weakly Pareto optimal as we cannot lower both the update time106

and delay complexities (whether one of them can be lowered remains open). Our approach for107

CQAP1 exhibits a continuum of trade-offs: O(N1+ϵ) preprocessing time, O(N ϵ) amortized108

update time and O(N1−ϵ) enumeration delay, for ϵ ∈ [0, 1]. By tweaking the parameter ϵ,109

one can optimise the overall time for a sequence of enumeration and update tasks and achieve110

an asymptotically lower compute time than prior work. A well-studied query in CQAP1 is111

the Dynamic Set Intersection problem [24]: We are given sets S1, ..., Sm subject to element112

insertions and deletions. For each access request (i, j) with i, j ∈ [m], we need to decide113

whether the intersection of Si and Sj is empty. Our approach recovers the complexity given114

by prior work [24] for this problem using ϵ = 0.5.115

2 Preliminaries116

We introduce the data and computation models. Further preliminaries are in Appendix A.117

Data Model. A schema X = (X1, . . . , Xn) is a tuple of distinct variables. Each variable118

Xi has a discrete domain Dom(Xi). We treat schemas and sets of variables interchangeably,119

assuming a fixed ordering of variables. A tuple x of values has schema X = Sch(x) and120

is an element from Dom(X) = Dom(X1) × · · · × Dom(Xn). A relation R over schema X is121

a function R : Dom(X) → Z such that the multiplicity R(x) is non-zero for finitely many122

tuples x. A tuple x is in R, denoted by x ∈ R, if R(x) ̸= 0. The size |R| of R is the size123

of the set {x | x ∈ R}. A database is a set of relations and has size given by the sum of124

the sizes of its relations. Given a tuple x over schema X and S ⊆ X , x[S] is the restriction125

of x onto S. For a relation R over schema X , schema S ⊆ X , and tuple t ∈ Dom(S):126

σS=tR = { x | x ∈ R ∧ x[S] = t } is the set of tuples in R that agree with t on the variables127

in S; πSR = { x[S] | x ∈ R } stands for the set of tuples in R projected onto S, i.e., the set128

of distinct S-values from the tuples in R with non-zero multiplicities. For a relation R over129

schema X and Y ⊆ X , the indicator projection IYR is a relation over Y such that [1]:130

for all y ∈ Dom(Y) : IYR(y) =
{

1 if there is t ∈ R such that y = t[Y]
0 otherwise

131

132

An update is a relation where tuples with positive multiplicities represent inserts and133

tuples with negative multiplicities represent deletes. Applying an update to a relation means134

unioning the update with the relation. A single-tuple update to a relation R is a singleton135

relation δR = {x → m}, where the multiplicity m = δR(t) of the tuple t in δR is non-zero.136

CVIT 2016

23:4 Conjunctive Queries with Free Access Patterns under Updates

Computational Model. We consider the RAM model of computation. Each relation or137

materialised view R over schema X is implemented by a data structure that stores key-value138

entries (x, R(x)) for each tuple x with R(x) ̸= 0 and needs O(|R|) space. This data structure139

can: (1) look up, insert, and delete entries in constant time, (2) enumerate all stored entries140

in R with constant delay, and (3) report |R| in constant time. For a schema S ⊂ X , we use141

an index data structure that for any t ∈ Dom(S) can: (4) enumerate all tuples in σS=tR142

with constant delay, (5) check t ∈ πSR in constant time; (6) return |σS=tR| in constant time;143

and (7) insert and delete index entries in constant time.144

3 Conjunctive Queries with Free Access Patterns145

We introduce the queries investigated in this paper along with several of their properties. A
conjunctive query with free access patterns (CQAP for short) has the form

Q(O|I) = R1(X1), . . . , Rn(Xn).

We denote by: (Ri)i∈[n] the relation symbols; (Ri(Xi))i∈[n] the atoms; vars(Q) =
⋃

i∈[n] Xi146

the set of variables; atoms(X) the set of the atoms containing the variable X; atoms(Q) =147

{Ri(Xi) | i ∈ [n]} the set of all atoms; and free(Q) = O∪I ⊆ vars(Q) the set of free variables,148

which are partitioned into input variables I and output variables O. An empty set of input149

or output variables is denoted by a dot (·).150

Given a database D and a tuple i over I, the output of Q for the input tuple i is denoted151

by Q(O|i) and is defined by πOσI=iQ(D): This is the set of tuples o over O such that the152

assignment i ◦ o to the free variables satisfies the body of Q.153

The hypergraph of a query Q is H = (V = vars(Q), E = {{Xi | i ∈ [n]}}), whose vertices154

are the variables and hyperedges are the schemas of the atoms in Q. The fracture of a CQAP155

Q is a CQAP Q† constructed as follows. We start with Q† as a copy of Q. We replace156

each occurrence of an input variable by a fresh variable. Then, we compute the connected157

components of the hypergraph of the modified query. Finally, we replace in each connected158

component of the modified query all new variables originating from the same input variable159

by one input variable.160

We next define the notion of dominance for variables in a CQAP Q. For variables A and161

B, we say that B dominates A if atoms(A) ⊂ atoms(B). The query Q is free-dominant (input-162

dominant) if for any two variables A and B, it holds: if A is free (input) and B dominates163

A, then B is free (input). The query Q is almost free-dominant (almost input-dominant)164

if: (1) For any variable B that is not free (input) and for any atom R(X) ∈ atoms(B),165

there is another atom S(Y) ∈ atoms(B) such that X ∪ Y cover all free (input) variables166

dominated by B; (2) Q is not already free-dominant (input-dominant). A query Q is167

hierarchical if for any A, B ∈ vars(Q), either atoms(A) ⊆ atoms(B), atoms(B) ⊆ atoms(A),168

or atoms(B) ∩ atoms(A) = ∅. A query is q-hierarchical if it is hierarchical and free-dominant.169

▶ Definition 1. A query is in CQAP0 if its fracture is hierarchical, free-dominant, and input-170

dominant. A query is in CQAP1 if its fracture is hierarchical and is almost free-dominant,171

or almost input-dominant, or both.172

The subset of CQAP0 without input variables is the class of q-hierarchical queries [6].173

▶ Example 2. The query Q1(A, C | B, D) = R(A, B), S(B, C), T (C, D), U(A, D) is input-174

dominant, free-dominant, but not hierarchical. Its fracture Q†(A, C | B1, B2, D1, D2) =175

R(A, B1), S(B2, C), T (C, D1), U(A, D2) is hierarchical but not input-dominant: C dominates176

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:5

indicators(CQAP Q, VO ω) : extended VO

switch ω:

R(Y) 1 return R(Y)

X

ω1 . . . ωk

2 let ω̂i = indicators(ωi) ∀i ∈ [k]
3 let S = {X} ∪ depω(X) and R be the set of atoms in ω

4 let I = { IZR(Z) | R(Y) ∈ (atoms(Q) \ R) and Z = Y ∩ S ̸= ∅ }
5 let {I1, ..., Iℓ} = GYO(I ∪ R) \ R

6 return


X

ω̂1 . . . ω̂k I1 . . . Iℓ

Figure 1 Adding indicator projections to a VO ω of a CQAP Q. Each variable X in ω gets as
new children the indicator projections of relations that do not occur in the subtree rooted at X

but form a cycle with those that occur. The GYO reduction [13] eliminates from a set of relational
schemas all schemas that do not take part in a cycle.

both B2 and D1 and A dominates both B1 and D2, yet A and C are not input. It is however177

almost input-dominant: A is not input and for any of its atoms R(A, B1) and U(A, D2),178

there is another atom U(A, D2) and respectively R(A, B1) such that both R(A, B1) and179

U(A, D2) cover the variables B1 and D2 dominated by A; a similar reasoning applies to C.180

This means that Q1 is in CQAP1.181

The query Q2(A | B) = S(A, B), T (B) is in CQAP0, since its fracture Q†(A | B1, B2) =182

S(A, B1), T (B2) is hierarchical, free-dominant, and input-dominant.183

The query Q3(B | A) = S(A, B), T (B) is in CQAP1. Its fracture is the query itself. It is184

hierarchical, yet not input-dominant, since B dominates A and is not input. It is, however,185

almost input-dominant: for each atom of B, there is one other atom such that together they186

cover A. Indeed, atom S(A, B) already covers A, and it also does so together with T (B);187

atom T (B) does not cover A, but it does so together with S(A, B).188

The following are the smallest hierarchical queries that are not in CQAP0 but in CQAP1:189

Q(A | ·) = R(A, B), S(B); Q(B | A) = R(A, B), S(B); and Q(· | A) = R(A, B), S(B). ◀190

3.1 Variable Orders191

Variable orders are used as logical plans for the evaluation of conjunctive queries [30]. We192

next adapt them to CQAPs. Given a query, two variables depend on each other if they occur193

in the same query atom. A variable order (VO) ω for a CQAP Q is a pair (Tω, depω), where:194

Tω is a (rooted) forest with one node per variable. The variables of each atom in Q lie195

along the same root-to-leaf path in Tω.196

The function depω maps each variable X to the subset of its ancestor variables in Tω on197

which the variables in the subtree rooted at X depend.198

An extended VO is a VO where we first add each atom as a child of its lowest variable and199

then atoms corresponding to the indicator projections of some relations, as explained next.200

The role of the indicators is to reduce the asymptotic complexity in case of cyclic queries [1].201

Given a CQAP Q and a VO ω for Q, the function indicators in Figure 1 extends ω with202

indicator projections. It is assumed that the atoms of Q have been already added to ω. At203

each variable X in ω, we compute the set I of all possible indicator projections (Line 4).204

CVIT 2016

23:6 Conjunctive Queries with Free Access Patterns under Updates

Such indicators IZR are for relations R whose atoms are not included in the subtree rooted205

at X but share a non-empty set Z of variables with {X} ∪ depω(X). We choose from this set206

those indicators that form a cycle with the atoms in the subtree of ω rooted at X (Line 5),207

as determined by the GYO reduction procedure [13] that discards all atoms that do not take208

part in a cycle. The chosen indicator projections become children of X (Line 6). Appendix C209

illustrates the VO construction for a cyclic query.210

We introduce notation for an extended VO ω. Its subtree rooted at X is denoted by ωX .211

The sets vars(ω) and ancω(X) consist of all variables of ω and respectively the variables on212

the path from X to the root excluding X. We denote by atoms(ω) all atoms and indicators213

at the leaves of ω and by QX the join of all atoms atoms(ω) (all variables are free).214

In the rest of this paper, whenever we refer to a variable order, we always assume an215

extended VO. We next introduce classes of VOs for CQAP queries. A VO ω is canonical216

if the variables of the leaf atom of each root-to-leaf path are the inner nodes of the path.217

Hierarchical queries are precisely those conjunctive queries that admit canonical variable218

orders. A VO ω is free-top if no bound variable is an ancestor of a free variable. It is219

input-top if no output variable is an ancestor of an input variable. The sets of free-top and220

input-top VOs for Q are denoted as free-top(Q) and input-top(Q), respectively. A VO is221

called access-top if it is free-top and input-top: acc-top(Q) = free-top(Q) ∩ input-top(Q).222

▶ Example 3. The query Q(B|A) = R(A, B), S(B) admits the VO (in term notation; "-"223

represents the parent-child relationship): B − {A − R(A, B), S(B)}, where B has the variable224

A and the atom S(B) as children and A has the atom R(A, B) as child. The dependency225

sets are dep(B) = ∅ and dep(A) = {B}. This VO is free-top, since both variables are free; it226

is not input-top, since the output variable B is on top of the input variable A. By swapping227

A and B in the order, it becomes input-top and then also access-top; the dependencies then228

become: dep(A) = ∅ and dep(B) = {A}.229

The triangle query Q(A, B|·) = R(A, B), S(B, C), T (A, C) admits the VO C − A −230

{T (A, C), B − {R(A, B), S(B, C), IACT (A, C)}}, where one child of B is the indicator pro-231

jection IACT of T on {A, C}. The dependency sets are dep(C) = ∅, dep(A) = {C}, and232

dep(B) = {A, C}. The VO is input-top, since the query has no input variables; it is not233

free-top, since the bound variable C is on top of the free variables A and B.234

The fracture of the 4-cycle query in Example 2 admits the access-top VO consisting235

of two disconnected paths: B1 − D2 − A − {R(A, B1), U(A, D2)} and B2 − D1 − C −236

{S(B2, C), T (C, D1)}, where the dependency sets are: dep(A) = {B1, D2}, dep(D2) = {B1},237

dep(B1) = dep(B2) = ∅, dep(C) = {B2, D1}, and dep(D1) = {B2}. ◀238

3.2 Width Measures239

We next introduce two width measures for a VO ω and CQAP Q. They capture the complexity240

of computing and maintaining the output of Q.241

▶ Definition 4. The static width w(ω) and dynamic width δ(ω) of a VO ω are:242

w(ω) = max
X∈vars(ω)

ρ∗
QX

({X} ∪ depω(X))243

δ(ω) = max
X∈vars(ω)

max
R(Y)∈atoms(ωX)

ρ∗
QX

(({X} ∪ depω(X)) \ Y)244

245

For a query QX and a set of variables X = {X} ∪ depω(X), the fractional edge cover246

number [2] ρ∗
QX

(X) defines a worst-case upper bound on the time needed to compute QX(X).247

Here, QX is the join of all atoms under X in the VO ω. The static width w of a VO ω is then248

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:7

defined as the maximum fractional edge cover number over all variables in ω. The dynamic249

width is defined similarly, with one simplification: We consider every case of a relation (or250

indicator projection) being replaced by a single-tuple update, so its variables Y are all set to251

constants and can be discarded in the computation of the fractional edge cover number.252

We consider the standard lexicographic ordering ≤ on pairs of dynamic and static widths:253

(δ1, w1) ≤ (δ2, w2) if δ1 ≤ δ2 or δ1 = δ2 and w1 ≤ w2. Given a set S of VOs, we define254

minω∈S(δ(ω), w(ω)) = (δ, w) such that ∀ω ∈ S : (δ, w) ≤ (δ(ω), w(ω)).255

▶ Definition 5. The dynamic width δ(Q) and static width w(Q) of a CQAP Q are:

(δ(Q), w(Q)) = min
ω∈acc-top(Q†)

(δ(ω), w(ω))

Since we are interested in dynamic evaluation, Definition 5 first minimises for the dynamic256

width and then for the static width. To determine the dynamic and the static width of a257

CQAP Q, we first search for the VOs of the fracture Q† with minimal dynamic width and258

choose among them one with the smallest static width. Appendix B further expands on the259

width measures with examples and properties.260

▶ Example 6. Consider the query Q(O | I) = R(A, B, C), S(A, B, D), T (A, E). The static261

width w and the dynamic width δ of Q vary depending on the access pattern:262

For Q({C, D, E} | {A, B}), w = 1 and δ = 0. For Q({A, C, D, E} | {B}), w = 1 and δ = 1.263

For Q({A, C, D} | {B, E}), w = 2 and δ = 1. For Q({A, E} | {B, C, D}), w = 2 and δ = 2.264

For Q({A, B} | {C, D, E}), w = 3 and δ = 2. For Q({A, B, C, D, E}|·), Q(·|{A, B, C, D, E})265

and Q({B, C, D, E}|{A}), w = 1 and δ = 0. ◀266

4 CQAP Evaluation267

In this section, we introduce a fully dynamic evaluation approach for arbitrary CQAPs whose268

complexity is stated in the following theorem.269

▶ Theorem 7. Given a CQAP with static width w and dynamic width δ and a database of270

size N , the query can be evaluated with O(Nw) preprocessing time, O(Nδ) update time under271

single-tuple updates, and O(1) enumeration delay.272

Our approach has three stages: preprocessing, enumeration, and updates. They are273

detailed in the following subsections. Our running examples consider queries with acyclic274

fractures. Examples with cyclic fractures are given in Appendix C. We consider in the275

following a fixed CQAP Q(O|I), its fracture Q†(O|I†), and a database of size N .276

4.1 Preprocessing277

In the preprocessing stage, we construct a set of view trees that represent the result of Q†278

over both its input and output variables. A view tree [29] is a (rooted) tree with one view279

per node. It is a logical project-join plan in the classical database systems literature, but280

where each intermediate result is materialised. The view at a node is defined as the join of281

the views at its children, possibly followed by a projection. The view trees are modelled282

following an access-top VO ω of Q†. In the following, we discuss the case of ω consisting of a283

single tree; otherwise, we apply the preprocessing stage to each tree in ω.284

Given an access-top VO ω, the function τ(ω) in Figure 2 returns a view tree constructed285

from ω. The function traverses ω bottom-up and creates at each variable X, a view VX286

defined over the join of the child views of X. The schema of VX consists of X and the287

CVIT 2016

23:8 Conjunctive Queries with Free Access Patterns under Updates

τ(VO ω) : view tree

switch ω:

R(Y) 1 return R(Y)

X

ω1 . . . ωk

2 let Ti = τ(ωi) ∀i ∈ [k]
3 let S = {X} ∪ depω(X) and VX(S) = join of roots of T1, ..., Tk

4 if X has no sibling return


VX(S)

T1 . . . Tk

5 let V ′
X(S \ {X}) = VX(S) return


V ′

X(S \ {X})

VX(S)

T1 . . . Tk

Figure 2 Construction of a view tree following a VO ω. At each variable X in ω, the function
creates a view VX whose schema consists of X and the dependency set of X. If X has siblings, it
adds a view on top of VX that marginalises out X.

A

B E

C D
T (A, E)

R(A, B, C) S(A, B, D)

A1

B

C D

R(A1, B, C) S(A1, B, D)

A2

E

T (A2, E)

Figure 3 (Left) Hypergraph of the two queries with the same body but different access patterns,
as used in Examples 8 and 9; (middle and right) hypergraph of their fractures.

dependency set of X (Line 3). This view allows to efficiently enumerate the X-values given a288

tuple of values for the variables in the dependency set. If X has siblings, the function creates289

an additional view V ′
X on top of VX whose purpose is to aggregate away (or marginalise out)290

X from VX (Line 5). This view allows to efficiently maintain the ancestor views of VX under291

updates to the views created for the siblings of X.292

The time to construct the view tree τ(ω) is dominated by the time to materialise the293

view VX for each variable X. The auxiliary view V ′
X above VX can be materialised by294

marginalising out X in one scan over VX . Each view VX can be materialised in O(Nw) time,295

where w = ρ∗
QX

({X ∪ depω(X)}). The definition of the static width of ω implies that the296

view tree τ(ω) can be constructed in O(Nw(ω)) time. By choosing a VO whose static width297

is w(Q), the preprocessing time of our approach becomes O(Nw(Q)), as stated in Theorem 7.298

The next example demonstrates our view tree construction for a query in CQAP0.299

▶ Example 8. Figure 3 shows the hypergraphs of the query Q(B, C, D, E|A) = R(A, B, C),300

S(A, B, D), T (A, E) and its fracture Q†(B, C, D, E|A1, A2) = R(A1, B, C), S(A1, B, D),301

T (A2, E). The fracture has two connected components: Q1(B, C, D|A1) = R(A1, B, C), S(A1,302

B, D) and Q2(E|A2) = T (A2, E). Figure 4 depicts an access-top VO (left) for Q1 and its cor-303

responding view tree (middle). The VO has static width 1. Each variable in the VO is mapped304

to a view in the view tree, e.g., B is mapped to VB(A1, B), where {B, A1} = {B} ∪ dep(B).305

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:9

dep(A1) = ∅
dep(B) = {A1}

dep(C) = {A1, B}
dep(D) = {A1, B}

A1

B

C D

R(A1, B, C) S(A1, B, D)

VA1 (A1)

VB(A1, B)

V ′
C(A1, B)

VC(A1, B, C)

R(A1, B, C)

V ′
D(A1, B)

VD(A1, B, D)

S(A1, B, D)

δVA1 (a)

δVB(a, b)

δV ′
C(a, b)

δVC(a, b, c)

δR(a, b, c)

V ′
D(a, b)

VD(A1, B, D)

S(A1, B, D)

Figure 4 (Left) Access-top VO for Q1(B, C, D|A1) = R(A1, B, C), S(A1, B, D); (middle) the
view tree constructed from the VO; (right) the delta view tree under a single-tuple update to R.

dep(A1) = ∅
dep(C) = {A1}

dep(D) = {A1, C}
dep(B) = {A1, C, D}

A1

C

D

B

R(A1, B, C) S(A1, B, D)

VA1 (A1)

VC(A1, C)

VD(A1, C, D)

VB(A1, B, C, D)

R(A1, B, C) S(A1, B, D)

δVA1 (a)

δVC(a, c)

δVD(a, c, D)

δVB(a, b, c, D)

δR(a, b, c) S(a, b, D)

Figure 5 (Left) Access-top VO for Q1(B, D|A1, C) = R(A1, B, C), S(A1, B, D); (middle) the
view tree corresponding to the VO; (right) the delta view tree under a single-tuple update to R.

The views V ′
C and V ′

D are auxiliary views. The views V ′
C , V ′

D, and VA1 marginalise out the306

variables C, D and respectively B from their child views. The view VB is the intersection of307

V ′
C and V ′

D. Hence, all views can be computed in O(N) time. Since the query fracture is308

acyclic, the view tree does not contain indicator projections.309

The only access-top VO for the connected component Q2 of Q† is the top-down path310

A2 −E −T (A2, E). The views mapped to A2 and E are VA2(A2) and respectively VE(A2, E).311

They can obviously be computed in O(N) time. ◀312

The next example considers a CQAP1 whose preprocessing time is quadratic.313

▶ Example 9. Consider the CQAP1 Q(E, D|A, C) = R(A, B, C), S(A, B, D), T (A, E) and314

its fracture Q†(E, D|A1, A2, C) = R(A1, B, C), S(A1, B, D), T (A2, E). The fracture has the315

two connected components Q1(B, D|A1, C) = R(A1, B, C), S(A1, B, D) and Q2(E|A2) =316

T (A2, E). The hypergraphs (Figure 3) of Q and its fracture are the same as for the query in317

Example 8. Figure 5 depicts an access-top VO (left) for Q1 and its corresponding view tree318

(middle). The VO has static width 2. The view VB joins the relations R and S, which takes319

O(N2) time. The views VD, VC , and VA are constructed from VB by marginalising out one320

variable at a time. Hence, the view tree construction takes O(N2) time. The view tree for321

Q2 is the same as in Example 8 and can be constructed in linear time. ◀322

4.2 Enumeration323

The view trees constructed by the function τ for any access-top VO for Q† allow for constant-324

delay enumeration of the tuples in Q(O|i) given any tuple i over the input variables I.325

Assume that ωi is a tree in the forest ω for which τ(ωi) constructs the view tree Ti, for326

i ∈ [n]. Let Qi(Oi|Ii) with Oi = O ∩ vars(ωi) and Ii = I† ∩ vars(ωi) be the CQAP that327

joins the atoms at the leaves of Ti. We first explain how to enumerate the tuples in Qi(Oi | i)328

CVIT 2016

23:10 Conjunctive Queries with Free Access Patterns under Updates

from Ti with constant delay, given an input tuple i over Ii. We traverse the view tree Ti in329

preorder and execute at each view VX the following steps. In case X ∈ Ii, we check whether330

the projection of i onto the schema of VX is in VX . If not, the query output is empty and we331

stop. Otherwise, we continue with the preorder traversal. In case X ∈ Oi, we retrieve in332

constant time the first X-value in VX given that the values over the variables in the root path333

of X are already fixed to constants. After all views are visited once, we have constructed334

the first complete output tuple and report it. Then, we iterate with constant delay over the335

remaining distinct X-values in the last visited view VX . For each distinct X-value, we obtain336

a new tuple and report it. After all X-values in VX are exhausted, we backtrack.337

Assume now that we have a procedure that enumerates the tuples in Qi(Oi | ii) for any338

tuple ii over Ii with constant delay. Consider a tuple i over the input variables I of Q. It339

holds Q(O|i) = ×i∈[n]Qi(Oi|ii) where ii[X ′] = i[X] if X = X ′ or X is replaced by X ′ when340

constructing the fracture of Q. We can enumerate the tuples in Q(O | i) with constant delay341

by nesting the enumeration procedures for Q1(O1 | i1), . . . , Qn(On | in).342

▶ Example 10. Consider the query Q(B, C, D, E|A) from Example 8 and the two connected343

components Q1(B, C, D|A1) and Q2(E|A2) of its fracture. Figure 4 (middle) depicts the344

view tree for Q1. Given an A1-value a, we can use this view tree to enumerate the distinct345

tuples in Q1(B, C, D|a) with constant delay. We first check if a is included in the view VA1 .346

If not, Q1(B, C, D|a) must be empty and we stop. Otherwise, we retrieve the first B-value347

b paired with a in VB, the first C-value c paired with (a, b) in VC , and the first D-value d348

paired with (a, b) in VD. Thus, we obtain in constant time the first output tuple (b, c, d) in349

Q1(B, C, D|a) and report it. Then, we iterate over the remaining distinct D-values paired350

with (a, b) in VD and report for each such D-value d′, a new tuple (b, c, d′). After all D-values351

are exhausted, we retrieve the next distinct C-value paired with (a, b) in VC and restart the352

iteration over the distinct D-values paired with (a, b) in VD, and so on. Overall, we construct353

each distinct tuple in Q1(B, C, D|a) in constant time after the previous one is constructed.354

Assume now that we have constant-delay enumeration procedures for the tuples in355

Q1(B, C, D|a) and the tuples in Q2(E|a) for any A-value a. We can enumerate with356

constant delay the tuples in Q(B, C, D, E|a) as follows. We ask for the first tuple (b, c, d) in357

Q1(B, C, D|a) and then iterate over the distinct E-values in Q2(E|a). For each such E-value358

e, we report the tuple (b, c, d, e). Then, we ask for the next tuple in Q1(B, C, D|a) and restart359

the enumeration over the tuples in Q2(E|a), and so on. ◀360

4.3 Updates361

We now explain how to update the view trees constructed by the function τ in Figure 2.362

Consider a single-tuple update δR = {x → m} to an input relation R; m is positive in case363

of insertion and negative in case of deletion. We first update each view tree that has an364

atom R(X) at a leaf: We update each view on the path from that leaf to the root of the365

view tree using the classical delta rules [7]. The update δR may affect indicator projections366

IZR. A new single-tuple update δIZR = {x[Z] → k} to IZR is triggered in the following367

two cases. If δR is an insertion and x[Z] is a value not already in πZR, then the new update368

is triggered with k = 1. If δR is a deletion and πZR does not contain x[Z] after applying369

the update to R, then the new update is triggered with k = −1. This update is propagated370

up to the root of each view tree, like for δR.371

Recall that the time to compute a view VX is O(Nw), where w = ρ∗
QX

({X} ∪ depω(X)).372

In case of an update to a relation or indicator R over schema Y , the variables in Y are set to373

constants. The time to update VX is then O(Nδ), where δ = ρ∗
QX

(({X} ∪ depω(X)) \ Y).374

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:11

Assuming that the dynamic width of ω is δ(Q), we conclude that the update time of our375

approach is O(Nδ(Q)), as stated in Theorem 7.376

▶ Example 11. Figure 4 (right) shows the delta view tree for the view tree to the left under377

a single-tuple update δR(a, b, c) to R. We update the relation R(A, B, C) with δR(a, b, c)378

in constant time. The ancestor views of δR (in blue) are the deltas of the corresponding379

views, computed by propagating δR from the leaf to the root. They can also be effected380

in constant time. Overall, maintaining the view tree under a single-tuple update to any381

relation takes O(1) time.382

Consider now the delta view tree in Figure 5 (right) obtained from the view tree to its left383

under the single-tuple update δR(a, b, c). We update VB(A1, B, C, D) with δVB(a, b, c, D) =384

δR(a, b, c), S(a, b, D) in O(N) time, since there are at most N D-values paired with (a, b) in385

S. We then update the views VD, VC , and VA1 in O(1) time. Updates to S are handled386

analogously. Overall, maintaining the view tree under a single-tuple update to any input387

relation takes O(N) time. ◀388

5 A Dichotomy for CQAPs389

The following dichotomy states that the queries in CQAP0 are precisely those CQAPs that390

can be evaluated with constant update time and enumeration delay.391

▶ Theorem 12. Let any CQAP query Q and database of size N .392

If Q is in CQAP0, then it admits O(N) preprocessing time, O(1) enumeration delay, and393

O(1) update time for single-tuple updates.394

If Q is not in CQAP0 and has no repeating relation symbols, then there is no algorithm395

that computes Q with arbitrary preprocessing time, O(N 1
2 −γ) enumeration delay, and396

O(N 1
2 −γ) amortised update time, for any γ > 0, unless the OMv conjecture fails.397

The hardness result in Theorem 12 is based on the following OMv problem:398

▶ Definition 13 (Online Matrix-Vector Multiplication (OMv) [17]). We are given an n × n399

Boolean matrix M and receive n Boolean column vectors v1, . . . , vn of size n, one by one;400

after seeing each vector vi, we output the product Mvi before we see the next vector.401

It is strongly believed that the OMv problem cannot be solved in subcubic time.402

▶ Conjecture 14 (OMv Conjecture, Theorem 2.4 [17]). For any γ > 0, there is no algorithm403

that solves the OMv problem in time O(n3−γ).404

Queries in CQAP0 have dynamic width 0 and static width 1 (Proposition 25, Appendix405

D). Our approach from Section 4 achieves linear preprocessing time, constant update time406

and enumeration delay for such queries (Theorem 7), so it is optimal for CQAP0.407

The smallest queries not included in CQAP0 are: Q1(O|·) = R(A), S(A, B), T (B)408

with O ⊆ {A, B}; Q2(A|·) = R(A, B), S(B); Q3(·|A) = R(A, B), S(B); and Q4(B|A) =409

R(A, B), S(B). Each query is equal to its fracture. Query Q1 is not hierarchical; Q2 is not410

free-dominant; and Q3 and Q4 are not input-dominant. Prior work showed that there is no411

algorithm that achieves constant update time and enumeration delay for Q1 and Q2, unless412

the OMv conjecture fails [6]. To prove the hardness statement in Theorem 12, we show that413

this negative result also holds for Q3 and Q4. Then, given an arbitrary CQAP Q that is not414

in CQAP0, we reduce the evaluation of one of the four queries above to the evaluation of Q.415

CVIT 2016

23:12 Conjunctive Queries with Free Access Patterns under Updates

6 Trade-Offs for CQAPs with Hierarchical Fractures416

For CQAPs with hierarchical fractures, the complexities in Theorem 7 can be parameterised417

to uncover trade-offs between preprocessing, update, and enumeration.418

▶ Theorem 15. Let any CQAP Q with static width w and dynamic width δ, a database419

of size N , and ϵ ∈ [0, 1]. If Q’s fracture is hierarchical, then Q admits O(N1+(w−1)ϵ)420

preprocessing time, O(N1−ϵ) enumeration delay, and O(Nδϵ) amortised update time for421

single-tuple updates.422

This continuum of trade-offs can be obtained using one algorithm parameterised by ϵ.423

This algorithm either recovers or has lower complexity than prior approaches. Using ϵ = 1,424

we recover the complexities in Theorem 7 and therefore also the constant update time and425

delay for queries in CQAP0 in Theorem 12.426

Theorem 15 can be refined for CQAP1, since δ = 1 and w ≤ 2 for queries in this class.427

▶ Corollary 16. (Theorem 15). Let any query in CQAP1, a database of size N , and ϵ ∈428

[0, 1]. Then Q admits O(N1+ϵ) preprocessing time, O(N1−ϵ) enumeration delay, and O(N ϵ)429

amortised update time for single-tuple updates.430

For ϵ = 0.5, the update time and delay for queries in CQAP1 match the lower bound in431

Theorem 12 for all queries outside CQAP0. This makes our approach weakly Pareto optimal432

for CQAP1, as lowering both the update time and delay would violate the OMv conjecture.433

Our algorithm has two core ideas. (For lack of space, we defer the details to Appendix E.)434

First, we partition the input relations into heavy and light parts based on the degrees of435

the values. This transforms a query over the input relations into a union of queries over436

heavy and light relation parts. Second, we employ different evaluation strategies for different437

heavy-light combinations of parts of the input relations. This allows us to confine the438

worst-case behaviour caused by high-degree values in the database during query evaluation.439

We construct a set of VOs for the hierarchical fracture of a given CQAP. Each VO440

represents a different evaluation strategy over heavy and light relation parts. For VOs441

over light relation parts, we follow the general approach from Section 4 and construct view442

trees from access-top VOs. For VOs involving heavy relation parts, we construct view trees443

from VOs that are not access-top, thus yielding non-constant enumeration delay but better444

preprocessing and update times. This trade-off is controlled by the parameter ϵ.445

Enumerating distinct tuples from the constructed view trees poses two challenges. First,446

these view trees may encode overlapping subsets of the query result. To enumerate only447

distinct tuples from these view trees, we use the union algorithm [12] and view tree iterators,448

as in prior work [21]. Second, for views trees built from VOs that are not access-top, the449

enumeration approach from Section 4 would report the values of bound variables before the450

values of free variables or the values of output variables before setting the values of input451

variables. To resolve this issue, we instantiate a view tree iterator for each value of the452

variable that violates the free-dominance or input-dominance condition. We then use the453

union algorithm to report only distinct tuples over the output variables. By partitioning454

input relations, we ensure that the number of instantiated iterators depends on ϵ. For view455

trees built from access-top VOs, we use the enumeration approach from Section 4.456

6.1 Data Partitioning457

We partition relations based on the frequencies of their values. For a database D, relation458

R ∈ D over schema X , schema S ⊂ X , and threshold θ, the pair (RS)H , RS)L) is a partition459

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:13

of R on S with threshold θ if it satisfies the conditions:460

(union) R(x) = RS)H(x) + RS)L(x) for x ∈ Dom(X)
(domain partition) πSRS)H ∩ πSRS)L = ∅

(heavy part) ∀t ∈ πSRS)H , ∃K ∈ D: |σS=tK| ≥ 1
2 θ

(light part) ∀t ∈ πSRS)L and ∀K ∈ D: |σS=tK| < 3
2 θ

461

We call (RS)H , RS)L) a strict partition of R on S with threshold θ if it satisfies the union and462

domain partition conditions and the strict versions of the heavy and light part conditions:463

(strict heavy part) ∀t ∈ πSRS)H , ∃K ∈ D: |σS=tK| ≥ θ

(strict light part) ∀t ∈ πSRS)L and ∀K ∈ D: |σS=tK| < θ
464

The relation RS)H is called heavy and the relation RS)L is called light on the partition key465

S. Due to the domain partition, the relations RS)H and RS)L are disjoint. For |D| = N466

and a strict partition (RS)H , RS)L) of R on S with threshold θ = N ϵ for ϵ ∈ [0, 1], we have:467

(1) ∀t ∈ πSRS)L : |σS=tRS)L| < θ = N ϵ; and (2) |πSRS)H | ≤ N
θ = N1−ϵ. The first bound468

follows from the strict light part condition. In the second bound, πSRS)H refers to the tuples469

over schema S with high degrees in some relation in the database. The database can contain470

at most N
θ such tuples; otherwise, the database size would exceed N .471

Disjoint relation parts can be further partitioned independently of each other on different472

partition keys. We write RS1)s1,...,Sn)sn to denote the relation part obtained after partitioning473

RS1)s1,...,Sn−1)sn−1 on Sn, where si ∈ {H, L} for i ∈ [n]. The domain of RS1)s1,...,Sn)sn is474

the intersection of the domains of RSi)si , for i ∈ [n]. We refer to S1) s1, . . . , Sn) sn as a475

heavy-light signature for R. Consider for instance a relation R with schema (A, B, C). One476

possible partition of R consists of the relation parts RA)L, RA)H,AB)L, and RA)H,AB)H .477

The union of these relation parts constitutes the relation R.478

6.2 Preprocessing479

The preprocessing has two steps. First, we construct a set of VOs corresponding to the480

different evaluation strategies over the heavy and light relation parts. Second, we build a481

view tree from each such VO using the function τ from the general case (Figure 2).482

We next describe the construction of a set of VOs from a canonical VO ω of a hierarchical483

CQAP Q(O|I). Without loss of generality, we assume that ω is a tree; in case ω is a forest,484

the reasoning below applies independently to each tree in the forest. The construction485

proceeds recursively on the structure of ω and forms the query QX(OX |IX) at each variable486

X. The query QX is the join of the atoms in ωX , the set OX consists of the output variables487

in ωX , and the set IX consists of the input variables in ωX and all ancestor variables along488

the path from X to the root of ω. The next step analyses the query QX .489

If QX is in CQAP0, we turn ωX into an access-top VO for QX by pulling the free variables490

above the bound variables and the input variables above the output variables. For queries in491

CQAP0, this restructuring does not increase their static width.492

If QX is not in CQAP0, then ωX contains a bound variable that dominates a free variable493

or an output variable that dominates an input variable. If X does not violate either of these494

conditions, we recur on each subtree and combine the constructed VOs. Otherwise, we create495

two sets of VOs, which encode different evaluation strategies for different parts of the result496

of QX . Let key be the set of variables on the path from X to the root of the canonical VO497

for Q, including X. For the first set of VOs, each leaf atom Rsig(X) below X is replaced498

by Rsig,key→H(X) before recurring on each subtree, denoting that the evaluation of QX is499

CVIT 2016

23:14 Conjunctive Queries with Free Access Patterns under Updates

VA1 (A1)

VC(A1, C)

VD(A1, C, D)

VB(A1, B, C, D)

RA1B)L(A1, B, C) SA1B)L(A1, B, D)

VA1 (A1)

VB(A1, B)

V ′
C(A1, B)

VC(A1, B, C)

RA1B)H(A1, B, C)

V ′
D(A1, B)

VD(A1, B, D)

SA1B)H(A1, B, D)

Figure 6 View trees constructed for Q1(D|A1, C) = R(A1, B, C), S(A1, B, D) from Example 17
using the VOs: (left) A1 − C − D − B − {RA1B)L(A1, B, C), SA1B)L(A1, B, D)} and (right) A1 −
B − {C − RA1B)H(A1, B, C), D − SA1B)H(A1, B, D)}.

over relations parts that are heavy on key. For the second set of VOs, we turn ωX into an500

access-top VO over relations parts that are light on key; this restructuring of the VO may501

increase its static width.502

We construct a view tree for each VO formed in the previous step. For each view tree,503

we strict partition the input relations based on their heavy-light signature and compute504

the queries defining the views. We refer to this step as view tree materialisation. The505

view trees constructed for the evaluation of queries in CQAP0 or over heavy relation parts506

follow canonical VOs, meaning that they can be materialised in linear time. The view trees507

constructed for the evaluation of queries over light relation parts follow access-top VOs.508

Using the degree constraints in the input relations, each such view tree can be materialised509

in O(N1+(w−1)ϵ), where w is the static width of the query.510

▶ Example 17. We explain the construction of the views tree for the connected component511

from Figure 3 (middle) corresponding to the query Q1(D|A1, C) = R(A1, B, C), S(A1, B, D).512

In the canonical VO of this query, shown in Figure 4 (left), the bound variable B dominates513

the free variables C and D. We strictly partition the relations R and S on (A1, B) with514

threshold N ϵ, where N is the database size. To evaluate the join over the light relation parts,515

we turn the subtree in the canonical VO rooted at B into an access-top VO and construct a516

view tree following this new VO, see Figure 6 (left). We compute the view VB(A1, B, C, D)517

in time O(N1+ϵ): For each (a, b, c) in the light part RA1B)L(A1, B, C) of R, we fetch the518

D-values in SA1B)L(A1, B, D) that are paired with (a, b). The iteration in RA1B)L(A1, B, C)519

takes O(N) time and for each (a, b), there are at most N ϵ D-values in SA1B)L(A1, B, D).520

The views VD, VC , and VA result from VB by marginalising out one variable at a time.521

Overall, this takes O(N1+ϵ) time.522

To evaluate the join over the heavy parts of R and S, we construct a view tree following523

the canonical VO (Figure 6 right). The VO and view tree are the same as in Figure 3, except524

that the leaves are the heavy parts of R and S. The view tree can be materialised in O(N)525

time, cf. Example 8. Overall, the two view trees can be computed in O(N1+ϵ) time. ◀526

6.3 Updates527

A single-tuple update to an input relation may cause changes in several view trees constructed528

for a given hierarchical CQAP. If the input relation is partitioned, we first identify which529

part of the relation is affected by the update. We then propagate the update in each view530

tree containing the affected relation part, as discussed in Section 4.531

▶ Example 18. We consider the maintenance of the view trees from Figure 6 under a532

single-tuple update δR(a, b, c) to R. The update affects the heavy part RA1B)H if (a, b) ∈533

πA1,BRA1B)H ; otherwise, it affects the light part RA1B)L. For the former, we propagate534

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:15

the update from RA1B)H to the root. For each view on this path, we compute its delta535

query and update the view in constant time for fixed (a, b, c). For the latter, we compute536

the delta δVB(a, b, c, D) = δRA1B)L(a, b, c), SA1B)L(a, b, D) in O(N ϵ) time because there537

are at most N ϵ D-values paired with (a, b) in SA1B)L. We then update VD(a, c, D) with538

δVD(a, c, D) = δVB(a, b, c, D) in O(N ϵ) time and update the views VC(A1, C) and VA1(A1)539

in constant time. The case of single-tuple updates to S is analogous. Overall, maintaining540

the two view trees under a single-tuple update to any input relation takes O(N ϵ) time. ◀541

An update may change the degree of values over a partition key from light to heavy or542

vice versa. In such cases, we need to rebalance the partitioning and possibly recompute some543

views. Although such rebalancing steps may take time more than O(Nδϵ), they happen544

periodically and their amortised cost remains the same as for a single-tuple update.545

7 Related Work546

Our work is the first to investigate the dynamic evaluation for queries with access patterns.547

Free Access Patterns. Prior work closest in spirit to ours investigated the space-delay548

trade-off for the static evaluation of full conjunctive queries with free access patterns [9].549

This work constructs a succinct representation of the query output, from which the tuples550

that conform with value bindings of the input variables can be enumerated. It does not551

support queries with projection nor dynamic evaluation. Follow-up work considers the static552

evaluation for Boolean conjunctive queries with access patterns [8].553

Dynamic evaluation. Our work generalises the dichotomy for q-hierarchical queries554

under updates [6, 18] and the complexity trade-offs for queries under updates [19, 20, 22]. We555

refer the reader to a comprehensive comparison [21] of dynamic query evaluation techniques556

and how they are recovered by the trade-off [22] extended in our work.557

Our CQAP0 dichotomy strictly generalises the one for q-hierarchical queries [6]: The558

set of q-hierarchical queries is a strict subset of CQAP0, while there are hard patterns of559

non-CQAP0 beyond those for non-q-hierarchical queries.560

There are key technical differences between the prior framework for dynamic evaluation561

trade-off [22] and ours: different data partitioning; new modular construction of view trees;562

access-top variable orders; new iterators for view trees modelled on any variable order. We563

create a set of variable orders that represent heavy/light evaluation strategies and then map564

them to view trees. The advantage is a simpler complexity analysis for the views, since the565

variables orders and their view trees share the same width measures.566

Dissociation. Query fractures are central to our access pattern approach. Under certain567

conditions, they replace the input variables with fresh input variables. Dissociation is similar568

in spirit: It is used to define upper and lower bounds for the probability of Boolean functions569

by treating multiple occurrences of a random variable as independent and assigning them new570

individual probabilities [15]. Query dissociation serves the same purpose [16]. It alters both571

the data, by making multiple independent copies of some tuples in the database and extending572

relational schemas with attributes, and the query, by extending atoms with variables.573

8 Conclusion574

This paper introduces a fully dynamic evaluation approach for conjunctive queries with free575

access patterns. It gives a syntactic characterisation of those queries that admit constant-time576

update and delay and further investigates the trade-off between preprocessing time, update577

time, and enumeration delay for such queries.578

CVIT 2016

23:16 Conjunctive Queries with Free Access Patterns under Updates

References579

1 Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: Questions Asked Frequently. In580

PODS, pages 13–28, 2016.581

2 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational582

joins. SIAM J. Comput., 42(4):1737–1767, 2013.583

3 Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability of584

Acyclic Database Schemes. J. ACM, 30(3):479–513, 1983.585

4 Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. Querying with Access Patterns586

and Integrity Constraints. VLDB, 8(6):690–701, 2015.587

5 Michael Benedikt, Balder Ten Cate, and Efthymia Tsamoura. Generating Low-cost Plans588

from Proofs. In PODS, pages 200–211, 2014.589

6 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering Conjunctive Queries590

Under Updates. In PODS, pages 303–318, 2017.591

7 Rada Chirkova and Jun Yang. Materialized Views. Found. & Trends DB, 4(4):295–405, 2012.592

8 Shaleen Deep, Xiao Hu, and Paraschos Koutris. Space-Time Tradeoffs for Answering Boolean593

Conjunctive Queries. arXiv, abs/2109.10889, 2021.594

9 Shaleen Deep and Paraschos Koutris. Compressed Representations of Conjunctive Query595

Results. In PODS, pages 307–322, 2018.596

10 Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting Queries using Views with Access597

Patterns under Integrity Constraints. Theor. Comput. Sci., 371(3):200–226, 2007.598

11 Arnaud Durand and Etienne Grandjean. First-order Queries on Structures of Bounded Degree599

are Computable with Constant Delay. ACM Trans. Comput. Logic, 8(4):21, 2007.600

12 Arnaud Durand and Yann Strozecki. Enumeration complexity of logical query problems with601

second-order variables. In CSL, pages 189–202, 2011.602

13 Ronald Fagin, Alberto O. Mendelzon, and Jeffrey D. Ullman. A simplified universal relation603

assumption and its properties. ACM Trans. Database Syst., 7(3):343–360, 1982.604

14 Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query Optimization in the605

Presence of Limited Access Patterns. SIGMOD Rec., 28(2):311–322, 1999.606

15 Wolfgang Gatterbauer and Dan Suciu. Oblivious bounds on the probability of boolean607

functions. ACM Trans. Database Syst., 39(1):5:1–5:34, 2014.608

16 Wolfgang Gatterbauer and Dan Suciu. Dissociation and propagation for approximate lifted609

inference with standard relational database management systems. VLDB J., 26(1):5–30, 2017.610

17 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.611

Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector612

Multiplication Conjecture. In STOC, pages 21–30, 2015.613

18 Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The Dynamic Yannakakis Al-614

gorithm: Compact and Efficient Query Processing Under Updates. In SIGMOD, pages615

1259–1274, 2017.616

19 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Counting triangles617

under updates in worst-case optimal time. In ICDT, pages 4:1–4:18, 2019.618

20 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Maintaining619

triangle queries under updates. ACM Trans. Database Syst., 45(3):11:1–11:46, 2020.620

21 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in Static and Dynamic621

Evaluation of Hierarchical Queries. CoRR, abs/1907.01988, 2019.622

22 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in Static and Dynamic623

Evaluation of Hierarchical Queries. In PODS, pages 375–392, 2020.624

23 Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and Techniques.625

MIT Press, 2009.626

24 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Dynamic set intersection. In WADS, pages627

470–481, 2015.628

25 Chen Li and Edward Chang. On Answering Queries in the Presence of Limited Access Patterns.629

In ICDT, pages 219–233, 2001.630

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:17

26 Alan Nash and Bertram Ludäscher. Processing First-Order Queries under Limited Access631

Patterns. In PODS, pages 307–318, 2004.632

27 Alan Nash and Bertram Ludäscher. Processing Unions of Conjunctive Queries with Negation633

under Limited Access Patterns. In EDBT, pages 422–440, 2004.634

28 Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew Strikes Back: New Developments in the635

Theory of Join Algorithms. SIGMOD Rec., 42(4):5–16, 2013.636

29 Milos Nikolic and Dan Olteanu. Incremental View Maintenance with Triple Lock Factorization637

Benefits. In SIGMOD, pages 365–380, 2018.638

30 Dan Olteanu and Jakub Závodný. Size Bounds for Factorised Representations of Query639

Results. ACM TODS, 40(1):2:1–2:44, 2015.640

31 Ramana Yerneni, Chen Li, Jeffrey Ullman, and Hector Garcia-Molina. Optimizing Large Join641

Queries in Mediation Systems. In ICDT, pages 348–364, 1999.642

A Missing Details in Section 2643

A.1 Example Data Structure Conforming to the Computational Model644

We give an example data structure that conforms to the computational model from Section 2.645

Consider a relation (materialized view) R over schema X . A hash table with chaining stores646

key-value entries (x, R(x)) for each tuple x over X with R(x) ̸= 0. The entries are doubly647

linked to support enumeration with constant delay. The hash table can report the number of648

its entries in constant time and supports lookups, inserts, and deletes in constant time on649

average, under the assumption of simple uniform hashing.650

To support index operations on a schema F ⊂ X , we create another hash table with651

chaining where each table entry stores a tuple t of F-values as key and a doubly-linked list652

of pointers to the entries in R having the F-values t as value. Looking up an index entry653

given t takes constant time on average under simple uniform hashing, and its doubly-linked654

list enables enumeration of the matching entries in R with constant delay. Inserting an index655

entry into the hash table additionally prepends a new pointer to the doubly-linked list for a656

given t; overall, this operation takes constant time on average. For efficient deletion of index657

entries, each entry in R also stores back-pointers to its index entries (one back-pointer per658

index for R). When an entry is deleted from R, locating and deleting its index entries in659

doubly-linked lists takes constant time per index.660

B Missing Details in Section 3661

B.1 Width measures662

Given a conjunctive query Q and F ⊆ vars(Q), a fractional edge cover of F is a solution663

λ = (λR(X))R(X)∈atoms(Q) to the following linear program [2]:664

minimize
∑

R(X)∈ atoms(Q)

λR(X)665

subject to
∑

R(X): X∈X

λR(X) ≥ 1 for all X ∈ F and666

λR(X) ∈ [0, 1] for all R(X) ∈ atoms(Q)667
668

The optimal objective value of the above program is called the fractional edge cover number669

of F in Q and is denoted as ρ∗
Q(F). An integral edge cover of F is a feasible solution to the670

variant of the above program with λR(X) ∈ {0, 1} for each R(X) ∈ atoms(Q). The optimal671

CVIT 2016

23:18 Conjunctive Queries with Free Access Patterns under Updates

objective value of this program is called the integral edge cover number of F , denoted as672

ρQ(F). If Q is clear from the context, we omit the subscript Q in ρ∗
Q(F) and ρQ(F).673

▶ Example 19. We show how to compute the widths for the variable order of the fractured674

4-cycle query in Example 3: For the bag at variable A, we have ρ∗({A} ∪ dep(A)) =675

ρ∗({A, D2, B1}) = 2, which is the largest fractional edge cover number for any variable in676

the variable order. Further access-top variable orders are possible by swapping B1 with D2677

and B2 with D1, yielding the same overall cost. The static width of the fractured 4-cycle678

query is thus 2. To compute the dynamic width of the same variable order, we consider for679

each atom, the fractional edge cover number of each bag without the variables in this atom.680

For the bag {A} ∪ dep(A) = {A, D2, B1}, we get ρ∗({A, D2, B1} \ {A, B1}) = 1 for the atom681

R(A, B1) and ρ∗({A, D2, B1} \ {A, D2}) = 1 for the atom U(A, = D2). Overall, the dynamic682

width of this variable order is 1. □683

For hierarchical queries, the integral and fractional edge cover numbers are the same.684

▶ Lemma 20 (Lemma D.1 in [22]). For any hierarchical query Q and F ⊆ vars(Q), it holds685

ρ∗(F) = ρ(F).686

Prior work defined the static and the dynamic width of conjunctive queries without access687

patterns [22]. It was shown that for any hierarchical conjunctive query with static width w688

and dynamic width δ, it holds δ = w or δ = w − 1 (Proposition 3.7 in [22]). The proof can689

easily be adapted to the width measures of CQAPs. The only change is that we argue over690

access-top variable orders for the fractures of CQAPs instead of free-top variable orders for691

conjunctive queries.692

▶ Proposition 21 (Corollary of Proposition 3.7 in [22]). For any CQAP with hierarchical693

fracture, static width w and dynamic width δ, it holds either δ = w or δ = w − 1.694

C Missing Details in Section 4695

C.1 Proof of Theorem 7696

▶ Theorem 7. Given a CQAP with static width w and dynamic width δ and a database of697

size N , the query can be evaluated with O(Nw) preprocessing time, O(Nδ) update time under698

single-tuple updates, and O(1) enumeration delay.699

Given a CQAP Q with static width w(Q) = w and dynamic width δ(Q) = δ and a700

database of size N , we show that our approach presented in Section 4 evaluates Q with701

O(Nw) preprocessing time, O(Nδ) update time, and O(1) enumeration delay. Consider an702

access-top variable order ω for the fracture Q† with w(ω) = w and δ(ω) = δ. In the following,703

we analyse each of the three stages preprocessing, update, and enumeration.704

Preprocessing705

Without loss of generality, assume that ω consists of a single tree. Otherwise, we do the706

analysis below for each of the constantly many trees in ω. The preprocessing stage consists707

of materialising the view tree T = τ(ω) where τ is the function given in Figure 2. We show708

by induction on the structure of T that every node in T can be materialised in O(Nw) time.709

Base Case: Each leaf atom or indicator projection in T can be materialised in linear time.710

Induction Step: Consider an auxiliary view V ′
X in T for X ∈ vars(ω). By construction,711

this view results from its single child view VX by marginalising out variable X. By induction712

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:19

hypothesis, the view VX can be computed in O(Nw) time, hence its size has the same713

complexity bound. We can compute V ′
X by scanning over the tuples in VX and maintaining714

during the scan the count |σS=sVX | for each tuple s in πSVX . This can be done in O(Nw)715

overall time.716

Consider now a view VX(S) in T with X ∈ vars(ω) and S = {X} ∪ depω(X). Let717

V1(S1), . . . , Vk(Sk) be the child nodes of VX . Each child node can be a view, an atom, or an718

indicator projection. By induction hypothesis, the child nodes of VX can be materialised719

in O(Nw) time. Consider any variable Y that occurs in the schemas of at least two child720

nodes of VX . This means that Y ∈ S = {X} ∪ depω(X). Hence, any variable that does721

not occur in S cannot be a join variable for the child views of VX . We first marginalise722

out the variables in the child views that do not occur in S. This can be done in O(Nw)723

time. Let V ′
1(S ′

1), . . . , V ′
k(S ′

k) be the resulting views. The view VX can now be rewritten as724

VX(S) = V ′
1(S ′

1), . . . , V ′
k(S ′

k). Since the views V ′
1 , . . . , V ′

k result from joining the leaf atoms725

(and indicator projections) in ωX , we can upper-bound the computation time for VX by726

O(Np) where p = ρ∗
QX

(S) [28]. Recall that QX is the query that joins all atoms and indicator727

projections in ωX . It follows from the definition of w that p is upper-bounded by w. We728

conclude that the view VX can be computed in O(Nw) time.729

Enumeration730

Assume that I and O are the input and respectively output variables of Q and let I† be the731

input variables of Q†. We show that for any input tuple i over I, the tuples in Q(O|i) can732

be enumerated with constant delay using the view trees constructed in the preprocessing733

stage. Let ω1, . . . , ωn be the trees in ω and τ(ω1) = T1, . . . , τ(ωn) = Tn the view trees734

constructed from the variable order ω. For j ∈ [n], let Qj(Oj |Ij) with Oj = O ∩ vars(ωj)735

and Ij = I† ∩ vars(ωj) be the CQAP that joins the atoms appearing at the leaves of Tj . We736

first explain how for any j ∈ [n] and ij over Ij , the tuples in Qj(Oj |ij) can be enumerated737

with constant delay using the view tree Tj . Since the view tree is constructed following an738

access-top variable order, it holds that all views VX where X is free (input) are above the739

views VY where Y is bound (output). To construct the first output tuple in Qj(Oj |ij), we740

traverse Tj in preorder and do the following at each view VX , where X is free. If X ∈ Ij ,741

i.e., it is an input variable, we check if the projection of ij onto the schema of VX is included742

in VX . If not, Qi(Oj |ij) is empty and we stop the traversal. Otherwise, we continue with743

the traversal. When we arrive at a view VX with X ∈ Oj , we have already fixed a tuple744

t over the variables in the root path of X. We retrieve in constant time the first value in745

σS=t′πXVX , where S is the schema of VX excluding X and t′ = t[S]. After all views VX746

with free X are visited, we have fixed all values over the variables in Oi, hence we report the747

tuple consisting of these values. Then, we iterate over the remaining distinct Y -values in the748

last visited view VY with constant delay (given that the values over the root path of Y are749

fixed). For each distinct Y -value, we obtain a new tuple that we report. After all Y -values750

are exhausted, we backtrack.751

Assume that we can enumerate the tuples in Qj(Oj |ij) with constant delay for any752

j ∈ [n] and tuple ij over Ij . Consider a tuple i over I. It holds Q(O|i) = ×j∈[n]Qj(Oj |ij)753

where ij [X ′] = i[X] if X = X ′ or X is replaced by X ′ when constructing the fracture754

of Q. We enumerate the tuples in Q(O|i) by interleaving the enumeration procedures for755

Q1(O1|i1), . . . , Qn(On|in), as follows.756

CVIT 2016

23:20 Conjunctive Queries with Free Access Patterns under Updates

1 foreach o1 ∈ Q1(O1|i1)
2 ···
3 foreach on ∈ Qn(On|in)
4 report o1···on

757

That is, we first retrieve the first complete tuple oj from Qj(Oj |ij) for each j ∈ [n] and758

report o1 · · · on. Then, we iterate over the remaining tuples in Qn(On|in). For each such759

tuple o′
n, we report o1 · · · o′

n. After all tuples in Qn(On|in) are exhausted, we move to the760

next tuple in Qn−1(On−1|in−1) and restart the enumeration for Qn(On|in), and so on.761

We conclude that the time to report the first tuple in Q(O|i), the time to report a next762

tuple after the previous one is reported, and the time to signalise the end of the enumeration763

after the last tuple is reported is constant.764

Updates765

We show that the view trees constructed in the preprocessing stage can be updated in O(Nδ)766

time under single-tuple updates to the base relations. Consider a single-tuple update to767

a base relation R. We first update each view tree referring to an atom of the form R(X).768

Updating a view tree amounts to computing the deltas of the views on the path from R(X)769

to the root of the view tree. We have shown above that for each variable X, the views770

VX and V ′
X can be materialised in O(Np) time where p = ρ∗

QX
({X} ∪ depω(X)). Since the771

update fixes the values in X , the time to compute the delta of these views under the update772

becomes O(Nd) where d = ρ∗
QX

(({X} ∪ depω(X)) \ X). A single-tuple update to R can773

trigger a single-tuple update to each indicator view of the form IZ(R(Z)). Analogously to774

the reasoning above, we conclude that the time to compute the deltas of the views under775

such updates is O(Nd) where d = ρ∗
QX

(({X} ∪ depω(X)) \ Z). It follows from the definition776

of the dynamic width δ of ω, that in both cases the exponent d is upper-bounded by δ. This777

implies that the overall update time is O(Nδ).778

C.2 Evaluation of Cyclic CQAPs779

▶ Example 22. We show in this example that the indicator projections can reduce the780

update time for a query no matter which VO is chosen as the strategy for the dynamic781

evaluation. Consider the following query:782

Q(A, B, C, D, E, F, G, H, J | ·) =R1(A, B), R2(B, C), R3(C, A), R4(A, D), R5(D, E),783

R6(B, F), R7(F, G), R8(C, H), R9(H, J)784
785

It is a triangle query with three tails. Its fracture is same as the query itself. Figure 7 shows786

the hypergraph (top-left) of the query and three access-top VOs of the query. They are the787

optimal VOs that are rooted at variables A, D and E. That is, other VOs rooted at the788

corresponding variable do not admit smaller static and dynamic widths. Since the query is789

symmetric, the optimal VOs rooted at other variables are analogous to these three VOs.790

Consider the VO in the top right of Figure 7. The indicator projection IA,BR1 is created791

under variable C to reduce the dynamic width of the query: The induced query QC at C792

contains the variables {C} ∪ dep(C) = {A, B, C}. The dynamic width of the subtree ωC793

rooted at C is defined as the fractional edge cover number of these variables minus the794

schema of an atom below C. If we choose the atom to be R9(H, J), the remaining variables795

are still {A, B, C}. With the indicator projection IA,BR1, the fractional edge cover number796

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:21

A

B C

D

E

F

G

H

J

R1 R2

R3

R4

R5

R6

R7

R8

R9

dep(A) = ∅
dep(B) = {A}

dep(C) = {A, B}
dep(D) = {A}
dep(E) = {D}
dep(F) = {B}
dep(G) = {F }
dep(H) = {C}
dep(J) = {H}

A

B

C

D

E

F

GH

J

R1(A, B)

R2(B, C)R3(C, A)
IA,BR1(A, B)

R4(A, D)

R5(D, E)

R6(B, F)

R7(F, G)
R8(C, H)

R9(H, J)

D

A

B

C

E

F

GH

J

R1(A, B)

R2(B, C)R3(C, A)
IA,BR1(A, B)

R4(A, D) R5(D, E)

R6(B, F)

R7(F, G)R8(C, H)

R9(H, J)

E

D

A

B

C F

GH

J

R1(A, B)

R2(B, C)R3(C, A)
IA,BR1(A, B)

R4(A, D)

R5(D, E)

R6(B, F)

R7(F, G)R8(C, H)

R9(H, J)

Figure 7 Top left: The hypergraph of the query Q in Example 22. Remaining three: the optimal
access-top VOs of the query Q with the roots A, D and E, respectively. All other access-top VOs
are analogous to these three VOs. The dependent sets of the two VOs in the second row are omitted.

is ρ∗(A, B, C) = 3
2 (by assigning a weight of 1

2 to each atom IA,BR1, R3 and R2). Without797

IA,BR1, the fractional edge cover number is ρ∗(A, B, C) = 2. Hence, the indicator projection798

IA,BR1 reduces the dynamic width of ωC from 2 to 3
2 . Since ωC is the only subtree that has799

a dynamic width greater than 1, the dynamic width of the query Q is 3
2 .800

The two VOs in the second row of Figure 7 are similar to the aforementioned VO: all801

have the variables A, B, and C in one root-to-leaf path, followed by the atom R9, which has802

no intersection with A, B, and C. The indicator projection IA,BR1 created under variable C803

reduces the dynamic width from 2 to 3
2 in the same way. Hence, the indicator projections804

can reduce the dynamic width, and thus the update time of the query Q for all VOs. ◀805

▶ Example 23. Consider the triangle CQAP query

Q(B, C|A) = R(A, B), S(B, C), T (C, A).

The fracture Q† of Q is the query itself.806

Figure 8 shows the access-top VO ω for Q. The input variable A is on top of the807

output variables B and C. At variable C, the function indicators from Figure 1 creates808

an indicator projection IA,BR since the relation R is not under C but forms a cycle with809

the relations S and T . By adding IA,BR below C, the fractional edge cover number810

ρ∗({C} ∪ dep(C)) = ρ∗({A, B, C}) of the query QC reduces from 2 to 3
2 . This fractional811

edge cover number is the largest one among the fractional edge cover numbers of the queries812

induced by other variables, thus the static width of the VO ω is 3
2 .813

CVIT 2016

23:22 Conjunctive Queries with Free Access Patterns under Updates

dep(A) = ∅
dep(B) = {A}

dep(C) = {A, B}

A

B

C

S(B, C) T (C, A)

R(A, B)

IA,BR(A, B)

VA(A)

VB(A, B)

V ′
C(A, B)

VC(A, B, C)

S(B, C) T (C, A)

R(A, B)

IA,BR(A, B)

δVA(a)

δVB(a, b)

V ′
C(a, b)

VC(A, B, C)

S(B, C) T (C, A)

δR(a, b)

IA,BR(A, B)

δVA(a)

δVB(a, b)

δV ′
C(a, b)

δVC(a, b, C)

S(b, C) T (C, a)

R(a, b)

δIA,BR(a, b)

Figure 8 From left to right: Access-top VO for the query Q(B, C|A) = R(A, B), S(B, C), T (C, A);
the view tree constructed from the VO; the two delta view trees under a single-tuple update to R.

In the preprocessing stage, we construct the view tree following the VO as shown in814

Figure 8 (second from left). The view VC joins the relations R and S and the indicator815

projection IA,BR, which can be computed in O(N 3
2) time using a worst-case optimal join816

algorithm. The view VB can be computed in linear time by looking up each tuple from V ′
C in817

R. The views V ′
C and VA are constructed by marginalising out one variable at a time in time818

O(N 3
2) and O(N) time, respectively. Hence, the view tree construction takes O(N 3

2) time.819

In the enumeration stage, we need to answer the query Q(B, C|a), i.e., enumerate the820

tuples over the output variables B and C for an input value a over A from the view tree. We821

first check if a is in the root view VA. If yes, we keep retrieving the next B-value b paired with822

a in VB , and then the next C-value c paired with a and b in VC , until all values are retrieved.823

Each combination of the B- and C-values forms a new output tuple of Q(B, C|a). These824

operations can be done in constant time per our data model (Section 2), so the enumeration825

delay is constant.826

In the update stage, consider a single-tuple update δR = {(a, b) → m} to R, the base827

relation R and the indicator projection IA,BR are affected by the update. We compute two828

delta view trees shown on the right in Figure 8 for changes in R and respectively IA,BR.829

In the delta view tree for changes to R (the left one), computing the delta δVB(a, b) =830

V ′
C(a, b), δR(a, b) requires a constant lookup in V ′

C ; computing δVA(a) = δVB(a, b) takes831

constant time. In the delta view tree for changes to IA,BR (the right one), computing the delta832

δVC(a, b, C) = S(b, C), T (C, a), δIA,BR(a, b) requires intersecting the C-values that are paired833

with b in S and with a in T , which takes O(N) time; computing δV ′
C(a, b) = δVC(a, b, C)834

requires aggregating away O(N) C-values; computing δVB and δVA takes constant time.835

Overall, a single-tuple update to R takes O(N) time. The delta view trees for changes to S836

and T are analogous. Hence, the update time of the query Q is O(N). ◀837

D Missing Details in Section 5838

D.1 Proof of Theorem 12839

▶ Theorem 12. Let any CQAP query Q and database of size N .840

If Q is in CQAP0, then it admits O(N) preprocessing time, O(1) enumeration delay, and841

O(1) update time for single-tuple updates.842

If Q is not in CQAP0 and has no repeating relation symbols, then there is no algorithm843

that computes Q with arbitrary preprocessing time, O(N 1
2 −γ) enumeration delay, and844

O(N 1
2 −γ) amortised update time, for any γ > 0, unless the OMv conjecture fails.845

We start with an auxiliary lemma and a proposition.846

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:23

▶ Lemma 24. If a CQAP Q can be evaluated with O(fp(N)) preprocessing time, O(fe(N))847

enumeration delay, and O(fu(N)) amortised update time, then its fracture Q† can be evaluated848

with the same asymptotic complexities, where N is the database size.849

Proof. Consider a CQAP Q(O|I), its fracture Q†(O|I†), and a database D for Q† of size N .850

We call a fresh variable A in Q† that replaces a variable A′ in Q a representative of A. Let851

C1, . . . , Cn be the sets of database relations that correspond to the connected components of852

Q†. We construct from D the databases D1, . . . , Dn, where each Di is constructed as follows.853

The database Di contains each relation in D such that: (1) If R ∈ Ci and R has a variable A854

in its schema that is a representative of a variable A′, the variable A is replaced by A′; (2) the855

values in all relations not contained in Ci are replaced by a single dummy value di. The overall856

size of the databases is O(N). Given an input tuple t over I, we denote by (Q(O|t), Di) the857

result of Q for input t evaluated on Di. The result consists of the tuples over the output858

variables in Ci for the given input tuple t, paired with the dummy value di over the output859

variables not in Ci. Intuitively, the result of Q† on D can be obtained from the Cartesian860

product of the results of Q on D1, . . . , Dn. To be more precise, consider a tuple t† over I†.861

We define for each i ∈ [n], a tuple ti over I such that ti[A] = t†[A′] if A′ is a representative862

of A. The result of Q†(O|t†) on D is equal to the Cartesian product ×i∈[n]πOi
(Q(O|i), Di),863

where Oi is the set of output variables of Q contained in Ci. Now, assume that we want864

to enumerate the result of (Q†(O|t†), D). We start the enumeration procedure for each865

Q(O|i), Di) with i ∈ [n]. For each t′
1 ∈ Q(O|t1), D1), . . . , t′

n ∈ Q(O|tn), Dn), we return the866

tuple πO1t′
1 ◦ . . . ◦ πOnt′

n. This implies that the result of (Q†(O|t†), D) can be enumerated867

with O(fe(N)) delay if Q admits O(fe(N)) enumeration delay.868

We execute the preprocessing procedure for Q on each of the databases D1, . . . , Dn which
takes O(fp(N)) overall time. Consider an update {t 7→ m} to a relation R that is contained
in the connected component Ci for some i ∈ [n]. We apply the update {tI 7→ m} to relation
R in Di, where tI is the tuple over I defined as:

tI [A] =
{

t[A′] if A′ is a representative of A

t[A] otherwise

The update takes O(fu(N)) amortised update time.869

Overall, we obtain an evaluation procedure for Q† with O(fp(N)) preprocessing time,870

O(fe(N)) enumeration delay, and O(fu(N)) amortised update time. ◀871

▶ Proposition 25. Every CQAP0 query has dynamic width 0 and static width 1.872

Proof. Consider a CQAP0 query Q and its fracture Q†. We first show that the dynamic873

width of Q is 0. By definition, Q† is hierarchical, free-dominant, and input-dominant.874

Hierarchical queries admit canonical VOs. In canonical VOs, it holds: If a variable A875

dominates a variable B, then, A is on top of B. Hence, Q† admits a canonical VO that876

is access-top. Consider a variable X in ω and an atom R(Y) in the subtree ωX rooted at877

X. By the definition of canonical VOs, it holds: the dependency set of X consists of the878

ancestor variables of X; Y contains X and all ancestor variables of X. Hence, we have879

ρ∗
QX

(({X} ∪ depω(X)) \ Y) = ρ∗
QX

(({X} ∪ ancω(X)) \ Y) = ρ∗
QX

(∅) = 0. This implies that880

the dynamic width of ω is 0. This means that the dynamic width of Q†, hence, the dynamic881

width of Q is 0.882

It follows from Proposition 21 that the static width of Q is 11. ◀883

1 To simplify the presentation, we assume that Q contains at least one variable, so it has static width at

CVIT 2016

23:24 Conjunctive Queries with Free Access Patterns under Updates

We are ready to prove Theorem 12.884

Complexity Upper Bound885

We prove the first statement in Theorem 12. Assume that Q is in CQAP0. By Proposition 25,886

Q has dynamic width 0. By definition of CQAP0, the fracture Q† of Q must be hierarchical.887

It follows from Proposition 21 that the static width of Q†, hence the static width of Q, is at888

most 1. Using Theorem 7, we conclude that Q can be evaluated with O(N) preprocessing889

time, O(1) update time, and O(1) enumeration delay.890

Complexity Lower Bound891

We prove the second statement in Theorem 12. The proof is based on a reduction of the892

Online Matrix-Vector Multiplication (OMv) problem (Definition 13) to the evaluation of893

non-CQAP0 queries.894

We start with the high-level idea of the proof. Consider the following simple CQAPs,895

which are not in CQAP0.896

Q1(O|·) =R(A), S(A, B), T (B) O ⊆ {A, B}897

Q2(A|·) =R(A, B), S(B)898

Q3(·|A) =R(A, B), S(B)899

Q4(B|A) =R(A, B), S(B)900
901

Each query is equal to its fracture. Query Q1 is not hierarchical; Q2 is not free-dominant;902

Q3 and Q4 are not input-dominant. It is known that queries that are not hierarchical or903

free-dominant do not admit constant update time and enumeration delay, unless the OMv904

conjecture fails [6]. We show that the OMv problem can also be reduced to the evaluation of905

each of the queries Q3 and Q4. Our reduction implies that any algorithm that evaluates the906

queries Q3 or Q4 with arbitrary preprocessing time, O(N 1
2 −γ) update time, and O(N 1

2 −γ)907

enumeration delay for any γ > 0 can be used to solve the OMv problem in subcubic time,908

which rejects the OMv conjecture. We then show that the evaluation of one of the queries909

Q1 to Q4 can be reduced to the evaluation of any CQAP query that is not in CQAP0 and910

does not have repeating relation symbols.911

In each of the following two reductions, our starting assumption is that there is an912

algorithm A that evaluates the given query with arbitrary preprocessing time, O(N 1
2 −γ)913

amortised update time, and O(N 1
2 −γ) enumeration delay for some γ > 0. We then show914

that A can be used to design an algorithm B that solves the OMv problem in subcubic time.915

Hardness for Q3916

Given n ≥ 1, let M, v1, . . . , vn be an input to the OMv problem, where M is an n × n917

Boolean Matrix and v1, . . . , vn are Boolean column vectors of size n. Algorithm B uses918

relation R to encode matrix M and relation S to encode the incoming vectors v1, . . . , vn.919

The database domain is [n]. First, algorithm B executes the preprocessing stage on the empty920

database. Since the database is empty, the preprocessing stage must end after constant921

time. Then, it executes at most n2 updates to relation R such that R(i, j) = 1 if and only if922

least 1. Otherwise, it can trivially be evaluated with constant preprocessing time, update time, and
enumeration delay.

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:25

M(i, j) = 1. Afterwards, it performs a round of operations for each incoming vector vr with923

r ∈ [n]. In the first part of each round, it executes at most n updates to relation S such that924

S(j) = 1 if and only if vr(j) = 1. Observe that Q3(·|i) is true for some i ∈ [n] if and only if925

(Mvr)(i) = 1. Algorithm B constructs the result vector ur = Mvr as follows. It asks for926

each i ∈ [n], whether Q3(·|i) is true, i.e., i is in the result of Q3. If yes, the i-th entry of the927

result of ur is set to 1, otherwise, it is set to 0.928

Time Analysis. The size of the database remains O(n2) during the whole procedure.929

Algorithm B needs at most n2 updates to encode M by relation R. Hence, the time to930

execute these updates is O(n2(n2) 1
2 −γ) = O(n3−2γ). In each round r with r ∈ [n], algorithm931

B executes n updates to encode vector vr into relation S and asks for the result of Q3(·|i)932

for every i ∈ [n]. The n updates and requests need O(n(n2) 1
2 −γ) = O(n2−2γ) time. Hence,933

the overall time for a single round is O(n2−2γ). Consequently, the time for n rounds is934

O(nn2−2γ) = O(n3−2γ). This means that the overall time of the reduction is O(n3−2γ) in935

worst-case, which is subcubic.936

Hardness for Q4937

The reduction differs slightly from the case for Q3 in the way algorithm B constructs the938

result vector ur = Mvr in each round r. For each i ∈ [n], it starts the enumeration process939

for Q4(B|i). If one tuple is returned, it stops the enumeration process and sets the i-th entry940

of ur to be 1. If no tuple is returned, the i-th entry is set to 0. Thus, the time to decide941

the i-th entry of the result of ur is the same as in case of Q3. Hence, the overall time of the942

reduction stays subcubic.943

Hardness in the General Case944

Consider now an arbitrary CQAP query Q that is not in CQAP0 and does not have repeating945

relation symbols. Since Q is not in CQAP0, this means that its fracture Q† is either not946

hierarchical, not free-dominant, or not input-dominant. If Q† is not hierarchical or it is not947

free-dominant and all free variables are output, it follows from prior work that there is no948

algorithm that evaluates Q† with O(N 1
2 −γ) enumeration delay, and O(N 1

2 −γ) amortised949

update time for any γ > 0, unless the OMv conjecture fails [6]. By Lemma 24, no such950

algorithm can exist for Q. Hence, we assume that Q† is hierarchical and consider two cases:951

(1) Q† is not free-dominant and all free variables are input952

(2) Q† is free-dominant but not input-dominant953

Case (1). The query must contain an input variable A and a bound variable B such954

that atoms(A) ⊂ atoms(B). This mean that there are two atoms R(X) and S(Y) with955

Y ∩ {A, B} = {B} and A, B ∈ X . Assume that there is an algorithm A that evaluates Q†956

with arbitrary preprocessing time, O(N 1
2 −γ) enumeration delay, and O(N 1

2 −γ) amortised957

update time for some γ > 0. We will design an algorithm B that evaluates Q3 with the same958

complexities. This rejects the OMv conjecture. Hence, by Lemma 24, Q cannot be evaluated959

with these complexities, unless the OMv conjecture fails.960

We define R(A,B) to be the set of atoms that contain both A and B in their schemas961

and S(¬A,B) to be the set of atoms that contain B but not A. Note that there cannot be962

any atom containing A but not B, since this would imply that the query is not hierarchical,963

contradicting our assumption. We use each atom R′(X ′) ∈ R(A,B) to encode atom R(A, B)964

and each atom S′(Y ′) ∈ S(¬A,B) to encode atom S(B) in Q3. Consider a database D of965

size N for Q3 and a dummy value d that is not included in the domain of D. We write966

CVIT 2016

23:26 Conjunctive Queries with Free Access Patterns under Updates

(S, A = a, B = b, d) to denote a tuple over schema S that assigns the values a and b to the967

variables A and respectively B and all other variables in S to d. Likewise, (S, B = b, d)968

denotes a tuple that assigns value b to B and all other variables in S to d. Algorithm B first969

constructs from D a database D′ for Q† as follows. For each tuple (a, b) in relation R and each970

atom R′(X ′) in RA,B , it assigns the tuple (X ′, A = a, B = b, d) to relation R′. Likewise, for971

each value b in relation S and each atom S′(Y ′) in S(¬A,B), it assigns the tuple (Y ′, B = b, d)972

to relation S′. The size of D′ is linear in N . Then, algorithm B executes the preprocessing973

for Q† on D′. Each single-tuple update {(a, b) 7→ m} to relation R is translated to a sequence974

of single-tuple updates {(X ′, A = a, B = b, d) 7→ m} to all relations referred to by atoms in975

R(A,B). Analogously, updates {b 7→ m} to S are translated to updates {(S ′, B = b, d) 7→ m}976

to all relations S ′ with S ′(Y ′) ∈ S(¬A,B). Hence, the amortised update time is O(N0.5−γ).977

Each input tuple (a) for Q3 is translated into an input tuple (I†, A = a, d) for Q† where I†978

is the set of input variables for Q†. Recall that all free variables of Q† are input. The answer979

of Q3(·|a) is true if and only if the answer of Q†(·|(I†, A = a, d)) is true. The answer time is980

O(N0.5−γ). We conclude that Q3 can be evaluated with O(N0.5−γ) enumeration delay and981

O(N0.5−γ) amortised update time, a contradiction due to the OMv conjecture.982

Case (2). We now consider the case that the query Q† is free-dominant but not input-983

dominant. In this case, the we reduce the evaluation of Q4 to the evaluation of Q†. The984

reduction is analogous to Case (1). The way we encode the atoms R(A, B) and S(B), do985

preprocessing, and translate the updates is exactly the same as in Case (1). The only986

difference is the way we retrieve the B-values in Q4(B|a) for an input value a. We translate a987

into an input tuple to Q† where all input variables besides A are assigned to d. Recall that Q†988

might have several output variables besides B. By construction, they can be assigned only to989

d. Hence, all output tuples returned by Q† have distinct B-values. These B-values constitute990

the result of Q4(B|a). We conclude that Q4 can be evaluated with O(N0.5−γ) enumeration991

delay and O(N0.5−γ) amortised update time, which contradicts the OMv conjecture.992

E Missing Details in Section 6993

E.1 Comparison with Prior Approaches994

We compare our adaptive maintenance strategy with typical eager and lazy approaches.995

▶ Example 26. Let us consider the 4-cycle query from Example 2:

Q(A, C | B, D) = R(A, B), S(B, C), T (C, D), U(A, D).

Assuming all four relations have size N , the result of the 4-cycle join has size and can be996

computed in time O(N2).997

We can recover the complexities for typical eager and lazy approaches using our approach998

by setting ϵ = 1 and respectively ϵ = 0 (except for preprocessing in the lazy approach):999

Approach Preprocessing Update Delay
Eager O(N2) O(N) O(1)
Lazy O(1) O(1) O(N)
Ours O(N1+ϵ) O(N ϵ) O(N1−ϵ)

1000

The eager approach precomputes the initial output. On a single-tuple update, it eagerly1001

computes the delta query obtained by fixing the variables of one relation to constants; this1002

delta query can be done in linear time. It can then enumerate the pairs of values over {A, C}1003

for any input pair of values over {B, D} with constant delay.1004

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:27

The lazy approach has no precomputation and only updates each relation, without1005

propagating the changes to the query output. For enumeration, it first needs to calibrate1006

the relations in the residual query Q(A, C) = R(A, b), S(b, C), T (C, d), U(A, d) under a given1007

pair of values (b, d). This takes linear time. After that, it can enumerate the pairs of values1008

over {A, C} with constant delay.1009

Consider now a sequence of m updates, each followed by one access request to enumerate1010

k out of the maximum possible O(N2) pairs of values. This sequence takes time (excluding1011

preprocessing) O(m(N + k)) in the eager and lazy approaches and O(m(N ϵ + kN1−ϵ)) in1012

our general approach. Depending on the values of m and k, we can tune our approach to1013

minimise its complexity. For 1 ≤ k < N and any m, our approach has consistently lower1014

complexity than the lazy/eager approaches, while for k ≥ N and any m it matches that of1015

the lazy/eager approaches. The complexity of processing the sequence of updates and access1016

requests is shown in the next table for various values of m and k (only the exponents are1017

shown by taking logN of the complexities):1018

logN k

0 0.5 1 1.5 2 0 0.5

logN m

0 0.5 0.75 1 1.5 2 1 1
0.5 1 1.25 1.5 2 2.5 1.5 1.5
1 1.5 1.75 2 2.5 3 2 2
ϵ 0.5 0.75 1 1 1

1019

The middle five columns show the complexities for our general approach for various values of1020

k. The last row states the value of ϵ, for which the complexities in the same columns are1021

obtained. The rightmost two columns show the complexities for the lazy/eager approaches1022

for logN k ∈ {0, 0.5} only. They are all higher than for our approach: Regardless of m, the1023

complexity gap is O(N0.5) for logN k = 0 (with ϵ = 0.5) and O(N0.25) for logN k = 0.5 (with1024

ϵ = 0.75). For logN k ≥ 1, our approach defaults to the eager approach and achieves the1025

lowest complexities for ϵ = 1. □1026

E.2 Further Notation1027

We introduce some notation that will be useful in the following sections. Given a query and1028

a variable X, we denote by vars(atoms(X)), free(atoms(X)), and in(atoms(X)), the sets of1029

all, free and respectively input variables contained in atoms(X). For a VO ω, bound(ω) and1030

out(ω) are the sets of bound and respectively output variables in ω. Given a VO ω and a1031

tuple p = (X1, . . . , Xk) of variables, we denote by (p ◦ ω) the VO defined as follows: X1 is1032

the root, Xi+1 is the single child of Xi for i ∈ [k − 1], and ω is the single child tree of Xk.1033

Consider the canonical VO ω of a hierarchical CQAP and the subtree ωX of ω rooted at1034

a variable X. The induced query QX(OX |IX) is defined over the join of the atoms at the1035

leaves of ωX . The set IX consists of the input variables in ωX and the variables on the path1036

from X to a root of ω. The set OX consists of the output variables in ωX .1037

E.3 Preprocessing1038

Our query evaluation technique consists of three distinct, yet interdependent stages: prepro-1039

cessing, updates and enumeration. This section addresses preprocessing, with the following1040

two sections addressing updates and enumeration. Whenever we refer to the query in the1041

three stages, we mean the hierarchical fracture of the input CQAP.1042

CVIT 2016

23:28 Conjunctive Queries with Free Access Patterns under Updates

AccessTop(VO ω, access pattern (O|I)) : VO

switch ω:

R(Y) 1 return R(Y)

X

ω1 . . . ωk

2 let ω′
i = AccessTop(ωi, (O|I)), ∀i ∈ [k]

3 let D =


∅ if X ∈ I
vars(ω) ∩ I, else if X ∈ O
vars(ω) ∩ (I ∪ O) otherwise

4 let {ω̂i
1, . . . , ω̂i

mi
} = ∆(ω′

i, D), ∀i ∈ [k]
5 let (X1, ..., Xℓ) = D ∩ I ++ D ∩ O be an ordering

that is compatible with the partial order of ω

6 return

X1···
Xℓ

X

ω̂1
1 . . . ω̂1

m1
. . . ω̂k

1
. . . ω̂k

mk

Figure 9 Construction of an access-top VO from a canonical VO ω of a hierarchical CQAP with
access pattern (O|I). The function ∆(ω′, D), defined in Figure 10, deletes the variables in D from
the VO ω′.

For preprocessing, we construct a succinct data structure that represents the result1043

of the query over both the input and output variables using a set of materialized view1044

trees. Each view tree, which is modelled on a specific VO, represents a part of the result.1045

This construction exploits the structure of the query and the degree of data values in base1046

relations. We proceed in two steps. First, we construct a set of VOs corresponding to1047

evaluation strategies for different parts of the query result. Each such VO is constructed1048

from the canonical VO of the query by turning some of its subtrees into access-top VOs.1049

Second, we construct from each VO a view tree. We obtain a view tree from a variable order1050

by replacing each variable X by a view over X and its dependency set.1051

We describe the preprocessing stage in the following three subsections. In Section E.3.11052

we give a function that turns canonical VOs into optimal access-top ones. In Section E.3.21053

we explain how to obtain different VOs from the canonical VO of the hierarchical query by1054

using the above function. In Section E.3.3 we describe the construction of view trees from1055

VOs. To simplify the presentation, we assume in the following that the VO of the considered1056

hierarchical query contains of a single tree. Otherwise, we apply the preprocessing stage to1057

each tree in the VO.1058

E.3.1 From Canonical to Access-Top VOs1059

Given a canonical VO ω of a hierarchical CQAP Q with input variables I and output1060

variables O, the function AccessTop(ω, (O|I)) in Figure 9 returns an access-top VO for Q1061

with optimal static and dynamic width. The function proceeds recursively on the structure1062

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:29

∆(VO ω, variables D) : set of VOs

switch ω:

R(Y) 1 return {R(Y)}

X

ω1 . . . ωk

2 let {ωi
1, ..., ωi

mi
} = ∆(ωi, D), ∀i ∈ [k]

3 if X /∈ D

4 return


X

ω1
1 . . . ω1

m1
. . . ωk

1
. . . ωk

mk


5 else if X has parent Y

6 return


Y

ω1
1 . . . ω1

m1
. . . ωk

1
. . . ωk

mk


7 else return

{
ω1

1 , ..., ω1
m1

, ..., ωk
1 , ..., ωk

mk

}
Figure 10 Deletion of a set D of variables from a VO ω. If X ∈ D and X has a parent Y , the

child trees of X are appended to Y . If X ∈ D and X has no parent, the child trees of X become
independent.

A

B E

C D
T (A, E)

R(A, B, C) S(A, B, D)

A1 A2

B E

C D
T (A2, E)

R(A1, B, C) S(A1, B, D)

A1 A2

B E

C D
T (A2, E)

R(A1, B, C) S(A1, B, D)

Figure 11 Left and middle: Hypergraphs of the query (left) and its fracture on input variable
A (middle two) used in Example 27. Right two: The access-top VOs returned by AccessTop in
Figure 9, which are the same as the canonical VOs.

of ω. At a variable X, the function selects a set D of variables from the subtree ω′ rooted1063

at X based on the type of X: 1) if X is an input variable, the function sets D = ∅; 2) if X1064

is an output variable, the function defines D to be the input variables in ω′, and 3) if X is1065

bound, the function sets D to be the free variables in ω′ (Line 3). The function then takes1066

out D from ω′ and puts them on top of X (Lines 4-6). Line 5 makes sure the input variables1067

are put on top of the output variables.1068

The deletion of a set D of variables from a VO ω is implemented by the function ∆(ω, ∆)1069

in Figure 10. The function traverses recursively over all variables in ω. If a variable X is not1070

included in D, the function does not change the structure of ω (Lines 3-4). In case X ∈ D1071

and X has a parent Y , it appends the child trees of X to the variable Y (Lines 5-6). If1072

X ∈ D and X has no parent, the child trees of X become independent (Line 7).1073

▶ Example 27. Figure 11 (left and middle) shows the hypergraphs of the query

Q(B, C, D, E | A) = R(A, B, C), S(A, B, D), T (A, E)

CVIT 2016

23:30 Conjunctive Queries with Free Access Patterns under Updates

A

B E

C D
T (A, E)

R(A, B, C) S(A, B, D)

A

B

C D

R(A, B, C) S(A, B, D)

E

T (A, E)

E

C

D

A

B

R(A, B, C) S(A, B, D)

T (A, E)

Figure 12 Left: Hypergraph of the query and its fracture used in Example 28. Middle: The
canonical VO of the query. Right: The access-top VO returned by AccessTop in Figure 9.

and of its fracture

Q†(B, C, D, E | A1, A2) = R(A1, B, C), S(A1, B, D), T (A2, E).

The fracture is hierarchical, free-dominant and input-dominant. Hence, Q and Q† are in1074

CQAP0. Figure 11 (right) depicts the access-top VOs for the queries whose bodies are the1075

two connected components of the hypergraph of Q†, i.e., Q1(B, C, D|A1) = R(A1, B, C),1076

S(A1, B, D) and Q2(E|A2) = T (A2, E). They are the canonical VOs of the two queries. ◀1077

▶ Example 28. Consider the query

Q(C, D | E) = R(A, B, C), S(A, B, D), T (A, E).

Figure 12 (left) shows the hypergraphs of the query. Its fracture is the query itself, which1078

is hierarchical but not free-dominant. Figure 12 (middle) depicts the canonical VO of the1079

query. Figure 12 (right) depicts the access-top VO for the query. The free variables C, D1080

and E sit on top of the bound variables A and B. The input variable E sits on top of the1081

output variables C and D. ◀1082

The function AccessTop in Figure 9 turns canonical VOs into optimal VOs.1083

▶ Proposition 29. Given a CQAP Q, whose fracture Q†(O|I) is hierarchical, and a canonical1084

VO ω for Q, AccessTop(ω, (I|O)) constructs an access-top VO for Q† with static width1085

w(Q) and dynamic width δ(Q).1086

Before proving Proposition 29, we introduce some useful notation. Let ω be a canonical1087

VO of a hierarchical CQAP. Let F , I, and O be the free, input, and respectively output1088

variables of the query, and X a variable in ω. The following measures ξ and κ express the1089

static and the dynamic width of ωX without referring to access-top VOs.1090

ξ(ωX , I, O) = max
Y ∈bound(ωX)

Z∈out(ωX)

{ρ∗
QX

(vars(ωY) ∩ F), ρ∗
QX

(vars(ωZ) ∩ I)}1091

1092
1093

κ(ωX , I, O) = max
Y ∈bound(ωX)

Z∈out(ωX)

max
R(Y)∈atoms(ωY)

1094

{ρ∗
QX

((vars(ωY) ∩ F) \ Y), ρ∗
QX

((vars(ωZ) ∩ I) \ Y)}1095
1096

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:31

In case ωX does not contain any bound or output variable, we have ξ(ωX , I, O) =1097

κ(ωX , I, O) = 0.1098

The next lemma expresses the static and dynamic width of the variable orders returned1099

by the function AccessTop in terms of the measures ξ and κ.1100

▶ Lemma 30. Given a canonical VO ω of a hierarchical CQAP Q(O|I), a variable X in ω,1101

and the induced query QX at variable X, AccessTop(ωX , (I|O)) constructs a VO ω′ such1102

that ωt = (ancω(X) ◦ ω′) is an access-top VO for QX with w(ωt) = max{1, ξ(ωX , I, O)} and1103

δ(ωt) = κ(ωX , I, O).1104

Proof. The function AccessTop traverses the given canonical VO and pulls up free variables1105

such that the resulting VO becomes access-top. More precisely, if a variable X is bound and1106

contains free variables in its subtree, the function puts all free variables below X on top of X1107

such that the input variables are above the output variables. If the variable X is an output1108

variable and contains input variables in its subtree, it puts all input variables that are under1109

X on top of X.1110

If ω neither contains a bound variable above a free one nor an output variable above1111

a bound one, the VO remains unchanged. Since a canonical VO has static width 1 and1112

dynamic width 0, the statement in the lemma holds in this case.1113

Assume now that ω contains at least one bound variable above a free variable or at least1114

one output variable above an input variable. Consider an arbitrary bound variable X in ω1115

that has free variables in its subtree. Let F be the set of free variables under X. Due to the1116

structure of canonical VOs, all variables in F depend on X. By moving the variables in F on1117

top of X, the set F is added to the dependency set of X in the resulting VO ωt. Hence, the1118

fractional edge cover number of {X} ∪ depωt(X) is ρ∗({X} ∪ F). The dependency set of a1119

variable Y in F can only decrease since the set of the variables from Y to the root decreases.1120

The dependency set of a variable Y below X changes if it contained a variable from F in its1121

subtree that is now positioned on top of Y . However, the fractional edge cover number of1122

{Y } ∪ depωt(Y) is upper-bounded by the fractional edge cover number of {X} ∪ depωt(X).1123

In case X is an output variable that has a set V of input variables in its subtree, the1124

reasoning is similar. The fractional edge cover number of {X} ∪ depωt(X) is ρ∗({X} ∪ V)1125

and upper-bounds the fractional edge cover numbers at the other variables in the resulting1126

VO ωt.1127

Hence, the static width of ωt is determined by the largest set of variables that is moved1128

on top of a single variable by the function AccessTop.1129

For the dynamic width of ωt, the reasoning is completely analogous. The dynamic width1130

of ωt is given by the largest set of variables that is moved on top of a single variable X after1131

removing the variables of any atom containing X. ◀1132

We are ready to prove Proposition 29.1133

Proof of Proposition 29. Consider a CQAP Q whose fracture Q†(O|I) is hierarchical. Let1134

F = I ∪ O and w and δ be the static and respectively dynamic width of Q. By the definition1135

of static and dynamic width, Q† must have static width w and dynamic width δ. Let ω be1136

the canonical VO of Q†. Without loss of generality, assume that Q† contains at least one1137

atom with non-empty schema. Otherwise, AccessTop returns the set of atoms in Q†, which1138

is already an optimal access-top VO for Q†. Assume also that ω consists of a single connected1139

component. Otherwise, we apply the same reasoning for each connected component. By1140

Lemma 30, AccessTop(ω, (I|O)) constructs an access-top VO ωt for Q† with static width1141

CVIT 2016

23:32 Conjunctive Queries with Free Access Patterns under Updates

max{1, ξ(ωX , I, O)} and dynamic width κ(ωX , I, O). We first show:1142

max{1, ξ(ω, I, O)} ≤ w (1)1143
1144

First, assume that ξ(ω, I, O) = 0. This means max{1, ξ(ω, I, O)} = 1. Since Q† contains at1145

least one atom with non-empty schema, we have w ≥ 1. Thus, Inequality (1) holds. Now, let1146

ξ(ω, I, O) = ℓ ≥ 1. We show that w ≥ ℓ. It follows from ξ(ω, I, O) = ℓ that at least one of1147

the following two cases holds:1148

Case (1.1): ω contains a bound variable Y such that ρ∗
QY

(F ′) = ℓ, where F ′ = vars(ωY)∩1149

F1150

Case (1.2): ω contains an output variable Y such that ρ∗
QY

(I ′) = ℓ, where I ′ = vars(ωY)∩1151

I.1152

We first consider Case (1.1). The inner nodes of each root-to-leaf path of a canonical1153

VO are the variables of an atom. Hence, for each variable Z ∈ F ′, there must be an atom1154

in Q† that contains both Y and Z. This means that Y and Z depend on each other. Let1155

ω′ = (T, depω′) be an arbitrary access-top VO for Q†. Since all variables in F ′ depend on Y ,1156

each of them must be on a root-to-leaf path with Y . Since Y is bound and the variables1157

in F ′ are free, the set F ′ must be included in ancω′(Y). Thus, F ′ ⊆ depω′(Y). This means1158

ρ∗
QY

({Y } ∪ depω′(Y)) ≥ ℓ, which implies w(ω′) ≥ ℓ. It follows w ≥ ℓ.1159

The reasoning for Case (1.2) is analogous. In any access-top VO ω′ = (T, depω′) for1160

Q†, all variables in I ′ must be included in ancω′(Y). Hence, I ′ ⊆ depω′(Y), which means1161

ρ∗
QY

({Y } ∪ depω′(Y)) ≥ ℓ. This implies w(ω′) ≥ ℓ, thus, w ≥ ℓ.1162

It follows that the static width of the access-top VO AccessTop(ω, (I|O)) must be1163

w(Q).1164

Following similar steps, we can show:1165

κ(ω, I, O) ≤ δ (2)1166
1167

Let κ(ω, I, O) = k. We show that δ ≥ k. The definition of κ(ω, I, O) implies that one of1168

the following two cases must hold:1169

Case (2.1): ω contains a bound variable Y and an atom R(Y) containing Y such that1170

ρ∗
Q(F ′ \ Y) = k, where F ′ = vars(ωY) ∩ F1171

Case (2.2): ω contains an output variable Y and an atom R(Y) containing Y such that1172

ρ∗
Q(I ′ \ Y) = k, where I ′ = vars(ωY) ∩ I.1173

We consider Case (2.1). Let ω′ = (T, depω′) be an arbitrary access-top VO for Q†. The1174

atom R(Y) must be included in atoms(ω′
Y), since it contains Y . All variables in F ′ depend1175

on Y . Since Y is bound and the variables in F ′ are free, the set F ′ \ Y must be included1176

in ancω′(Y). Hence, F ′ \ Y ⊆ depω′(Y). This implies that ρ∗
QY

(({Y } ∪ depω′(Y)) \ Y) ≥ k.1177

This means ρ∗
QY

(({Y } ∪ depω′(Y)) \ Y) ≥ k. This implies that δ(ω′) ≥ k. It follows δ ≥ k.1178

To show Case (2.2), we reason analogously. We just treat the output variables like the1179

bound variables and input variables like the free variables in Case (2.1).1180

Overall, we conclude that given a CQAP Q and its fracture Q†(O|I), AccessTop(ω, (I|O))1181

constructs an access-top VO with static width w(Q†) = w(Q) and dynamic width δ(Q†) =1182

δ(Q). ◀1183

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:33

Ω(VO ω, access pattern (O|I)) : set of VOs

switch ω:

Rsig(Y) 1 return {Rsig(Y)}

X

ω1 . . . ωk

2 let key = ancω(X) ∪ {X}
3 let IX = (I ∩ vars(ω)) ∪ ancω(X)
4 let OX = O ∩ vars(ω)
5 let QX(OX |IX) = join of atoms(ω)
6 if QX(OX |IX) is CQAP0

7 return { AccessTop(ω, (O|I)) }
8 if X ∈ I or (X ∈ O and vars(ω) ∩ I = ∅)

9 return
{ X

ω′
1. . .ω′

k

∣∣∣∣∣ ω′
i ∈ Ω(ωi, (O|I)), ∀i ∈ [k]

}

10 let htrees =
{ X

ω′
1. . .ω′

k

∣∣∣∣∣ ω′
i ∈ Ω(ωkey)H

i , (O|I)), ∀i ∈ [k]
}

11 let ltree = AccessTop(ωkey)L, (O|I))
12 return htrees ∪ { ltree }

Figure 13 Construction of a set of VOs from a canonical VO ω of a hierarchical CQAP with
access pattern (O|I). Each constructed VO corresponds to an evaluation strategy of some part of
the query result. The VO ωkey)s for s ∈ {H, L} has the structure of ω but the HL-signature of
each atom is extended by key → s.

E.3.2 VOs Describing Evaluation Strategies1184

Each VO of a CQAP stands for an evaluation strategy for the query. In this section we1185

show how we can derive from the canonical VO of a query to a set of VOs, which depict the1186

evaluation strategies of the query result on different parts of the input relations.1187

We start with a high-level explanation of the construction. Consider the canonical VO ω1188

of a hierarchical CQAP and a subtree ω′ of ω rooted at a variable X. The induced query1189

QX(OX |IX) is defined over the join of the atoms at the leaves of ω′. The IX consists of the1190

input variables in ω′ and the root path of X. The set OX consists of the output variables1191

in ω′. Let ω′
at be an access-top VO of QX(OX |IX). If QX is CQAP0, we use ω′

at for the1192

evaluation of QX . The view tree following ω′
at can be constructed in linear time, can be1193

updated in constant time and allows for constant-delay enumeration of the result of QX .1194

We now consider the case that QX is not CQAP0. In this case, ω′ must contain a bound1195

or output variable Y such that QY is not CQAP0. If X is not this variable Y , we recursively1196

process the subtrees of ω′, otherwise, i.e., if X is this variable Y , we distinguish two cases1197

based on the degree of values over ancw(X) ∪ {X}. In the light case, we construct the1198

view tree following the VO ω′
at. This view tree can be constructed and maintained under1199

updates efficiently, since the values over ancw(X) ∪ {X} have bounded degree. In the heavy1200

case, we use the VO ω′. The view tree following ω′ allows for constant update time and an1201

enumeration delay that depends on the number of distinct values over ancw(X) ∪ {X}. Since1202

these values have high degree, the number of distinct such values is bounded, which ensure1203

CVIT 2016

23:34 Conjunctive Queries with Free Access Patterns under Updates

A1

B

C D

R(A1, B, C) S(A1, B, D)

VA1 (A1)

VB(A1, B)

V ′
C(A1, B)

VC(A1, B, C)

R(A1, B, C)

V ′
D(A1, B)

VD(A1, B, D)

S(A1, B, D)

A2

E

T (A2, E)

VA2 (A2)

VE(A2, E)

T (A2, E)

Figure 14 VOs constructed for Q1(B, C, D|A1) = R(A1, B, C), S(A1, B, D) and Q2(E|A2) =
T (A2, E) in Example 27 and their corresponding view trees.

efficient enumeration delay.1204

Given a canonical VO ω of a hierarchical CQAP Q(O|I), the function Ω(ω, (O|I)) in1205

Figure 13 returns the set of all VOs for Q obtained from ω. The atoms at the leaves of these1206

VOs are labelled by HL-signatures. When constructing view trees following these VOs, these1207

atoms will be materialized with corresponding relation parts. That is, an atom Rsig(Y) with1208

S → s ∈ sig will be materialized by a part of relation R that is heavy on S if s = H and1209

light on S if s = L. We assume that the atoms in the initial canonical VO ω passed as input1210

to the function Ω are labelled by the empty HL-signature ∅.1211

We now describe the function Ω(ω, (O|I)) in more detail. The function proceeds recurs-1212

ively on the structure of ω and considers at each variable X, the induced query QX(OX |IX)1213

(Line 5). If QX is CQAP0, the function returns an access-top VO constructed by the function1214

AccessTop(ω, (O|I)) in Figure 9 (Lines 6-7). If X is an input variable, or it is an output1215

variable and ω does not contain any input variable, the query QX can be evaluated efficiently1216

given that the induced queries defined at the children of X are evaluated efficiently. Hence,1217

the function recursively computes a set of VOs for each child tree of X. For each combination1218

of these VOs, it builds a new VO where X is on top of the child VOs (Line 9). Otherwise, if1219

X is bound or an output variable and ω contains input variables, the function creates two1220

evaluation strategies for QX based on the degree of values over {X} ∪ anc(X). For the values1221

over {X} ∪ anc(X) that are heavy, i.e., the degrees of the values are above a given threshold,1222

the function treats X as an input variable and proceeds recursively to resolve further variables1223

located below X in the VO and to potentially fork into more strategies (Line 10). For the1224

values over {X} ∪ anc(X) that are light, the function constructs an access-top VO for ω1225

(Line 11).1226

▶ Example 31. Consider the CQAP0 query

Q(B, C, D, E | A) = R(A, B, C), S(A, B, D), T (A, E)

and the two queries from the decomposition of its fracture:

Q1(B, C, D|A1) = R(A1, B, C), S(A1, B, D) and Q2(E|A2) = T (A2, E)

from Example 27. Figure 14 (left and middle right) shows the VOs, i.e., the evaluation1227

strategies, for the VOs of the two queries returned by Ω. Since Q is in CQAP0, the VOs for1228

evaluation are exactly the access-top VOs of the two queries. ◀1229

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:35

E

C

D

A

B

RA)L(A, B, C) SA)L(A, B, D)

T A)L(A, E)

VE(E)

VC(C, E)

VD(C, D, E)

VA(A, C, D, E)

V ′
B(A, C, D)

VB(A, B, C, D)

RA)L(A, B, C) SA)L(A, B, D)

T A)L(A, E)

A

C

D

B

RA)H,AB)L(A, B, C)
SA)H,AB)L(A, B, D)

E

T (A, E)

VA(A)

V ′
C(A)

VC(A, C)

VD(A, C, D)

VB(A, B, C, D)

RA)H,AB)L(A, B, C)
SA)H,AB)L(A, B, D)

V ′
E(A)

VE(A, E)

T A)H(A, E)

A

B

C D

RA)H,AB)H(A, B, C)
SA)H,AB)H(A, B, D)

E

T (A, E)

V (A)

V ′
B(A)

VB(A, B)

V ′
C(A, B)

VC(A, B, C)

V ′
D(A, B)

VD(A, B, D)

RA)H,AB)H(A, B, C)
SA)H,AB)H(A, B, D)

V ′
E(A)

VE(A, E)

T (A, E)

Figure 15 Left column: The VOs constructed for the query Q(C, D | E) =
R(A, B, C), S(A, B, D), T (A, E) in Example 28. Right column: The view trees constructed fol-
lowing the VOs on the left.

▶ Example 32. Consider the query

Q(C, D | E) = R(A, B, C), S(A, B, D), T (A, E)

from Example 28. The canonical VO of the query is the same as in Figure 15 (middle).1230

Figure 15 shows on the left column the three VOs returned by the function Ω in Figure 13.1231

We explain the construction of the VOs returned by Ω. We start from the root A in the1232

canonical VO. The residual query QA(OA|IA) is equal to Q(O|I). Since QA is not CQAP01233

and A is bound, we distinguish two cases based on the degree of A-values: In the light case1234

for A, we create a access-top VO for QA whose leaves are the light parts of the input relations1235

partitioned on A (top left in Figure 15).1236

In the heavy case for A, we recursively process the subtrees of A in the canonical VO1237

and treat A as an input variable. The residual query QE(·|A, E) = T (A, E) is CQAP0,1238

thus we create a access-top VO for QE whose leaf is T A)H(A, E), i.e., the heavy part of1239

T partitioned on A (middle left and bottom left VOs in Figure 15). The residual query1240

QB(C, D|A) = R(A, B, C), S(A, B, D), however, is not CQAP0. Since B is bound, we further1241

distinguish two new cases based on the degree of the values over (A, B). In the light case for1242

CVIT 2016

23:36 Conjunctive Queries with Free Access Patterns under Updates

ViewTrees(canonical VO ω, access pattern (O|I)) : view trees

1 return {τ(ω′) | ω′ ∈ Ω(ω, (O|I))}

Figure 16 Construction of all view trees for a canonical VO ω of a hierarchical CQAP with access
pattern (O|I).

(A, B), we construct a VO whose leaves are RA)H,AB)L and SA)H,AB)L, i.e., the parts of R1243

and S that are heavy on A and light on (A, B) (middle left VO in Figure 15). In the heavy case1244

for (A, B), we process the subtrees of B considering B as an input variable (bottom left VO in1245

Figure 15). The residual queries QC(C|A, B) = R(A, B, C) and QD(D|A, B) = S(A, B, D),1246

are CQAP0. Overall, we create three VOs. ◀1247

E.3.3 View Trees Encoding the Query Result1248

The translation from VOs for hierarchical CQAPs into view trees is the same as in our1249

approach for arbitrary CQAPs (Section 4). Given a VO ω, the function τ(ω) in Figure 21250

returns a view tree following ω. The function ViewTrees(ω, (O|I)) in Figure 16 returns1251

the set of all view trees for a hierarchical CQAP Q(O|I) with canonical VO ω. For each VO1252

ω′ returned by Ω(ω, (O|I)) from Figure 13, the function creates the corresponding view tree1253

by calling τ(ω′) from Figure 2.1254

Materializing a view tree consists of computing the relation parts at the leaves and1255

computing the joins defined by the views in the view tree. The preprocessing phase for a1256

hierarchical CQAP Q(O|I) with canonical VO ω consists of materializing all view trees in1257

ViewTrees(ω, (O|I)).1258

▶ Example 33. Figure 14 (middle left and right) shows the view trees constructed from1259

the corresponding VOs. Each variable in the VO is mapped to a view in the view tree, e.g.,1260

B is mapped to VB(A1, B), where {B, A1} = {B} ∪ dep(B). The views V ′
C , V ′

D and VA11261

are auxiliary views that allow for efficient maintenance under updates to R and S: they1262

marginalize out one variable from their child views. The view VB is the intersection of V ′
C1263

and V ′
D. Hence all views can be computed in linear time. ◀1264

▶ Example 34. Consider again the query

Q(B, C, D, E | A) = R(A, B, C), S(A, B, D), T (A, E)

from Example 28. Figure 15 shows next to each VO for the query, the corresponding view1265

tree. The query Q has static width 3. Computing the relation parts at the leaves of the view1266

trees takes time linear in N , where N is the database size. We explain how the views in the1267

view trees can be computed in O(N1+2ϵ) time.1268

Consider the VO and view tree in the top row of Figure 15. At variable B, we create the1269

view VB(A, B, C, D) = RA)L(A, B, C), SA)L(A, B, D), which joins the light parts of R and1270

S partitioned on A. Computing VB(A, B, C, D) takes O(N1+ϵ) time: For each value (a, b, c)1271

in RA)L, we iterate over at most N ϵ (a, b, d) values in SA)L
L . Since B has siblings in the VO,1272

we also create the auxiliary view V ′
B(A, C, D) that aggregates away B in time linear in the1273

size of V ′
B. At A, we compute VA(A, C, D, E) in O(N1+2ϵ) time: We iterate over O(N1+ϵ)1274

values (a, c, d) in V ′
B(A, C, D) and for each such value, iterate over at most N ϵ values (a, e)1275

in T A)L. We do not need to create an auxiliary view that aggregates away A, since A does1276

not have siblings in the variable order. At each variable above A, we create a view that1277

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:37

aggregates away the variable below. Aggregating a variable away takes time linear in the1278

size of the view. Hence, computing VD(C, D, E) takes O(N1+2ϵ) time, computing VC(C, E)1279

takes O(N1+ϵ) time, and computing VE(E) takes O(N) time. Overall, materializing this1280

view tree takes O(N1+2ϵ) time.1281

We now consider the VO and view tree in the second row. At B, we create the view1282

VB(A, B, C, D) = RA)H,AB)L(A, B, C), SA)H,AB)L(A, B, D) in O(N1+ϵ) time: For each1283

value (a, b, c) in RA)H,AB)L, we iterate over at most N ϵ values (a, b, d) in SA)H,AB)L. At E,1284

we build VE(A, D, E) that aggregates away B in O(N1+ϵ) time. At D, we build VD(A, D)1285

and the auxiliary view V ′
D(A) in linear time. The other views can be computed in linear1286

time by aggregating away variables and applying semi-join reduction. Hence, materializing1287

the view tree in the second row takes O(N1+ϵ) time.1288

Materializing the view tree in the bottom row takes linear time: All views are computed1289

by aggregating away variables and applying semi-join reduction, which takes linear time.1290

Overall, we materialize the three view trees for Q in O(N1+2ϵ) time. ◀1291

The set of view trees constructed for a hierarchical CQAP in the preprocessing phase1292

encode exactly the query.1293

▶ Proposition 35. Let {T1, . . . , Tk} be the set of view trees in ViewTrees(ω, (O|I)) for1294

a hierarchical CQAP Q(O|I) and the canonical VO ω for Q. Let QTi
(O|I) be the query1295

defined by the conjunction of the leaf atoms in Ti. Then, Q(O|I) ≡
⋃

i∈[k] QTi(O|I).1296

Proof. The proof is an adaptation of the proof of Proposition 4.3. in [22] to CQAPs. For1297

the sake of completeness, we give here the full proof.1298

The procedure ViewTrees calls Ω to construct from the input canonical VO ω a set1299

of VOs ω1, . . . , ωk and constructs the set of view trees T1, . . . , Tk following the VOs. The1300

corresponding VO ωi and view tree Ti for i ∈ [k] have the same leaf atoms. We define1301

Qω′(O|I) =⋊⋉R(X)∈atoms(ω′) R(X) be the query defined by the conjunction of the leaf atoms1302

in ω′.1303

The proof is by induction over the structure of the VO ω. We show that for any subtree1304

ω′ rooted at X of ω, it holds:1305

Qω′(OX |IX) ≡
⋃

ω′′∈Ω(ω′,(OX |IX))

Qω′′(OX |IX), (3)1306

1307

where OX = O ∩ vars(ω′) and IX = anc(X) ∪ (I ∩ vars(ω′)). This completes the proof.1308

Base case: If ω′ is an atom, the procedure Ω returns that atom and the base case holds1309

trivially.1310

Inductive step: Assume that ω′ has subtrees ω′
1, . . . , ω′

k. Let key = anc(X) ∪ {X}, IX =1311

anc(X)∪ (I ∩vars(ω′)), and OX = O ∩vars(ω′). The procedure Ω distinguishes the following1312

cases:1313

Case 1: QX(OX |IX) is CQAP0. The procedure Ω(ω′, (OX |IX)) constructs an access-top1314

VO with leaves exactly the atoms of ω′. This implies Equivalence 3.1315

Case 1 does not hold and (X ∈ O or (X ∈ O and vars(ω′) ∩ I = ∅)): The procedure1316

Ω(ω′, (OX |IX)) constructs recursively a set of VOs for each subtree in ω′
1, . . . , ω′

k and returns1317

a set of VOs, which are the combinations of the k sets of VOs attached to X. Using the1318

CVIT 2016

23:38 Conjunctive Queries with Free Access Patterns under Updates

induction hypothesis, we rewrite as follows:1319

Qω′(OX |IX) = ⋊⋉i∈[k] Qω′
i
(OX′ |IX′)1320

IH≡ ⋊⋉i∈[k]

(⋃
ω′′∈Ω(ω′

i
,(OX′ |IX′))

Qω′′(OX′ |IX′)
)

1321

≡
⋃

∀i∈[k]:ω′′
i

∈Ω(ω′
i
,(OX′ |IX′))

⋊⋉i∈[k] Qω′′
i

(OX′ |IX′)1322

=
⋃

T ∈Ω(ω′,(OX |IX))

QT (OX |IX),1323

1324

where X ′ is the root of ω′, OX′ = O ∩ vars(ω′) and IX′ = anc(X ′) ∪ (I ∩ vars(ω′)).1325

Cases 1 and 2 do not hold: The procedure Ω creates the VOs htrees ∪ {ltree} defined as1326

follows:1327

ltree = AccessTop(ωkey)L, (OX |IX)), where ωkey)L has the same structure as ω′ but1328

each atom is replaced by its part that is light on key;1329

htrees are the same as the VOs built in the previous case except each atom is replace by1330

a part that is heavy on key.1331

If a relation is partitioned on a set key of variables, then the parts of relation that are1332

light and heavy on key are disjoint and together form the relation. This drive the following1333

equivalence. For simplicity, we skip the schemas of queries:1334 ⋃
∀i∈[k]:Ti∈Ω(ω′

i
,(O|I))

⋊⋉i∈[k] QTi ≡ Qltree ∪
⋃

∀i∈[k]:Ti∈Ω(ωkey)H
i

,(O|I))

QTi (4)1335

1336

Using the induction hypothesis, we obtain:1337

Qω′ =⋊⋉i∈[k] Qω′
i

IH≡ ⋊⋉i∈[k]

(⋃
ω′′∈Ω(ω′

i
,(O|I))

Qω′′

)
1338

≡
⋃

∀i∈[k]:ω′′
i

∈Ω(ω′
i
,(O|I))

⋊⋉i∈[k] Qω′′
i

1339

(4)
≡Qltree ∪

⋃
∀i∈[k]:ω′′

i
∈Ω(ωkey)H

i
,(O|I))

Qω′′
i

1340

= Qltree ∪
⋃

T ∈htrees

QT =
⋃

T ∈Ω(ω′,(O|I))

QT1341

1342

◀1343

Given a hierarchical CQAP query Q(O|I) with static width w, the preprocessing time1344

of our approach is given by the time to materialize the view trees in ViewTrees(ω, O, I).1345

The time to materialize these view tree is O(N1+(w−1)ϵ).1346

▶ Proposition 36. Given a hierarchical CQAP with static width w, a database of size N , and1347

ϵ ∈ [0, 1], the view trees in the preprocessing stage can be computed in O(N1+(w−1)ϵ) time.1348

The proof uses the auxiliary Lemma 37 given below. We first explain how Proposition 361349

is implied by Lemma 37. Consider a CQAP Q with static width w and hierarchical fracture1350

Q† and an ϵ ∈ [0, 1]. In the preprocessing stage, we apply for each connected component1351

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:39

Q′
†(O|I) of Q† the following steps. Let ω be the canonical VO of Q′

†. First, we call the1352

function Ω(ω, (O|I)) in Figure 13, which creates a set of VOs from ω. For each VO ω′ in1353

this set, we call the function τ(ω′) in Figure 2, which creates a view tree T following ω′.1354

By Lemma 37, the view tree T can be materialised in O(N (w(Q′
†)−1)ϵ) time. Since w(Q′

†) is1355

upper-bounded by w, this implies O(N (w−1)ϵ) overall preprocessing time.1356

It remains to prove Lemma 37.1357

▶ Lemma 37. Let ω be a VO of a CQAP Q(O|I), X a variable in ω, QX the induced query1358

at X in ω, ω′ ∈ Ω(ωX , (O, I)), ωt = (ancω(X) ◦ ω′), N the size of the leaf relations in ω′,1359

and ϵ ∈ [0, 1]. The view tree τ(ωt) can be materialised in O(N1+(w(QX)−1)ϵ) time.1360

Proof. The proof is by induction on the structure of ωX . We show that for each variable1361

Y in ωt, the view VY in τ(ωt) as defined in Line 4 of the procedure τ can be materialised1362

in O(N1+(w(QX)−1)ϵ) time. Each auxiliary view defined in Line 8 of the procedure τ results1363

from its child view by marginalising a single variable. The materialisation of these auxiliary1364

views does not increase the overall asymptotic computation time.1365

Base case: Assume that ωX is a single atom. In this case, the procedure Ω returns this1366

atom. The atom can obviously be materialised in O(N) time. Hence, the statement in the1367

lemma holds.1368

Inductive step: Assume that the root variable X in ωX has the child nodes X1, . . . , Xk.1369

Let key = ancω(X) ∪ {X}, IX = ancω(X) ∪ (I ∩ vars(ωX)), OX = O ∩ vars(ω). The induced1370

query at X is defined as QX(O | I) = join of atoms(ω). Following the control flow in Ω, we1371

distinguish between the following cases.1372

Case (1): QX(O|I) is a CQAP0 query.1373

In this case, the procedure Ω returns the VO ω′ = AccessTop(ωX , (O|I)). By Proposi-1374

tion 29, ωt = (ancω(X) ◦ ω′) is an access-top VO for QX with static width w(QX). Since1375

QX is in CQAP0, its static width can be at most 1 (Proposition 25). This means that for1376

every variable Y ∈ vars(ωt), the set {Y } ∪ depωt(Y) can be covered by a single atom in QX .1377

Hence, each view VY ({Y } ∪ depωt(Y)) can be computed in O(N) time. This completes the1378

inductive step for Case (1).1379

Case (2): QX is not in CQAP0 and
(
X ∈ I or (X ∈ O and vars(ω) ∩ I = ∅)

)
1380

The set of VOs returned by Ω is defined as follows: For each set {ωi}i∈[k] with ωi ∈1381

Ω(ωXi
, (O|I)), the set contains a VO ω′ with root node X and child trees ω1, . . . , ωk. Consider1382

for one such VO ω′ the VO ωt = (ancω(X)◦ω′). By induction hypothesis, each view tree over1383

ωi can be materialised in O(N1+(w(QXi
)−1)ϵ) time. Since w(QXi

) ≤ w(QX) for any i ∈ [k], it1384

follows that each view tree over ωi can be materialised in O(N1+(w(QX)−1)ϵ) time. Consider1385

now the view tree τ(ωt). The view at X is defined by VX(S) = VX1(S1), . . . , VXk
(Sk), where1386

S = {X} ∪ depω(X) and VX1 , . . . , VXk
are the child views of VX . By the construction of1387

view trees, VX is a free-connex query. Hence, it can be computed by first marginalising1388

the variables in VXi
that are not included in S for each i ∈ [k] and then computing the1389

intersection of the remaining relations. This gives overall O(N1+(w(QX)−1)ϵ) computation1390

time. This completes the inductive step in this case.1391

Case (3): QX is not in CQAP0 and X is an output variable dominating an input variable1392

or it is a bound variable dominating a free variable.1393

In this case, the procedure Ω constructs a set htrees of VOs and a single variable order1394

ltree. The construction of the VOs in htrees differs from the VOs constructed under Case1395

(2) only in that they refer to base relations that are heavy on the variable set key. This1396

does not affect the asymptotic computation time of the view trees. Hence, the view trees1397

CVIT 2016

23:40 Conjunctive Queries with Free Access Patterns under Updates

over the VOs htrees can be computed in O(N1+(w(QX)−1)ϵ) time. The VO ltree is defined1398

as ltree = AccessTop(ωkey→L
X , (O|I)), where ωkey→L

X indicates that the base relations1399

are light on key. Observe that key is included in the schemas of the leaf atoms of ltree.1400

By Proposition 29, ltree is an access-top VO for QX with optimal static width. Then, it1401

follows from Lemma 38 (given below) that the view tree τ(ltree) can be materialised in1402

O(N1+(w(QX)−1)ϵ) time. This completes the inductive step for Case 3. ◀1403

The next lemma gives the time to materialise view trees referring to light relation parts.1404

▶ Lemma 38. Let ω be a VO, X a variable in ω such that ancω(X) is included in the1405

schemas of all leaf atoms in ωX and ωt = (ancω ◦ ωX). If the leaf relations in ωX are the1406

light parts of a partition on {X} ∪ ancω(X) with threshold O(N ϵ) for some ϵ ∈ [0, 1], the1407

view tree τ(ωt) can be materialised in O(N1+(w(ωt)−1)ϵ) time.1408

Proof. Let T = τ(ωt) and w = w(ωt). We show that every view in T can be computed in1409

O(N1+(w−1)ϵ}) time. The leaf atoms can obviously be materialised in O(N) time.1410

Consider any view VY (S) in T with atoms(ωt
Y) = {Ri(Xi)}i∈[k]. The view VY is defined1411

over the join of its child views and it holds S = {Y } ∪ depω(Y). By the construction of our1412

view trees, VY can be computed by joining the atoms R1(X1), . . . , Rk(Xk). Hence, we can1413

write the view as1414

VY (S) = R1(X1), . . . , Rk(Xk).1415
1416

Let ρ∗
QY

(S) = m. By Lemma 20, ρQY
(S) = m. We construct an optimal edge cover for S by1417

using only atoms from the set {Ri(Xi)}i∈[k]. Let λ = (λRi(Xi))i∈[k] be an edge cover of S1418

with
∑

i∈[k] λRi(Xi) = m. Let R0, R1 ⊆ atoms(ωX) consist of the atoms in ωX that λ assigns1419

to 0 and 1, respectively. We first compute a view V (S) over the join of the atoms in R1 as1420

follows. We choose an arbitrary atom from R1 and iterate over its tuples. For each such1421

tuple t, we iterate over the matching tuples in the other atoms in R1. Since each atom in R11422

includes ancω(X) in its schema and is the light part of a partition on ancω(X) with threshold1423

O(N ϵ), it contains O(N ϵ) tuples matching t. This means that the time to materialise V is1424

O(N · N (m−1)ϵ) = O(N1+(m−1)ϵ). Now, we can rewrite VY using the new view V :1425

VY (S) = V (S), R′
1(X ′

1), . . . , R′
ℓ(X ′

ℓ), (5)1426
1427

where R′
1(X ′

1), . . . , R′
ℓ(X ′

ℓ) are the atoms in R0. The query (5) is free-connex α-acyclic,1428

which means that it can be computed in time linear in the input plus the output size of VY ,1429

using Yannakakis’s algorithm [3]. The input size is upper-bounded by |V | = O(N1+(m−1)ϵ).1430

The size of the output is also O(N1+(m−1)ϵ). Hence, the overall time to compute VY is1431

O(N1+(m−1)ϵ). Since m = ρ∗
QY

(S) is upper-bounded by w, we derive that the computation1432

time for VY is O(N1+(w−1)ϵ). Each of the additional auxiliary views constructed in Line 8 of1433

the procedure τ is obtained by marginalising away a variable from its child view. This does1434

not blow up the overall asymptotic computation time. ◀1435

E.4 Enumeration1436

In the preprocessing stage, we construct view trees that represent the result of the query.1437

In this section, we show how to enumerate from these view trees the distinct output tuples1438

together with their multiplicity given a tuple of values over the input variables. The1439

enumeration relies on iterators with access patterns created over materialized views. In this1440

section, we first discuss the enumeration for CQAP0 queries and then the enumeration for1441

hierarchical CQAP queries in general.1442

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:41

1 let ctx0 = input A1-value
2 itVA1

(A1|A1).open(ctx0)
3 while (a := itVA1

(A1|A1).next()) ̸= EOF do
4 itVB (B|A1).open(a)
5 while (b := itVB (B|A1).next()) ̸= EOF do
6 itVC (C|A1, B).open(a, b)
7 while (c := itVC (C|A1, B).next()) ̸= EOF do
8 itVD (D|A1, B).open(a, b)
9 while (d := itVD (D|A1, B).next()) ̸= EOF do

10 output (b, c, d)
11 output EOF

Figure 17 Enumeration for Q(B, C, D|A1) = R(A1, B, C), S(A1, B, D) using the second from
left view tree from Figure 14.

E.4.1 View Iterators1443

A view iterator allows the enumeration of values from a materialized view using the standard1444

iterator interface with open and next methods. We write itV (O|I) to denote a view iterator1445

it over a view V with schema {O} ∪ I, where O is the output variable and I is the context1446

schema of the iterator.1447

The open(ctx) method takes the tuple ctx as input, requiring that all O-values returned1448

via next() are paired with ctx in V . We also write itV (O|I).contains(o) to check if the1449

given value o can appear in the output of the itV iterator; this is syntactic sugar for the1450

membership test ctx ◦ (o) ∈ V , where ◦ denotes tuple concatenation. All the three methods,1451

open, next, and contains, take constant time as per the computational model from Section 2.1452

▶ Example 39. Consider a materialized view V (A, B). The iterator itV (B|A) enumerates1453

the distinct B-values paired with a given A-value in V . The iterator itV (B|A, B) returns1454

the B-value in a given (A, B)-tuple if the tuple exists in V ; otherwise, it returns EOF. The1455

iterator itV (A) is invalid as its output variable A and context schema ∅ do not match the1456

schema of V , i.e., {A} ∪ ∅ ̸= {A, B}. ◀1457

We enumerate tuples from the view trees constructed in the preprocessing stage. For each1458

view tree, we create iterators over the views that correspond to the free variables in the VO1459

of that view tree. We organise the iterators into nested loops based on a pre-order traversal1460

of the view tree. We open the iterators with values from their ancestor views as context,1461

thus ensuring they enumerate only those values guaranteed to be in the query output.1462

▶ Example 40. Figure 17 shows the enumeration procedure for the view tree from Figure 141463

(second from left) for Q1(B, C, D|A1) = R(A1, B, C), S(A1, B, D). We create the view1464

iterators for this view tree top-down. At the root view VA, we create itVA1
(A1|A1) to check1465

if a given input A1-value exists in VA1 . If exists, the iterator returns the same A1-value,1466

which then serves as the context for the iterators created below. The iterator itVB
(B|A1) at1467

view VB enumerates the B-values that are paired with a in VB. Such (A1, B)-values serve1468

as the context for itVC
(C|A1B) and itVD

(D|A1B), which enumerate C- and respectively1469

D-values. We skip creating iterators over auxiliary views V ′
C(A1, B) and V ′

D(A1, B) because1470

we already have iterators for A1 and B. The enumeration procedure returns EOF when all1471

the iterators are exhausted, i.e., all tuples have been enumerated.1472

CVIT 2016

23:42 Conjunctive Queries with Free Access Patterns under Updates

gitV (O|I).open(relation ctx)

1 gitV (O|I).iterators := empty map // tuple 7→ view iterator
2 foreach t ∈ ctx do
3 gitV (O|I).iterators[t] := new itV (O|I)
4 gitV (O|I).iterators[t].open(t)

Figure 18 Open the generalised view iterator gitV (O|I) with the relation ctx over schema I as
context.

The time needed to fetch the next value from each iterator is O(1); this is also the1473

enumeration delay of the procedure. ◀1474

Nesting view iterators, as in Figure 17, is valid when the context schema of each iterator is1475

subsumed by the input variables of the query and the output variables of preceding iterators.1476

The nesting order of the view iterators is not always unique; e.g., we can swap the two1477

innermost loops in the procedure from Figure 17.1478

For any query in CQAP0, the corresponding view trees follow access-top VOs where the1479

free variables are above the bound variables and the input variables are above the output1480

variables. In that case, nesting view iterators according to the access-top VOs is valid and1481

allows constant delay enumeration.1482

For queries not in CQAP0, nesting view iterators may be invalid. Assume for instance1483

that the variable A1 is bound in the query from Example 40. The query remains hierarchical1484

but not free-dominant. The view iterators that enumerate B-, C-, and D-values have A1 in1485

their context schemas, yet there is no iterator for A1-values. We say that such iterators are1486

unsupported.1487

E.4.2 Generalised View Iterators1488

To support the enumeration for non-CQAP0 queries, we generalise the above view iterators as1489

follows. The context of a generalised view iterator gitV (O|I) is a relation (instead of a tuple)1490

over schema I. The open(ctx) method takes as input a relation ctx over I and instantiates1491

a view iterator for each tuple in ctx. The next() method uses the union algorithm [12] to1492

report only distinct O-values, with the delay linear in the size of ctx. For each reported1493

O-value o, next() also returns a relation ctxo ⊆ ctx over schema I with the tuples that are1494

paired with o in V . If there are no such tuples in V , the method returns (EOF, ∅).1495

Figures 18 shows the open(ctx) method, which takes as input a relation ctx over I and1496

creates one view iterator for each tuple in ctx. Each view iterator is opened with their1497

corresponding tuple as context. The context tuples and view iterators are stored in the1498

attribute iterators of mapping type. The open(ctx) method takes time linear in the size of1499

the relation ctx, that is, O(|ctx|).1500

The next() method uses the Union algorithm from Figure 19 to fetch the next distinct1501

output value from a list of iterators. The algorithm is an adaptation of prior work [12].1502

It takes as input n iterators with the same output schema, which enumerate values from1503

possibly overlapping sets, and returns a value in the union of these sets, where the value is1504

distinct from all values returned before. Upon each call, the function returns one value. If1505

all iterators are exhausted, the function returns EOF.1506

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:43

Union(iterators it1, . . . , itn): value

1 if (n = 1)
2 return itn.next()
3 if (v[n−1] := Union(it1, . . . , itn−1)) ̸= EOF
4 if itn.contains(v[n−1])
5 return itn.next()
6 return v[n−1]

7 if (vn := itn.next()) ̸= EOF
8 return vn

9 return EOF

Figure 19 Fetch the next distinct value from a list of iterators.

gitV (O|I).next() : (value, relation)

1 let { t1) it1, . . . , tn) itn } = gitV (O|I).iterators

2 o := Union(it1, . . . , itn)
3 ctxo := { ti | i ∈ [n], iti.contains(o) }
4 return (o, ctxo)

Figure 20 Fetch the next output value from the generalised view iterator gitV (O|I) together
with the set of tuples over schema I that are paired with that output value in V .

We first explain the union algorithm on two iterators it1 and it2. Given the next value1507

v1 of it1, the algorithm calls it2.contains(v1) to check if v1 can be enumerated by it2. If1508

so, it returns the next value in it2; otherwise, it returns v1. If it1 is exhausted, the function1509

returns the next value in it2 or EOF if it2 is also exhausted.1510

For n > 2 iterators, the algorithm considers the union of the first n − 1 iterators as the1511

next value of one iterator and itn as the second iterator, and then reduces the general case to1512

the previous case of two iterators. The algorithm invokes next() and checks for membership1513

on n iterators, each taking constant time. Thus, fetching the next value takes O(n) time.1514

Figure 20 shows the next() method. For each output value o obtained using the Union1515

algorithm, next() computes a set of tuples over schema I that are paired with o in V .1516

Assuming gitV (O|I) is opened for a relation ctx , fetching the output value o and computing1517

the set of tuples for o each take O(|ctx|) time. Thus, next() also runs in O(|ctx|) time.1518

▶ Example 41. Figure 21 shows the enumeration procedure for the view tree from Figure 61519

(bottom-right), created for the connected component Q1(D|A1, C) = R(A1, B, C), S(A1, B, D).1520

We construct three generalised view iterators, one for each free variable. The iterator1521

gitVA1
(A1|A1) serves to check if the given A1-value exists in VA1 (Lines 2-3). The iterator1522

gitVC
(C|A1, B, C) is unsupported as there is no binding for variable B. For this iterator, we1523

provide a relation over schema (A1, B, C) as context. To avoid enumerating dangling tuples,1524

the context should include only those B-values guaranteed to have matching D-values in the1525

final output. The ancestor view VB(A1, B) provides such (A1, B)-values, which we further1526

CVIT 2016

23:44 Conjunctive Queries with Free Access Patterns under Updates

1 let ctx0(A1, C) = {(a0, c0)}, where a0, c0 are input values
2 gitVA1

(A1|A1).open(πA1 (ctx0))
3 while ((a, ctxa) := gitVA1

(A1|A1).next()) ̸= (EOF, ∅) do
4 gitVC

(C|A1, B, C).open(VB(A1, B) ▷◁ ctx0)
5 while ((c, ctxc) := gitVC

(C|A1, B, C).next()) ̸= (EOF, ∅) do
6 gitVD

(D|A1, B).open(πA1B(ctxc))
7 while ((d, ctxd) := gitVD

(D|A1, B).next()) ̸= (EOF, ∅) do
8 output (d)
9 output EOF

Figure 21 Enumeration for Q(D|A1, C) = R(A1, B, C), S(A1, B, D) using the bottom-right view
tree from Figure 6.

restrict to those matching the given input values (Line 4). The next() call on gitVC
returns1527

the input C-value together with a relation ctxc containing the matching (A1, B, C)-tuples in1528

VC if they exist; otherwise, it returns (EOF, ∅). The relation ctxc serves as context for the1529

iterator over D-values (Line 6).1530

The open and next calls take time linear in the size of the context ctx used when opening1531

the iterator. The size of the context for gitVA1
is constant, while for gitVC

and gitVD
is1532

at most the size of VB. Given that VB is over the heavy part RA1B)H of R and the heavy1533

part SA1B)H of S, the number of distinct (A1, B)-values in VB is at most N1−ϵ. Thus, the1534

enumeration delay is O(N1−ϵ). ◀1535

E.4.3 Enumeration Procedure1536

The function BuildIterators from Figure 22 builds a list of generalised view iterators for1537

a given view tree of a CQAP Q with access pattern (O|I). Each generalised view iterator1538

comes paired with a support relation that provides the context for any variable with no1539

binding. The support provided in the initial call to BuildIterators is the singleton relation1540

with the empty tuple (the identity for the join operation).1541

The function recursively constructs generalised view iterators, traversing the view tree1542

T in a top-down fashion. Consider the root view VX(X) of T constructed at variable X1543

in the corresponding VO. If X /∈ X , then VX is an auxiliary view that allows for efficient1544

maintenance under updates (c.f. Figure 2) but has no role in enumeration, thus we recur1545

on its child. The function creates a generalised view iterator over VX if X is a free variable.1546

Otherwise, if X is a bound variable, it uses VX as the support relation for any generalised1547

view iterator created for a free variable below X. The function recursively creates iterators1548

in each subtree and concatenates them into a list of iterators with their support relation.1549

Once we construct the iterators over the view tree, we generate the enumeration procedure1550

by organizing the iterators into nested loops based on a pre-order traversal of the view tree.1551

We open the iterators with values from their ancestor views as context, thus ensuring they1552

enumerate only those values guaranteed to be in the query output. Each concatenation of1553

the outputs of the iterators forms the values of an output tuple.1554

The time for an iterator to report an output tuple, i.e., the next method of the iterator, is1555

determined by the size of its input context relation. That is, the size of the support relations.1556

Hence, the enumeration delay of the procedure is upper-bounded by the size of the support1557

relations.1558

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:45

BuildIterators(view tree T , access pattern (O|I), relation supp)

switch T :

R(Y) 1 return []

VX(X)

T1 . . . Tk

2 if X /∈ X // skip auxiliary maintenance views
3 return BuildIterators(T1, (O|I), supp)

4 itX =


[(new gitVX

(X|X), supp)] , if X ∈ I
[(new gitVX

(X|X \ {X}), supp)] , if X ∈ O
[] , otherwise

5 suppchild =

{
supp , if X ∈ (I ∪ O)
VX(X) , otherwise

6 itchildi = BuildIterators(Ti, (O|I), suppchild), ∀i ∈ [k]
7 return itX ++ itchild1 ++ . . . ++ itchildk

Figure 22 Create a list of generalised view iterators with support for the access pattern (O|I) in
a view tree T . The first call to BuildIterators uses the support {()}.

▶ Example 42. Consider the view tree from Figure 14 (second from left) for the connected1559

component Q1(B, C, D|A1) = R(A1, B, C), S(A1, B, D). BuildIterators returns the fol-1560

lowing union view iterators for this view tree: gitVA1
(A1|A1), gitVB

(B|A1), gitVC
(C|A1, B),1561

and gitVD
(D|A1, B), each paired with the support {()}. Figure 17 shows the enumeration1562

procedure for these iterators. The multiplicity of the output tuple (b, c, d) for the input1563

A1-value a1 is the product of the values in the base relations: R(a1, b, c) · S(a1, b, d). The1564

enumeration delay is constant. ◀1565

▶ Example 43. Consider now the view tree from Figure 15 (left in the second row), created for1566

Q(C, D|E) = RA)H,AB)L(A, B, C), SB)H,AB)L(A, B, D), T A)H(A, E). BuildIterators1567

returns the following iterators for this view tree:1568

gitVE
(E|A, E) with the support VA(A),1569

gitVC
(C|A) with the support VA(A), and1570

gitVD
(D|A, C) with the support VA(A).1571

Figure 23 shows the enumeration procedure for these iterators. The returned support relations1572

define the context to be used when opening each union view iterator. As discussed in the1573

next section, to compute the multiplicity of the output tuple (c, d) for the input E-value e0,1574

we sum over the multiplicities of the tuple concatenated with the A-values in the context1575

relation ctxd (Line 9).1576

◀1577

Multiplicity Computation. Once we get an output tuple from the enumeration1578

procedure as shown above, we need to compute the multiplicity of the tuple in the view tree.1579

Figure 24 shows the ComputeM function for computing the multiplicity of a tuple t in a1580

view tree T . The parameter contextt contains the set of context relations returned by the1581

next method of the union view iterators for the tuple t, such as the relations ctxe, ctxc and1582

ctxd in Example 43.1583

The function traverses the view tree T based on a pre-order. At the root view V (X) of T ,1584

there are three cases: (1) the view V has a variable A1 that is not in the schema of the tuple1585

CVIT 2016

23:46 Conjunctive Queries with Free Access Patterns under Updates

1 let ctx0 = {e0} // where e0 is the input E-value
2 gitVE

(E|A, E).open(VA(A) ⋊⋉ ctx0)
3 while ((e, ctxe) := gitVE

(E|A, E).next()) ̸= EOF do
4 gitVC

(C|A).open(ctxe)
5 while ((c, ctxc) := gitVC

(C|A).next()) ̸= EOF do
6 gitVD

(D|A, C).open(ctxc ⋊⋉ {c})
7 while ((d, ctxd) := gitVD

(D|A, C).next()) ̸= EOF do
8 let m =

∑
a∈πActxd

VD(a, c, d) · VC(a, c) · VE(a, e)
9 output (c, d) 7→ m

10 output EOF

Figure 23 Enumeration procedure for the connected component Q(C, D|E) =
RA)H,AB)L(A, B, C), SB)H,AB)L(A, B, D), T A)H(A, E).

ComputeM(view tree T , tuple t, context relations contextst): multiplicity

switch T :

VX(X)

T1 . . . Tk

1 if Sch(t) ⊊ X
2 let {A1, . . . , Ak} = X \ Sch(t)
3 A1 := πA1 (⋊⋉ctx∈contextst ctx) // A1-values that satisfy all context relations
4 return

∑
a∈A1

ComputeM(T, t ◦ a, contextst ∪ {{a}})
5 else if X ⊊ Sch(t)
6 Vi := variables in Ti

7 contextsi := {πVi R | R ∈ contextst}
8 return

∏
i∈[k] ComputeM(Ti, πVi t, contextsi)

9 else // X = Sch(t)
10 return V [t]

Figure 24 Compute the multiplicity of the given tuple t in the view tree T . The input contextst

contains all the context sets returned during the enumeration of t.

t (Line 1). This corresponds to the case when A1 is bound and has been aggregated away1586

from the views below V in the view tree. In this case, we treat A1 as if it is free, and sum1587

over all the multiplicities of the concatenations of t and the A1-values paired with t in the1588

view tree: For each such A1-value from the context set (Lines 2-3), the function concatenates1589

the value to t, and applies ComputeM to compute the multiplicity of the new tuple. The1590

multiplicity of t is the sum of the multiplicities of these new tuples (Line 4). (2) The second1591

case is the opposite of the first case: the schema of t has additional variables that are not in1592

the schema of V (Line 5). This means the tuple t is stored below V , possibly distributed1593

in different branches. The function applies ComputeM recursively to each subtree and1594

takes the product of the returned multiplicities (Lines 6-8). (3) When t is in V (Line 9), the1595

function returns the multiplicity of t in V (Line 10).1596

The computation time of the multiplicity of a tuple t is upper-bounded by the time1597

for enumerating t using the iterators. The time of the function ComputeM is determined1598

by the number of multiplicities to be summed in the first case. That is, the size of the1599

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:47

context relations. Since these context relations are all subsets of the support relations (as1600

per the next method of union view iterators), their sizes are upper-bounded by the sizes of1601

the support relations. Hence, ComputeM does not take time more than the time for the1602

enumerating the tuple t using the iterators.1603

Enumeration from multiple connected components. We discussed how to enumer-1604

ate tuples from one view tree. In case of queries with several connected components, we form1605

a nesting chain for the enumeration from their view trees. To enumerate from view trees for1606

different evaluation strategies, we use the union algorithm [12] and view tree iterators, as in1607

prior work [21].1608

The enumeration for a query Q(O|I) is the enumeration for its fracture Q†(O|I ′): Given1609

any tuple t over I, let t′ be the tuple over I ′ such that t[A] = t′[A′] for all fresh variables1610

A′ in I ′ that replace A in I. Then the sets Q(O|t) and Q†(O|t′) are equal.1611

▶ Proposition 44. For any CQAP0 query, its distinct output tuples given an input tuple can1612

be enumerated with O(1) delay.1613

Proof. We want to show that for any CQAP0 query, its distinct output tuples given an input1614

tuple can be enumerated with O(1) delay.1615

The fracture of any CQAP0 query with access pattern (O|I) is hierarchical, (O ∪ I)-1616

dominant, and I-dominant, per Definition 1. For each connected component of the fracture,1617

we can construct a VO where the free variables are above the bound variables and the input1618

variables are above the output variables, see the AccessTop function from Figure 9. For1619

the view tree constructed following that VO, we can create a list of view iterators by doing1620

a pre-order traversal of the view tree such that the iterators for input variables precede1621

those for output variables in the list. By forming a nesting chain of these iterators, we can1622

enumerate the distinct output tuples for the given input tuple with constant delay.1623

If the fracture consists of several connected components, we concatenate the list of iterators1624

constructed for each connected component and form a nesting chain for the enumeration1625

from their view trees. ◀1626

▶ Proposition 45. For any hierarchical CQAP Q, database of size N , and ϵ ∈ [0, 1], the1627

distinct output tuples given an input tuple can be enumerated with O(N1−ϵ) delay.1628

Proof. We give a sketch of the proof. Consider a CQAP Q with hierarchical fractures. If Q is1629

in CQAP0, the distinct output tuples can be enumerated with O(1) delay, per Proposition 44.1630

Otherwise, there exists a variable X such that either X is a bound variable and above a1631

free variable or X is an output variable and above an input variable in the canonical VO1632

of Q. For each such case, we partition the relations in the subtree rooted at X and create1633

different evaluation strategies over the heavy and light relation parts, see the Ω function from1634

Figure 13. In the light case, the created view trees follow access-top VOs, thus admitting1635

constant delay enumeration of the output tuples for a given input tuple. In the heavy case,1636

the view defined at X consists of at most N1−ϵ heavy values, which define the support for1637

the enumeration from child views. Using generalised view iterators, the time needed to fetch1638

the next output tuple is linear in the size of the support used when opening those iterators.1639

Hence, the overall enumeration delay is O(N1−ϵ). ◀1640

E.5 Updates1641

We present our strategy for maintaining the views in the view trees returned by the function1642

ViewTrees(ω, (O|I)) (Figure 16) for a canonical VO ω of a hierarchical CQAP Q((O|I))1643

under updates to base relations. We write δR = {x → m} to denote a single-tuple update to1644

CVIT 2016

23:48 Conjunctive Queries with Free Access Patterns under Updates

VB(B)

VC(B, C)

VA(A, B, C)

RA)L(A, B) SA)L(A, C)

δVB(b)

δVC(b, C)

δVA(a, b, C)

δRA)L(a, b) SA)L(a, C)

VA(A)

V ′
B(A)

VB(A, B)

RA)H(A, B)

V ′
C(A)

VC(A, C)

SA)H(A, C)

δVA(a)

δV ′
B(a)

δVB(A, B)

δRA)H(A, B)

V ′
C(a)

VC(a, c)

SA)H(a, c)

Figure 25 First and third from left: The view trees constructed for Q(B, C) = R(A, B), S(A, C);
The base relations are partitioned on the key A. Second and fourth from left: The delta view trees
under a single-tuple update to R.

TransientHLs(tuple x) : HL-signature

1 let {k1, ..., kn} = {k | k ∈ PartitionKeys, k ⊆ Sch(x)}
2 let K = parts of base relations

3 let si =
{

sig[ki], if ∃Ksig ∈ K s.t. x[ki] ∈ πki
Ksig

L, otherwise
for i ∈ [n]

4 return RemoveHeavyTail({k1 → s1, . . . , kn → sn})

Figure 26 Computing an HL-signature for tuple x by checking in which relation parts the values
in x are contained. PartitionKeys consists of the set of all keys the base relations are partitioned
on. sig[k] returns the symbol the key k is mapped to in the HL-signature sig.

a base relation R mapping the tuple x to the non-zero multiplicity m ∈ Z and any other1645

tuple to 0; i.e., |δR| = 1.1646

Inserts and deletes are updates represented as relations in which tuples have positive and1647

negative multiplicities, respectively2.1648

Our approach to effect this update is as follows. We first identify which part of a relation1649

R is affected by the update: We check the degrees of x among the keys on which R is1650

partitioned and find the relation part Rsig that has the matched degrees. Then, for each1651

view tree that contains Rsig, we update Rsig with δR and propagate the change from the1652

leaf Rsig to the root view of the tree: We update each view on this path using the hierarchy1653

of materialized views and the classical delta rule [7].1654

In Section E.5.1, we describe how to determine the part of a base relation that is affected1655

by an update. Several view trees can refer to the same relation part. To simplify the reasoning1656

about the maintenance task, we assume that each view tree has a copy of its relation parts.1657

We explain in Section E.5.2 how to apply a single-tuple update to a set of view trees. As1658

the database evolves under updates, we periodically rebalance the relation partitions and1659

views to account for new database sizes and updated degrees of values. In Section E.5.3, we1660

describe how to intertwine a sequence of single-tuple updates with rebalancing steps.1661

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:49

RemoveHeavyTail(HL-signature sig) : HL-signature

1 let {k1 → s1, ..., kn → sn} = sig
2 heavyTail = ∅
3 foreach i ∈ [n]
4 if ∃j ∈ [n] s.t. sj = L and kj ⊂ ki

5 heavyTail = heavyTail ∪ {ki → si}
6 return sig \ heavyTail

Figure 27 Deletion of the heavy tail from an HL-signature sig. If k → L and k′ → H are included
in sig and k is a proper subset of k′, then k′ → H is deleted from sig.

E.5.1 Determining the Relation Part of a Tuple1662

Given an update δR = {x → m}, we have to find out which part of relation R is affected by1663

the update. That is, we need to compute the HL-signature of the part of R on which the1664

update is to be applied.1665

▶ Example 46. Consider the query Q(B, C) = R(A, B), S(A, C). Figure 25 (first and third1666

from left) shows the view trees constructed for the query in the preprocessing stage; the1667

base relations are partitioned on the key A. Let δR = {(a, b) → m} an update to the base1668

relation R. We need to compute the HL-signature of the A-value a to find out which part of1669

relation R is affected. If a exists in RA)L or does not exist in the database, a is light on the1670

partition key A and thus affects the part RA)L; otherwise, i.e., a is in RA)H , a is heavy and1671

thus affects RA)H . ◀1672

The function TransientHLs(x) in Figure 26 constructs an HL-signature by checking1673

in which relation parts the values in x are contained. The set PartitionKeys (in Line 1)1674

consists of all keys on which the input relations are partitioned. In case of a triangle query,1675

PartitionKeys consists of variables A, B and C. The function first creates an HL-signature1676

{k1 → s1, . . . , kn → sn} where each ki is included in PartitionKeys and is a subset of the1677

schema of x (Line 1). If there exists a relation part Ksig such that x[ki] is included in the1678

projection of Ksig onto ki, si is defined as the symbol the key ki is mapped to in sig (first1679

case in Line 3). Otherwise, x[ki] does not exist in the database yet, so it is light. Thus, in1680

this case si is defined as L (first case in Line 3). Recall that our preprocessing stage does not1681

further partition a relation on a key k if the relation is already light on a subset of k. Hence,1682

we apply the function RemoveHeavyTail (defined in Figure 27) to remove from sig all1683

pairs k → s such that there is k′ → L in sig with k′ ⊂ k (Line 5). We call the HL-signature1684

constructed by TransientHLs(x) the transient HL-signature of x.1685

When constructing relation parts from scratch, we determine the part a tuple needs to1686

be included based on the degrees of the values in the tuple. Given a tuple x and a threshold1687

θ, the function ActualHLs(x, θ) in Figure 28 computes an HL-signature sig based on θ. If1688

the degree of the projection of x onto a partition key is below θ in all input relations, sig1689

maps the partition key to L (first case in Line 2). Otherwise, the partition key is mapped to1690

H (second case in Line 2). The HL-signature constructed by ActualHLs(x, θ) is called the1691

transient HL-signature of x based on θ.1692

2 We focus here on updates to queries without repeating relation symbols. In case a relation R occurs
several times in a query, we represent an update to R as a sequence of updates to each occurrence of R.

CVIT 2016

23:50 Conjunctive Queries with Free Access Patterns under Updates

ActualHLs(tuple x, threshold θ) : HL-signature

1 let {k1, ..., kn} = {k | k ∈ PartitionKeys, k ⊆ Sch(x)}

2 let si =
{

L, if ∀K ∈ D: |σki=x[ki]K| < θ

H, otherwise
for i ∈ [n]

3 return RemoveHeavyTail({k1 → s1, . . . , kn → sn})

Figure 28 Computing a HL-signature for tuple x by checking the degrees of the values in x based
on the threshold θ.

UpdateTrees(view trees T , update δR)

1 let δR = {x → m}
2 let sig = TransientHLs(x)
3 foreach T ∈ T do Apply(T, δRsig = {x → m})

Figure 29 Updating a set T of view trees for a single-tuple update δR = {x → m} to relation R.
If x is already included in a part of R, all view trees referring to that part are updated. Otherwise,
the HL-signature sig of x is computed and all view trees referring to Rsig are updated.

E.5.2 Processing a Single-Tuple Update1693

Given a set T of view trees and an update δR = {x → m}, the procedure UpdateTrees(T ,1694

δR) in Figure 29 maintains the view trees under the update. It first computes the transient1695

HL-signature sig of x (Line 2). Then, it applies δRsig = {x → m} to the view trees in T1696

(Line 2). There might be several view trees constructed in our preprocessing stage that refer1697

to Rsig.1698

The function Apply(T, δRsig) in Figure 30 propagates the update δRsig in the view tree1699

T from the leaf Rsig to the root view. For each view on this path, it updates the view result1700

with the change computed using the standard delta rules [7]. If T does not refer to Rsig, the1701

procedure has no effect.1702

▶ Example 47. Figure 25 (second and fourth from left) shows the delta view trees for the1703

corresponding view trees under the single-tuple update δR = {(a, b) 7→ m} to R. The delta1704

view trees for an update to S are analogous. The blue views in the view trees are the deltas1705

to the corresponding views, computed while propagating δR from the affected relation part1706

to the root view. The update δR affects the light part RA)L(A, B) of R if the tuple a, b1707

is light on the partition key A. In this case, we update the relation part RA)L(A, B) with1708

δRA)A(a, b) = δR(a, b), and propagate the change up the tree. We update VA(A, B, C) with1709

δVA(a, b, C) = δRA)L(a, b), SA)L(a, C) in O(N ϵ) time, since there are at most N ϵ C-values1710

paired with value a in SA)L. We then update VC(B, C) with δVC(b, C) = δVA(a, b, C) in1711

O(N ϵ) time, and similarly for the view VB(B) with δVB(b) = δVC(b, C) in O(1) time.1712

In case δR affects the heavy part RA)H(A, B), i.e., (a, b) is heavy on A, we update1713

VB(A, B) with δVB(a, b) = δRA)H(a, b) in O(1) time and then update the other views V ′
B(A)1714

and VA similarly in O(1) time.1715

Overall, maintaining the two view trees under a single-tuple update to any relation takes1716

O(N ϵ) time. ◀1717

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:51

Apply(view tree T , update δRsig) : delta view

switch T :

Ksig′(X) 1 if Ksig′ = Rsig

2 Rsig(X) = Rsig(X) + δRsig(X)
3 return δR

4 return ∅

V (X)

T1. . .Tk

5 let Vi(Xi) = root of Ti, for i ∈ [k]
6 if ∃ j ∈ [k] s.t. Rsig ∈ Tj

7 δVj = Apply(Tj , δRsig)
8 δV (X) = join of V1(X1), ..., δVj(Xj), ..., Vk(Xk)
9 V (X) = V (X) + δV (X)

10 return δV

11 return ∅

Figure 30 Updating views in a view tree T for a single-tuple update δRsig to relation part Rsig.
If Rsig is a leaf of T , the function updates Rsig and its ancestor views in a bottom-up fashion and
returns the change of the root view. Otherwise, the empty set is returned.

δVA(a)

δV ′
C(a)

δVC(a, c)

δVD(a, c, D)

δVB(a, b, c, D)

δRA)H,AB)L(a, b, c)
SA)H,AB)L(a, b, D)

V ′
E(a)

VE(A, E)

T A)H(A, E)

δVA(a)

δV ′
C(a)

δVC(a, C)

δVD(a, C, d)

δVB(a, b, C, d)

RA)H,AB)L(a, b, C)
δSA)H,AB)L(a, b, d)

V ′
E(A)

VE(A, E)

T A)H(A, E)

δVA(a)

V ′
C(a)

VC(A, C)

VD(A, C, D)

VB(A, B, C, D)

RA)H,AB)L(A, B, C)
SA)H,AB)L(A, B, D)

δV ′
E(a)

δVE(a, e)

δT A)H(a, e)

Figure 31 The delta view trees for the middle right view tree in Figure 15 under a single-tuple
update to R, S, and T , respectively.

▶ Example 48. Figure 31 shows the delta view trees for the middle right view tree in1718

Figure 15 under the single-tuple update δR = {(a, b, c) → m} to R, δS = {(a, b, d) → m} to1719

S, and δT = {(a, e) → m} to T .1720

For the delta view tree for the update δR, we update the view VB(A, B, C, D) with1721

δVB(a, b, c, D) = δRA)H,AB)L(a, b, c), SA)H,AB)L(a, b, D) in O(N ϵ) time. We then update1722

VD(A, C, D) with δVD(a, c, D) = δVB(a, b, c, D) with constant time and similarly for the1723

views VC(A, C), V ′
C(A) and VA(A). The computation of the delta view tree for the update1724

δS is similar. For the update δT , we update the view VE(A, E) with δVE(a, e) = δT A)H(a, e)1725

with constant time and similarly for the views V ′
E(A) and VA(A).1726

Overall, maintaining the view trees under a single-tuple update to any relation takes1727

O(N ϵ) time. ◀1728

We next state the complexity of a single-tuple update in our approach.1729

▶ Proposition 49. Given a hierarchical CQAP Q(O|I) with dynamic width δ, a database of1730

CVIT 2016

23:52 Conjunctive Queries with Free Access Patterns under Updates

size N , and ϵ ∈ [0, 1], the view trees constructed in the preprocessing stage can be maintained1731

under a single-tuple update to any input relation in O(Nδϵ) time.1732

Proof. In the preprocessing stage, for a CQAP Q with input variables I, output variables1733

O, canonical VO ω and delta width δ, we construct VOs Ω(ω, (O|I)) and then construct1734

view trees following these VOs using the procedure τ . The procedure Ω traverses the VO ω1735

in a top-down manner. Consider any subtree ω′ of ω rooted at X and the residual query QX1736

at X in ω. The procedure Ω distinguishes different cases.1737

In case the residual query QX is in CQAP0, Ω creates an access-top VO ω′
at for ω′.1738

At each node X of ω′
at, τ creates a view VX with schema {X} ∪ depω′

at
(X) that joins the1739

child views below. By construction, if X has only one child Y in ω′
at, the child view VY1740

created at Y below VX has the schema {X, Y } ∪ depω′
at

(X) and VX is computed by variable1741

marginalisation, otherwise, i.e., VX has multiple child views, these child views have the same1742

schema {X} ∪ depω′
at

(X) as VX . Consider an update δR to a relation R. The update δR1743

fixes the values of all variables on the path from the leaf R to the root to constants. While1744

propagating an update through the view tree, the delta for each view VX requires joining1745

the update with the sibling child views of X. Each of these sibling child views (if exists)1746

has the same schema as view at X, as discussed above. Thus, computing the delta at each1747

node makes only constant-time lookups in the sibling views. Overall, propagating the update1748

through the view tree constructed for a CQAP0 residual query takes constant time.1749

We now discuss the case Q is not in CQAP0. If X is an input variable, or X is an1750

output variable and its ancestors have no input variables, the Ω procedure traverses to the1751

subtrees of ω′ and attaches the constructed VOs to X. The τ procedure creates a view1752

VX at X with the schema {X} ∪ depω′(X) that joins the child views. By construction, the1753

schema {X} ∪ depω′(X) is covered by the any atom of ω′, and same as discussed above, if1754

X has only one child Y in ω′
at, the child view VY created at Y below VX has the schema1755

{X, Y } ∪ depω′
at

(X) and VX is computed by variable marginalisation, otherwise, i.e., VX1756

has multiple child views, these child views have the same schema {X} ∪ depω′
at

(X) as VX .1757

Since an update to any base relation in ω′ fixes all variable in VX , the delta for VX can be1758

computed in constant time by constant-time lookups.1759

If X is a bound variable and ω′ has free variables, or X is an output variable and ω′ has1760

input variables, the Ω procedure partitions the base relations of ω′ on anc(X) ∪ {X}. In the1761

heavy case, Ω traverses to the subtrees of ω′ as in the previous case except the base relations1762

are replaced by the heavy parts of the relations. The delta for the view constructed at X1763

can be computed in constant time.1764

In the light case, Ω builds an access-top VO ω′
at of ω′ with the light parts of the base1765

relations as its leaves, and then τ constructs a view tree ltree following ω′
at. At variable1766

X in ω′
at, τ creates a view VX with schema SX = {X} ∪ depω′

at
(X). Consider an update1767

δR that affects the light part of relation R. While propagating the update up, at VX , the1768

update δR does not fix all variables in SX and the unfixed variables are distributed in δ′
1769

views below VX (δ′ ≤ δ according to the definition of dynamic width). Computing the delta1770

for VX requires finding the values of these unfixed variables in the δ′ views below VX . Since1771

the leaves of ω′
at are the light parts of the base relations, we can fetch the values of unfixed1772

variables in each view in O(N ϵ) time and O(Nδ′ϵ) time in δ′ views. In the worst case, δ′ can1773

be as large as δ, and therefore the update time is O(Nδϵ).1774

Overall, the update time for a single-tuple update to any input relation takes O(Nδϵ)1775

time. ◀1776

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:53

MajorRebalancing(view trees T , threshold θ)

1 let K = parts of base relations
2 foreach Ksig ∈ K do
3 Ksig = {x → K(x)

| x in base relation K, ActualHLs(x, θ) = sig}
4 foreach T ∈ T do recompute views in T

Figure 32 Recomputing all relation parts and affected views in the view trees T based on the
threshold θ.

E.5.3 Processing a Sequence of Single-Tuple Updates1777

As the database evolves under updates, we periodically rebalance the relation partitions and1778

views to account for a new database size and updated degrees of data values. The cost of1779

rebalancing is amortised over a sequence of updates.1780

Major Rebalancing.1781

We loosen the partition threshold to amortise the cost of rebalancing over multiple updates.1782

Instead of the actual database size N , the threshold now depends on a number M for which1783

the invariant
⌊ 1

4 M
⌋

≤ N < M always holds. If the database size falls below ⌊ 1
4 M⌋ or reaches1784

M , we perform major rebalancing, where we halve or respectively double M , followed by1785

strictly repartitioning the relation parts with the new threshold M ϵ and recomputing the1786

views. Figure 32 shows the major rebalancing procedure. For any base relation K and tuple1787

x contained in K, the procedure computes the HL-signature sig of x based on the threshold1788

θ and inserts x into Ksig (Line 3). It then recomputes all views in the views trees (Line 4).1789

▶ Proposition 50. Given a hierarchical CQAP Q(O|I) with static width w, a canonical VO1790

ω for Q, a database of size N , and ϵ ∈ [0, 1], major rebalancing of the views in the view trees1791

in ViewTrees(ω, (O|I)) takes O(N1+(w−1)ϵ) time.1792

Proof. Consider the major rebalancing procedure from Figure 32. The relation parts can be1793

computed in O(N) time. Proposition 36 implies that the affected views can be recomputed1794

in time O(N1+(w−1)ϵ). ◀1795

The cost of major rebalancing is amortised over Ω(M) updates. After a major rebalancing1796

step, it holds that N = 1
2 M (after doubling), or N = 1

2 M − 1
2 or N = 1

2 M − 1 (after halving).1797

To violate the size invariant
⌊ 1

4 M
⌋

≤ N < M and trigger another major rebalancing, the1798

number of required updates is at least 1
4 M . The amortised major rebalancing time is then1799

O(N1+(w−1)ϵ). By Proposition 21, we have δ = w or δ = w − 1; hence, the amortised major1800

rebalancing time is O(M δϵ).1801

Minor Rebalancing.1802

After an update δR = {x → m} to relation R, we check the degrees of the values in x.1803

Consider a partition key k that is included in the schema of x and the projection v of x onto1804

k. If v is included in a relation part that is light on k but the degree of v is not below 3
2 M ϵ

1805

in at least one base relation, all tuples including v are moved to relation parts that are heavy1806

on v. Likewise, if v is in a relation part that is heavy on k but the degree of v is below 1
2 M ϵ

1807

in all base relations, all tuples including v are moved to relation parts that are light on v.1808

CVIT 2016

23:54 Conjunctive Queries with Free Access Patterns under Updates

MinorRebalancing(trees T , value v, threshold θ)

1 let K = parts of base relations
2 foreach Ksig ∈ K do
3 foreach x ∈ σSch(v)=vKsig do
4 let sig′ = ActualHLs(x, θ)
5 foreach T ∈ T do Apply(T, δKsig′ = {x → Ksig(x)})
6 foreach T ∈ T do Apply(T, δKsig = {x → −Ksig(x)})

Figure 33 Moving tuples x containing v to relation parts whose HL-signature matches the degree
of v in base relations.

Figure 33 shows the minor rebalancing procedure that moves tuples including v to relation1809

parts whose HL-signature matches the degree of v in the base relations. For each tuple x in a1810

relation part Ksig, it first computes the actual HL-signature sig′ of x based on the threshold1811

θ (Line 4). It then inserts x into Ksig′ (Line 5) and deletes it from Ksig (Line 6).1812

▶ Proposition 51. Given a hierarchical CQAP Q(O|I) with dynamic width δ, a canonical1813

VO ω for Q, a database of size N , and ϵ ∈ [0, 1], minor rebalancing of the views in the view1814

trees in ViewTrees(ω, (O|I)) takes O(N (δ+1)ϵ) time.1815

Proof. Figure 33 shows the procedure for minor rebalancing of tuples containing the given1816

value v to relation parts whose signature matches the degree of v in base relations. Minor1817

rebalancing either moves O(3
2 M ϵ) tuples that have v to relation parts that are heavy on v1818

(light to heavy) or O(1
2 M ϵ) tuples that have v to relation parts that are light on v (heavy to1819

light). Each move is by an insert followed by a delete, which takes O(Nδϵ) time, as discussed1820

in the proof of Proposition 49. Since there are O(M ϵ) such moves and the size invariant1821 ⌊ 1
4 M

⌋
≤ N < M holds, the total time is O(N (δ+1)ϵ). ◀1822

The cost of minor rebalancing is amortised over Ω(M ϵ) updates. This lower bound on1823

the number of updates is due to the gap between the two thresholds in the heavy and light1824

part conditions. Hence, the amortised minor rebalancing time is O(Nδϵ).1825

Figure 34 gives the trigger procedure OnUpdate that maintains a set T of view trees under1826

a sequence of single-tuple updates to input relations. It first applies an update δR = {x → m}1827

to the view trees from T using UpdateTrees from Figure 29 (Line 1). If this update leads1828

to a violation of the size invariant
⌊ 1

4 M
⌋

≤ N < M , it invokes MajorRebalancing to1829

recompute the relation parts and views (Lines 2-7). Otherwise, it computes the transient1830

HL-signature {k1 → s1, . . . , kn → sn} of x (Line 10). If for any si, we have si = L but there1831

exists a relation such that the degree of x[ki] is at least 3
2 M ϵ, or it holds si = H but the1832

degree of x[ki] is below 1
2 M ϵ in all relations, it invokes MinorRebalancing to move all1833

tuples containing x[ki] to the relation parts whose HL-signature matches the degree of x[ki]1834

in base relations (Lines 11-14).1835

We state the amortised maintenance time of our approach under a sequence of single-tuple1836

updates.1837

▶ Proposition 52. Given a hierarchical CQAP Q(O|I) with dynamic width δ, a canonical1838

VO ω for Q, a database of size N , and ϵ ∈ [0, 1], maintaining the views in the view trees1839

in ViewTrees(ω, (O|I)) under a sequence of single-tuple updates takes O(Nδϵ) amortised1840

time per single-tuple update.1841

A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 23:55

OnUpdate(view trees T , update δR)

1 UpdateTrees(T , δR)
2 if (|D| = M)
3 M = 2M

4 MajorRebalancing(T , M ϵ)
5 else if (|D| <

⌊ 1
4 M

⌋
)

6 M =
⌊ 1

2 M
⌋

− 1
7 MajorRebalancing(T , M ϵ)
8 else
9 let δR = {x → m}

10 let {k1 → s1, ..., kn → sn} = TransientHLs(x)
11 foreach i ∈ [n] do
12 if (si = L and ∃K ∈ D: |σki=x[ki]K| ≥ 3

2 M ϵ) or
13 (si = H and ∀K ∈ D: |σki=x[ki]K| < 1

2 M ϵ)
14 MinorRebalancing(T , x[ki], M ϵ)

Figure 34 Updating a set of view trees T under a sequence of single-tuple updates to base
relations. D is the database. The global variable M is set to 2|D| + 1 in the preprocessing stage.

Proof. By Proposition 50, a major rebalancing step requires O(N1+(w−1)ϵ) time. This time1842

is amortised over Ω(N) updates executed before the rebalancing step. Hence, the amortised1843

time of major rebalancing is O(N (w−1)ϵ). Since δ = w or δ = w − 1, we conclude that the1844

amortised time for major rebalancing is O(Nδϵ). By Proposition 51, a minor rebalancing1845

step requires O(N (δ+1)ϵ) time, which is amortised over Ω(N) previous updates. This results1846

in O(Nδϵ) amortised minor rebalancing time. The formal proof for the amortised time upper1847

bound is a straightforward extension of the amortisation proof in [22]. In [22], an update to1848

a relation R can trigger a rebalancing step in which tuples are moved between the different1849

parts of R only. Our partitioning strategy takes the degrees of values in all relations into1850

account (see Section 2). Hence, an update to a relation can require to move tuples in parts of1851

other relations. This, however, adds only a constant factor to the overall amortised time. ◀1852

E.6 Proof of Theorem 151853

▶ Theorem 15. Let any CQAP Q with static width w and dynamic width δ, a database1854

of size N , and ϵ ∈ [0, 1]. If Q’s fracture is hierarchical, then Q admits O(N1+(w−1)ϵ)1855

preprocessing time, O(N1−ϵ) enumeration delay, and O(Nδϵ) amortised update time for1856

single-tuple updates.1857

Consider a CQAP query Q with static width w and dynamic width δ. Assume that the1858

fracture Q† of Q is hierarchical. In the preprocessing stage, we construct a set of view trees1859

representing the result of Q†. These view trees can be materialised in O(N1+(w−1)ϵ) time1860

(Propositions 36) and can be maintained with O(Nδϵ) amortised time under single-tuple1861

updates (Proposition 52). Given any input tuple, the view trees allow for the enumeration of1862

the result of Q with O(N1−ϵ) enumeration delay (Proposition 45).1863

CVIT 2016

23:56 Conjunctive Queries with Free Access Patterns under Updates

E.7 Proof of Corollary 161864

▶ Corollary 16. (Theorem 15). Let any query in CQAP1, a database of size N , and ϵ ∈1865

[0, 1]. Then Q admits O(N1+ϵ) preprocessing time, O(N1−ϵ) enumeration delay, and O(N ϵ)1866

amortised update time for single-tuple updates.1867

We first show that CQAP1 queries have dynamic width 1.1868

▶ Lemma 53. Every CQAP1 query has dynamic width 1.1869

Proof. Consider a CQAP1 query Q and its fracture Q†. We first show that the dynamic1870

width of Q is at least 1. By definition, Q† must be hierarchical and almost free-dominant or1871

almost input-dominant. Assume first that Q† is almost free-dominant. This means that Q†1872

contains a bound variable X and an atom R(Y) ∈ atoms(X) such that:1873

free(atoms(X)) ̸⊆ Y (6)1874
1875

Let ω = (Tω, depω) be an arbitrary access-top variable order for Q†. Since the schema of1876

each atom in atoms(X) contains X, all variables in free(atoms(X)) depend on X. Hence,1877

each variable in free(atoms(X)) must be on a root-to-leaf path with X. Since X is bound,1878

the variables in free(atoms(X)) cannot be contained in ωX . Hence, they must be contained1879

in ancω(X). This implies that free(atoms(X)) ⊆ ({X} ∪ depω(X)). By Assumption (6),1880

ρQX
(({X} ∪ depω(X)) \ Y) must be at least 1. This implies that ρ∗

QX
(({X} ∪ depω(X)) \ Y)1881

must be at least 1 (Lemma 20). It follows that δ(ω) ≥ 1. Since ω is an arbitrary access-top1882

variable order for Q†, we derive that the dynamic width of Q is at least 1.1883

The case that the fracture Q† is almost input-dominant is handled analogously. The1884

query Q† must contain an output variable X and an atom R(Y) ∈ atoms(X) such that:1885

in(atoms(X)) ̸⊆ Y (7)1886
1887

Consider any access-top variable order ω = (Tω, depω) for Q†. Since X is output, the1888

variables in in(atoms(X)) must be contained in ancω(X). This means that in(atoms(X)) ⊆1889

({X} ∪ depω(X)). By Assumption (7), ρ∗
QX

(({X} ∪ depω(X)) \ Y) must be at least 1. It1890

follows that δ(ω) ≥ 1. Therefore, the dynamic width of Q must be at least 1.1891

We now show that the dynamic width of Q is at most 1. Assume that I and O are the1892

input and respectively the output variables of Q†. Let ω be a canonical variable order of Q†.1893

By Lemma 30, the function AccessTop(ω, O, I) in Figure 9 (Section E.3.1) constructs an1894

access-top variable order ωt for Q† with dynamic width κ(ω, I, O), where1895

κ(ω, I, O) = max
Y ∈bound(ω)

Z∈out(ω)

max
R(Y)∈atoms(ωY)

1896

{ρ∗
QY

((vars(ωY) ∩ F) \ Y), ρ∗
QZ

((vars(ωZ) ∩ I) \ Y)}1897
1898

with F = I ∪ O. Recall that Q† is almost free- or almost input-dominant. Consider1899

an arbitrary variable X in ω and an atom R(Y) containing X. If X is bound, then1900

ρ∗
QX

((vars(ωX) ∩ F) \ Y) can be at most 1. Similarly, if X is output, then ρ∗
QX

((vars(ωX) ∩1901

I) \ Y) can be at most 1. It follows that κ(ω, I, O) is at most 1. This implies that ωt is1902

an access-top variable order for Q† with dynamic width at most 1. We conclude that the1903

dynamic width of Q must be at most 1. ◀1904

We are ready to prove Corollary 16. Consider a CQAP1 query Q, a database of size1905

N , and ϵ ∈ [0, 1]. By Lemma 53, Q has dynamic width δ = 1. By Proposition 21, the1906

static width of Q is at most w = 2. Using Theorem 15, we conclude that Q can be1907

evaluated with O(N1+(w−1)ϵ) = O(N1+ϵ) preprocessing time, O(N1−ϵ) enumeration delay,1908

and O(Nδϵ) = O(N ϵ) amortised update.1909

	1 Introduction
	2 Preliminaries
	3 Conjunctive Queries with Free Access Patterns
	3.1 Variable Orders
	3.2 Width Measures

	4 CQAP Evaluation
	4.1 Preprocessing
	4.2 Enumeration
	4.3 Updates

	5 A Dichotomy for CQAPs
	6 Trade-Offs for CQAPs with Hierarchical Fractures
	6.1 Data Partitioning
	6.2 Preprocessing
	6.3 Updates

	7 Related Work
	8 Conclusion
	A Missing Details in Section 2
	A.1 Example Data Structure Conforming to the Computational Model

	B Missing Details in Section 3
	B.1 Width measures

	C Missing Details in Section 4
	C.1 Proof of Theorem 7
	C.2 Evaluation of Cyclic CQAPs

	D Missing Details in Section 5
	D.1 Proof of Theorem 12

	E Missing Details in Section 6
	E.1 Comparison with Prior Approaches
	E.2 Further Notation
	E.3 Preprocessing
	E.3.1 From Canonical to Access-Top VOs
	E.3.2 VOs Describing Evaluation Strategies
	E.3.3 View Trees Encoding the Query Result

	E.4 Enumeration
	E.4.1 View Iterators
	E.4.2 Generalised View Iterators
	E.4.3 Enumeration Procedure

	E.5 Updates
	E.5.1 Determining the Relation Part of a Tuple
	E.5.2 Processing a Single-Tuple Update
	E.5.3 Processing a Sequence of Single-Tuple Updates

	E.6 Proof of Theorem 15
	E.7 Proof of Corollary 16

