
PHYSICAL REVIEW E 84, 021117 (2011)

Enhanced diffusion through surface excursion: A master-equation approach
to the narrow-escape-time problem
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We present a master-equation approach to the narrow-escape-time (NET) problem, i.e., the time needed for a
particle contained in a confining domain with a single small or narrow opening to exit the domain. In this paper
we introduce an alternative type of confining domain (to the usually spherical one) and we consider the diffusion
process on a lattice rather than in continuous space. We have obtained analytic results for the basic quantity
studied in the NET problem, the mean first-passage time, and we have studied its dependence in terms of the
transition (desorption) probability over (from) the surface boundary and the confining domain dimensions. In
addition to our analytical approach, we have implemented Monte Carlo simulations, finding excellent agreement
between the theoretical results and simulations.
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I. INTRODUCTION

Intermittent processes are widespread in many domains
and fields. Generally speaking, these processes involve an
agent (particle, searcher, etc.) and two or more phases among
which it alternates. The term “phase” must be understood
in a broad sense, since, depending on the context, it may
involve different ways of propagation, as is the case of an
intermittent search where active search phases (e.g., Brownian
motion phases) randomly alternate with fast relocation phases
(e.g., ballistic motion phases) [1], and different interfaces, as
may be the situation of a reactant that freely diffuses in a
solvent and intermittently binds to a cylinder [2], etc. We
also find this sort of intermittent behavior in the binding of a
protein to specific sites on DNA for regulating transcription
[3–5]. In interface sciences (see Refs. [6,7] and references
therein) the adsorption-desorption dynamics of molecules are
of fundamental importance and are crucial to a number of
technologies. These include solutions or melts of synthetic
macromolecules [8,9], colloidal dispersions [10], and in the
manufacture of self-assembled monolayers and multilayers
[11,12].

Among these kinds of processes we find the so-called
narrow-escape-time problem (NET), i.e., the time needed for
a particle contained in a confining domain with a single small
opening to exit the domain. The NET problem is prominent in
cellular biology, since it is related to the random time needed
by a particle (released inside the cell) to activate a given
mechanism on the cell membrane, for example, the particle
may be a protein that looks for a specific site on a DNA
string [3–5]. Since the seminal work of Berg and Purcell [13],
the research in the area has experienced steady growth over
time and has motivated a great deal of work [14–25].

Recently, different approaches were made to the NET
problem. For instance, in Ref. [23] a mean-field approximation
to calculate the mean reaction (search) time is developed,
and in Ref. [24] a backward equation-type formalism is
presented. In all cases very interesting results and conclusion
are presented.

The aim of this paper is to present a model we believe is both
simple enough to be studied analytically, and rich enough to
show the impact of geometrical parameters in the system and
to show the interplay between surface and boundary paths. In
this paper we introduce a rectangular-shaped confining domain
(since the importance of two-dimensional regions for the NET
problem has been well established [26]), and we consider the
diffusion process on a lattice rather than in continuous space.

In order to perform our research we exploit Dyson’s [6]
theory. We use the concept of mean first-passage time (MFPT),
and we establish the connection with the first-passage time
(FPT) corresponding to the problem of a single walker.

The outline of this paper is as follows. In the following
section we introduce our model and provide the basic defini-
tions and concepts. We also describe the proposed analytical
approach and present the main results. Section III depicts
several assorted illustrations for the MFPT to the target site for
different configurations of the system through a comparison
between our analytical framework and Monte Carlo (MC)
simulations. In Sec. IV we discuss our conclusions and
perspectives. Finally, in the Appendix we briefly discuss,
through MC simulations, a more general confining domain.

II. ANALYTICAL APPROACH

A. The model

Let us start with the problem of a walker making a
random walk in a finite rectangular N × (M + 1) lattice (see
Fig. 1). The surface is bounded in the y direction, where
the walkers can move from y = 0 to y = M , and periodic
boundary conditions are assumed in the x direction so x

and x + N denote the same place in space. A perfect trap
is located at point (0,0), so a walker reaching that place is
caught with probability one. We follow the walker evolution
through the system considering the conditional probability
P (n,m,t |n0,m0,t = 0) ≡ P (n,m,t), that is, the probability
that an “unrestricted” walker is at (n,m) [where (n,m) are
discrete coordinates in the (x,y) space] at time t given that
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FÉLIX ROJO AND CARLOS E. BUDDE PHYSICAL REVIEW E 84, 021117 (2011)

FIG. 1. Schematic transitions of the walker to or from the baseline
and to or from a generic surface site. Notice that the trap site (open
circle) could be reached both from the surface (with transition rate
γ ) and from the baseline (with transition rate β).

it was at (n0; m0) at t = 0. By “unrestricted” we identify a
situation with no traps or sinks present in the system. P (n,m,t)
satisfies the following master equation:

Ṗ (n,0,t) = γP (n,1,t) − δP (n,0,t)
+β(P (n + 1,0,t) + P (n − 1,0,0,t)
− 2P (n,0,t)), m = 0,

Ṗ (n,1,t) = δP (n,0,t) − 4γP (n,1,t)
+ γ (P (n + 1,1,t) + P (n − 1,1,t)
+P (n,2,t)), m = 1,

Ṗ (n,m,t) = γ (P (n − 1,m,t) + P (n + 1,m,t)
+P (n,m + 1,t) + P (n,m − 1,t))
− 4γP (n,m,t), 2 � m � M − 1,

Ṗ (n,M,t) = γ (P (n − 1,M,t) + P (n + 1,M,t)

+P (n,M − 1,t))

− 3γP (n,M,t), m = M, (1)

where γ is the surface transition probability per unit time in the
x and y directions, β is the transition probability over the line
m = 0 in the x direction, and δ is the desorption probability
per unit time from the boundary line m = 0.

In what follows, we will denote an integral transform by its
argument. Thus, for example, the Laplace transform on t and
the (finite) Fourier transform on a coordinate (e.g., x) would
read

P (k,m,u|n0,m0,0) ≡ F {L [P (k,m,t |n0,m0,0)]}

=
N−1∑
n=0

eikn

∫ ∞

0
e−utP (n,m,t |n0,m0,0) dt.

As we are interested in the MFPT through the trap site,
let us define F (0,0,t |n0,m0,0) as the first-passage time
density (FPTD) through the site (0,0) at time t , given that
the walker was at (n0,m0) at time t = 0. The connection
between FPTD and the “unrestricted” conditional probability
P (n,m,t |n0,m0,t = 0) is established through the “renewal
approach” [27]. This approach in the Laplace domain gives

F (0,0,u|n0,m0,t = 0) = P (0,0,u|n0,m0,t = 0)

P (0,0,u|0,0,t = 0)
, (2)

which is the known Siegert’s formula [28].

Following the guidelines of Ref. [27], we can evaluate the
MFPT through the trap site (0,0) as

T =
∫ ∞

0
t

∑
n0,m0

F (0,0,t |n0,m0,0)g(n0,m0) dt

= − ∂

∂u

{ ∑
n0,m0

F (0,0,u|n0,m0,0)g(n0,m0)

}∣∣∣∣∣
u=0

, (3)

where g(n,m) denotes the probability density of initially
finding the walker at a position (n,m).

B. Matrix formalism and analytical results

Let us focus on the probability P (n,m,t |n0,m0,t = 0),
which is the building block for the MFPT. Taking the (finite)
Fourier transform with respect to the x variable and the Laplace
transform with respect to the time t in Eq. (1), we obtain

m = 0,

uP (k,0,u) − P (k,0,t = 0)

= γP (k,1,u) − [δ − A1(k)]P (k,0,u),

m = 1,

uP (k,1,u) − P (k,1,t = 0)

= δP (k,0,u) + γP (k,2,u) − [2γ − A(k)]P (k,1,u),

2 � m � M −1,

uP (k,m,u) − P (k,m,t = 0)

= A(k)P (k,m,u) + γ (P (k,m + 1,u) + P (k,m − 1,u),

−2P (k,m,u))

m = M,

uP (k,M,u) − P (k,M,t = 0)

= A(k)P (k,M,u) + γP (k,M − 1,u) − γP (k,M,u). (4)

Here we have defined A1(k) = 2β(cos k − 1), A(k) =
2γ (cos k − 1).

Using the matrix formalism, Eq. (4) can be written as

[uI − H]P = I , (5)

where I is the identity matrix, H is an (M + 1) × (M + 1)
tridiagonal matrix with elements

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C1 γ 0 . . . . . . 0
δ C γ 0 . . . 0

0 γ C γ 0
...

. . . 0
. . .

. . .
. . .

...
. . . . . . . . . γ C γ

0 . . . 0 γ γ + C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where C and C1 are defined as C = −2γ + A(k), C1 =
−δ + A1(k), and P is an (M + 1) × (M + 1) matrix with
components

[P (k,u)]m,m0
= P (k,m,u|n0,m0,t = 0) .

In order to find the solution to Eq. (5) we decompose the H
matrix in the following way:

H = A(k)I + H0 + H1 + H2, (7)
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where

H0 =

⎡
⎢⎢⎢⎢⎢⎣

−γ γ 0 . . . 0
γ −2γ γ . . . 0
0 γ −2γ γ 0
. . . . . . . . . . . .

. . . . . . γ −2γ γ

. . . 0 γ −γ

⎤
⎥⎥⎥⎥⎥⎦ (8)

corresponds to the transition matrix for a symmetric random
walk to nearest neighbors in a finite lattice (M + 1 sites) with
reflective boundary conditions at the ends. On the other hand,

H1 = [γ − δ + A1(k) − A(k)]δi,0δ0,j , (9)

H2 = −(γ − δ) δi,1 δ0,j . (10)

A formal solution to Eq. (5) is

P = [uI − H]−1 . (11)

By applying the Dyson procedure [6] a general expression
for [P (k,u)]m,m0

can be found. From this, the probability
that a walker is on the surface at site (n,m) at time t given
it was at (n0,m0) at t = 0, P (n,m,t |n0,m0,t = 0) is derived
by using the inverse Laplace transform on u and the inverse
Fourier transform on k (for the x coordinate) for each matrix
element [P (k,u)]m,m0

. Notice that, as we are interested in the
calculation of (3), we only need to perform the inverse Fourier
transform on P (0,0,u|n0,m0,t = 0) i.e., we need the elements
F−1{[P (k,u)]0,m0}. In this case it can be shown that

[P (k,u)]0,m0
= ηm0 + ηM̃−m0

δ(1 − η)(1 − ηM̃−1) + [u − A1(k)](1 + ηM̃ )
,

(12)

where η = 1 + (ũ −
√

ũ2 + 4γ ũ)/2γ , M̃ = 2M + 1 and ũ =
u − A(k). The inverse Fourier transform on [P (k,u)]0,m0

is
carried out in the following way:

P (0,0,u|n0,m0,t = 0) = 1

N

N−1∑
q=0

ei
2πn0q

N

[
P

(
2πq

N
,u

)]
0,m0

.

(13)

So far we have obtained the required expression for the
calculation of the MFPT through the target site. Let us
move on and evaluate the MFPT for a walker with an initial
uniform distribution on the baseline (y = 0), i.e., g(n,m) =
(1 − δn,0)δm,0/(N − 1) [notice that we explicitly exclude the
possibility of having a walker at (0,0) at t = 0]. We obtain

T = N

N − 1

δM + γ

γ

N−1∑
q=1

[
P

(
2πq

N
,u = 0

)]
0,0

. (14)

Equation (14) constitutes one of our main results and an
interesting physical insight can be extracted from it. First it
can be shown that ηM � 0 [29], considering N/(N − 1) � 1
and calling zq = 1 − cos 2πq

N
, Eq. (14) can be expressed as

T � δM + γ

γ

N−1∑
q=1

1

(2β − δ)zq + δ
√

z2
q + 2zq

. (15)

Now consider the regimes (i) δ � 2β (particularly δ � γ ),
(ii) δ ≈ 2β, and (iii) δ � 2β (particularly δ � γ ). In (i) the

sum on the right-hand side takes the form ∼∑
z−1
q . Notice

that the main contribution to this sum comes from the zq ∼ 0
neighborhood, i.e., from 1 − cos 2πq

N
� 1

2 ( 2πq

N
)2, so

∑
z−1
q ∼

N2. Taking into account these considerations, a first-order
approximation gives T ∼ a1

N2

2β
, where a1 is a computable

parameter. In (ii) and (iii) a similar argument could be used.
The difference is that, in this case, ∼∑

z
−1/2
q ∼ N , then in (ii)

T ∼ a2(γ −1MN + (2β)−1N ) and in (iii) T ∼ a3γ
−1MN . As

before a2 and a3 are computable parameters. In the following
scheme we summarize the three regimes:

T ∼

⎧⎪⎨
⎪⎩

(2β)−1N2 if δ � 2β,

γ −1MN + (2β)−1N if δ ≈ 2β,

γ −1MN if δ � 2β.

(16)

Equation (16) deserves further discussion. The literature
[30,31] shows that in finite systems the MFPT behaves ∼LD ,
where D is the space dimension and L is a length characteristic
of the system. Consider first the regimes (ii) and (iii). In (ii)
when δ ≈ 2β, we have a mixed type of transport. Contributions
to this regime arise from “surface journeys” (∼MN ) and
“boundaries pathways” (∼N ). In the δ � 2β regime, however,
any surface pathway is preferred to a boundary path and
T ∼ γ −1MN . Regime (i) deserves special attention since in
this case δ/γ � 1 (i.e., once in the baseline the walker has
an extremely low desorption probability), and according to
the initial distribution (the walker starts it journey on the
baseline) one may assume that the MFPT would scale as
∼N , however, a ∼N2 scaling is obtained. This behavior
arises from the chosen initial distribution; as we discussed
earlier, this regime is equivalent to a one-dimensional (1D)
motion, so here [31] Tn0 = n0(N − n0)/2β, which computes
the arrival time to site 0 starting from n0. Averaging Tn0

over starting sites (uniform initial distribution) results in
T = ∑

n0
Tn0/(N − 1) = 1

6
(N3−N)
2β(N−1) ∼ N2/2β, which accounts

for the observed result.
The transition between regimes can be understood studying

the mean return time, a value related to the system size in the y

direction and the desorption probability. In particular, for our
confining domain we evaluate the mean return time [32] to the
baseline (not necessarily to the trap) and get

Tret = 1

δ
+ M

γ
. (17)

Tret represents the time needed to leave the baseline (1/δ)
and return to it (M/γ ). If we have N possible destination
sites on the baseline, we would expect the mean time to
hit a specific site, i.e., the MPFT to that site, behave like
T ∼ NTret = δ−1N + γ −1MN . Notice that with this rather
informal argument we have reobtained the MFPT in regime
(ii) of (16). The role of Tret is highlighted in the following
closed expression for Eq. (15) (in the limit zq ∼ 0):

T �
[

1

δ
+ M

γ

]
N

π

[
γe + �(N ) + �

(
1 + Nδ

π (2β − δ)

)

−�

(
N + Nδ

π (2β − δ)

) ]
, (18)

where �(z) is the digamma function and γe is the Euler’s
constant [33]. The mean return time can be seen in the first
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factor on the right-hand side of Eq. (18). Notice the similarity
between Eqs. (18) and (6) in Ref. [24].

III. ILLUSTRATIONS

Here we illustrate the general framework introduced in
the previous section and compare our theoretical results to
independent Monte Carlo simulations. In the next figures,
lines indicate analytical calculations and symbols correspond
to Monte Carlo (MC) simulations. All times are given in units
of the inverse of the surface transition probability (1/γ ).

In Fig. 2 we present curves corresponding to the MFPT, T ,
as a function of the desorption rate δ, with N = 20, M = 10
(inset: M = 30), for different values of the transition rate
over the baseline β. Notice how β strongly influences the
regime δ/γ � 1. In this case, and taking into account the
walker’s initial distribution, the transport is performed on
the baseline (lower boundary) of the confining domain, so
this is an expected behavior. On the other hand, this influence
is, as expected, considerably less when δ � 2β since in this
regime surface excursions are favorable. As can be inferred
from the figure, the transition rate β plays an important role as
it seems to regulate, for fixed values of N and M , the existence
of an optimal value for δ. It is worth remarking that the same
β values that contribute to a minimum in T in the main panel
do not produce the same effect for a larger M (see the figure’s
inset). This behavior is well depicted in Figs. 3 and 4.

Figure 3 presents curves corresponding to the MFPT, T , as
a function of the desorption rate δ, with N = 20, β = 0.1, for
different system sizes in the y direction M . As can be seen
from the figure, M significantly influences regime δ � 2β.
This is expected since there surface excursions are favorable
and therefore are more dependent on the system size in the y

direction. Notice that in regime δ � 2β (in particular, δ � γ )
all curves approach the same T ; δ values in this regime, coupled

FIG. 2. MFPT as a function of the desorption rate (in log scale)
δ, with M = 10 (inset: M = 30), N = 20, for different values of
the transition rate (over the baseline) β. From bottom to top β =
0.3,0.1,0.08,0.05. Lines correspond to analytical calculations and
symbols are for Monte Carlo simulations.

FIG. 3. MFPT as a function of the desorption rate (in log scale) δ,
with β = 0.1, N = 20, for different values of M (system size in the y

direction). From bottom to top M = 4,10,14,20. Lines correspond to
analytical calculations and symbols are for Monte Carlo simulations.

with the initial distribution, prioritize paths on the baseline
(y = 0), turning T insensitive to the values that M takes.

In Fig. 4 we draw the phase diagram that summarize the
existence and nonexistence of enhanced transport analyzed
from the perspective of the ocurrence of a minimum in the
MFPT. The diagram is plotted for a fixed system size in
the x direction N = 20 (inset: N = 40) as a function of the
transition probability over the baseline β and the system size in
the y direction M . White regions correspond to non-optimal
transport (absence of minimum—monotonous behavior—in
the MFPT), while darkened regions identify regimes with
enhanced transport. We have also included in Fig. 4 curves

FIG. 4. Phase diagram that summarize the existence and nonexis-
tence of enhanced transport, for a fixed system size in the x direction,
N (Inset: N = 40.) White regions correspond to nonoptimal transport,
while darkened regions identify regimes of enhanced transport. Lines
correspond to the limit values of M determined by relation (19).
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corresponding to the maximum of M , whose existence is a
consequence of the transition from regime (i) to regime (ii),
and to the minimum of M , caused by the transition from (ii)
to (iii). These values are derived from Eq. (16),

1

2β

a2

a3 − a2
<

M

γ
<

1

2β

(
a1

a2
N − 1

)
; (19)

a rough approximation (a1 ≈ 0.16,a2 ≈ 0.6,a3 ≈ 1.18) of
(19) reads

N

2β
<

MN

γ
<

N2

2β
. (20)

Let us take a closer look at the transition between regimes. To
simplify our analysis we fix the values of β and N . Starting
inside region δ � γ (this regime only involves 1D paths
along the baseline) and decreasing M—δ starts to grow—
T ∼ N2/2β becomes similar to the overall time NTret =
NM/γ + N/δ. This shows how an interplay between regimes
(i) and (ii) begins, thus defining a maximum M . For values
of M smaller than the maximum, a mixed type of transport
[regime (ii)] prevails. This behavior remains until NTret =
NM/γ + N/δ becomes similar to T ∼ NM/γ , defining a
minimum M ]transition from regime (ii) to (iii)]. There surface
“journeys” dominate, and δ grows and approaches the limit
δ � γ . Notice that we obtain quite a good agreement between
the region of optimal transport, evaluated from Eq. (14), and
the corresponding bounds derived from relation (19).

IV. CONCLUSIONS

We have presented a simple model based on a master-
equation approach to the narrow-escape-time problem. In
this paper we introduced a type of confining domain that is
alternative to the spherical one and we have considered the
diffusion process on a lattice rather than in continuous space.
Although the domain choice could have seemed arbitrary, we
have shown that it fully reflects the behaviors of the general
situation.

We have obtained analytic results for the basic quantity
studied in the NET problem, the mean first-passage time
(MFPT). We have also studied its dependence on the transition
(desorption) probability over (from) the surface boundary, and
the confining domain dimensions. In all cases the agreement
between analytical results and Monte Carlo simulations was
quite good.

We consider that the presented scheme is both simple
enough to be studied analytically, and rich enough to mimic
the impact of geometrical parameters in the system and the
interplay between surface and boundary pathways. We believe
that we have contributed to an area of growing interest which
has motivated a great deal of work, giving a plausible physical
insight into the surface-mediated diffusion mechanism. Thus,
we have fulfilled our goal of presenting a simple model that
captures in an unified framework the necessary ingredients to
characterize the NET problem.

The present approach to the narrow-escape-time problem
can be generalized in several directions: higher dimen-
sions,“imperfect” detection, “dynamical” behavior of the
narrow escape window, non-Markovian desorption, etc. All
of these aspects will be the subject of future work.

FIG. 5. Schematic transitions of the walker to or from the
boundaries and to or from a generic surface site. Notice that the
trap site (open circle) could be reached both from the surface (with
transition rate γ ) and from the baseline (with transition rate β).
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APPENDIX

In this Appendix we briefly discuss, through MC simula-
tions, a more general confining domain, that is, when all the
“walls” of the domain have δ as the desorption probability
into the surface, and β as the transition probability over the
boundaries (see Fig. 5). We keep γ as the surface transition
probability per unit time in the x and y directions and we
choose an uniform initial distribution over the boundaries for
the walker.

The results given in Fig. 6 correspond to the MFPT as
a function of the desorption rate δ for a fixed system size
in x direction, N = 20. In Fig. 6(a) we have M = 10 and
different values of the transition rate over the boundary,

FIG. 6. (a) MFPT as a function of the desorption rate δ, with
M = 10, N = 20, for different values of the transition rate (over the
boundaries) β. From bottom to top β = 0.1,0.5,1,2,4. (b) MFPT as a
function of δ, with β = 2, N = 20, for different values of M (system
size in the y direction). From bottom to top M = 2,10,14,20,40. All
results correspond to MC simulations.
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β and in Fig. 6(b) we have β = 2 and different values of M

(system size in the y direction). As can be seen from the figure,
the original domain proposed (see Fig. 1) depicts a behavior
similar to the general one. Notice the correspondence of the
results of Fig. 6(a) with Fig. 2 and those from Fig. 6(b) with
Fig. 3, respectively.

One may argue that, unlike Fig. 3, in Fig. 6(b) (as δ → 0)
all curves approach a different T , however, this could be easily

understood. For this situation the initial distribution is sensitive
to the system size in the y direction M , since g(n,m) = (1 −
δn,0)δm,0/(N − 1) + δm,M/N + (δn,0 + δn,N−1)/(M − 1).

Besides the difference described above, our original model
(Fig. 1) qualitatively reflects the behaviors of the general
(Fig. 5) one, thus enabling us to extract reliable information
of a complex-general situation through the analysis of our
simpler, original scheme.
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