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Abstract

In most social choice settings, the participating agents express their preferences1

over the different alternatives in the form of linear orderings. While this clearly2

simplifies preference elicitation, it inevitably leads to poor performance with respect3

to optimizing a cardinal objective, such as the social welfare, since the values of4

the agents remain virtually unknown. This loss in performance because of lack of5

information is measured by the notion of distortion. A recent array of works put6

forward the agenda of designing mechanisms that learn the values of the agents for7

a small number of alternatives via queries, and use this limited extra information8

to make better-informed decisions, thus improving distortion. Following this9

agenda, in this work we focus on a class of combinatorial problems that includes10

most well-known matching problems and several of their generalizations, such11

as One-Sided Matching, Two-Sided Matching, General Graph Matching, and k-12

Constrained Resource Allocation. We design two-query mechanisms that achieve13

the best-possible worst-case distortion in terms of social welfare, and outperform14

the best-possible expected distortion achieved by randomized ordinal mechanisms.15

1 Introduction16

The notion of distortion in social choice settings was defined to capture the loss in aggregate17

objectives due to the lack of precise information about the preferences of the participants [Procaccia18

and Rosenschein, 2006]. More concretely, the distortion was originally defined as a measure of the19

deterioration of the total happiness of the agents when access is given only to the (ordinal) preference20

rankings of the agents, rather than to the complete numerical (cardinal) information about their21

preferences. This research agenda has successfully been applied to a plethora of different settings,22

giving rise to a rich and vibrant line of work in major venues at the intersection of computer science23

and economics. For a comprehensive overview, see the survey of Anshelevich et al. [2021].24

Out of all of these scenarios, some of the most fundamental are matching problems, in which agents25

are matched to items or other agents, aiming to maximize the social welfare of the matching (the total26

value of the agents). An example is the classic One-Sided Matching setting [Hylland and Zeckhauser,27

1979], where the goal is to match n items to n agents based on the preferences of the agents over28

the items. For this setting, Filos-Ratsikas et al. [2014] showed that the best achievable distortion is29
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Θ(
√
n). Importantly, this guarantee is only possible if one is allowed to use randomization and the30

values of the agents are normalized.131

Moving on from merely preference rankings, Amanatidis et al. [2021b] recently put forward the32

agenda of studying the tradeoffs between information and efficiency, when the employed mechanisms33

are equipped with the capability of learning the values of the agents via queries. The rationale is34

that asking the agents for more detailed information about only a few options is still cognitively35

not too burdensome, and could result in notable improvements on the distortion. This was indeed36

confirmed in that work for general social choice, and in a follow-up work for several matching37

problems [Amanatidis et al., 2021a]. Specifically, the latter work shows that it is possible to obtain38

distortion O(n1/k) with O(log n) queries per agent for any constant integer k, and distortion O(1)39

with O(log2 n) queries per agent. Crucially, the mechanisms achieving these bounds do not use40

randomization nor demand the values to be normalized.41

While these works make a significant first step, they leave some important questions unanswered.42

The mechanisms they propose require a logarithmic number of queries to achieve any significant43

improvement. Answering that many queries might still be cognitively too demanding for the agents,44

especially when there is a large number of possible options. The main high-level motivation of this45

research agenda, from our perspective, is that a small amount of information can be more valuable46

than randomization. But what does really constitute a “small amount”? Ideally, we would like to47

design mechanisms that make only a few queries per agent, independently of the size of the input48

parameters. Since with a single query, sub-linear distortion bounds are not possible [Amanatidis49

et al., 2021a,b], the first fundamental question that we would like to answer is the following:50

What is the best achievable distortion when we can only ask two queries per agent?51

1.1 Results and Technical Overview52

We settle the aforementioned question for several matching problems, including One-Sided Matching,53

Two-Sided Matching, General Graph Matching, and other more general graph-theoretic problems.54

For all matching problems considered, we show that there is a deterministic mechanism that makes55

two queries per agent, runs in polynomial time, and achieves a distortion of O(
√
n). This upper56

bound is based on a novel mechanism, which we call MATCH-TWOQUERIES in the case of One-57

Sided Matching (see Mechanism 1). The mechanism asks two queries per agent and computes a58

maximum-weight matching based of the revealed values due to these queries. It starts by querying the59

agents at the first position of their preference rankings. For the second query, it computes a certain60

type of assignment A of agents to items (or agents to agents in more general matching problems), to61

which we refer as a sufficiently representative assignment, and queries the agents about the items they62

are assigned to in A. The existence of such an assignment for all instances is far from trivial, and one63

of our main technical contributions is to show its existence and efficient computation for the wide64

range of problems we consider.65

We also show that no deterministic mechanism for these settings that makes two queries per agent66

can achieve a distortion better than Ω(
√
n). This lower bound follows by a more general construction67

yielding a lower bound of Ω(n1/λ) on the distortion of any mechanism that makes a constant number68

λ of queries for any of these mechanisms. This mirrors the corresponding lower bounds of Amanatidis69

et al. [2021a] for One-Sided Matching.70

While our results apply to general matching settings, their most impressive implications are for One-71

Sided Matching: We show that by using only two cardinal queries per agent, we can match the bound72

of Θ(
√
n) for purely ordinal mechanisms, without requiring randomization or any normalization.73

MATCH-TWOQUERIES clearly also outperforms another mechanism of Amanatidis et al. [2021a],74

which uses two queries and achieves a distortion of O(n2/3
√

log n) assuming that the values of each75

agent sum up to 1. In contrast, our mechanism works for unrestricted values, and achieves the best76

possible distortion of O(
√
n) based on conceptually much simpler ideas.77

Results for general social choice. Given that our approach works for a wide variety of matching78

problems, one might be curious as to whether similar arguments could be used to show bounds for79

1Note that if any of these assumptions is relaxed, it is impossible to achieve sub-linear distortion using only
ordinal information.
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the general social choice setting, where n agents have preferences over m alternatives, and the goal is80

to select an alternative with high social welfare; this was after all the original setting that Amanatidis81

et al. [2021b] studied in the introduction of the information-distortion tradeoff research agenda. In82

this setting, the situation is quite similar: the upper bounds follow by mechanisms that ask O(logm)83

queries, and nothing positive is known for smaller numbers of queries.84

We show that a mechanism with structure similar to that of MATCH-TWOQUERIES can indeed85

achieve a distortion of O(
√
m) using only two queries, subject to being able to compute a sufficiently86

representative set of alternatives, which is analogous of the sufficiently representative assignment87

in matching problems. It turns out that this property is very closely connected to the notion of an88

(approximately) stable committee [Jiang et al., 2020, Cheng et al., 2020], and it follows that it exists89

when m = Ω(n), thus allowing us to obtain the desired bound of O(
√
m) when this is true. This case90

is quite natural, as it captures instances where a group of people need to decide over a large set of91

possible options (e.g., shortlisting candidates for a job, deciding the best paper for a conference, etc.).92

Interestingly, in contrast to the matching setting for which we show that sufficiently representative93

assignments can be found via a simple greedy algorithm, computing sufficiently representative sets94

of alternatives in general social choice requires rather involved techniques [Jiang et al., 2020, Cheng95

et al., 2020]. An obvious open question here is whether the O(
√
m) bound can also be achieved by96

asking only two queries when m = o(n). This seems to be a more challenging task to prove; we97

discuss it further in Section 6.98

We also show that the bound of O(
√
m) is the best possible, as part of a more general distortion99

lower bound of Ω(m1/λ) for mechanisms that make a constant number λ of queries per agent; the100

latter result significantly improves the previously known lower bound of Ω(m1/2(λ+1)) [Amanatidis101

et al., 2021b].102

Roadmap. For the sake of presentation, we fully demonstrate how our methodology works for the103

One-Sided Matching problem in Section 3. Before doing so, we start with some necessary notation104

and terminology in Section 2. In Section 4, we briefly discuss other graph-theoretic problems for105

which our methodology can be applied; all missing details are presented in the full version. Our106

results for general social choice are presented in Section 5; again, the detailed proofs are deferred to107

the full version. We conclude with some interesting open problems in Section 6.108

1.2 Additional Related Work109

The literature on the distortion of ordinal mechanisms in social choice is long and extensive, focusing110

primarily on settings with normalized utilities (e.g., [Boutilier et al., 2015, Caragiannis et al., 2017,111

Filos-Ratsikas et al., 2020]), or with metric preferences (e.g., [Anshelevich et al., 2018, Anshelevich112

and Postl, 2017, Gkatzelis et al., 2020]); see the survey of Anshelevich et al. [2021] for a detailed113

exposition. The distortion of mechanisms for One-Sided Matching and more general graph-theoretic114

problems has been studied in a series of works for a variety of preference models, but solely with115

ordinal information [Anshelevich and Zhu, 2018, Abramowitz and Anshelevich, 2018, Anshelevich116

and Zhu, 2017, Anshelevich and Sekar, 2016, Filos-Ratsikas et al., 2014, Caragiannis et al., 2016].117

Besides the papers of Amanatidis et al. [2021b,a], the effect of limited cardinal information on the118

distortion has also been studied in other works [Abramowitz et al., 2019, Mandal et al., 2019, 2020,119

Benadè et al., 2021]. Mostly related to us is the paper of Ma et al. [2021] which considered the120

One-Sided Matching problem with a different type of cardinal queries, and showed qualitatively121

similar results to Amanatidis et al. [2021a] for Pareto optimality (rather than social welfare).122

Our upper bound for the general social choice setting makes use of the results of Cheng et al. [2020]123

and Jiang et al. [2020] for (approximately) stable committees (see also Aziz et al. [2017]); a stable124

committee is very similar to a representative set of alternatives in our terminology. Cheng et al.125

[2020] showed that, while exactly stable committees do not always exist [Jiang et al., 2020], finding126

a random version of such committees, coined stable lotteries, is always possible and can be done127

in polynomial time. Later on, Jiang et al. [2020] showed that, via an intricate derandomization128

process, stable lotteries can yield approximately stable committees, where the approximation is a129

small multiplicative constant; for our purposes, this is sufficient. Interestingly, very recently, Ebadian130

et al. [2022] used stable lotteries to construct a purely ordinal randomized social choice mechanism131

that achieves the best possible distortion under unit-sum normalized values.132

3



2 Preliminaries on One-Sided Matching, Mechanisms, and Distortion133

In One-Sided Matching, there is a set N of n agents and a set A of n items. Each agent i ∈ N has134

a value vi,j for each item j ∈ A; we refer to the matrix v = (vi,j)i∈N ,j∈A as the valuation profile.135

A (one-sided) matching X : N → A is a bijection from the set of agents to the set of items, i.e.,136

each agent is matched to a different single item. Our goal is to choose a matching X to maximize137

the social welfare, defined as the total value of the agents for the items they have been matched to138

according to X: SW(X|v) =
∑
i∈N vi,X(i). Usually v is clear from the context, so we then simplify139

our notation to SW(X) for the social welfare of matching X .140

As in most of the related literature, we assume that we do not have access to the valuation profile of141

the agents. Instead, we have access to the ordinal preference �i of each agent i, which is derived142

from the values of the agent for the items, such that a �i b if vi,a ≥ vi,b; we refer to the vector143

�v= (�i)i∈N as the ordinal profile of the agents.144

A mechanismM in our setting operates as follows: It takes as input the ordinal profile �v of the145

agents. It then makes a number λ ≥ 1 of queries per agent to learn part of the valuation profile. In146

particular, each agent is asked her value for at most λ items. Given the answers to the queries, and147

also using the ordinal profile,M computes a feasible solution (here a matching)M(�v).148

In this paper we focus on mechanisms that make two queries per agent, i.e., λ = 2, and compute a149

solution of high social welfare. However, pinpointing an (approximately) optimal solution without150

having full access to the valuation profile of the agents can be quite challenging; the ordinal profile may151

be consistent with a huge number of different valuation profiles, even after the queries. Nevertheless,152

we aim to achieve the best asymptotic performance possible, as quantified by the notion of distortion.153

Definition 1. The distortion of a mechanismM is the worst-case ratio (over the set V of all valuation
profiles in instances with n agents and n items) between the optimal social welfare and the social
welfare of the solution chosen byM:

dist(M) = sup
v∈V,|N |=n,|A|=n

maxX∈X SW(X|v)

SW(M(�v)|v)
,

where X is the set of all matchings between N and A.154

3 An Optimal Two-Query Mechanism155

In this section, we present a mechanism for One-Sided Matching that makes two queries per agent156

and achieves a distortion of O(
√
n). Due to the lower bound of Ω(n1/λ) on the distortion of157

any mechanism that can make up to λ queries per agent shown by Amanatidis et al. [2021a], our158

mechanism is asymptotically best possible when λ = 2.159

Without any normalization assumptions about the valuation functions, it is easy to see that a mecha-160

nism cannot have any guarantee unless it queries every agent about her favorite item. However, there161

are no obvious criteria suggesting how to use the second query. Before we present the details of162

our mechanism, we define a particular type of assignment of agents to items that will be critical for163

deciding where to make the second queries.164

Definition 2. A many-to-one assignment A of agents to items (i.e., each agent is assigned to one165

item, but multiple agents may be assigned to the same item) is a sufficiently representative assignment166

if (a) For every item j ∈ A, there are at most
√
n agents assigned to j; (b) For any matching X , there167

are at most
√
n agents that prefer the item they are matched to in X to the item they are assigned to168

in A.169

A natural question at this point is whether a sufficiently representative assignment exists for any170

instance, and if so, whether it can be efficiently computed. In Section 3.2, we present a simple171

polynomial-time algorithm for this task.172

3.1 The Mechanism173

Our mechanism MATCH-TWOQUERIES (Mechanism 1) first queries every agent about her favorite174

item. Next, it computes a sufficiently representative assignment A (see Section 3.2) and queries each175
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agent about the item she is assigned to in A. Finally, it outputs a matching that maximizes the social176

welfare based only on the revealed values (all other values are set to 0). Although computational177

efficiency is not our primary focus here, if we use a polynomial-time algorithm for computing a178

maximum weight matching (e.g., the Hungarian method [Kuhn, 1956]), MATCH-TWOQUERIES runs179

in polynomial time as well.180

Mechanism 1 MATCH-TWOQUERIES(N ,A,�v)

1: Query each i ∈ N about her favorite item w.r.t. �i
2: Compute a sufficiently representative assignment A
3: Query each agent about the item she is assigned to in A
4: Set all non-revealed values to 0
5: return a maximum-weight perfect matching Y

Of course, if we compare the mechanism’s behaviour to an actual optimal matching X , we expect to181

see that we asked agents about the “wrong” items most of the time: for many agents the second query182

is about better items than what they are matched to in X , and for many agents it is about worse items.183

The desired bound of O(
√
n) on the distortion of MATCH-TWOQUERIES is established by balancing184

the loss due to each of these two cases.185

Theorem 1. MATCH-TWOQUERIES has distortion O(
√
n).186

Proof. Consider any instance with valuation profile v. Let Y be the matching computed by the187

MATCH-TWOQUERIES mechanism when given as input the ordinal profile �v, and let X be an188

optimal matching. Let SWR(Y ) be the revealed social welfare of Y , i.e., the total value of the agents189

for the items they are matched to in Y and for which they were queried about. We will show that190

SW(X) ≤ (1 + 2
√
n) · SWR(Y ), and then use the fact that SW(Y ) ≥ SWR(Y ) to directly get the191

desired bound on the distortion.192

We can write the optimal social welfare as

SW(X) = SWR(X) + SWC(X),

where SWR(X) is the revealed social welfare of X that takes into consideration only the values
revealed by the queries, whereas SWC(X) is the concealed social welfare of X that takes into
consideration only the values not revealed by any queries. Since Y is the matching that maximizes
the social welfare based only on the revealed values, we have that

SWR(X) ≤ SWR(Y ). (1)

To bound the quantity SWC(X), let S be the set of agents who are not queried about the items they
are matched to in X . We partition S into the following two subsets consisting of agents for whom the
second query of the mechanism is used to ask about items that the agents consider better or worse
than the items they are matched to in X . Recall that an agent i is queried about the item A(i) she is
assigned to according to the sufficiently representative assignment A. So, S is partitioned into

S≥ =
{
i ∈ S : vi,A(i) ≥ vi,X(i)

}
, and S< =

{
i ∈ S : vi,A(i) < vi,X(i)

}
.

Given these sets, we can now write

SWC(X) = SW≥C(X) + SW<
C(X),

where
SW≥C(X) =

∑
i∈S≥

vi,X(i)

and
SW<

C(X) =
∑
i∈S<

vi,X(i).

For every item j, let S≥j = {i ∈ S≥ : A(i) = j} be the set of all agents in S≥ that are queried
about j by the mechanism using the second query. Thus, S≥ =

⋃
j∈A S

≥
j . Since A is a sufficiently

5



representative assignment, |S≥j | ≤
√
n for every item j. Therefore,

SW≥C(X) =
∑
j∈A

∑
i∈S≥

j

vi,X(i) ≤
∑
j∈A

∑
i∈S≥

j

vi,j

≤
∑
j∈A
|S≥j | · max

i∈S≥
j

vi,j ≤
√
n
∑
j∈A

max
i∈S≥

j

vi,j

≤
√
n · SWR(Y ). (2)

For the last inequality, recall that A assigns every agent to a single item, and thus the sets S≥j are193

disjoint. In addition, the values of all the agents for the items they are matched to according to A194

are revealed by the second query of the mechanism. Since we can match the agent in S≥j that has195

the maximum value for j to j, and Y maximizes the social welfare based on the revealed values, we196

obtain that SWR(Y ) ≥
∑
j∈Amax

i∈S≥
j
vi,j .197

Next consider the quantity SW<
C(X). By the fact that A is a sufficiently representative assignment, it

follows that |S<| ≤
√
n; otherwise X would constitute a matching for which there are strictly more

than
√
n agents that prefer the item they are matched to in X to the item they are assigned to by A.

Combined with the fact that all agents are queried at the first position of their ordinal preferences, we
obtain

SW<
C(X) =

∑
i∈S<

vi,X(i) ≤
∑
i∈S<

max
j∈A

vi,j

≤ |S<| · max
i∈S<

max
j∈A

vi,j

≤
√
n · SWR(Y ). (3)

The bound follows directly by (1), (2) and (3).198

3.2 Computing Sufficiently Representative Assignments199

To establish the correctness of MATCH-TWOQUERIES, we need to ensure that a sufficiently rep-200

resentative assignment exists for any ordinal profile and that it can be computed efficiently. For201

this we present a simple polynomial time algorithm, which we call
√
n-SERIAL DICTATORSHIP202

(Mechanism 2). This algorithm creates
√
n copies of each item and then runs a serial dictatorship203

algorithm, which first fixes an ordering of the agents and then assigns each agent to her most pre-204

ferred available item according to her ordinal preference. It is easy to see that the running time of205 √
n-SERIAL DICTATORSHIP is polynomial (in particular, it is O(n1.5)).206

Mechanism 2
√
n-SERIAL DICTATORSHIP(N ,A,�v)

1: Let B be a multiset containing
√
n copies of each j ∈ A

2: for every agent i ∈ N do
3: Let αi be a most preferred item of agent i in B
4: Remove αi from B
5: end for
6: return A = (αi)i∈N

Theorem 2. For any instance, the output of
√
n-SERIAL DICTATORSHIP is a sufficiently representa-207

tive assignment.208

Proof. Let A be the output of the algorithm. During the execution of the algorithm, whenever every209

copy of an item has been assigned, we say that such an item is exhausted. Assume, towards a210

contradiction, that A is not a sufficiently representative assignment. By construction, every item211

is assigned to at most
√
n agents, so there must be a matching violating the second condition of212

Definition 2. That is, there is a subset of itemsA′ and a subset of agentsN ′, such that |A′| = |N ′| >213 √
n, and each agent i ∈ N ′ prefers to be assigned to a distinct item βi ∈ A′ (i.e., βi 6= βj for i 6= j)214

instead of the item she is assigned to in A.215
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Consider any agent i ∈ N ′. The fact that this agent was not assigned to βi by the algorithm implies216

that when the agent was picked, item βi was exhausted. Since this is true for all agents in N ′, at217

the end of the algorithm all items of A′ must be exhausted. However, an item is exhausted when all218

its
√
n copies have been assigned and there are n agents in total, so we can only have as many as219

n/
√
n =
√
n exhausted items. This means that |A′| ≤

√
n, a contradiction.220

4 Further Combinatorial Optimization Problems221

The approach of Section 3 can be extended to a much broader class of graph-theoretic problems.222

Informally, it works when the objective is to maximize an additive function over subgraphs of a given223

graph which contain all “small” matchings and have constant maximum degree. To make things more224

concrete, given a constant k ∈ N and a weighted graph G on n nodes, we say that a family F of225

subgraphs of G is a matching extending k-family if:226

• Graphs in F have maximum degree at most k;227

• For any matching M of G of size at most bn/3kc, there is a graph in F containing M .228

Clearly, the set of matchings of a graph is a matching extending 1-family, but it is not hard to see that229

different constraints are also captured, e.g., the set of subgraphs that are unions of disjoint paths and230

even cycles is a matching extending 2-family.231

We are ready to introduce the general problem that we tackle here. As this is a special case of the232

class of problems captured by Ordinal-Max-on-Graphs (introduced by Amanatidis et al. [2021a]), we233

use a similar formulation and name.234

Ordinal-k-Max-on-Graphs: Fix a constant k ∈ N and let N be a set of n agents. Every agent235

i ∈ N has a (private) valuation function vi : N → R≥0. We are given a graph G = (N , E), an236

ordinal profile �v= (�i)i∈N consistent with v = (vi)i∈N , and a concise description of a matching237

extending k-family F . The goal is to find some H ∈ F that maximizes
∑
{i,j}∈E(H) vi(j).238

Besides One-Sided Matching, a large number of problems that are relevant to computational social239

choice are captured by Ordinal-k-Max-on-Graphs. We give a few examples:240

General Graph k-Matching: Given a graphG, find a k-matching of maximum value, i.e., F contains241

the subgraphs of G of maximum degree at most k and is a matching extending k-family. The problem242

becomes the General Graph Matching problem when k = 1; by also assuming that G is bipartite,243

we have the celebrated Two-Sided Matching problem [Gale and Shapley, 1962, Roth and Sotomayor,244

1992].245

k-Constrained Resource Allocation: Given a bipartite graph G = (N1 ∪ N2, E), assign at most k246

nodes ofN2 to each node inN1 so that the total value of the corresponding edges is maximized. That247

is, F contains all 1-to-k matchings of G and is again a matching extending k-family. The problem248

for k = 1 becomes One-Sided Matching. Here N is partitioned into the set N1 of “actual agents”249

and the set N2 of “items”, and vi(j) can be strictly positive only for i ∈ N1, j ∈ N2.250

Short Cycle Packing: Given an integer ` and a weighted complete graph G, find a collection of251

node-disjoint cycles of length at most ` so that their total weight is maximized. Here, F is a matching252

extending 3-family (note that k = 2 for any `). It is worth mentioning that Short Cycle Packing is not253

a generalization of any of the matching problems above. It is also closely related to Clearing Kidney254

`-Exchanges [Abraham et al., 2007].255

It is straightforward to extend the notion of distortion (Definition 1) for Ordinal-k-Max-on-Graphs256

by taking the supremum over all instances of a certain size n and letting X be the set of feasible257

solutions of each instance.258

As already discussed, for One-Sided Matching there is a lower bound of Ω(n1/λ) on the distortion of259

deterministic mechanisms that make up to λ≥1 queries per agent [Amanatidis et al., 2021a]. We can260

get the analogous result for any problem captured by Ordinal-k-Max-on-Graphs using a reduction261

that preserves distortion up to a constant factor. Further, by appropriately using the ideas of Section 3,262

we show that this lower bound is asymptotically tight for the case of two queries. For the statements263

of the theorems below, we assume that k ∈ N is a constant and that for every (general / bipartite)264

graph G, a matching extending k-family F(G) is specified.265
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Theorem 3. No deterministic mechanism using at most λ ≥ 1 queries per agent can achieve a266

distortion better than Ω(n1/λ) for Ordinal-k-Max-on-Graphs.267

For the positive result below, we rely on the existence of a generalization of sufficiently representative268

assignments. While the construction is very similar, the counting argument here is less intuitive269

compared to the case of One-Sided Matching.270

Theorem 4. There is a deterministic mechanism for Ordinal-k-Max-on-Graphs which uses at most271

two queries per agent and has distortion O(
√
n).272

Our mechanisms run in polynomial time whenever there is a polynomial-time algorithm for the full273

information version of the corresponding optimization problem. Luckily, all variants of matching274

problems we presented above can be solved efficiently by Edmond’s algorithm [Edmonds, 1965] or275

its extensions [Marsh III, 1979].276

Corollary 5. There are deterministic polynomial-time mechanisms for General Graph Matching,277

Two-Sided Matching, General Graph k-Matching, and k-Constrained Resource Allocation which all278

use at most two queries per agent and have distortion O(
√
n).279

5 Towards Tight Bounds for General Social Choice280

Here we consider the general social choice setting where a set N of n agents have preferences281

over a set A of m alternatives. As in the One-Sided Matching problem, there is a valuation profile282

v = (vi,j)i∈N ,j∈A specifying the non-negative value that each agent i has for every alternative j.283

The goal is to choose a single alternative x ∈ A to maximize the social welfare, that is, the total value284

of the agents for x: SW(x|v) =
∑
i∈N vi,x. Again, when v is clear from context, we will drop it285

from notation. Similarly to One-Sided Matching and the problems discussed in the previous section,286

v is unknown, and we are only given access to the ordinal profile �v that is induced by v. Social287

choice mechanisms must decide a single alternative based only on �v and the values they can learn288

by making a small number of queries. The notion of distortion (Definition 1) can be extended for289

this setting as well, by taking the supremum over all instances with n agents and m alternatives, and290

letting X be the set A of alternatives.291

For this general social choice setting, Amanatidis et al. [2021b] showed a lower bound of292

Ω
(
m1/(2(λ+1))

)
on the distortion of mechanisms that make at most λ ≥ 1 queries per agent.293

We improve this result by showing a lower bound of Ω(m1/λ) for any constant λ. The full proof of294

the following theorem can be found in the full version.295

Theorem 6. In the social choice setting, the distortion of any deterministic mechanism that makes at296

most a constant number λ ≥ 1 of queries per agent is Ω(m1/λ).297

Proof sketch. LetM be an arbitrary mechanism that makes at most λ ≥ 1 queries per agent. Consider298

the following instance with n agents andm = n alternatives. We assume thatm satisfies the condition299

m ≥ 1
2

∑λ
`=1m

(λ−`+1)/λ + 2, and also that it is superconstant; otherwise the theorem holds trivially.300

We partition the set of alternatives A into λ+ 2 sets A1, A2, ... Aλ+1, Aλ+2, such that301

• |A`| = 1
2m

(λ−`+1)/λ for ` ∈ [λ];302

• |Aλ+1| = 2;303

• |Aλ+2| = m− 1
2

∑λ
`=1m

(λ−`+1)/λ − 2.304

The ordinal profile has the following properties:305

• For every ` ∈ [λ + 1], each alternative j ∈ A` is ranked at position ` by a set Tj,` of306
m
|A`| = Θ

(
m(`−1)/λ) agents.307

• For every ` ∈ [λ], every pair of agents that rank the same alternative in A` at position `, rank308

the same alternative in A`+1 at position `+ 1.309
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• For every agent, the alternatives that she does not rank in the first λ+ 1 positions are ranked310

arbitrarily from position λ+ 2 to m.311

For every agent i, a query ofM for alternative j reveals a value of m−`/λ if i ranks j at position312

` ∈ [λ+ 1], and a value of 0 if i ranks j at any other position.313

Let y be the alternative thatM chooses as the winner for this instance. No matter the choice of y, we314

will define the cardinal profile so that it is consistent to the information revealed by the queries ofM,315

and the values of the agents for alternative y are also consistent to the information that would have316

been revealed, irrespective of whether those values have actually been revealed. That is, any agent317

has a value of m−`/λ for y if she ranks y at position ` ∈ [λ+ 1], and a value of 0 if she ranks y at any318

other position. Hence, the social welfare of y is Θ
(
m(`−1)/λ) ·m−`/λ = Θ(m−1/λ) if y ∈ A` for319

` ∈ [λ+ 1], or 0 if y ∈ Aλ+2. Consequently, to show the desired bound of Ω(m1/λ) on the distortion320

ofM, it suffices to assume that y ∈ A` for some ` ∈ [λ+ 1], and prove that the values of the agents321

that have not been revealed and do not correspond to alternative y can always be defined such that322

there exists an alternative x 6= y with social welfare Ω(1). The remaining details showing that such323

an x always exists can be found in the full version.324

Our approach for all the problems discussed in the previous sections can also be applied to the much325

more general social choice setting, subject to being able to compute a particular set of alternatives.326

Definition 3. Let c ≥ 1 be any constant. A subset of alternatives B ⊆ A with |B| ≤ c ·
√
m is a327

sufficiently representative set if, for every alternative j ∈ A, at most
√
m agents prefer j over their328

favorite alternative in B.329

We now present a mechanism that works under the assumption that sufficiently representative sets of330

alternatives can be (efficiently) computed; we discuss this assumption right after the statement of331

Theorem 7.332

Mechanism 3 SC-TWOQUERIES(N ,A,�v)

1: Query each agent about her favorite alternative
2: Compute a sufficiently representative set B
3: Query each agent for her favorite alternative in B
4: For every j ∈ A, compute the revealed welfare SWR(j)
5: return y ∈ arg maxj∈A SWR(j)

In particular, SC-TWOQUERIES (Mechanism 3) first queries each agent about her overall favorite333

alternative (the one ranked first). Then, given a sufficiently representative set of alternatives B, it334

queries each agent for her favorite alternative in B. Given the answers to these two queries per agent,335

the mechanism outputs an alternative that maximizes the revealed social welfare which is based only336

on the values learned from the queries.337

Theorem 7. The mechanism SC-TWOQUERIES has distortion O(
√
m), when restricted to the social338

choice instances for which a sufficiently representative set of alternatives exists.339

A sufficiently representative set of alternatives trivially exists when m is much larger than n (namely,340

when m = Ω(n2)). In contrast, when m is much smaller than n, sufficiently representative sets of341

alternatives do not always exist.2 Jiang et al. [2020] showed the following useful result:342

Theorem 8 ([Jiang et al., 2020]). For any ξ ∈ [n], there exists a set S of alternatives with |S| ≤343

16 · n/ξ such that for every j ∈ A, there are at most ξ agents that prefer j over their favorite344

alternative in S.345

A set S as in the theorem above is called an approximately stable committee Cheng et al. [2020],346

Jiang et al. [2020]. Clearly, when m = Ω(n) and ξ =
√
n, an approximately stable committee is also347

2For example, for any k >
√
m, consider an instance with n = k ·m! agents, such that for each possible

ordering of the m alternatives there are exactly k agents that have it as their preference. Then, for any subset B
of at most

√
m alternatives and any alternative j ∈ A \B, there are at least k >

√
m agents that prefer j over

any alternative in B.
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a sufficiently representative set with c = 16. Therefore, combining Theorems 7 and 8, we obtain the348

following.349

Corollary 9. When m = Ω(n), SC-TWOQUERIES has distortion O(
√
m).350

6 Conclusion and Open Problems351

In this paper, we showed that for a large class of problems, which includes One-Sided Matching and352

many other well-studied graph-theoretic problems, it is possible to achieve a distortion of O(
√
n)353

using a deterministic mechanism that makes at most two queries per agent, and that this is best354

possible asymptotically. Our whole methodology is based on computing assignments of agents355

to items or other agents that exhibit a very particular structure. In addition, in the social choice356

setting, when m = Ω(n), sets of alternatives with analogous properties can be computed, and our357

methodology yields a two-query mechanism with best possible distortion for this setting as well.358

It is an interesting open problem to design a mechanism that makes two queries and achieves the359

best possible distortion of O(
√
m) when m = o(n), or show that this is impossible. We suspect that360

to obtain a positive result one would need to come up with an adaptive mechanism, which decides361

where to ask each query based on the answers to all previous ones. Another question, about any of362

the problems we considered, is whether one can design mechanisms that make at most a constant363

λ ≥ 3 queries per agent and their distortion matches the lower bound of Ω(n1/λ) (or, in the case of364

social choice, Ω(m1/λ)).365
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