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Preface

The investigations, which led to librationist set theory, began thirty years ago, in the spring of1993, during an afternoon with coffe and a notebook, at Café Ni Muser, in Trondheim, Norway. Ihad just been employed as professor of Philosophy at Universitetet i Trondheim, as was then theendonym of Norwegian University of Science and Technology.It was a struggle to build upon imprecise thoughts to express beliefs precise enough to beuseful. But I pressed on, and began publishing unfinished ideas already in 1997, with [3].There were two factors which gave me impetus to continue publishing essays, which I did notconsider reasonably professional, according to desirable standards for mathematics and logic.Firstly, the word “essay” signifies trial or attempt. Mathematical reality is still without wellknown resolutions, of the paradoxes, which have gained full support. As I, from the outset, havesincerely believed that I stumbled upon a distinct, and advantageous, approach, which might bedeveloped, and brought to bear on the problems, my essays continued.Secondly, I thought it was important to mark priority, as I thought the ideas could becomeuseful for philosophically and mathematically satisfactory type free foundations for reasoning.
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Introduction

"Nur wenn man nicht auf den Nutzen nach aussen sieht,
sondern in der Mathematik selbst auf das Verhältnis der
unbenutzten Teile, bemerkt man das andere und
eigentliche Gesicht dieser Wissenschaft. Es ist nicht
zweckbedacht, sondern unökonomisch und
leidenschaftlich. [. . . ] Die Mathematik ist Tapferkeitsluxus
der reinen Ratio, einer der wenigen die es heute gibt."

Robert Musil, Der mathematische Mensch, Mitteilungen
der Deutschen Mathematiker-Vereinigung, Noº20,page 50, 1912.

This text is as long as it is, and it is a shortening of, and improvement upon, a much longerone, which was at hand some few days ago. The length of the text which was at hand was oneof the reasons I decided to use the documentclass for books. Another reason is that the bookclass makes it possible to number definitions, theorems, lemmas and equations with the samecounter, as can be seen in Section 11.4, and a third one is that I experience better control overthe manuscript by using the book class. But none of these reasons are written in stone, and thetext may be rewrittee to submit as an article.There will not be a focus upon the librationist treatments of paradoxes here, but rather uponhow to achieve a librationist interpretation of classical set theory.So I may address some of the more philosophical issues in this introduction, and some othersmay be addressed incidentally en passant, at various other places.We regard a theory as inconsistent just if it has theses of the form A ∧ ¬A, and take it to bea contradictory just if it has contradictions as theses. So we hold that a theory is inconsistentjust if it is contradictory. Given this, £ is consistent and not contradictory. As a consequence,librationism is not a dialetheist point of view, for dialetheism is canonically characterized, e.g. in[25], as a view which takes some contradictions to be true. Moreover, £ is not a paraconsistentpoint of view, as the latter are not conservative in the sense of Definition 4.0.1. Librationism, perDefinition 4.0.4, may instead be taken to offer an extra-ordinary point of view. To distinguish,take librationism as well to offer a bialethic point of view, and not a dialetheic one.Librationism meets a challenge which it is difficult to see can be met if one holds that contra-dictions are true. The challenge, for dialetheism and as well for librationism, is to explain what
k



l INTRODUCTION

a true paradoxical sentence p says, which its true negation p ¬pcontradicts. According to libra-tionism, as set out here, the true sentence p and the true sentence ¬pare indeed contradictory.For the track of p opposes the track of ¬p, thus, by Definition 14.0.4, what p says opposes what
¬p says, and so p contradicts ¬p.A remark on designator is appropriate. One might hold that a theory is not a set theory ifit presupposes more linguistic resources than the language of set theory, understood as firstorder logic plus the symbol ∈. This tenet is not followed here, and it is instead presupposed thatset theoretic reality should be investigated with such rescources which best reveal it. As willbeceome clear, we make use of set abstracts, and these are not eliminable, due to the fact that
£ and £ are highly non-extensional theories. The symbol ∈, however, is eliminable.As £ interprets classical set theory, it would at least seem misleading to hold that £ is notitself a set theory.Nevertheless, a postulation of, and theory on names of terms, and sentences, is developedin Section 5. (For the use of small upper case letters, see Definition 1.4.4.) Names are taken as
Urelemente in £ and £. Introduced predicates T , for is true, F , for is false, and D, for is provable
in classical logic, hold for some names. A motivation is to obtain a recovery of many of the identitylosses caused by the prevalent non-extensionality of £ and £, and it also serves to connect theLiar type paradoxes with set theoretic paradoxes. So it might be said that librationism is morethan a set theory, but that does not entail that it is not a set theory.



Chapter 1

Formal language

1.1 The number standpoint
The standpoint, which shall be presupposed here, is stronger than that adopted by Kurt Gödelin his classical 1931 work [14]. For it is here assumed that the formal expressions, as the vari-ables, quantifiers, connectives, formulas, and so on, in £ and £, are natural numbers. Saidnatural numbers are denoted by numerals, of a bijective numeral system, which, as per chap-ter 5, are associated with names of formal expressions. Apposition of expressions, and othermanipulations, are accounted for arithmetically.

1.2 The inclusion of abstracts
The pristine primitive formal language of £ and £ is Polish, and without identity symbol or mem-bership symbol. The inclusion of abstracts is a trait shared with (Gandy, 1959), and with manycontributions to the literature on non-classical set theories, including some which were at thetime called property theories1, as e.g. (Gilmore, 1974), and theories by (Cantini, 1996), andothers, where abstracts were used because the principle of extensionality fails.Set theoretic principles beyond number theory are presupposed, to provide the semantics.

1.3 The exclusion of “=” and “∈” from the primitive language
The membership relation will be defined by means of apposition of terms, and the identity relationis defined so that a and b are identical just if they are members of the same sets.

1I think the term "property theory", despite, I believe, its origin with Kurt Gödel, became unfortunate. The openingsentence of Roger Myhill’s article Paradoxes, in Synthese 60 (1984), 129-143, is: “Gödel said to me more than once"There never were any set-theoretic paradoxes, but the property-theoretic paradoxes are still unresolved"; and he maywell have said the same thing in print.”This remark, and cognates, must, from my experience, have had such influence that some later authors used the term"property-theory", for non-extensional set theories, which seek to account for more type-free accounts that approximatenaive abstraction in dealing with the paradoxes.Nevertheless, there are so many non-extensional set theories in the set theory literature, unrelated to theories whichattempt to deal with the paradoxes, that it is not reasonable to consider them property theoretic and not set theoretic.I do not know that Gödel was aware of Dana Scott’s contribution in [28], where the author proves the consistency ofZF including extensionality given the consistency of ZF without the extensionality axiom. Also, I do not know that Gödelwas aware of Gilmore’s contribution [13], and succeeding ones; moreover, Gödel did probably not study [12].
1



2 CHAPTER 1. FORMAL LANGUAGE

1.4 Metalinguistic conventions

Definition 1.4.1

(1) === is metamathematical identification.2
(2) α, β, γ, δ, . . . are arbitrary ordinals.
(3) m,n, o, p, . . . are arbitrary finite ordinals.
(4) ≺,⪯,⪰, and ≻ are the orderings on ordinals.
(5) Σ is the existential quantifier.
(6) Π is the universal quantifier.
(7) ∼ is negation.
(8) & is conjunction.
(9) r is disjunction.

(10) ⇒ is for implication.
(11) ⇔ is for bi-implication.
(12) [x : . . .] is for sets in the metalanguage.
(13) Ω is the term for the set of natural numbers in the underlying theory.
(14) ε stands for membership.
(15) µ is for the least operator.
(16) a, b, c, d, e, f, a′, . . . are arbitrary terms.
(17) i, j, k, l,m, n, i′ . . . are for numerical variables.
(18) o, p, q, r, s, t, o′, . . . are for distinguished constants.
(19) u, v, w, x, y, z, u′, . . . are arbitrary variables.
(20) A,B,C,D,E, F,A′, . . . are arbitrary formulas.
(21) Other letters, or letter-like symbols, may be used as names of distinguished constants.
Definition 1.4.2 (The primitive signs, and their natural number denotata)

(a) •

(b) v̈
(c) ↓

2Occasionally def
=== will be used.
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(d) ∀

(e) ς

(f) c̈
are the primitive signs, which denote numbers 1, 2, 3, 4, 5 and 6, in Ω, respectively.
Definition 1.4.3 ( Strings of symbols-denotata)

(1) ℓ(n) === ⌊log6((n+1) · (6− 1))⌋ invokes the floor function ⌊ ⌋, and defines the length of thenumeral needed to express the positive natural number n in the bijective base-6 numeralsystem.
(2) Concatenation ⌢ is the function given by m⌢ n === m · 6ℓ(n) + n.
(3) We know that ⌢, so defined, is associative.
(4) m ⌢ n may be thought of as the apposition mn, when one thinks of m and n in termsof bijective base-6 numerals, which is what we do for strings of symbols of the formallanguage, via Definitions 1.4.2.

Definition 1.4.4 (The underlines)
To emphasize, and remind, that the expressions are used denote numbers, we in this definitionunderline, and write variable, term, formula, sentence, constant, and so on. To lighten the text,the underlines will not be used as from the next chapter.
Definition 1.4.5 (Primitive versus numerical forms)
An expression is in primitive form if a string of primitive signs, as per Definition 1.4.2, and in
numerical form if it is the corresponding bijective base-6 numeral.
Definition 1.4.6 (Variables)

(1) v̈ is a variable.
(2) A variable succeeded by • is a variable.
(3) Nothing else is a variable.
(4) Variables are terms.

Definition 1.4.7 (Handles)
(1) c̈ is a handle.
(2) A handle succeeded by • is a handle.
(3) Nothing else is a handle.
(4) Handles are terms, without free variables, and so also, as per 1.4.11, constants.
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Definition 1.4.8 (Terms and formulas)
(1) If a and b are terms, ba is a formula.
(2) If A and B are formulas, ↓AB is a formula.
(3) If A is a formula and v is a variable, ∀vA is a formula.
(4) If A is a formula and v is a variable, ςvA is a term.
(5) Nothing else is a term or a formula.

Definition 1.4.9 (Binders, binds and ties)
(1) In ∀vA, ∀ is the binder, and v is the bind of A as well as the tie of ∀. A is the scope of ∀.
(2) In ςvA, ς is the binder, and v is the bind of A as well as the tie of ς. A is the scope of ς.

Definition 1.4.10 (Free and bound variables)
(1) A variable occurrence in a formula, or term, is bound, just if it is a bind, or it is in thescope of a binder with another occurrence as tie.
(2) Variable occurrences in a formula, or term, are free if not bound.
(3) A variable is free in a formula, or term, just if an occurrence is.
(4) A variable is bound in a formula, or term, just if an occurrence is.

Definition 1.4.11 (Sentences and constants)
(1) A term without free variables is a constant.
(2) A formula without free variables is a sentence.

Definition 1.4.12 (Substitution)If A is a formula (a is a term), b is a term and v is a variable, Ab
v is the formula (ab

v is the term)obtained by substituting all free occurrences of v in A (a) with the term b.
Definition 1.4.13 (Substitutability)Term b is substitutable for variable v in formula A (term a) just if no free occurrence of v informula A (term a) is in the scope of a binder, with bind y, where y is a variable of b.
Definition 1.4.14 (Postfixed variable vector notation)We may write A(x, y, z) to signify that variables x, y and z are free in A, and, e.g., a(x, y) to meanthat variables x and y are free in a. A(x, y, b) is short for A(x, y, z)bz.
Definition 1.4.15 (Prefixed variable vector notation)Occasionally ∀v⃗A is written. It conveys the idea that ∀v⃗A is a sentence, and for some n > 0, andvariables v1 . . . vn, ∀v⃗A is ∀v1 . . . ∀vnA, or n = 0 and ∀v⃗A is A.
Definition 1.4.16 (Parentheses, and defined operators for the object language)
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(1) Delimiters for punctuation
(2) ¬A === ↓ AA

(3) (A ∧B) ===↓ ¬A¬B

(4) (A ∨B) === ¬ ↓ AB

(5) (A→ B) === (¬A ∨B)

(6) (A↔ B) === (A→ B) ∧ (B → A)

(7) ∃vA === ¬∀v¬A

(8) a ∈ b === ba

(9) {v|A} === ςvA

Definition 1.4.17Predicates T , F and D are introduced in Section 5, and predicate H in Section ??. These predi-cates are sets, but only have propositions, built up like those which were defined in Section 5, asmembers. The fact that these predicates do not have members which have members, answersfor the choice of a distinct font.
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Chapter 2

Semantics

The underlying theory in the metalanguage isΣ3KPΩ – Kripke-Platek set theory, withΣ3-collection& -separation – where Ω is the least infinite von Neumann ordinal of the meta language.

2.1 The truth operator

Definition 2.1.1

To facilitate reading and accord with (Bjørdal, 2012) we posit:
TA === (∃v)(v ∈ {w|A}), for w === µx(variable(x) & x not free in A) &

v === µx ≻ w(variable(x) & x not free in A)
The conditions on v, w, x are to obtain uniformity, so that TA has a unique definition.

2.2 Fair functions

Definition 2.2.1

For Γ a real number, i.e. a set of natural numbers, and A a formula, we write Γ ⊩ A for AεΓ.
A function Ξ from ordinal numbers to real numbers, i.e. sets of natural numbers, is fair, justif for any ordinal α:

Definition 2.2.2 (Fair functions)
(1) Ξ(α) ⊩↓ AB just if neither Ξ(α) ⊩ A nor Ξ(α) ⊩ B

(2) Ξ(α) ⊩ ∀vA(v) just if Ξ(α) ⊩ Ab
v for all b substitutable for v in A

(3) α ≻ 0 ⇒ (Ξ(α) ⊩ TA⇔ Σγ(γ ≺ α & Πδ(γ ⪯ δ ≺ α⇒ Ξ(δ) ⊩ A)))

7
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Theorem 2.2.3 (The Omega standard)
Ξ(α) ⊩ ∃vA⇔ Ξ(α) ⊩ Ab

v for some b substitutable for v in A.
Proof. Ξ(α) ⊩ ∃vA ⇔ Ξ(α) ⊩ ¬∀v¬A 1⇔ Ξ(α) ̸⊩ ∀v¬A 2⇔ it is not the case that Ξ(α) ⊩ ¬Ab

v

for all b′s substitutable for v in A 1⇔ for some b substitutable for v in A, Ξ(α) ̸⊩ ¬Ab
v

1⇔ Ξ(α) ⊩
Ab

v for some b substitutable for v in A.

2.3 Closure

Definition 2.3.1 (Cover, stabilization and closure)

(1) IN(α,A,Ξ) just if Πβ(α ⪯ β ⇒ Ξ(β) ⊩ TA)

(2) OUT(α,A,Ξ) just if Πβ(α ⪯ β ⇒ Ξ(β)�⊩TA)

(3) IN(A,Ξ) just if ΣαIN(α,A,Ξ)

(4) OUT(A,Ξ) just if ΣαOUT(α,A,Ξ)

(5) STAB(A,Ξ) just if IN(A,Ξ) r OUT(A,Ξ)

(6) UNSTAB(A,Ξ) just if ∼STAB(A,Ξ)

(7) α covers Ξ just if IN(A,Ξ) ⇒ IN(α,A,Ξ)

(8) α stabilizes Ξ just if α covers Ξ, and Ξ(α) ⊩ TA⇒ IN(A,Ξ)

(9) The closure ordinal Ϙ is the least stabilizing ordinal

Theorem 2.3.2 (Herzberger)
There is a closure ordinal:

Proof. It is enough to show that there is a stabilizing ordinal:
Definition 2.3.3

h(A) = µα(IN(α,A,Ξ))

Fact 2.3.4

β = h(A) is Π2 in the Levy hierarchy, as it is is equivalent with
Πγ(β ⪯ γ ⇒ Ξ(γ) ⊩ TA) & Πδ(Πγ(δ ⪯ γ ⇒ Ξ(γ) ⊩ TA) ⇒ β ⪯ δ)
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1. We first show that there is a covering ordinal:

We have
ΠA(IN(A,Ξ) ⇒ Σβ(β = h(A))) (2.3.5)

So
ΠAΣβ(IN(A,Ξ) ⇒ β = h(A)) (2.3.6)

Π2–collection and quantifier rules give us
ΠBΣYΠA(AεB ⇒ Σβ(βεY&(β = h(A)))) (2.3.7)

Instantiate with B = [A : IN(A,Ξ)] to obtain
ΣYΠA(IN(A,Ξ) ⇒ Σβ(βεY&(β = h(A)) (2.3.8)

Let Z be a witness for (2.3.8), and define the least covering ordinal by means of Π2–separation,
κ = [ν : νεZ & Ordinal(ν) & ΣA(IN(A,Ξ) & ν = h(A))] (2.3.9)

Fact 2.3.4 entails that we invoked Π2-collection in the step from (2.3.6) to (2.3.7), and,as Πn-collection implies Σn+1 collection in the context of Kripke–Platek set theory, thisjustifies our choice of Σ3KPΩ as the underlying set theory in the meta language.1
It is worth stressing that £ above all gets its strength from its closures principles for heri-
tors, as introduced in Definition 11.2.3, and not from the strength of the set theory neededto show that there is a closure ordinal. It is for that reason £ obtains sufficient strength tointerpret ZF.

2. We next prove that there is a stabilizing ordinal:
Let [f(n) : nεΩ], by some adaptation of Cantor’s pairing function, be an enumeration of allelements of UNSTAB(Ξ) where each element recurs infinitely often so that if B=f(m) and m ≺

nεΩ, then there is a natural number o, n ≺ oεΩ, such that f(o) = B. Let g(0) = κ and g(n+ 1) =the least ν > g(n) such that
Ξ(ν) ⊩ f(n) ⇔ Ξ(g(n))�⊩f(n)

Let = [γ : ΣmΣν(mεΩ & ν = g(m) & γεν)]. It is obvious that is a limit ordinal which covers
Ξ. It is also clear that if m ≺ nεΩ then g(m) ≺ g(n). Since covers Ξ, it suffices to show that
Ξ() ⊩ TB entails that B in STAB(Ξ), to establish that stabilizes Ξ.

1[32] shows that KP + Σ3-Determinacy suffices for the semantic account of a commensurate system AQI (Arith-
metical Quasi Induction) introduced in [7], and [16] shows this equivalent to KP + Π1

2-Monotone Induction. So a Σ3-admissible ordinal may not be necessary, but it may be needed for the kind of proof we present which connects with thecoding of the formal language with natural numbers of the meta theory. Welch has pointed out in private communicationthat a Σ2-admissible ordinal, without further assumptions, can be proven to be insufficient.
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Suppose Ξ() ⊩ TB. It follows that
a) ΣνΠξ(ν ⪯ ξ ≺ ⇒ Ξ(ξ) ⊩ B)

Since g is increasing with as its range, we will for some natural number mεΩ have that ν ⪯
g(m) ≺ , so that

b) Πξ(g(m) ⪯ ξ ≺ ⇒ Ξ(ξ) ⊩ B)

Suppose B /∈ STAB(Ξ). By our enumeration of unstable elements where each term recursinfinitely often, we have that B = f(n) for some natural number n, m ≺ n ∈ Ω. It follows that
g(m) ≺ g(n) ≺ . From a) and b) we can infer that Ξ(g(n)) ⊩ B, since we supposed that ⊩ TB.From the construction of the function g it follows that Ξ(g(n+1))�⊩¬B, contradicting b). It followsthat Ξ() ⊩ TB only if B ∈ STAB(Ξ), so stabilizes Ξ.

2.4 Validity

Definition 2.4.1

A is valid just if
for all fair functions Ξ, Ξ(Ϙ) ⊩ TA

r

for all fair functions Ξ, Ξ(Ϙ) ⊩ ¬T¬A ∧ ¬TA

Definition 2.4.2 (Varieties of tautology)
(1) |= A for all fair functions Ξ, Ξ(Ϙ) ⊩ ¬T¬A

(2) m|= A for all fair functions Ξ, Ξ(Ϙ) ⊩ ¬T¬A ∧ ¬TA

(3) |=M A for all fair functions Ξ, Ξ(Ϙ) ⊩ TA

|= A signifies that A is valid, or a tautology, and the symbol is occasionally used when it is leftopen whether A is a maximal or a minor validity. m|= A signifies that A is a minor tautology, while
|=M A means that A is a maximal validity.
Theorem 2.4.3 (Relations between varieties of tautology)

(1) m|= A ⇔ |= A & |= ¬A
(2) |= A ⇔ |=M A r m|= A
(3) |=M A ⇔ |= A & �|=¬A

Proof. (1) is obvious.The entailment from the right side to the left side of (2): this holds on account of (I) thefact that if A holds on all ordinals below the closure ordinal Ϙ, as from an ordinal γ ≺ Ϙ, so that
Ξ(Ϙ) ⊩ TA, and therefore |=M A, then A is unbounded under the closure ordinal, so that also
Ξ(Ϙ) ⊩ ¬T¬A and |= A; and (II) the fact that m|= A⇒ |= A.
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The entailment from the left side to the right side of (2): this holds as a consequence of

tertium non datur. If A is unbounded under the closure ordinal, so that Ξ(Ϙ) ⊩ ¬T¬A, eitheralso ¬A is unbounded under the closure ordinal, so that m|= A, or ¬A is not unbounded under theclosure ordinal, i.e. Ξ(Ϙ)�⊩¬T¬¬A. But in the latter case it follows, from Definition 2.2.2.1., that
Ξ(Ϙ) ⊩ TA, and we are done.The entailment from the left side to the right side in (3): It follows from the first sentence ofthe proof of (2) that |=M A ⇒ |= A. Clearly, if |=M A, so that for all fair functions Ξ, Ξ(Ϙ) ⊩ TA, wecannnot have |= ¬A, which holds just if for all fair functions Ξ, Ξ(Ϙ) ⊩ ¬TA. So we are done.The entailment from the right side to he left side of (3): The content in terms of Definition2.4.2 is that

ΠΞ(Ξ(Ϙ) ⊩ ¬T¬A) ⇒ (ΣΞ′(Ξ′(Ϙ) ⊩ TA) ⇒ ΠΞ′′(Ξ′′(Ϙ) ⊩ TA)).

In Prenex normal form this is:
ΣΞΠΞ′ΠΞ′′(Ξ(Ϙ) ⊩ ¬T¬A⇒ (Ξ′(Ϙ) ⊩ TA⇒ Ξ′′(Ϙ) ⊩ TA)),

which is clearly true. So we are done.

2.5 Varieties of orthodoxy
Definition 2.5.1

A sentence A is paradoxical just if A is a minor, i.e. m|= A.

Definition 2.5.2

A set a is paradoxical just if b ∈ a is a minor for some b.
Definition 2.5.3

(1) Formula A is orthodox just if ⊢M ∀v⃗(TA ∨ T¬A).

(2) Term a is orthodox just if x ∈ a is orthodox.
(3) Formula A is apocryphal just if orthodox and ̸⊢M A as well as ̸⊢M ¬A.
(4) Term a is apocryphal just if b ∈ a is apocryphal for a term b.
(5) Formula A is canonical just if orthodox and not apocryphal.
(6) Term a is canonical just if orthodox and not apocryphal.

An apocryphal set: Let s === {v|v ∈ v}. s is apocryphal, for s ∈ s is apocryphal. s ∈ s isapocryphal as it is orthodox and as we neither have ⊢M s ∈ s nor ⊢M s /∈ s. We do not even have
⊢ s ∈ s or ⊢ s /∈ s, given soundness, and the fact that neither |= s ∈ s nor |= s /∈ s.

Canonical formulas and sets abound. x = {y|y ∈ y ∨ y /∈ y} and {x|∃y(x ∈ y)} are examples.

2.6 Non-triviality assumptions
The assumption that there are fair functions for £, and £ below, amounts to the non-triviality ofthe systems. There are fair functions for £ if ZFC is consistent, and for £ under much weakerassumptions.
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Chapter 3

Maxims, theses and modes

Section 2.4 gave a semantic distinction between maximal valdities, or maxims, and minor validi-ties, or minors. In the following we invoke the syntactic notions maxims, minors, theses, modesand alethic comprehension.On account of the important Theorem 2.4.3, we may develop £ and £ as logical systems, butwith the peculiarty that we will have two turnstiles defined in terms om the one ⊢, in the samevein as Theorem 2.4.3.
Presentation resolve 3.0.1

We write ⊢M A just if A is a maxim schema, and ⊢ A if A is thesis schema which may have minorinstance. m⊢ A is written just if is established that ⊢ A and ⊢ ¬A, i.e. that A is a minor. Therelations between the theses correspond with the relations between the varieties of tautology,as set forth in Theorem 2.4.3:
Theorem 3.0.2 (Relations between the varieties of theses)

(1) m⊢ A ⇔ ⊢ A & ⊢ ¬A
(2) ⊢ A ⇔ ⊢M A r m⊢ A
(3) ⊢M A ⇔ ⊢ A & �⊢¬A

Presentation resolve 3.0.3

We assume that £ and £ are sound, so that when ⊢M A we also have that |=M A, and so that
|= B holds if ⊢ A. Given this, we will mostly only need to present the syntactic version of centralpostulates, as it is understood that the semantical versions hold as well. Notice, however, thatthe statement that Ξ(α) ⊨ A for all ordinals α is stronger than the statement that |=M α, and insome sections, as Section 12, the posited postulates make use of the stronger statement.

3.1 Truth maxims

Postulate 3.1.1 (Classical logic maxims)
(L1) ⊢M A→ (B → A)

13
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(L2) ⊢M (A→ (B → C)) → ((A→ B) → (A→ C))

(L3) ⊢M (¬B → ¬A) → (A→ B)

(L4) ⊢M ∀x(A→ B) → (∀xA→ ∀xB)

(L5) ⊢M A→ ∀vA, provided v is not free in A
(L6) ⊢M ∀vA→ Ab

v, provided b is substitutable for v in A
(L7) If ⊢M Γ belongs to (L1 − L6), then ⊢M ∀vΓ belongs to (L1 − L6).

Remark 3.1.2

Postulate 3.4.3.Od3 plays, inter alia, the role of modus ponens.
Remark 3.1.3

(L7) together with Postulate 3.4.3.Od3 makes it possible to show, by adapting the proof ofMetatheorem 45.4 of [17](174–175). that generalization holds as a derived inference.
Definition 3.1.4 (Russell’s set)

r === {x|x /∈ x}

Postulate 3.1.5 (Truth maxims)
(M1) ⊢M T(A→ B) → (TA→ TB)

(M2) ⊢M TA→ ¬T¬A

(M3) ⊢M (Tr ∈ r ∨ Tr /∈ r) → (TA ∨ T¬A)

(M4) ⊢M TA ∨ T¬A ∨ (T¬T¬B → TB)

(M5) ⊢M TA ∨ T¬A ∨ (TB → TTB)

(M6) ⊢M T(TA→ A) → (TA ∨ T¬A)

(M7) ⊢M T(TA→ TTA) → (TA ∨ T¬A)

(M8) ⊢M (¬T¬A→ T¬T¬A) → (TA ∨ T¬A)

(M9) ⊢M ∃vTA→ T∃vA

(M10) ⊢M T∀vA→ ∀vTA

(M11) ⊢M T(TA↔ A) → T(T¬A↔ ¬A).

(M12) ⊢M ∀u(a ∈ u→ b ∈ u) → (Aa
v → Ab

v), for a and b substitutable for v in A.
(M13) a, b ∈

d
→ (∀xT(x ∈ a↔ x ∈ b) → T∀x(x ∈ a↔ x ∈ b) – d as in Sections 3.2 and 11.3.

Proof. (Postulate 3.1.5.M3) This somewhat extends the system presupposed in [4]. Let an or-dinal β be monogamous just if a successor ordinal, so that we for any B have Ξ(δ) ⊩ TB justif Ξ(δ) ⊩ ¬T¬B. The postulate is justified by observing that the antecedent holds just at themonogamous successor ordinals, and all instances of the consequent as well hold at monoga-mous successor ordinals.
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Proof. (Postulate 3.1.5.M4) Let an ordinal γ be reflected, just if Ξ(γ) ⊩ TB, provided Ξ(γ) ⊩
T¬T¬B. Any limit ordinal γ is reflected, for if B holds at all ordinals as from some ordinal below
γ according to Ξ, then also ¬T¬B holds at all ordinals as from some ordinal below γ accordingto Ξ: ¬T¬B holds at η+ 1 according to Ξ if B holds at η according to Ξ, and if B holds all undera limit λ, as from some ordinal below, according to Ξ, then Ξ(λ) ⊩ ¬T¬B expresses that B neverstops recurring below λ according to Ξ.Limit ordinals are reflected, and successors ordinals are monogamous, in the sense of theproof of Postulate Postulate 3.1.5.M3.The content of Postulate Postulate 3.1.5.M4 is that all ordinals are reflected or monogamous,as for a monogamous ordinal δ, Ξ(δ) ⊩ ¬T¬A → TA, and if δ is reflected, Ξ(δ) ⊩ T¬T¬B →
TB.
Proof. (Postulate 3.1.5.M5) Let an ordinal γ be transitive just if for any A,

∃θ(θ ≺ γ & Πξ(θ ⪯ ξ ⇒ Ξ(ξ) ⊩ A))

only if
∃θ(θ ≺ γ & Πξ(θ ⪯ ξ ⇒ Ξ(ξ) ⊩ TA))

Limit ordinals are transitive, and successors ordinals are monogamous.The content of M5 is that the ordinals either are transitive, or monogamous, in the sense ofthe proof of Postulate 3.1.5.M3. Any given ordinal γ is monogamous just if Ξ(γ) ⊩ ¬T¬A→ TA,and it is is transitive just if Ξ(δ) ⊩ TA→ TTA.
Proof. (Postulate 3.1.5.M6) At successor ordinals this holds, because there the consequent istrue. Let λ be a limit ordinal, and let ρ be such that

Πξ(ρ ⪯ ξ ≺ λ) ⇒ Ξ(ξ) ⊩ TA→ A.

Suppose there is some ordinal ϱ ≺ λ and ρ ≺ ϱ such that Ξ(ϱ) ⊩ A. If so, Ξ(λ) ⊩ TA. If there,on the other hand, is no ordinal ϱ ≺ λ and ρ ≺ ϱ such that Ξ(ϱ) ⊩ A, then Ξ(λ) ⊩ T¬A.

Proof. (Postulate 3.1.5.M7)
Suppose

a) ⊢M T(TA→ ¬T¬A).
So, by Postulate 3.1.5.M1,

b) ⊢M TTA→ T¬T¬A.
From Postulate 3.1.5.M4 we have

c) ⊢M (¬Tr ∈ r ∧ ¬Tr /∈ r) → (T¬T¬A→ TA).
So, by truth functional logic from b) and c),

d) ⊢M (¬Tr ∈ r ∧ ¬Tr /∈ r) → (TTA→ TA).
A weakening of a) gives us

e) ⊢M T(TA→ TTA) → T(TA→ ¬T¬TA),

so that, by contraposition and double negation,
f) ⊢M T(TA→ TTA) → T(T¬TA→ ¬TA).
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It follows, bu using Postulate 3.1.5.M6, that
g) ⊢M T(TA→ TTA) → (TTA ∨ T¬TA).

c), d), g) and logic give us
h) ⊢M (¬Tr ∈ r ∧ ¬Tr /∈ r) → (T(TA→ TTA) → (TA ∨ T¬A)).

From a weakening of Postulate 3.1.5.M3 we have
i) ⊢M (Tr ∈ r ∨ Tr /∈ r) → (T(TA→ TTA) → (TA ∨ T¬A)).

A disjunctive syllogism with h) and i) finishes the proof.
Proof. Postulate 3.1.5.M8 This holds at successors as the consequent holds there. Suppose
Ξ(λ) ⊩ ¬TA ∧ ¬T¬A, for limit λ. It follows by Postulate 3.1.5.M6 that Ξ(λ) ⊩ ¬T¬(T¬A ∧ A).But then, Ξ(λ) ⊩ ¬T¬T¬A ∧ ¬T¬A, and we are done.
Proof. Postulate 3.1.5.M9 Obvious ....
Proof. Postulate 3.1.5.M10 Obvious ....
Observation 3.1.6Postulate 3.1.5.M11

⊢M T(TA↔ A) → T(T¬A↔ ¬A)?Suppose Ξ(λ+ 1) ⊩ ¬(T(TA↔ A) → (T¬A↔ ¬A)). As a consequence, Ξ(λ+ 1) ⊩ T(TA↔
A) ∧ ¬T(T¬A ↔ ¬A), so Ξ(λ + 1) ⊩ T(TA ↔ A) as well as Ξ(λ + 1) ⊩ ¬T(T¬A ↔ ¬A). So
Ξ(λ+ 1) ⊩ T(TA ↔ A) as well as Ξ(λ+ 1) ⊩ ¬T¬(T¬A ↔ A), hence Ξ(λ) ⊩ TA ↔ A as well as
Ξ(λ) ⊩ T¬A↔ A. So Ξ(λ) ⊩ ¬A, and ̸⊢M T(TA↔ A) → T(T¬A↔ ¬A).
Proof. (Postulate 3.1.5.M12) The validity of the maxim in Postulate 3.1.5.M12 is shown in theproof of Theorem 7.1.7.5.
Remark 3.1.7

The semantic justification for some of the maxims of Postulate 3.1.5.M1 – Postulate 3.1.5.M12can be lifted from [4](340–341).
Remark 3.1.8

[8](396), indicates that the maxim schemas of Postulate 3.1.5.M6, Postulate 3.1.5.M7 and Pos-tulate 3.1.5.M8, originate with [30].
Remark 3.1.9

The maxims of Postulate 3.1.5.M7 and Postulate 3.1.5.M8 were not included in [4], as the authorthought they were both derivable. The proof of Postulate 3.1.5.M8 shows that this was correctfor its maxim schema, but the proof of Postulate 3.1.5.M7 suggests that Postulate 3.1.5.M3 isneeded for its semantical justification.
Remark 3.1.10

Although the converses of Postulate 3.1.5.M5 and Postulate 3.1.5.M6 hold at limit ordinals, theyare not maxims, for we may at a sucessor σ have that
Ξ(λ) ⊩ (T¬A ∨ TA) ∧ ¬T(TA→ A),

and it happen forA === {x|x /∈ x} ∈ {x|x /∈ x} at σ or σ+1. This contrasts with Remark 69.3.1.(ii)in [8](396).
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3.2 Barcan for hereditarily orthodox co-extensionalities
Let d be as in Theorem11.3.3, so that

⊢M a ∈
d

↔ a ∈ h ∧
d

∈ h ∧ a ⊂
d
).

Theorem 3.2.1

⊢M a, b ∈
d

→ (∀xT(x ∈ a↔ x ∈ b) → T∀x(x ∈ a↔ x ∈ b)).

Proof. Assume
|̸=M a, b ∈

d
→ (∀xT(x ∈ a↔ x ∈ b) → T∀x(x ∈ a↔ x ∈ b).

It follows, by Definitions 2.2.2 and 2.4.2, that for some fair function Ξ′:
⇕

Ξ′(Ϙ) ⊩ ¬T(a, b ∈
d

→ (∀xT(x ∈ a↔ x ∈ b) → T∀x(x ∈ a↔ x ∈ b))) (3.2.2)
Using Definition 2.2.2.3,

⇕
Πγ(γ ≺ Ϙ ⇒ Σδ(γ ⪯ δ ≺ Ϙ & Ξ′(δ) ⊩ a, b ∈

d
∧ ∀xT(x ∈ a↔ x ∈ b) ∧ ¬T∀x(x ∈ a↔ x ∈ b)))(3.2.3)

Case 1/2 - δ is a limit: Suppose Ξ′(δ) ⊩ a, b ∈
d
∧ ∀xT(x ∈ a↔ x ∈ b)∧¬T∀x(x ∈ a↔ x ∈ b).Then, for all constants c : γ,

Ξ′(ψ) ⊩ a, b ∈
d

∧ c ∈ a↔ c ∈ b∧

so as well
Ξ′(ψ) ⊩ a, b ∈

d
∧ ∀x(x ∈ a↔ x ∈ b).

Also, however,
Ξ′(δ) ⊩ ¬T∀x(x ∈ a↔ x ∈ b),

so that for some ψ ⪯ ϕ ⪯ δ,
Ξ′(ϕ) ⊩ c ∈ a↔ c /∈ a.

So we cannot have
Ξ′(δ) ⊩ a, b ∈

d
∧ ∀xT(x ∈ a↔ x ∈ b) ∧ ¬T∀x(x ∈ a↔ x ∈ b)

at a limit δ.Case 2/2 - δ = γ + 1 is a successor. Suppose
Ξ′(δ) ⊩ a, b ∈

d
∧ ∀xT(x ∈ a↔ x ∈ b) ∧ ¬T∀x(x ∈ a↔ x ∈ b).

Then for some constant d,
Ξ′(δ) ⊩ a, b ∈

d
∧ (d ∈ a↔ d ∈ b)d ∈ a ̸↔ d ∈ b).

So
|=M a, b ∈

d
→ (∀xT(x ∈ a↔ x ∈ b) → T∀x(x ∈ a↔ x ∈ b).
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3.3 Truth theses
Postulate 3.3.1 (Truth theses)

(T1) ⊢ TA→ A

(T2) ⊢ A→ TA

(T3) ⊢ T∃vA→ ∃vTA

(T4) ⊢ ∀vTA→ T∀vA

Remark 3.3.2

The theses in 3.3.1 cannot be strengthened to maxims. In the case of Postulate 3.3.1.T1 andPostulate 3.3.1.T2, this follows on account of well known paradoxicalities, as with Russell’s rfrom Definition 3.1.4. In the case of the attestor schema of Postulate 3.3.1.T3, we show thefailure of general maximality in Section 9.2. The failure of the maximality for Postulate 3.3.1.T4,the Barcan thesis, is shown in Section 9.3.
Remark 3.3.3

The following are amongst the more surprising paradoxical theses of £ and £; we define theautocombatant å, and justify the following theses semantically in Theorem 10.3.1:
⊢ ∀x(x ∈ å) & ⊢ ∀x(x /∈ å).

The autocombatant theses are instrumental in showing, in Section 10.4, that the power set
P(a) is paradoxical, unless a is universal, and orthodox in the sense of Definition 7.1.6. This isof importance for the librationist account of infinity, as it helps the avoidance of the Cantorianconclusion that there are nondenumerable infinities.The need to assume the autocombatant theses separately brings to the fore that we have notshown that the formal librationist system is complete.

3.4 Inference modes
We distinguish between simple and complex inference modes. The former are dyadic, and only
¬, T and one occurence of a formula variable are allowed in the formulas in the antecedent andthe consequent. Moreover, T can only occur once in the antecedent and the consequent, and
¬ cannot be preceded by itself. A simple inference mode may also contain one quantifier in theantecedent and in the consequent.We list many simple thetical modes to display the connections with the subsequent simplemaximal modes.
Postulate 3.4.1 (Simple thetical modes)
(Tm1) ⊢ A⇒ ⊢ TA Minor certification

(Tm2) ⊢ A⇒ ⊢ ¬T¬A
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(Tm3) ⊢ ¬A⇒ ⊢ T¬A

(Tm4) ⊢ ¬A⇒ ⊢ ¬TA

(Tm5) ⊢ TA⇒ ⊢ A

(Tm6) ⊢ TA⇒ ⊢ ¬T¬A

(Tm7) ⊢ T¬A⇒ ⊢ ¬A

(Tm8) ⊢ T¬A⇒ ⊢ ¬TA

(Tm9) ⊢ ¬TA⇒ ⊢ ¬A

(Tm10) ⊢ ¬TA⇒ ⊢ T¬A

(Tm11) ⊢ ¬T¬A⇒ ⊢ A

(Tm12) ⊢ ¬T¬A⇒ ⊢ TA

(Tm13) ⊢ ∀vTA⇒ ⊢ T∀vA

(Tm14) ⊢ ¬T∀vA⇒ ⊢ ¬∀vTA

(Tm15) ⊢ T∃vA⇒ ⊢ ∃vTA

The following correlated maximal modes, up to Postulate 3.4.2.Mm13, can be justified by thesimple thetical modes on account of the syntactical correlate of Theorem 2.4.3.3. which saysthat ⊢M A just if ⊢ A & �⊢¬A. Mode Postulate 3.4.2.Mm1 is for example a consequence of theconjunction of the modes provided by Postulate 3.4.1.Tm1 and Postulate 3.4.1.Tm9. The otherquantifier free dependencies are straightforward to establish.Notice that Postulate 3.4.1.Tm13 and Postulate 3.4.1.Tm14 combine to consitute Postulate3.4.2.Mm13. Postulate 3.4.1.Tm15 does not enter such a constitution.
Postulate 3.4.2 (Simple maximal modes)
(Mm1) ⊢M A⇒ ⊢M TA

(Mm2) ⊢M A⇒ ⊢M ¬T¬A

(Mm3) ⊢M ¬A⇒ ⊢M T¬A

(Mm4) ⊢M ¬A⇒ ⊢M ¬TA

(Mm5) ⊢M TA⇒ ⊢M A

(Mm6) ⊢M TA⇒ ⊢M ¬T¬A

(Mm7) ⊢M T¬A⇒ ⊢M ¬A

(Mm8) ⊢M T¬A⇒ ⊢M ¬TA

(Mm9) ⊢M ¬TA⇒ ⊢M ¬A

(Mm10) ⊢M ¬TA⇒ ⊢M T¬A

(Mm11) ⊢M ¬T¬A⇒ ⊢M A
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(Mm12) ⊢M ¬T¬A⇒ ⊢M TA

(Mm13) ⊢M ∀vTA⇒ ⊢M T∀vA

Postulate 3.4.3 (Ordinary distributive modes)
(Od1) ⊢M (A→ B) ⇒ (⊢ A⇒ ⊢ B)

(Od2) ⊢M (A→ B) ⇒ (⊢ ¬B ⇒ ⊢ ¬A)

(Od3) ⊢M (A→ B) ⇒ (⊢M A⇒ ⊢M B

Remark 3.4.4 (On Postulate 3.4.3)
The mode of Postulate 3.4.3.Od3 is a logical consequence of the modes given by Postulate3.4.3.Od1 and Postulate 3.4.3.Od2.
Remark 3.4.5 (On Postulate 3.4.3)

(Ld1) and (Ld2) are equivalent.
Postulate 3.4.6 (Librationist distributive modes)

(Ld1) ⊢ (¬A ∨B) & ⊢ A⇒ (⊢¬A r ⊢ B)

(Ld2) ⊢ (A→ B) ⇒ (⊢M A⇒ ⊢ B)

Postulate 3.4.7 (Complex modes)
Re Postulate 3.4.7.Cm5, see Definition 7.1.6.3.
(Cm1) ⊢M TA ∨ T¬A⇒ ⊢M TA→ A

(Cm2) ⊢M T¬T¬A⇒ ⊢M TA

(Cm3) ⊢M T(TA→ TB) ⇒ ⊢M T(A→ B)

(Cm4) ⊢ A & ⊢ B ⇒ ⊢ ¬T¬A ∧ ¬T¬B

(Cm5) ⊢M O(A(x)) ⇒ ⊢M ∀xTA(x) → T∀xA(x) (The Barcan mode)
(Cm6) ⊢M O(A(x)) ⇒ (⊢M ∃xA⇒ ⊢M Aa

x for some a substitutable for x in A).
(Cm7) ⊢M Aa

v for any constant a⇒ ⊢M ∀vA

Proof. (Postulate 3.4.7.Cm1) By elementary logic, ⊢M TA→ (TA→ A). From Postulate 3.1.5.M2,i.e. ⊢M T¬A → ¬TA, and elementary logic, it again follows that ⊢M ¬TA → (TA → A). As ⊢M
TA ∨ T¬A, the proof is finished by a disjunctive syllogism with Postulate 3.4.7.Cm1.
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Proof. (Postulate 3.4.7.Cm3) Suppose Ξ(Ϙ) ⊩ T(TA → TB). (i) Let ρ be be a ordinal as fromwhich TA→ TB holds, so that

Πξ(ρ ⪯ ξ ≺ Ϙ⇒ Ξ(ξ) ⊩ (TA→ TB).

Thus Ξ(ρ + 1) ⊩ (TA → TB), and therefore Ξ(ρ) ⊩ (A → B). Consequently, succeeding suc-cessors will have TA → TB and A → B. (ii) Let limit ordinal λ ≺ Ϙ, above ρ, have TA → TB,and A → B below, as from ρ. As λ ≺ Ϙ, from the assumption on ρ, Ξ(λ) ⊩ (TA → TB). As
Ξ(λ + 1) ⊩ (TA → TB), also Ξ(λ) ⊩ (A → B). (iii) By a repetition of (i) and (ii) it follows that
A→ B holds as from ρ below Ϙ, so that Ξ(Ϙ) ⊩ T(A→ B).
Proof. (Postulate 3.4.7.Cm5) Suppose |=M O(A) and that |̸=M ∀xTA(x) → T∀xA(x). By Definition2.4.2.3, for at least one fair function Ξ, Ξ(Ϙ) ̸⊩ T(∀xTA(x) → T∀xA(x)). So on account ofDefinition 2.2.2.1 we have that Ξ(Ϙ) ⊩ ¬T(∀xTA(x) → T∀xA(x)) so that Ξ(Ϙ) ⊩ ¬T¬(∀xTA(x) ∧
¬T∀xA(x)). This means that ∀xTA(x) ∧ ¬T∀xA(x)) is unbounded under Ϙ. As |=M O(A), i.e.
∀x(TA(x) ∨ T¬A(x)), for all terms a, either IN(, A(a),Ξ) or IN(,¬A(a),Ξ).
Proof. (Postulate 3.4.7.Cm6) We prove tha validity of this on page 39, in the proof of Theorem9.1.3.

3.5 Alethic comprehension

Postulate 3.5.1 (Alethic comprehension without parameters)
⊢M ∀x(x ∈ {y|A} ↔ TAx

y),where x is substitutable for y in A.
Given Postulate 3.4.7.Cm7, also:

Postulate 3.5.2 (Alethic comprehension with parameters)
⊢M ∀v⃗∀x(x ∈ {y|A} ↔ TAx

y),where x is substitutable for y in A.
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Chapter 4

Ordinary and extraordinary theories

Let L be classical logic:
Definition 4.0.1

(1) T is conservative just if L⊢ A⇒ T⊢ A(2) T is moderate just if T⊢ A⇒ ̸ L⊢ ¬A(3) T is ordinary just if T is conservative and moderate
Corollary 4.0.2Classical logic is ordinary, as it is conservative and moderate.
Definition 4.0.3Theory T is polarized, just if for some sentence B,

T⊢ B & T⊢ ¬B.

Definition 4.0.4Theory T is extra-ordinary just if it is ordinary and polarized.
So-called paraconsistent systems are not ordinary, or extra-ordinary, as they are not conser-vative. As a rule, paraconsistent systems are not even moderate, if polarized, as p ∧ ¬p is takento be a thesis if p is paradoxical. Some non-adjunctive paraconsistent logics, as Jaskowski’s, in[18] (translated in [19]), may be moderate, even if polarized, but are not conservative.
£ and £ are polarized on account of their comprehension principles. They are, moreover, ordi-nary and extra-ordinary, so also moderate and conservative systems. All classical logical thesesare preserved by £ and £, in their language, and no classical logical theses are contradicted by

£ or £.

23



24 CHAPTER 4. ORDINARY AND EXTRAORDINARY THEORIES



Chapter 5

Names, expressions and Urelemente

This chapter is devoted to the introduction of codes of expressions, and the role the codes play inthe theories of sets put forth here. The codes are to be understood as names of the expressionsthey are codes of.

5.1 Codes as names and Urelemente

For expression E , E is the name of E . The name a refers to term a, and the name Arefers to formula A, and we will here mostly be preoccupied with terms which are constants andformulas which are sentences. A and a are Urelemente.We introduce codes for formulas and terms in Definitions 5.2.3 and 5.2.10–5.2.12. The codesare introduced primitively, and not by means of an arithmetization, as with Gödel, and followers.It was noted in the introduction, towards the end:
"Nevertheless, a postulation of, and theory on names of terms, and sentences, isdeveloped in Section 5. (. . . ) Names are taken as Urelemente in £ and £. Introducedpredicates T , for is true, F , for is false, and D, for is provable in classical logic, holdfor some names. A motivation is to obtain a recovery of many of the identity lossescaused by the prevalent non-extensionality of £ and £, and it also serves to connectthe Liar type paradoxes with set theoretic paradoxes . . . ."

One might include codes of other expressions, as variables, quantifiers, connectives, formu-las, and so on, and maintain the same distinction between the Urelement and the expression itrefers to. We have not done that yet in this text.Incidentally, although W.V. Quine used corner quotes for another purpose earlier, it seems tohave been Georg Kreisel who first introduced the notation ⌜A⌝ for Gödel numbers, in [21] and[22] and [23]. We use a slightly different notation than ⌜ ⌝, viz. , as per Definition 5.2.12, todistinguish: one distinct feature is that codes as A and a are not elements of ω, the set offinite von Neumann ordinals, which we use to represent natural numbers, according to £ or £.Notice, e.g., that ςv̈v̈v̈ is the number 5222, as expressed in the binary base-6 numeral system,according to the meta theory. However, according to £ and£, it is, via Definition 1.4.16, the term
{u|u ∈ u}, which we think of as a set, though £ and £ do not think that something is a set.Similarly, for a natural numberm, ∃u(u ∈ u) is the number 6m according to the meta theory.£ and £ do think of ∃u(u ∈ u) as a term, but we have no way to think of ∃u(u ∈ u) as a set,
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or number, provided by £, and suggest that ∃u(u ∈ u) , and similar terms, should instead beregarded as linguistic entities.

5.2 The codes
Definition 5.2.1

1. If a has free variables, a is an Urelemente which is an incomplete name of a.
2. If a is a constant, a is an Urelemente which is a name of a.

Definition 5.2.2

1. If A has free variables, A is an Urelemente which is an incomplete name of A.
2. If A is a sentence, A is an Urelemente which is a name of A.
Definition 5.2.4 introduces the truth predicate T , whose meaning is regulated by Postulate5.2.14, and Definition 5.2.5 introduces the falsity predicate F , whose meaning is regulated byPostulate 5.2.15.The derivability predicate D is taken as primitive, and is not, as with [14], introduced viaarithmetization. This helps us avoid the identification of D with a natural number. T is, similarly,taken as an Urelemente, which is not a number, or a set.

Definition 5.2.3

# === c̈

Definition 5.2.4

T === c̈•

Definition 5.2.5

F === c̈ • •

Definition 5.2.6

D === c̈ • ••

Definition 5.2.7

If a is a term, T a is a formula.
Definition 5.2.8

If a is a term, Fa is a formula.
Definition 5.2.9

If a is a term, Da is a formula.
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Definition 5.2.10

If a is a term, #a is a term.
Definition 5.2.11

If A is a formula, #A is a term.
Definition 5.2.12

A === #A

Definition 5.2.13

a === #a.

Postulate 5.2.14

⊢M ∀x⃗(T A(x⃗) ↔ TA(x⃗))

Postulate 5.2.15

⊢M ∀x⃗(F A(x⃗) ↔ T ¬A(x⃗) )

Postulate 5.2.16

⊢M D A ⇔ Classical logic has A as a thesis.
Definition 5.2.17We take A and B to be Tarski-Lindenbaum-congruent, or alphabetological variants of eachother, just if ⊢M D ∀x(A↔ B) .
Remark 5.2.185.2.14 correlates the truth operator T, which operates upon a sentence A to create a new sen-tence TA, interpreted as it is true that A, with the truth predicate T , and T A is interpreted asproposition A is true.
Remark 5.2.19The primitive derivability predicate D only complies with the last of the Hilbert–Bernays provabil-ity conditions, presupposed for provability predicates to express Gödel’s incompleteness proof,viz.

⊢M D A→ B → (D A → B ).

Remark 5.2.20In the statement Classical logic has A as a thesis in Postulate 5.2.16, we take the language ofthe classical logic to be understood such that ∈ is the only relational predicate, T , F and D aremonadic predicates, TA is interpreted via Definition 2.1.1, while sets, names and propositions areconstants. Parentheses and defined connectives and terms are used in confomity with Definition1.4.16.
Remark 5.2.21
Propositions and characters are elements, but are not sets: It was stressed above that codesof expressions are not sets. But the code of a constant, as a , is a name, and the code of a
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sentence, as a = a , is a proposition. Notice that theorems are sentences, and not propositions.We may say that the names name the corresponding term, and that the sentence names thematching proposition.We take names and propositions to be Urelemente. T , F and D are sets which happen tohave only Urelemente, and, in this case, more precisely, propositions, as members. This followsfrom the fact that T , F and D have their members given by Definitions 5.2.4–5.2.6 and Defini-tion 1.4.16.8. The fact that T , F and D only have propositions as members follows from thepresupposed fact that only Postulates 5.2.14–5.2.16 govern their meaning.We have not postulated sets which only have names as members. But we have allowed namesinto our ontology, so, if a is constant, a is a name which names a. As a = a , a ∈ V.



Chapter 6

The Liar Russellized

In 1925 Frank Ramsey argued, in [26](20), that there is an essential difference between syntac-
tical paradoxes which “involve only logical or mathematical terms such as class and number”,and semantic paradoxes, which “. . . are not purely logical, and cannot be stated in logical termsalone; for they all contain some reference to thought, language, or symbolism”.Ramsey considered Russell’s paradox a canonical representative of syntactic paradoxes, andthe Liar he considered an archetypical semantic paradox.Abraham A. Fraenkel and Yehoshua Bar-Hillel, in [10](1958,5), adjudged:

Since Ramsey [26] it has become customary to distinguish between logical and se-mantic (sometimes also called syntactic or epistemological) antinomies.
Despite this, it will be argued below, that one should take semantic paradoxes, as the Liar, tobe so inextricably intertwined with syntactic paradoxes, as Russell’s paradox, that one shouldnot consider them to be different kinds of paradoxes.Others reached the same conclusion, but on the basis of considerations different from thoseadduced below:Dana Scott argued, in [27](1967), that the Zermelo axioms were justified by type theoreticreasoning:

“The truth is that there is only one way of avoiding the paradoxes: namely, the useof some form of the theory of types. That was at the basis of both Russell’s andZermelo’s intuitions. Indeed the best way to regard Zermelo’s theory is as a sim-plification and extension of Russell’s. (We mean Russell’s simple theory of types, ofcourse.) The simplification was to make the types cumulative.” [27](208)
Alonzo Church, in [9], virtually equated Russell’s theory of types and Alfred Tarski’s resolutionof the Liar paradox, as he stated:

“In the light of this it seems justified to say that Russell’s resolution of the semanticalantinomies is not a different one than Tarski’s but is a special case of it.”[9](756)
The interest of Scott’s and Tarski’s points of view, for our purposes here, are that they, jointly,take Tarski’s resolution of the alleged semantic paradoxes to be the same as Russell’s, and Zer-melo’s, resolution of the, allegedly syntactical, set theoretic paradoxes.So one may, I shall assume, postulate bridge principles, as below, between given, supposedlysyntactical paradoxes, and supposedly semantical paradoxes.
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Theorem 6.0.1There is a semantical liar sentence L equivalent with ¬T L .
Proof. An instance of 5.2.14 is

⊢M T r /∈ r) ↔ Tr /∈ r. (6.0.2)
By a use of alethic comprehension we arrive at

⊢M T r /∈ r) ↔ r ∈ r. (6.0.3)
By negating both sides of the biconditional in 6.0.3, we get

⊢M ¬T r /∈ r) ↔ r /∈ r. (6.0.4)
Observation 6.0.5 (Genealogies of Liar like paradoxes)
One may identify classical liar sentences, and their variants, whose provenances stem from clas-sical Greek philosophy, with the maxims of Theorems as 6.0.4.

Given
Definition 6.0.6

L === r /∈ r,

and a substitution with L for r /∈ r, in 6.0.4, we obtain the more canonical form
⊢M L ↔ ¬T L . (6.0.7)

Semantical paradoxes, as 6.0.7, are resolved as their corresponding set theoretical para-doxes.
Theorem 6.0.8
⊢ L, ⊢ ¬L, ⊢ T L , ⊢ ¬T L , ⊢ T ¬L and ⊢ ¬T ¬L .
Proof. We know that ⊢ r ∈ r and ⊢ r /∈ r, so from Definition 6.0.6, ⊢ L and ⊢ ¬L. Finish withPostulate 3.4.3.Od1 and Postulate 3.4.3.Od2.



Chapter 7

The theory of identity

We improve upon sections 4 and 5 of [4](342–345). An important streamlining is the use of theadditional inference modes provided by Postulate 3.4.7.Cm1–Postulate 3.4.7.Cm3, which arefor that reason shown to be important ingredients in the librationist theory of sets. A valuableconsequence of the inclusion of the needed inference modes is that we do not, as e.g. seen in thesystems of [8], need additional axiomatic principles for having well behaved notions of identityand natural number.

7.1 Membership uniformity
We define the identity relation by means of a notion of membership uniformity, which is similar tothe relation named membership congruency introduced by Abraham A. Fraenkel and YehoshuaBar-Hillel, and discussed in [11](27), though not in the previous edition [10](1958).Membership uniformity, as defined in Definition 7.1.1, does not require that ∀u(u ∈ a ↔ u ∈
b), as that can be shown to be superfluous, by an elementary argument.Notice also that the definiens in Definition 7.1.1 is a conditional, and not a biconditional. Theobservations which justified the analogous definition ∗13 · 01 in Principia Mathematica, will mostprobably not justify the former definition. The sufficiency of Definition 7.1.1, in £ and£, is provenby Theorem 7.1.7.4, and without appealing to principles of predicativity, as in the proof of ∗13 ·01by Alfred N. Whitehead and Bertrand Russell.
Definition 7.1.1

a = b === ∀u(a ∈ u→ b ∈ u)

We say that a and b are membership congruent just if ⊢M ∀u(a ∈ u → b ∈ u). Consult ??;membership congruencies are descendents:
Lemma 7.1.2

⊢M T(∀u(a ∈ u→ b ∈ u) → T∀u(a ∈ u→ b ∈ u))

Proof. Suppose ⊢M ∀u(a ∈ u→ b ∈ u). By instantiation we have:
⊢M T(∀uT((a ∈ u→ b ∈ u) →

(a ∈ {v|∀u(a ∈ u→ v ∈ u)} → b ∈ {v|∀u(a ∈ u→ v ∈ u)}).
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But ⊢M a ∈ {v|∀u(a ∈ u→ v ∈ u)}, so that
⊢M ∀u(a ∈ u→ b ∈ u) → b ∈ {v|∀u(a ∈ u→ v ∈ u)}.

Finish with alethic comprehension and Postulate 3.1.5.M1.
Lemma 7.1.3
⊢M T(a = b→ Ta = b)

Proof. From Definition 7.1.1 and Lemma 7.1.
Lemma 7.1.4

⊢M T(T¬∀u(a ∈ u→ b ∈ u) → ¬∀u(a ∈ u→ b ∈ u))

Proof. Use Lemma 7.1, Postulate 3.1.5.M2 and Postulate 3.4.2.Mm1.
Lemma 7.1.5

⊢M T∀u(a ∈ u→ b ∈ u) → ∀u(a ∈ u→ b ∈ u)

Proof. From Lemma 7.1.4 and Postulate 3.1.5.M6 we obtain
⊢M T∀u(a ∈ u→ b ∈ u) ∨ T¬∀u(a ∈ u→ b ∈ u),

and we finish by using Postulate 3.4.7.Cm1.
Definition 7.1.6

(1) A is orthodox just if ⊢M ∀v⃗(TA ∨ T¬A).

(2) a is orthodox just if ⊢M ∀v⃗∀x(Tx ∈ a ∨ Tx /∈ a).

(3) O(A) for A is orthodox, and O(a) for a is orthodox.
Theorem 7.1.7 (Orthodoxy, equivalence and subsitutability of identicals)

(1) ⊢M Ta = b ∨ Ta ̸= b Orthodoxy
(2) ⊢M a = a Reflexivity
(3) ⊢M a = b ∧ b = c→ a = c Transitivity
(4) ⊢M a = b→ b = a Symmetry
(5) ⊢M a = b→ (Aa

v → Ab
v), where a and b are substitutable for v in A.

Proof.

1. Use Lemma 7.1.4 and Postulate 3.1.5.M6.
2. Trivial
3. Trivial, given Definition 7.1.1
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4. ⊢M ∀u(a ∈ u→ b ∈ u) →

a ∈ {v|∀u(v ∈ u→ a ∈ u)} → b ∈ {v|∀u(v ∈ u→ a ∈ u)}.

But
⊢M a ∈ {v|∀u(v ∈ u→ a ∈ u)}.

So
⊢M ∀u(a ∈ u→ b ∈ u) → b ∈ {v|∀u(v ∈ u→ a ∈ u)}.

By alethic comprehension,
⊢M ∀u(a ∈ u→ b ∈ u) → T∀u(b ∈ u→ a ∈ u).

A permutation of a and b in Lemma 7.1.5 gives us
⊢M T∀u(b ∈ u→ a ∈ u) → ∀u(b ∈ u→ a ∈ u).

So a hypothetical syllogism gives us
⊢M ∀u(a ∈ u→ b ∈ u) → ∀u(b ∈ u→ a ∈ u).

Invoking Definition 7.1.1 suffices to finish.
5. We satisfy the promissory note issued in Remark 3.1 on Postulate 3.1.5.M12. Suppose for

a and b substitutable for v in A, and fair function Ξ,
Ξ(Ϙ)�⊩T(∀u(a ∈ u→ b ∈ u) → (Aa

v → Ab
v)).

On account of the validity of the mode of Postulate 3.4.7.Cm2 we get
Ξ(Ϙ)�⊩T¬T(∀u(a ∈ u→ b ∈ u) ∧Aa

v ∧ ¬Ab
v).

It follows from Definition 2.2.2.1 that
Ξ(Ϙ) ⊩ ¬T¬T(∀u(a ∈ u→ b ∈ u) ∧Aa

v ∧ ¬Ab
v).

On account of Postulate 3.1.5.M1,
Ξ(Ϙ) ⊩ ¬T¬(T∀u(a ∈ u→ b ∈ u) ∧ TAa

v ∧ T¬Ab
v).

From Postulate 3.1.5.M2 we get
Ξ(Ϙ) ⊩ ¬T¬(T∀u(a ∈ u→ b ∈ u) ∧ TAa

v ∧ ¬TAb
v).

On account of the validity of Lemma 7.1.4, we get
Ξ(Ϙ) ⊩ ¬T¬(∀u(a ∈ u→ b ∈ u) ∧ TAa

v ∧ ¬TAb
v).

From alethic comprehension and existential generalization we obtain
Ξ(Ϙ) ⊩ ¬T¬(∀u(a ∈ u→ b ∈ u) ∧ ∃u(a ∈ u ∧ b /∈ u)),

which is impossible. So Postulate 3.1.5.M12 and Theorem 7.1.7.5 are valid, given Definition2.4.2.3, and we are done.
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7.2 Lindenbaum-Tarski congruent terms, and
alphabetological variants

Recall Definitions 5.2.6 and 5.2.9, Postulate 5.2.16 and Definition 5.2.17:Postulates 7.2.1 and 7.2.2 say that identity is an equivalence relation which is neutral withrespect to Lindenbaum-Tarski congruent terms, and alphabetological variants.
Postulate 7.2.1(The Lindenbaum-Tarski closure for identity)

⊢M D ∀x(A(x) ↔ B(x)) → {x|A(x)} = {x|B(x)}

Postulate 7.2.2(Alphabetical indifference)
{x|A(x)} = {x|B(x)} → {x|A(x)} = {y|B(x)yx},

where y is substitutable for x in B.
Postulates 7.2.1 and 7.2.2 compensate somewhat for the loss of extensionality in £ and £,as per Section 10.5, and secure such theorems as:

⊢M {x|A(x)} = {y|A(y) ∧ ∃z(B(z) ∨ ¬B(z))}.



Chapter 8

Arithmetic

First order number theory justified in £
The exposition here takes place in ω, i.e. the least von Neumann ordinal which contains all finitevon Neumann ordinals.
Definition 8.0.1

(1) ∅ = {x|x ̸= x}

(2) a′ = {x|x = a ∨ x ∈ a}

(3) ω = {x|∀y(∅ ∈ y ∧ ∀z(z ∈ y → z′ ∈ y) → x ∈ y)}

Theorem 8.0.2

(1) ⊢M ∅ ∈ ω

(2) ⊢M ∀x(x ∈ ω → x′ ∈ ω)

(3) ω is orthodox
(4) ⊢M ∀y(∅ ∈ y ∧ ∀z(z ∈ y → z′ ∈ y) → ∀x(x ∈ ω → x ∈ y))

(5) ⊢M A(∅) ∧ ∀x(A(x) → A(x′)) → ∀y(y ∈ ω → A(y))

Proof.

1. Combine alethic comprehension and the fact that
⊢M T∀y(∅ ∈ y ∧ ∀z(z ∈ y → z′ ∈ y) → ∅ ∈ y)

2. This follows from alethic comprehension and
⊢M ∀x(T(∀y(∅ ∈ y ∧ ∀z(z ∈ y → z′ ∈ y) → x ∈ y)) →

T(∀y(∅ ∈ y ∧ ∀z(z ∈ y → z′ ∈ y) → x′ ∈ y)))
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3. From logic
⊢M∅ ∈ ω ∧ ∀x(x ∈ ω → x ∈ ω) →
(∀y(∅ ∈ y ∧ ∀x(x ∈ y → x′ ∈ y) → a ∈ y) → a ∈ ω)

By combining with 1 and 2 we have
⊢M ∀y(∅ ∈ y ∧ ∀x(x ∈ y → x′ ∈ y) → a ∈ y) → a ∈ ω)

Postulate 3.4.2.Mm1, Postulate 3.1.5.M1 and alethic comprehension give us
⊢M a ∈ ω → Ta ∈ ω

Postulate 3.4.3.Od3 along with Postulate 3.1.5.M1, Postulate 3.1.5.M2 and Postulate 3.1.5.M6give us
⊢M Ta ∈ ω ∨ Ta /∈ ω

As a was arbitrary, we have
⊢M ∀x(Tx ∈ ω ∨ Tx /∈ ω),

and we are done.
4. Immediate, as it is equivalent with

⊢M ∀x(x ∈ ω → ∀y(∅ ∈ y ∧ ∀z(z ∈ y → z′ ∈ y) → x ∈ y))

5. Confer [8](356): Let, for arbritrary sentence A(x),
A′(x) === A(∅) ∧ ∀y(A(y) → A(z′) → A(x))

By logic,
⊢M A′(∅) & ⊢M ∀x(A′(x) → A′(x′))

Inference mode Postulate 3.4.2.Mm1, and Postulate 3.1.5.M12, give us
⊢M TA′(∅) & ⊢M ∀xT(A′(x) → A′(x′))

By quantifier distribution and Postulate 3.1.5.M1 we get
⊢M TA′(∅) & ⊢M ∀x(TA′(x) → TA′(x′))

Alethic comprehension gives us
⊢M ∅ ∈ {y|A′(y)} & ⊢M ∀x(x ∈ {y|A′(y)} → x′ ∈ {y|A′(y)})

Adjunction gives us
⊢M ∅ ∈ {y|A′(y)} ∧ ∀x(x ∈ {y|A′(y)} → x′ ∈ {y|A′(y)})

4 and the inference of mode Postulate 3.4.3.Od3 give us
⊢M ∀x(x ∈ ω → x ∈ {y|A′(y)})
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From 3 and Postulate 3.4.7.Cm1 we have

⊢M ∀x(Tx ∈ ω → x ∈ ω),

so that
⊢M ∀x(Tx ∈ ω → x ∈ {y|A′(y)})

Alethic comprehension gives us
⊢M ∀x(Tx ∈ ω → TA′(x)),

which, combined with Postulate 3.4.7.Cm3 establish
⊢M ∀x(x ∈ ω → A′(x))

A use of Theorem 8.0.1.2, and rearrangement, finishes the proof.
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Chapter 9

Shortcomings and redresses

We supplement Section 3 with negative results whose justification depend upon Section 7.

9.1 Shortcoming of existential instantiation
Theorem 9.1.1 (Maximal deficit)There are cases such that ⊢M ∃xA and for no term a, ⊢M Aa

x.
Proof. ⊢M ∃x(x = ∅ ↔ r ∈ r), but for no a ⊢M (a = ∅ ↔ r ∈ r).
Corollary 9.1.2Maximal existential instantiation in the form

⊢M ∃xA⇒ for some term a, ⊢M Aa
x

cannot be adopted as an inference rule, as it is not always valid.
Theorem 9.1.3 (Orthodox redress)We show the validity of Postulate 3.4.7.Cm6, as announced on page 20:

⊢M O(A(x)) ⇒ (⊢M ∃xA⇒ ⊢M Aa
x for some a substitutable for x in A).

Proof. Assume that A(x) is orthodox, i.e. ⊢M TA(x) ∨ T¬A(x). (9.1.4)
By soundness,

⊢M ∃xA⇒ |=M ∃xA, so for all fair functions Ξ,Ξ(Ϙ) ⊩ T∃xA. (9.1.5)
As Ϙ is a stabilising ordinal, Ξ(Ϙ) ⊩ ∃xA. (9.1.6)

Given Definition 2.2.2 and Theorem 2.2.3, for a a,Ξ(Ϙ) ⊩ Aa
x. (9.1.7)

As A(x) is orthodox, Ξ(Ϙ) ⊩ TAa
x. (9.1.8)

So |=M Aa
x. (9.1.9)

So Postulate 3.4.7.Cm6 is valid. (9.1.10)
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9.2 Shortcoming of attestor

As stated in Remark 3.3.2, it will here be shown that the attestor schema of Postulate 3.3.1.T3does not in general hold as a maxim, i.e. some instances of the schema are minors.
Theorem 9.2.1For some A,

⊢M T∃xA & ̸⊢M ∃xTA.

Proof. Let A be as in Theorem 9.1.1. Obviously, |=M T∃x(x = ∅ ↔ r ∈ r) holds. Suppose |=M ∃xTA,so that Ξ(Ϙ) ⊩ T∃xTA. It follows that there is an ordinal γ such that Ξ(β) ⊩ ∃xTA holds whenever
γ ≺ β ≺ Ϙ. Let limit ordinal λ satisfy γ ≺ λ ≺ Ϙ, so that Ξ(λ) ⊩ ∃xTA. On account of Definition2.2.2.1 and Definition 2.2.2.2, there is a term a and an ordinal δ such that a = ∅ ↔ r ∈ r holdsat all ordinals θ which satisfy δ ≺ θ ≺ λ. But this is impossible, as r ∈ r holds at some of thoseordinals, and r /∈ r holds at others, and identity is orthodox.

9.3 Shortcoming of the Barcan thesis

As mentioned in Remark 3.3.2, it will be shown that the axiomatic Barcan schema in Postulate3.1.5.M3 does not hold as a maxim, but only as a thesis.The precursor to this result, in a truth theoretic context, is McGee’s paradox, first publishedupon in [24], which we adapt to our context. Compare [8](380–382) and [4](357).First we decide upon some notions:
Definition 9.3.1For r in 9.3.1.5, recall Definition 3.1.4:

(1) a′ === {x|x ∈ a ∨ x = a}.
(2) {a, b} === {x|x ∈ a ∨ x ∈ b}.
(3) {a} === {a, a}.
(4) aω === {u|∀x(⟨∅, a⟩ ∈ x ∧ ∀y, z(⟨y, z⟩ ∈ x→ ⟨y′, {v|v ∈ z}⟩) → u ∈ x)}.
(5) t === {x|x = r ∧ x /∈ x ∧ ¬Tx ∈ x}.
(6) Use 0, 1, 2, . . . for the members of ω.
(7) Let t0 === t and tn+1 === {v|v ∈ tn}.

(8) B(ti) === ∃w(⟨w, ti⟩ ∈ tω) → r /∈ ti

(9) B(x) === ∃w(⟨w, x⟩ ∈ tω) → r /∈ x

Lemma 9.3.2For any a, aω is orthodox.
Proof. Adapt the proof of Theorem 8.0.2.3.



9.3. SHORTCOMING OF THE BARCAN THESIS 41
Lemma 9.3.3

Ξ(λ) ⊩ r = r ∧ r /∈ r ∧ ¬Tr ∈ r,

just if λ is a limit.
Proof. For any successor ordinal χ+1, Ξ(χ+1) ⊩ ¬Tr ∈ r ↔ r ∈ r. Precisely at any limit ordinal
λ, Ξ(λ) ⊩ r /∈ r ∧ ¬Tr ∈ r.

Theorem 9.3.4

Let α ≺ Ϙ be a limit ordinal, and β be α+ ω :

1. Ξ(β) ⊩ ∀xTB(x)

2. Ξ(β) ⊩ ¬T∀xB(x).

Proof.

1. If Ξ(β) ⊩ ¬∃w(⟨w, x⟩ ∈ tω), it follows that Ξ(β) ⊩ TB(x) on account of Lemma 9.3.2. If, onthe other hand, Ξ(β) ⊩ ∃w(⟨w, ti⟩ ∈ tω) we have that Ξ(β) ⊩ TB(ti), as there is a γ ⪰ α+ isuch that
∀δ(α ≺ γ ⪯ δ ≺ β ⇒ Ξ(δ) ⊩ B(ti)).

So for any term y, Ξ(β) ⊩ TB(y), and so Ξ(β) ⊢ ∀xTB(x).
2. Otherwise, Ξ(β) ⊩ T∀xB(x), and we would have Ξ(δ) ⊩ ∀xB(x) as from some ordinal δbelow β and above α. Let δ === α + (n + 1), for finite ordinal n ⪰ 0, be such an ordinal. A

Ξ(δ) ⊩ B(tn), by instantiation, this entails that Ξ(α+(n+1)) ⊩ B(tn). As |= ∃w(⟨w, tn⟩ ∈ tω),it follows that Ξ(α+ (n+ 1)) ⊩ r /∈ tn. As a consequence, Ξ(α+ 1) ⊩ r /∈ t0. But the latterentails Ξ(α) ⊩ (r ̸= r ∨ r ∈ r∨Tr ∈ r) which contradicts Lemma 9.3.3, as α is presupposedto be a limit ordinal.
Theorem 9.3.5

|̸=M ∀xTB(x) → T∀xB(x)

Proof. Theorem 9.3.4 with Definition 2.2.2 entail that
Ξ(β) ̸⊩ ∀xTB(x) → T∀xB(x).

It follows that
Ξ(Ϙ) ̸⊩ T(∀xTB(x) → T∀xB(x)),

and an appeal to Definition 2.4.2.3 finishes the proof.
Corollary 9.3.6

̸⊢M ∀xTB(x) → T∀xB(x)

Corollary 9.3.7

⊢ ∀xTB(x) → T∀xB(x) & ⊢ ∀xTB(x) ∧ ¬T∀xB(x)
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9.4 The orthodox redresses
Theorem 9.1.3 (Orthodox existential instantiation)

⊢M O(A(x)) ⇒ (⊢M ∃xA⇒ ⊢M Aa
x for some a substitutable for x in A).

Proof. As on page 39.
Theorem 9.4.1 (Orthodox attestor)If A(x) is orthodox, then

⊢M T∃xA(x) ⇒ ⊢M ∃xTA(x).

Proof. Appeal to Theorem 9.1.3, and existential generalization.
Theorem 9.4.2 (The Barcan formula holds for orthodox formulas)

⊢M O(B(x)) ⇒ ⊢M (∀xTB(x) → T∀xB(x)).

Proof. As on page 21.
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Manifestations

10.1 Introduction
The manifestation set construction is very strong. We will see below that it has important positiveconsequences for £’s ability to account for strong set theoretic principles.The foci in this section will be upon negative results. We account for the autocombatant, aswas promised in Remark 3.3.3. Next we elucidate the quase universal paradoxicality of powersets, and the prevalent failure of extensionality. We put an emphasis upon relating the construc-tions needed for the results.

10.2 Orthodox manifestation
For the following construction, cfr. [4](345–46), [8](76), [31](695–96) and earlier literature re-ferred to there. One may, plausibly, find that Roger’s theorem and Kleene’s second recursiontheorem are related, but the proof that there are manifestation sets does not rely upon any pre-suppositions of computability.
Definition 10.2.1 (Kuratowskian ordered pairs)

⟨a, b⟩ === {{a}, {a, b}}

Definition 10.2.2 (The manifestation set a of formula A(x, y))

(1) vηb === ∃w(w = ⟨v, b⟩ ∧ w ∈ b)

(2) a === {z|∃x, y(z = ⟨x, y⟩ ∧A(x, y){v|vηy}y )}

(3) a === {v|vηa}

Theorem 10.2.3For formula A(x, y)
⊢M ∀x(x ∈ a↔ TTA(x,a))

Proof. From Definition 10.2.2.3 and alethic comprehension„
⊢M c ∈ a↔ Tcηa
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Combining with Definition 10.2.2.1 we get
⊢M Tcηa ↔ T∃w(w = ⟨c, a⟩ ∧ w ∈ a)

Combinining the two previous steps, Definition 10.2.2.2, alethic comprehension and Postulate3.4.3.Od3 we have
⊢M c ∈ a↔ T∃w(w = ⟨c, a⟩ ∧ T∃x, y(w = ⟨x, y⟩ ∧A(x, y){v|vηy}y ))

By means of the theory of identity we infer
⊢M c ∈ a↔ TTA(c, y){v|vηa}y ,

so that we on account of Definition 10.2.2.3 and Definition 1.4.14 have
⊢M c ∈ a↔ TTA(c,a)

Finish with universal generalization, i.e. Postulate 3.4.7.Cm7.
Corollary 10.2.4 (Orthodox manifestation)

If A(x, y) is orthodox, ⊢M ∀x(x ∈ a↔ A(x,a))

10.3 The heretical autocombatant
In contrast to orthodox manifestation sets, there are many paradoxical ones, for example thefollowing quite heretical one, which generates contradictory theses.
Theorem 10.3.1 (The autocombatant)As indicated in Remark 3.3.3, we, for formula Å(x, y) === x /∈ y, and associated manifestationset å, have the kindred theses for the autocombatant:

⊢ ∀x(x ∈ å) & ⊢ ∀x(x /∈ å).

Proof. We reason semantically on the basis of Theorem 10.2.3, as we have
|=M ∀x(x ∈ å↔ TTx /∈ å).

If λ is any limit below the closure ordinal Ϙ, we will, for any term a, and any fair function
Ξ, have that Ξ(λ) ⊩ a /∈ å; otherwise a contradiction would follow as a /∈ å would hold atsucceeding successor ordinals σ, σ + 1 and σ + 2 below λ. Consequently, we for such a limit λas well have that Ξ(λ + 2) ⊩ a ∈ å. From Definition 2.2.2.2 we have that Ξ(λ) ⊩ ∀x(x /∈ å) and
Ξ(λ + 2) ⊩ ∀x(x ∈ å). As a result, Ξ(Ϙ) ⊩ ¬T¬∀x(x ∈ å) and Ξ(Ϙ) ⊩ ¬T¬∀x(x /∈ å). The prooffinishes by invoking Definition 2.4.2.1.

10.4 Powersets are paradoxical lest as P({x|x = x})

We use standard notation and write
Definition 10.4.1

P(a) === {x|x ⊂ a}.
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As mentioned in Remark 3.3.3, we show that power sets are paradoxical unless they are thepower set of a set b such that ⊢M ∀x(x ∈ b).We follow tradition:

Definition 10.4.2

V === {x|x = x}

Theorem 10.4.3

If it’s a thesis that a is extensionally distinct from V, then the power set P(a) is paradoxical.
Proof.

(1) If ⊢M ∃x(x /∈ a), use the autocombatant å, of Postulate 3.3.3, for which
⊢ ∀x(x ∈ å) & ⊢ ∀x(x /∈ å)

It follows that ⊢ å /∈ P(a) and ⊢ å ∈ P(a), so that P(a) is paradoxical.
(2) If m⊢ ∃x(x /∈ a), ⊢ V ∈ P(a) and ⊢ V /∈ P(a), so P(a) is paradoxical.

10.5 Non-extensionality
The phenomenon of non-extensionality in type free theories is well known, and several havecontributed to the deposit of knowledge.We presuppose the notation imposed by
Definition 10.5.1
a

e
= b === ∀x(x ∈ a↔ x ∈ b).

A particularly simple proof of extensionality failure in £ and £ is obtained by making use ofthe fact that for any limit ordinal λ,
Ξ(λ+ 1) ⊨ {x|x = x} e

= {x|x /∈ x} ∧ {x|x = x} ≠ {x|x /∈ x}.

Consequently, there are sets a and b such that |̸= a e
= b→ a = b, and, a fortiori, |̸=M a

e
= b→ a = b;but ⊢M a

e
= b→ a = b⇒ |=M a

e
= b→ a = b is a soundness requirement, so that ̸⊢M a

e
= b→ a = b.As related in [8](73), Gilmore [13] showed, for a partial set theory, that it proves the existenceof an orthodox set a such that a e

= ∅ and a ̸= ∅. In conversation, Lev Gordeev related that hecommunicated a much simpler proof of the same result, based upon combinatoric logic, in thecontext of Explicit Mathematics, to Solomon Feferman, around 1981. This was published in 1985,with acknowledgement to Gordeev, by Michael Beeson, in [2]. Andrea Cantini, in [8](74), relatesa proof, by Pierluigi Minari, to the effect that we for any orthodox set a may find a distinct orthoxset b such that a and b are nevertheless co-extensional.Theorem 5 (ii) in [4](346) relates the result that Minari’s construction can be generalized, asin Theorem 10.5.2 below, and left it as an exercise to prove.The content of Theorem 10.5.2, just after the next paragraph, is on a par with Theorem 5 (ii)in [4](346), but its proof is more precise than the proof of Theorem 5 in [4](346), and it is moreinformative than the latter.The result expressed by Theorem 10.5.2 appears to be the most general result available,and we do not relate proofs of other non-extensionality results mentioned here, as they arecorollaries.
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Theorem 10.5.2For any ortodox set a there are infinitely many co-extensional and pairwise distinct orthodoxsets which, in their turn, are all co-extensional with a and distinct from a.
Proof. The induction hypothesis, for n > 1, and orthodox sets a1, . . . an, is that

i=n∧
i=1

j=n∧
j=1

(i ̸= j → (ai ̸= aj ∧ ai
e
= aj)). (10.5.3)

Let an+1 be the manifestation set of
(i=n∨
i=1

y = ai ∧
i=n∧
i=1

ai /∈ ai

)
∨
(i=n∧
i=1

y ̸= ai ∧ x ∈ ai

) (10.5.4)

so that, by the logic of identity,
∀x(x ∈an+1 ↔

(
(i=n∨
i=1

an+1 = ai ∧
i=n∧
i=1

ai /∈ ai

)
∨
(i=n∧
i=1

(an+1 ̸= ai ∧ x ∈ ai)
)
)).

(10.5.5)

If ∨i=n
i=1 (an+1 = ai), it follows that ⊢M an+1 ∈ an+1 ↔ an+1 /∈ an+1, which is impossible. So∧i=n

i=1 (an+1 ̸= ai). It follows from the induction hypothesis that ∧i=n
i=1 (ai

e
= an+1). The process canbe iterated ad libitum, so we are done.
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Platforms

We isolate a variety of hereditarily orthodox sets which may be used to interpret classical settheories, via natural strengthenings, despite that £ proves that there are only denumerablymany sets.

11.1 Auxiliaries

Definition 11.1.1 (Co-extensionality)
a

e
= b === ∀x(x ∈ a↔ x ∈ b).

Definition 11.1.2 (Extent-functionality)
A is extent-functional on x and y just if ∀v⃗, x, y(A ∧Ay

x → x
e
= y).

Definition 11.1.3 (Notation for binders restricted to set b)

(1) Ab and ab signifiy all variables bound in A and a are restricted to b.
(2) If a is a variable, then ab is a.
(3) (c ∈ d)b is cb ∈ db.
(4) ¬Ab is ¬(Ab), (A ∧B)b is (Ab ∧Bb), and so on for other connectives.
(5) {v|A}b === {v|v ∈ b ∧Ab}.

(6) (∀v)(A)b === (∀v)(v ∈ b→ Ab).

(7) (∀v⃗)(A)b === is the sentence given by the least n ≥ 0 such that
(
n > 0 & (∀v1 . . . ∀vn)(v1 ∈ b ∧ . . . ∧ vn ∈ b→ Ab)

)
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r

(
n = 0 & Ab

)
.

Definition 11.1.4 (The join of a and b)
J (a, b) === {x|x ∈ a ∨ x ∈ b} === (aJ b)

Definition 11.1.5 (The union set of a)⋃
(a) === {x|∃y(x ∈ y ∧ y ∈ a)}

Definition 11.1.6 (Capture)
C(a, B ) === {x|∃y(y ∈ a ∧B(x, y) ∧ ∀z(B(x, y)zx → x

e
= z))}

Definition 11.1.7 (Capture on codes)
C(a, B ) === {x|∃y(y ∈ a ∧ T B(x, y) ∧ ∀z(T B(x, y)zx → x

e
= z))}

Recall Definition 10.4.1, of P(a) as {x|x ⊂ a}:
Definition 11.1.8 (Scott infinity)

ϖ === {x|∀v(
(
∀w

(
∀x(x /∈ w) → w ∈ v

)
∧

∀w
(
w ∈ v → P(w) ∈ v

))
→ x ∈ v)}

11.2 Hoard, Holder – heiresses and heritors
Definition 11.2.1

a is hereditarily orthodox iff orthodox with just hereditarily orthodox members.

Definition 11.2.2

The Hoard is set
ℏ === {x|{w|w /∈ x} = {w|w ∈ {w|w /∈ x}}}.

Definition 11.2.3

The Holder is set
h === {x|{w|w ∈ x} = x}.
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Definition 11.2.4

a is an heiress just if ⊢M a ∈ ℏ.

Definition 11.2.5

a is an heritor just if ⊢M a ∈ h

.
Theorem 11.2.6

The Hoard is orthodox.
Proof. By the theory of identity.
Theorem 11.2.7

The heiresses are orthodox.
Proof. Assume a is an heiress. It follows that a is in the hoard, and therefore

{x|x /∈ a} = {x|x ∈ {x|x /∈ a}}. (11.2.8)
As a consequence,

⊢M ∀x(x ∈ {x|x /∈ a} ↔ x ∈ {x|x ∈ {x|x /∈ a}}). (11.2.9)
So ⊢M ∀x(Tx /∈ a↔ Tx ∈ {x|x /∈ a}), and it follows that

⊢M ∀x(Tx /∈ a→ TTx /∈ a). (11.2.10)
By Postulate 3.1.5.M7 and detachment, ⊢M ∀x(Tx ∈ a ∨ Tx /∈ a), so a is orthodox.
Theorem 11.2.11

The Holder is orthodox, so ⊢M O(h)

Proof. By the theory of identity.
Theorem 11.2.12

The heritors are orthodox.
Proof. By the theory of identity.
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11.3 Minimal platforms for hereditarily orthodox sets

ℏ and h may be very large sets, if one wants them to be, and empty, if one so decrees.Below we use heritors x ∈ h, which, as per Theorem 11.2.12, are orthodox elements oforthodox Holder h.
Definition 11.3.1

A(x, y) === x ∈ h ∧ y ∈ h ∧ x ⊂ y

Definition 11.3.2 (Definition by manifestation)
⊢M ∀x(x ∈

d
↔ TTx ∈ h ∧

d
∈ h ∧ x ⊂

d
)

Theorem 11.3.3

We see in our heads that d is orthodox, so
⊢M ∀x(x ∈

d
↔ x ∈ h ∧

d
∈ h ∧ x ⊂

d
)

Definition 11.3.4

d
, in Theorem 11.3.3, is a platform.

Observation 11.3.5

Platforms are hereditarily orthodox sets.
Observation 11.3.6

As it is not declared that d has members, we should take it to be empty, as the statement that ithas members is not valid. So d is a minimal platform, and there are distinct minimal platforms.

11.4 The invariant platform

Let
i(a) ↔ ∀x, y(x ∈ a ∧ x E

= y → y ∈ a)

and d be as in Section 11.3:
Definition 11.4.1

a ∈
d
i ↔ (a ∈

d
∧ i(a) ∧ ∃x(x ∈

d
∧ a ⊂ x ∧ ∀y(y ∈

d
∧ y ∈ x→ i(y) ∧ y ⊂ x)))

Theorem 11.4.2

d
i is hereditarily orthodox.

Proof. Given Lemma 11.4.3, this is displayed to our intuitions by the internal forum.
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Lemma 11.4.3

a ∈
d

∧ i(a) is orthodox.
Proof. Assume

a ∈
d

∧ i(a). (11.4.4)
Using Theorem 11.3.3,

⇕

a ∈ h ∧
d

∈ h ∧ a ⊂
d

∧ i(a) (11.4.5)
⇕

a ∈ h ∧
d

∈ h ∧ a ⊂
d

∧ ∀x, y(x ∈ a ∧ ∀u(u ∈ x↔ u ∈ y) → y ∈ a)) (11.4.6)
⇕

a ∈ h ∧
d

∈ h ∧ a ⊂
d

∧ ( u1 ∈ a ∧ ∀u(u ∈ u1 ↔ u ∈ u2) → u2 ∈ a)) (11.4.7)
⇕

a ∈ h ∧
d

∈ h ∧ a ⊂
d

∧ u1 ∈ a ∧ ( u3 ∈ u1 ↔ u3 ∈ u2) → u2 ∈ a)) (11.4.8)
⇕

a /∈ h ∨
d
/∈ h ∨ a ̸⊂

d
∨ u1 /∈ a ∨ (( u3 ∈ u1 ∧ u3 /∈ u2)∨ (11.4.9)

( u3 /∈ u1 ∧ u3 ∈ u2)) ∨ u2 ∈ a

⇓

Ta /∈ h ∨ T
d
/∈ h ∨ Ta ̸⊂

d
∨ T u1 /∈ a ∨ T(( u3 ∈ u1 ∧ u3 /∈ u2)∨ (11.4.10)

( u3 /∈ u1 ∧ u3 ∈ u2)) ∨ T u2 ∈ a

⇓

Ta /∈ h ∨ T
d
/∈ h ∨ Ta ̸⊂

d
∨ T u1 /∈ a ∨ T(( u3 ∈ u1 ∧ u3 /∈ u2)∨ (11.4.11)

( u3 /∈ u1 ∧ u3 ∈ u2)) ∨ T u2 ∈ a

⇓

Ta /∈ h ∨ T
d
/∈ h ∨ Ta ̸⊂

d
∨ T u1 /∈ a ∨ T(( u3 ∈ u1 ∧ u3 /∈ u2)∨ (11.4.12)

( u3 /∈ u1 ∧ u3 ∈ u2)) ∨ T u2 ∈ a

⇓

T
(
a /∈ h ∨

d
/∈ h ∨ a ̸⊂

d
∨ u1 /∈ a ∨ (( u3 ∈ u1 ∧ u3 /∈ u2)∨ (11.4.13)

( u3 /∈ u1 ∧ u3 ∈ u2)) ∨ u2 ∈ a
)

⇓
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T
(
a /∈ h ∨

d
/∈ h ∨ a ̸⊂

d
∨ u1 /∈ a ∨ ∃u((u ∈ u1 ∧ u /∈ u2)∨ (11.4.14)

(u /∈ u1 ∧ u ∈ u2)) ∨ u2 ∈ a
)

⇓

T
(
a /∈ h ∨

d
/∈ h ∨ a ̸⊂

d
∨ ∃x, y(x /∈ a ∨ ∃u((u ∈ x ∧ u /∈ y)∨ (11.4.15)

(u /∈ x ∧ u ∈ y)) ∨ y ∈ a)
)

⇕

T
(
a ∈ h ∧

d
∈ h ∧ a ⊂

d
∧ ∀x, y(x ∈ a ∧ ∀u(u ∈ x↔ u ∈ y) → y ∈ a

) (11.4.16)
⇕

T(a ∈ h ∧
d

∈ h ∧ a ⊂
d

∧ I(a)) (11.4.17)
⇕

T(a ∈
d

∧ I(a)) (11.4.18)
So ⊢M T(a ∈

d
∧ I(a) → Ta ∈

d
∧ I(a)), and a ∈

d
∧ I(a) is orthodox on account of Postulate3.1.5.M2 and Postulate 3.1.5.M6.
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The set of everything is countable

We show that the results lead to the conclusion that the universe is countable, and demonstratehow the librationist set theory is able to evade Cantor’s theorem.

12.1 The denumerable wellordering of the universe

Definition 12.1.1Let ⪯ be the natural ordering of Ω :

Ξ(α) ⊩ a ◀≤ b

⇕

µx(x ∈ Ω & x ⪯ a & Ξ(α) ⊩ x = a) ⪯ µy(y ∈ Ω & y ⪯ b & Ξ(α) ⊩ y = b)

Corollary 12.1.2

Ξ(α) ⊩ a = b⇔ Ξ(α) ⊩ a ◀≤ b & Ξ(α) ⊩ a ▶≥ b

Definition 12.1.3

Ξ(α) ⊩ a ◀< b⇔ Ξ(α) ⊩ a ◀≤ b & Ξ(α) ⊩ a ̸= b

Theorem 12.1.4 (The wellordering)
⊢M ∀x, y(x ◀< y ∨ x = y ∨ x ▶> y)

Proof. Assume ¬a ◀< b ∧ a ̸= b ∧ ¬a ▶> b. From Definition 12.1.3 it follows that a = b, so theassumption is impossible.
Definition 12.1.5 (The counting quantifier)

For n ∈ N, ∃=nxA just if there are exactly n objects which are A.
Definition 12.1.6 (The enumeration handle)

e === c̈ • • • •
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Semantic enumeration postulates, for any ordinal α:

Postulate 12.1.7

Ξ(α) ⊩ O(e)

Postulate 12.1.8

Ξ(α) ⊩ ⟨∅, c̈•⟩ ∈ e

Postulate 12.1.9

ΠaΠb
(constant(a) & constant(b) ⇒
Ξ(α) ⊩ ∀n(n ∈ ω →

(
∃=nx(x◀ a) ∧ ∃=ny(y◀ b) → a = b

)
)
)

Postulate 12.1.10

Πa, b, c, (Ξ(α) ⊩ ∀n
(
n ∈ ω → (

(
⟨a, b⟩ ∈ e & ∃=nx(x◀ b)

)
↔(

⟨{v|v ∈ a ∨ v = a}, c⟩ ∈ e & ∃=(n+1)x(x◀ c)
)
)
)

Postulate 12.1.11

Ξ(α) ⊩ ∀y∃n(n ∈ ω ∧ ⟨n, y⟩ ∈ e)

Maximal consequences of the Semantic enumeration postulates:

Postulate 12.1.12

⊢M e is orthodox.
Postulate 12.1.13

⊢M ∃=0x(x◀ c̈•)

Postulate 12.1.14

ΠaΠb
(constant(a) & constant(b) ⇒
⊢M ∀n(n ∈ ω →

(
∃=nx(x◀ a) ∧ ∃=ny(y◀ b) → a = b

)
)
)

Postulate 12.1.15

Πb
[constant(b) ⇒ ⊢M

(
⟨∅, b⟩ ∈ e↔ ∃=0x(x◀ b)

)]
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Postulate 12.1.16

Πa, b, c, (⊢M ∀n
(
n ∈ ω → (

(
⟨n, b⟩ ∈ e & ∃=nx(x◀ b)

)
↔(

⟨{v|v ∈ n ∨ v = n}, c⟩ ∈ e & ∃=(n+1)x(x◀ c)
)
)
)
)

Postulate 12.1.17

⊢M ∀y∃n(n ∈ ω ∧ ⟨n, y⟩ ∈ e)

Proof. As all sets in V are finite von Neumann ordinals of the meta language.

12.2 The bijection from the natural numbers to the full universe
Theorem 12.2.1 (The bijection)

⊢M e is a bijection from ω to V.

Proof. Suppose n ∈ ω. Given 12.1.17, there is a b such that ⟨n, b⟩ ∈ e.

12.3 The escape from ucountable cardinals
In order to reproduce Cantor’s argument for the existence of uncountble sets in a relevant sensefor our context, it should take place in a hereditarily orthodox set, such as d

i , or at least in auniverse which is orthodox to some order larger than one. As a consequence, Cantor’s argumentis turned into a reductio which simply establishes that the assumed function cannot be a memberof the set wherein the initial set and its power set are members.To see this, suppose we impose no restrictions upon the power set and assume there is afunction f from ω unto {x|x ⊂ ω}. We here take ω to be orthodox, as per Theorem 8.0.2.3. If wetry to follow the Cantorian argument attempt just below, we must already discare assumption1, for {x|x ⊂ ω} is demonstrably not an element in d
i , and as a consequence there cannot be afunction in d

i from omega onto {x|x ⊂ ω}. We may still assume, however, that there is a function
f from ω onto {x|x ⊂ ω}. Let S = {x|x ∈ ω ∧ x /∈ f(x)}. Let m = f−1(S). What we get, by meansof alethic comprehension, is that

a) m ∈ S ↔ T(m ∈ ω ∧m /∈ f(m))b) m ∈ S ↔ T(m ∈ ω ∧m /∈ f(f−1(S)))c) m ∈ S ↔ T(m ∈ ω ∧m /∈ S)d) m ∈ S ↔ T(m /∈ S).
d) expresses an ordinary Liar sentence, so the attempted argument has no Cantorian force.
A proper Cantorian argument attempt:

1. Suppose f ∈
d
i is a function from ω ∈

d
i onto P(ω)

d
i ∈

d
i .

2. Let S = {x|x ∈ ω ∧ x /∈ f (x)}.
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3. Let f −1(S) = n.

4. So n ∈ S ↔ n ∈ ω ∧ n /∈ f (n).

5. On account of 3 we have n ∈ S ↔ n ∈ ω ∧ n /∈ f (f −1(S)).

6. So n ∈ S ↔ n ∈
d
i ∧ n /∈ S.

7. As n ∈
d
i , n ∈ S ↔ n /∈ S.

What we can say about this is that d
i “believes” that the set P(ϖ)

d
i is uncountable, for if we

suppose a function f ∈
d
i surjects from ϖ ∈

d
i to P(ϖ)

d
i , a contradiction follows.But still and still, the function e surjects from ω ∈

d
i to P(ω)h ∈

d
i , and, indeed, to {x|x = x},so e is, a fortiori, a function from ϖ onto the full universe V. e, though, is not a member of d

i .The analysis which now forces itself upon us, is very much like Skolem’s resolution of theimbroglio, in [29], and it in the librationist framework simply follows as a theorem that f /∈ d
i if f

is a function from ω ∈
d
i onto P(ω)

d
i ∈

d
i . Moreover, it is, in £ and £, abundabtly clear that thenotion of uncountability may just be local, so the librationist attitude fully agrees with Skolem’sin holding that uncountability is just a relative notion. But Skolem’s conclusion that the notionof set is relative, is not supported, as e is not taken to be contained in a classical set theory.



Chapter 13

A librationist interpretation of ZFC

J (a, b) === {x|x ∈ a ∨ x ∈ b} is the join of a and b. Let ϖ, Scott–ω, be the least set that contains
all empty sets in d

i , and P(a)
d
i if it contains a. A(x, y) is extent-functional just if A(x, y) and

A(x, z) only if y and z are co-extensional. (Scott, 1961) showed that Zermelo set theory minusthe axiom of extensionality, with join instead of pairing, ϖ instead of ω, plus replacement forextent-functional first order conditions, interprets ZF minus the axiom of foundation. Given (vonNeumann, 1929), Scott’s set theory interprets ZF; given (Gödel, 1938), or our Theorem 13.8,Scott’s set theory, and, as a consequence of what is related below, also £, interprets ZFC.It was related in the lecture in this seminary, October 13th, 2022, that a strengthening £, of£, interprets Scott’s set theory, and so also ZFC via (von Neumann, 1929) and (Gödel, 1938).Librationist interpretations of the axiomatic principles of ZF may now be made relative to a
platform

d
i , as in Definition 11.4.1, so that

⊛ a ∈
d
i ↔ (a ∈

d
∧ i(a) ∧ ∃x(x ∈

d
∧ i(x) ∧ a ⊂ x ∧ ∀y(y ∈

d
∧ y ∈ x→ i(y) ∧ y ⊂ x)))

We know from Theorem 11.4.2 that set d
i is hereditarily orthodox. As d, d

i is empty, unlessinstructed otherwise. So we enjoin that d
i has ϖ === ω with all binders restriced to d

i as aninitial set, and that d
i is closed under the following four closures principles, restricted to d

i : i)
power, ii) join, iii) union and iv) capture. The latter closure principle, capture, is the last also inthe following list:

⊢M ϖ ∈
d
i ; ⊢M a ∈

d
i → P(a)

d
i ∈

d
i ;

⊢M a ∈
d
i ∧ b ∈

d
i → J (a, b)

d
i ∈

d
i ; ⊢M a ∈

d
i →

⋃
(a)

d
i ∈

d
i ; and

⊢M a ∈
d
i → {x|∃y(y ∈ a ∧B(x, y) ∧ ∀z(B(x, y)zx → x

e
= z))}

d
i ∈

d
i .

P(a)
d
i is {x|x ∈

d
i ∧ x ⊂ a}. Similarly for J and ⋃

.The last condition is a schema, for extent-fuctional capture, which is to hold for any 1st ordercondition B.
Theorem 13.0.1

Capture is equivalent with specification and replacement.
57
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Proof. i) If a set is obtained by capture, it can be obtained by replacement by using the extent-functional condition ∃y(y ∈ a ∧ B(x, y) ∧ ∀z(B(x, y)zx → x
e
= z)) used for the capture. ii) If aset is obtained by replacement, it can be obtained from capture by using the extent-functionalreplacement condition for B, in capture, along with the now redundant second clause for cap-ture. iii) Capture and replacement both have specification as a consequence. Use the condition

B′(x, y) === B(x)∧x e
= y) as capture condition relative to a set a, and observe that the existenceof the set {x|x e

= y ∧ y ∈ a} is justified by capture.
We show that if A is a theorem of ZF, then Ad

i is a maxim of £. We in the following rely uponthe axiomatization of ZF presupposed by [28](116–117).

13.1 Principle of extensionality
The interpretation relative to d

i of the extensionality principle
∀x(x ∈ a↔ x ∈ b) → a = b

is
∀x(x ∈

d
i →(x ∈ a↔ x ∈ b)) →

∀x(x ∈
d
i →(a ∈ x→ b ∈ x)).

(
(a ∈

d
i ∧ b ∈

d
i ∧ ∀x

(
x ∈

d
i → (x ∈ a↔ x ∈ b)

)
)

→ ∀x
(
x ∈

d
i → (a ∈ x→ b ∈ x)

))
.

Notice that
(a ∈

d
i ∧ b ∈

d
i → ∀x

(
x /∈

d
i → (x ∈ a↔ x ∈ b)

)
),

as a ∈
d
i ∧ b ∈

d
i entails that x /∈ d

i only if x /∈ a and x /∈ b are hereditary heritors.Also, a e
= b→ ∀x(x ∈

d
i → (x ∈ a↔ x ∈ b)), so that(

a ∈
d
i ∧ b ∈

d
i →

(
∀x

(
x ∈

d
i → (x ∈ a↔ x ∈ b)

)
↔ a

e
= b

))
,

and the interpretation may be stated more succinctly as
a ∈

d
i ∧ b ∈

d
i ∧ a e

= b→ ∀x(x ∈
d
i ⇔ (a ∈ x→ b ∈ x)).

Suppose a ∈
d
i ∧ b ∈

d
i ∧ a E

= b ∧ c ∈
d
i ∧ a ∈ c. As c is invariant, b ∈ c, and we are done.

13.2 Join
We interpret ∀a, b(∃w(∀x(x ∈ w ↔ x ∈ a ∨ x ∈ b))) via {x|x ∈ a ∨ x ∈ b}

d
i . As d

i is hereditarilyorthodox, we have:
∀a, b(a ∈

d
i ∧ b ∈

d
i → ∀x(x ∈ {x|x ∈ a ∨ x ∈ b} ↔ x ∈ a ∨ x ∈ b)

d
i )

The consequent eintails ∃w(∀x(x ∈ w ↔ x ∈ a ∨ x ∈ b))
d
i , so that we are done, as we have:

a ∈
d
i ∧ b ∈

d
i → ∃w(w ∈

d
i ∧ ∀x(x ∈

d
i → (x ∈ w ↔ x ∈ a ∨ x ∈ b)))
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13.3 Union

∀a∃w(∀x(x ∈ w ↔ ∃y(x ∈ y ∧ y ∈ a))) is an axiom of ZF, and we want to show that we for any
a ∈

d
i have:

∃w(w ∈
d
i ∧ ∀x(x ∈

d
i → (x ∈ w ↔ ∃y(y ∈

d
i ∧ x ∈ y ∧ y ∈ a))))⋃

(a)
d
i = {x|∃y(x ∈ y ∧ y ∈ a)}

d
i , serves for w, so the interpretation succeeds.

13.4 Power set

We interpret ∀a∃w∀x(x ∈ w ↔ x ⊂ a). For given a ∈
d
i we have {x|x ⊂ a}

d
i ∈

d
i , so that

∀x(x ∈ {x|x ⊂ a}
d
i ↔ x ⊂ a)

d
i becomes

∀x(x ∈
d
i → (x ∈ {x|x ⊂ a}

d
i ↔ ∀y(y ∈

d
i → (y ∈ x→ y ∈ a))))

Obvious steps shows that this gives ∀a∃w∀x(x ∈ w ↔ x ⊂ a)
d
i , so the interpretation succeeds.

13.5 Infinity

⊢M ϖ
d
i ∈

d
i , so that we, as ϖd

i is hereditarily orthodox, have
⊢M ∃u∀x

(
x ∈ u↔ ∀v(

(
∀w(∀x(x /∈ w) → w ∈ v)∧

∀w(w ∈ v → P(w) ∈ v)
)
→ x ∈ v)

)d
i

.

So we are done.

13.6 Replacement

We want to interpret replacement as given by

∀a(∀x, y, z
(
B(x, y) ∧B(x, z) → y = z

)
→

∃w
(
∀y(y ∈ w ↔ ∃x

(
x ∈ a ∧B(x, y)

)
)
)
).

We have that

∀a(∀x, y, z
(
B(x, y) ∧B(x, z) → y = z

)
→

∃w
(
∀y(y ∈ w ↔ ∃x

(
x ∈ a ∧B(x, y)

)
)
)
)
d
i

is given by
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∀a
(
a ∈

d
i →

(
∀x, y, z(B(x, y)

d
i ∧B(x, z)

d
i → y

E
= z) →

∃w(w ∈
d
i ∧ ∀y(y ∈

d
i → (y ∈ w ↔ ∃x(x ∈

d
i ∧ x ∈ a ∧B(x, y)

d
i ))))

))
.

Given a ∈
d
i , d

i has set {y|∃x(x ∈ a ∧ B(x, y))}
d
i , which is as required, for first order extent

functional condition B(x, y)
d
i , as {y|∃x(x ∈ a ∧ B(x, y))}

d
i is orthodox, and because for a ∈

d
i ,

⊢M ∀x(x ∈ a↔ x ∈
d
i ∧ x ∈ a).

13.7 Specification
Specification was not interpreted, as it, given Theorem 13.0.1, is derivable from replacement.

13.8 Choice
As discussed in Section 12.1, the facts that terms of £ are natural numbers, according to themeta language, and that£ proves that there are only denumerably many sets, suffice to justify thefollowing orthodox denumerable wellordering of constants, congruent with the one supportedby ZF + V=HOD:

WOC : ⊢M a ◀< b ∨ a = b ∨ a ▶> b).

Given WOC, which supports global choice, it’s easy to justify Russell’s multiplicative axiomfor hereditary orthodox sets that fulfill the conditions Russell stated. So choice holds in d
i .



Chapter 14

A is true just if A hits the truth

Chapters 5 and 6 should be recalled at this point.
Definition 14.0.1The trace of A is the emta-language set of ordinals [δ : Ξ(δ) ⊩ A].
Definition 14.0.2The truth is the closure ordinal Ϙ.
Definition 14.0.3The track of A is the intersection of its trace with the truth.
Definition 14.0.4
A hits its track.
Definition 14.0.5
A is true just if A hits the truth.

Definition 14.0.6
A is false just if ¬A is true.

Definition 14.0.7The track of A ∧B is the track of A intersected with the track of B.
Remark 14.0.8Let L be as in step d in the proof of Theorem 6.0.1, so that ⊢M ¬T L ↔ L.By Theorem 6.0.8,

⊢ L and ⊢ ¬L

as well as
⊢ T L , ⊢ ¬T L , ⊢ T ¬L , and ⊢ ¬T ¬L .

May we square these facts about L with Definition 14.0.5? Yes, the appropriate reading ofDefinition 14.0.5 should be such that the sentence A is true should be interpreted as ⊢ T A ,and the sentence A hits the truth is, on account of the semantics, equivalent with ⊢ A.So Definition 14.0.5 may be interpeted in terms of the bidirectional inferential mode
⊢ T A ⇔ ⊢ A.
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It is, moreover, a fact that ⊢ ¬T A ⇔ ⊢ ¬A, as well as ⊢M T A ⇔ ⊢M A. The bidirec-tional inferential modes in this paragraph do not have instances which contradict the maxim
⊢M ¬T L ↔ L. ■

The connectives do not work truth-functionally in librationism, but they work track-functionallyand by following classical interdefinability connections as in any Boolean algebra. The track ofthe negation ¬A of A, is truth minus the track of A, and the track of the conjunction A ∧ B isthe intersection of the track of A and the track of B. The track of sentences built up from otherconnectives follow from their definitions in terms of negation and conjunction.
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