
Managing Worldwide Operations & Communications with Information Technology 929

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

evaluating relationship
Implementations performance in

Object-relational Databases
María Fernanda Golobisky, Universidad Tecnológica Nacional, Instituto de Desarrollo y Diseño INGAR (CONICET – UTN), Argentina; E-mail: mfgolo@ceride.

gov.ar

Aldo Vecchietti, Universidad Tecnológica Nacional, Instituto de Desarrollo y Diseño INGAR (CONICET – UTN), Argentina; E-mail: aldovec@ceride.gov.ar

ABSTrAcT
In this work an evaluation of an object-relational schema implementation rep-
resenting different relationships of an UML class diagram against the relational
approach was made. To perform this test we have implemented both object-relational
and relational schemas from a UML class diagram in a commercial database
leader in the market. The main goal has been to prove the competitiveness of the
object-relational technology. The methodology used for this work was to present
several schema implementations of association, composition, aggregation and
inheritance relationships, propose a set of representative queries to evaluate
their behavior, compare the results and make an analysis based on response
times. Four alternatives implementations of the schema diagram were made
for a composition relationship presented in the proposed UML class diagram.
The queries have been executed with no flush to the database buffer pool among
runnings to simulate a real situation. In some object-relational queries several
built-in functions and operations have been used. As a consequence of this work
we are proposing some extensions to the relational schema diagram to add the
object-relational alternatives (references, arrays, multisets, etc.) proposed by
the SQL:2003 standard.

Keywords: Performance test. Object-relational schema. SQL:2003. Array. Mul-
tiset. Scoped references.

InTrODucTIOn
Object-relational database management systems (ORDBMS) based on the
SQL:2003 standard offer several new capabilities to implement inheritance, as-

sociation, aggregation and composition relationships among objects, comparing
to the relational approach based on the SQL’92 standard. These novel capabilities
are based on the use of user-defined types (UDTs), references and collections. A
reference is a logical pointer to a row object that is constructed from its object
identifier (OID). In the object-relational (O-R) approach association and aggrega-
tion relationships can be implemented by means of single references or collection
of references, depending on the relationship cardinality. Composition relationship
which is a stronger whole-part relationship than aggregation can be implemented
by including a single object or a collection of them into other objects, again de-
pending on the relationship cardinality. Collections can be implemented by two
different structures: array and multiset; the main difference between them is the
prediction of a given maximum size (the array) or not (multiset).

In relational database management systems (RDBMS) relationships are imple-
mented via tables, foreign and primary keys. Depending on the relationship degree
and cardinality a join table is defined in order to hold it. A join table must contain
at least a foreign key column for each primary key of the entities participating
in the association.

In this work we evaluate the implementation of inheritance, association, aggrega-
tion and composition relationships over Oracle 10g to prove the competitiveness
of the object-relational technology. We have used this ORDBMS for both object-
relational and relational implementations. The reason for choosing Oracle 10g is
because it is leader in the database market and includes many of the SQL:2003
features. To perform the implementation evaluations several queries have been
selected considering the use of special built-in functions applied to references
(REF, DEREF) and collections (TABLE). Those queries were executed and
compared to their relational equivalent, which take the form of join operations.

Figure 1. Layers involved in mapping objects into ORDBMS

UML Class Diagrams

 Class State (attributes) Operations Relationships

Object-Relational Layer

 Row type Collection type (Array, Multiset)

 Reference type (Ref) User-defined type (UDT)

Object-Relational Persistent Layer

Tables Keys Constraints OID

Objects to relational
tables mapping

Objects to object-relational
components mapping

Object-relational components to
object-relational tables mapping

930 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

The results obtained in terms of the elapsed time and execution plans proposed
by the optimizer are given.

Two important works are found in the literature about the study of the ORDBMS
performance [1, 5]. They were done several years ago, when the O-R technol-
ogy did not offer the nowadays features. At that moment arrays and multisets
were not implemented and scoped references were not supported. We used them
as a reference for this paper. Furthermore, [6] was taking into account in our
research since it refers to the benefits and contributions of the O-R technology
in the software development process and [7] where some concepts about O-R
mappings are proposed.

MAppInG LAyerS Of OrDBMS
In [4] we have defined three layers involved in the transformation of UML class
diagrams into ORDBMS persistent objects. The first one corresponds to the UML
class diagram, the second is the object-relational layer composed of the O-R ele-
ments proposed by the SQL:2003 standard [8] -UDTs, arrays, multisets, references,
row types-, and the third is the object-relational persistent layer composed of
typed tables which are defined from the elements of the second layer containing
keys, constraints and OIDs, among other things. Unlike the relational model the
additional layer of the object-relational model adds a greater complexity.

The layers involved in the transformations and the elements composing them are
presented in Figure 1. It shows that the relational transformations complying with
SQL’92 standard are made in one step from UML to relational tables; while O-R
transformations take two steps from UML to object-relational components and
from the latter to persistent object tables.

DATA MODeL exAMpLe
We have used a book case model of a purchase order administration in a business
company whose UML class diagram for the schema implementations is shown in
Figure 2. This model contains many of the relationship types needed to perform
the evaluation. It should be noted that no aggregation relationships are presented,
this gap was overcame by implementing the composition relationship in a “weak”
manner treating it as an aggregation as will be shown later in this paper.

The UML class diagram was translated into an object-relational schema compli-
ance with the SQL:2003 standard and into a relational schema designed under the

SQL’92 standard and following the normalization rules. This was done in order
to compare the performance of both technologies.

reLATIOnAL ScheMA DefInITIOn
The UML class diagram mapping into a relational schema is based on the defini-
tions made on [3].

For the inheritance hierarchy of classes, three ways are presented in the literature
[2, 3]: flat, vertical and horizontal. We have implemented the three methods but in
this paper it is only shown the flat model by creating one single table for all classes
(super and subtypes) in the hierarchy. In the hierarchy it is assumed that Person
and Company sets are disjoints and the three object types (customers, persons
and companies) must be represented, then in the table where those attributes not
corresponding to the type stored in a row, contains NULL values.

Figure 2. Class diagram for a purchase order application

Person
personID
discount

Company
type
taxes

Customer
customer_number
customer_name
street
zip_code
phone

Purchaseorder
order_number
shipping_date
city
street
zip_code

10..* 10..*

Orderlineitem
line_number
quantity

1

1..20

1

1..20

Product
product_number
description
price

11..* 11..*

Table 1. Object-relational mapping layers

uML layer components Object-relational layer components persistent layer components
Customer class Customer UDT

Customer type table with substitut-
ability propertyPerson class Person UDT under Customer

Company class Company UDT under Customer
Purchaseorder class Purchaseorder UDT Purchaseorder type table
Orderlineitem class Orderlineitem UDT

Product class Product UDT Product type table

Customer - Purchaseorder association

Purchaseorder reference multiset (attribute of
Customer UDT)
Customer reference (attribute of Purchaseor-
der UDT)

Purchaseorder - Orderlineitem composi-
tion

1. Orderlineitem object array (attribute of
Purchaseorder UDT)

2. Orderlineitem reference array (attribute of
Purchaseorder UDT) Orderlineitem type table

3. Orderlineitem reference multiset (attribute
of Purchaseorder UDT) Orderlineitem type table

4. Orderlineitem object multiset (attribute of
Purchaseorder UDT)

Orderlineitem - Product association Product reference (attribute of Orderlineitem
UDT)

Managing Worldwide Operations & Communications with Information Technology 931

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Association, aggregation and composition relationships are implemented by means
of primary and foreign keys.

OBjecT-reLATIOnAL ScheMA DefInITIOn
The O-R schema is generated by using references, arrays and multisets and/or a
combination of them according to the definitions made in [4].

In Table 1 we present the elements composing the three layers involved in the
O-R schema definition. Observe that Purchaseorder-Orderlineitem composition
relationship has been implemented in four different ways:

• The first one (1.) is by defining an Orderlineitem type array of dimension 20
in Purchaseorder type table, this is the most natural implementation according
to the relationship defined in the UML class diagram. We included the objects
of the “part” into the “whole” due to it’s a strong relationship where the part
life depends on the whole life. We used an Orderlineitem type array into
Purchaseorder type table because the multiplicity of the part is well known
having a maximal number of 20.

• The second one (2.) is by defining an array of references to Orderlineitem
objects in Purchaseorder type table, implemented by the orderline_va attribute.
This implementation was made in order to use references within the composi-
tion relationship so that it can be treated like an aggregation relationship. It is
important to note that if the “whole” is deleted some procedure to eliminate
the “parts” must be implemented in order to maintain the integrity of the
references. This is not a natural implementation of a composition relationship,
it is done in this case in order to evaluate this relationship type. Although for
some cases and depending on the nature of the relationship this can be an
alternative for a composition.

• The third (3.) and fourth (4.) alternative implementations include a multiset
of references and a multiset of objects respectively. The difference between
these two and the previous two is that for multiset it is not known the maxi-
mum size of the collection. The considerations made about using references
or objects are the same than the previous paragraphs.

The relationship between Orderlineitem and Product is an unidirectional associa-
tion, so we have included a reference to Product as an attribute in Orderlineitem
UDT.

Observe that the persistent layer is composed of fewer elements than the O-R
layer, depending on the way the composition is implemented three or four tables
are defined.

Considering that there are no symbols proposed to represent the O-R elements
in a database schema diagram we introduce a graphical notation for this purpose
which is shown in Table 2.

According to the graphical elements proposed, the resultant object-relational schema
diagram corresponding to the first implementation of the composition relationship
is shown in Figure 3. The other schemas of the remainder implementations of the
composition relationship are shown in Figures 4 to 6.

In Fig. 3, the Customer class has a multiset of references to Purchaseorder class.
The Purchaseorder class has a single reference to the Customer class and an array
of Orderlineitem objects containing a reference to Product class.

Figure 4 shows that the Customer2 class has a multiset of references to Purchase-
order2 class. The Purchaseorder2 class has a single reference to the Customer2
class and an array of references to the Orderlineitem2 class. Orderlineitem2 class
contains a single reference to Product2 class.

In Fig. 5, the Customer3 class has a multiset of references to Purchaseorder3
class. The Purchaseorder3 class has a single reference to the Customer3 class
and a multiset of references to the Orderlineitem3 class. Orderlineitem3 class
contains a single reference to Product3 class.

Figure 6 shows that the Customer4 class has a multiset of references to Purchase-
order4 class. The Purchaseorder4 class has a single reference to the Customer4

Table 2. Object-relational extensions to the relational schema diagram

Figure 3. Schema diagram for the object-relational implementation. Composition
relationship implemented using an array of objects

Figure 4. Composition relationship implemented by means of an array of refer-
ences

 Graph Element

Reference (single arrow)

Array of references (double arrow)

Multiset of references (quadruple arrow)

Object array

Object multiset

Object array containing references to
other object

Object multiset containing references to other
object

Purchaseorder

 order_number
 shipping_date
 city
 street
 zip_code

o reftocustomer
o orderline_va

Customer

 customer_number
 customer_name
 street
 city
 zip_code
 phone
 personID Person
 discount
 type Company
 taxes

o purchase_tab

Product

 product_number
 description
 price

Orderlineitem2

 line_number
 quantity

o reftoproduct

Product2

 product_number
 description
 price

Purchaseorder2

 order_number
 shipping_date
 city
 street
 zip_code

 reftocustomer
 orderline_va

Customer2

 customer_number
 customer_name
 street
 city
 zip_code
 phone
 personID Person
 discount
 type Company
 taxes

o purchase_tab

932 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

class and an embedding multiset of Orderlineitem4 objects with single reference
to Product4 class.

DATABASe IMpLeMenTATIOn
In order to make a proper evaluation among the different implementations the
tables of the database were populated with thousands of object/tuples using store

procedures written in the programming language provided by the ORDBMS
containing random values generation functions for the data.

In the object-relational schema every row object in an object table (type table) has
an associated OID that uniquely identifies it. The OID allows the corresponding
row object to be referenced by other objects. A built-in data type called REF is
used for such references. We have used scoped REF to constrain that only refer-
ences to a specified object table can be implemented, because they are stored more
efficiently than unscoped REFs. In the relational schema every row in a table has
a primary key that uniquely identifies it allowing table joins.

The number of generated instances of each class is shown in Table 3.

eVALuATIOn TeST BeTWeen The ScheMAS
We have defined several relational and object-relational queries to compare the
performance of the schemas proposed. As can be seen the selected queries explore
the use of collections (array and/or multiset) of objects and references, single
references and inheritance hierarchy. These queries have been selected due to
collections and references make the difference between the O-R approach and the
relational one, and the reason of the performance comparison made.

We have executed each one 10 times in different moments and we have calculated
the average elapsed time for them. We decided not to flush the database buffer
pool among runnings because in real life users execute several applications at the
same time all of them consuming system resources. The hardware used for the
implementation and testing is an Intel Pentium IV CPU 3.00 GHz, with 1 GB of
main memory, running the Microsoft Windows XP operating system.

The goal of the comparison among the queries is to make a relative evaluation
of the proposed implementations and analyze the use of references, arrays and
multiset of the object-relational technology against the joins of the relational
approach. In this analysis we considered the response times and the execution
plans defined by the optimizer.

query 1. Find the order numbers and the detail of line numbers and quantity
ordered.

In this query we are analyzing the behavior of the four implementations of the
composition relationship in order to find out the most convenient alternative in
terms of the response time.

1.1 Array of objects
SELECT p.order_number, o.line_number, o.quantity FROM purchaseorder_t p,
TABLE(p.orderline_va) o;

1.2 Array of references
SELECT p.order_number, o.column_value.line_number, o.column_value.quantity
FROM purchaseorder2_t p, TABLE(p.orderline_va) o;

1.3 Multiset of references
SELECT p.order_number, o.column_value.line_number, o.column_value.quantity
FROM purchaseorder3_t p, TABLE(p.orderline_tab) o;

1.4 Multiset of objects
SELECT p.order_number, o.line_number, o.quantity FROM purchaseorder4_t p,
TABLE(p.orderline_tab) o;

1.5 Relational model
SELECT p.order_number, o.line_number, o.quantity FROM purchaseorder p,
orderlineitem o

WHERE p.order_number = o.order_number;

The results obtained are shown in Table 4.

Table 4 shows that the use of a multiset of objects (query 1.4) has the same response
time than the join (query 1.5) proposed for the relational query; in this case both

Figure 5. Composition relationship implemented by means of a multiset of refer-
ences

Figure 6. Composition relationship implemented by means of a multiset of objects
with references to other object

 Customer3

 customer_number
 customer_name
 street
 city
 zip_code
 phone
 personID Person
 discount
 type Company
 taxes

o purchase_tab

Orderlineitem3

 line_number
 quantity

o reftoproduct

Product3

 product_number
 description
 price

Purchaseorder3

 order_number
 shipping_date
 city
 street
 zip_code

 reftocustomer
 orderline_tab

 Customer4

 customer_number
 customer_name
 street
 city
 zip_code
 phone
 personID Person
 description
 type Company
 taxes

o purchase_tab

Product4

 product_number
 description
 price

Purchaseorder4

 order_number
 shipping_date
 city
 street
 zip_code

o reftocustomer
o orderline_tab

Table 3. Number of objects of each class in the data model

class number of instances

Company 451

Customer 1,000

Orderlineitem 63,578

Purchaseorder 10,000

Person 320

Product 10,000

Managing Worldwide Operations & Communications with Information Technology 933

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

technologies are competitive. The use of collections of references (queries 1.2
and 1.3) have the worst response time, the explanation for this behavior relays on
the size of the references, which are more than 40 bytes long requiring an extra
time to solve it. Looking at the execution plans the use of arrays requires a col-
lection iterator operation (PICKLER FETCH) that is not present for multisets, it
is traduced in a higher cost and number of bytes involved.

query 2. Find the customers, their order numbers together the line numbers and
quantity ordered.

This query is similar to query 1 but in this case we are starting from the customer
typed table adding an extra multiset of references. When the composition is
implemented like an aggregation two hop references are employed. For this case
we are using the traversal of two collections.

2.1 Multiset of references + Array of objects
SELECT c.customer_number, c.customer_name, p.column_value.order_number,
o.line_number, o.quantity

FROM customer_t c, TABLE(c.purchase_tab) p, TABLE(p.column_value.orderline_va)
o;

2.2 Multiset of references + Array of references
SELECT c.customer_number, c.customer_name, p.column_value.order_number,
o.column_value.line_number, o.column_value.quantity FROM customer2_t c,
TABLE(c.purchase_tab) p, TABLE(p.column_value.orderline_va) o;

2.3 Multiset of references + Multiset of references
SELECT c.customer_number, c.customer_name, p.column_value.order_number,
o.column_value.line_number, o.column_value.quantity FROM customer3_t c,
TABLE(c.purchase_tab) p, TABLE(p.column_value.orderline_tab) o;

2.4 Multiset of references + Multiset of objects
SELECT c.customer_number, c.customer_name, p.column_value.order_number,
o.line_number, o.quantity

FROM customer4_t c, TABLE(c.purchase_tab) p, TABLE(p. column_value.order-
line_tab) o;

2.5 Relational model
SELECT c.customer_number, c.customer_name, p.order_number, o.line_number,
o.quantity

FROM customer_plano c, purchaseorder p, orderlineitem o

WHERE c.customer_number = p.customer_number AND p.order_number =
o.order_number;

The results obtained are shown in Table 5.

Looking at the results shown in Table 5 the relational approach is more efficient
in terms of response time than the O-R technology. The cause is that the multiset
of references implementing the association between Customer and Purchaseorder
add an extra time for solving the query as was mentioned before. The multisets
used for the composition relationship consumes much more time than the arrays.
Looking at the execution plans the operations, cost, number of bytes and the other
variables of the plans gave us no clue about this behavior. What it is clear in this
case is that when two collections are involved in a query is better to implement
it by means of arrays if possible.

Arrays perform much better than multisets in the case that the entire collection
is manipulated as a single unit in the application because the array is stored in
packed form and do not require joins to retrieve the data, unlike multiset, using
Oracle 10g.

query 3. Find the products ordered by the customers.

In this query we are using two collections plus single references to retrieve products
information, that is to say it were employed three hop references.

3.1 Multiset of references + Array of objects + Single references
SELECT c.customer_number, c.customer_name, p.column_value.order_number,
o.reftoproduct.product_number

FROM customer_t c, TABLE(c.purchase_tab) p, TABLE(p.column_value.order-
line_va) o;

3.2 Multiset of references + Array of references + Single references
SELECT c.customer_number, c.customer_name, p.column_value.order_number,
o.column_value.reftoproduct.product_number

FROM customer2_t c, TABLE(c.purchase_tab) p, TABLE(p.column_value.order-
line_va) o;

Table 4. Results of the query 1

query rows selected response time (hh:mm:ss)
1.1

63578

00:00:03
1.2 00:00:07
1.3 00:00:07
1.4 00:00:02
1.5 00:00:02

Table 5. Results of the query 2

query rows selected response time (hh:mm:ss)
2.1

63578

00:00:05
2.2 00:00:10
2.3 00:01:14
2.4 00:01:14
2.5 00:00:03

934 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

3.3 Multiset of references + Multiset of references + Single references
SELECT c.customer_number, c.customer_name, p.column_value.order_number,
o.column_value.reftoproduct.description

FROM customer3_t c, TABLE(c.purchase_tab) p, TABLE(p.column_value.order-
line_tab) o;

3.4 Multiset of references + Multiset of objects + Single references
SELECT c.customer_number, c.customer_name, p.column_value.order_number,
o.reftoproduct.product_number

FROM customer4_t c, TABLE(c.purchase_tab) p, TABLE(p.column_value.order-
line_tab) o;

3.5 Relational model
SELECT c.customer_number, c.customer_name, p.order_number, pr.description

FROM customer_plano c, purchaseorder p, orderlineitem o, product pr

WHERE c.customer_number = p.customer_number AND p.order_number =
o.order_number

AND o.product_number = pr.product_number;

The results obtained are shown in Table 6.

As it can be noted queries with the third added hop have the same performance
than query 2.

query 4. Find customer information for all customers of person type.

In this query we are using the inheritance hierarchy of Customer obtaining the
supertype information of person subtype. The substitutability property allows the
storage of any subtype in the supertype table.

4.1 Object-relational
SELECT p.customer_number, p.customer_name, p.street, p.city

FROM customer_t p WHERE VALUE(p) IS OF (person_ob);

4.2 Relational
SELECT customer_number, customer_name, street, city

FROM customer_plano WHERE type = ‘P’;

The results obtained are shown in Table 7.

The response time for both queries is similar; due to the few rows involved in the
query the time is very low. Analyzing the execution plans both are very similar,
and no differences can be found. The advantage of the O-R approach is that the
model evolution can be easily implemented, subtyes can be added to the hierarchy
and can be stored in the supertype table.

query 5. Find customer and person information for all customers of person
type.

The difference between this query and query 3 is that in this case we are treating
supertype instances as subtype instances.

5.1 Object-relational
SELECT p.customer_number, p.customer_name, p.street, p.city, TREAT(VALUE(p)
AS person_ob).person_id, TREAT (VALUE(p) AS person_ob).discount FROM cus-
tomer_t p WHERE VALUE(P) IS OF (person_ob);

5.2 Relational
SELECT customer_number, customer_name, street, city, person_id, discount

FROM customer_plano WHERE type = ‘P’;

The results obtained are shown in Table 8.

The result analysis made for query 4 is the same for this one. Due to in both
queries (4 and 5) the flat model is used, so the optimizer makes a sweeping of
the entire tables.

Table 6. Results of the query 3

Table 7. Results of the query 4

Table 8. Results of the query 5

query rows selected response time (hh:mm:ss)
3.1

63578

00:00:10
3.2 00:00:12
3.3 00:01:13
3.4 00:01:11
3.5 00:00:07

query rows selected response time (hh:mm:ss)
4.1

320
Less than 1 second

4.2 Less than 1 second

query rows selected response time (hh:mm:ss)
5.1

320
Less than 1 second

5.2 Less than 1 second

Managing Worldwide Operations & Communications with Information Technology 935

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

cOncLuSIOnS
In this work we have evaluated the implementations of relationships of different
type into an object-relational schema and have made the comparison of them
against a relational approach. Oracle 10g was used for the implementations. We
started with a UML class diagram of a book case example. In order to define the
O-R schema we have transformed the class diagram into O-R elements of an
intermediate layer and then they were transformed into persistent typed tables.
These tasks are more complex than the relational model which involves a more
direct mapping. Several O-R schemas have been defined involving different alter-
natives for the implementation of composition relationship. Arrays and multiset
of references and objects have been used for this purpose. We have proposed
graph elements to support object-relational extensions for the relational schema
diagram. Those elements are very useful for database developers since the com-
plexity of the object-relational model can be represented graphically facilitating
their interpretation.

The evaluation of the O-R implementations against the relational approach has
been driven by a set of queries, their response time and execution plans. As a
result of this study, comparing the use of arrays, multiset, objects and references,
for the implementation of composition and aggregation relationships, no general
conclusion of which one is better can be made. Each case can be analyzed ac-
cording to the business rule to be implemented, several alternatives for them are
open, and it is worthy to make some evaluations before making a final decision.
The performance of the inheritance hierarchy is the same in both technologies
analyzed, having the O-R technology more flexibility for type evolution.

Even though the relational technology threw the best results, the object-relational
technology had good ones in some cases, not so far the relational behavior. In the
future work our plan is to implement the mappings in an OO language such that it
is possible to evaluate if the O-R technology can reduce the impedance mismatch
existing between the OO programming languages and the relational approach.

A priori, the expectation is to get certain advantages from the O-R technology
regarding to this issue.

referenceS
1. Carey, M., DeWitt, D., Naughton, J., Asgarian, Brown, P., M., Gehrke; J.

and Shah, D.: The Bucky Object-Relational Benchmark. In Proc. of ACM
SIGMOD International Conference on Management of Data, pp. 135-146
(1997).

2. Carey, M., Chamberlin, D., Narayanan, S., Vance, B., Doole, D., Rielau, S.,
Swagerman, R. and Mattos, N.: O-O, What Have They Done to DB2?. In
Proc. of 25th International Conference on Very Large Data Bases. Edinburgh,
Scotland (1999).

3. Elmasri, R. and Navathe S.: Fundamentals of Database Systems, Third Edi-
tion. Addison Wesley. (2000).

4. Golobisky, M.F. and Vecchietti, A.: Mapping UML Class Diagrams into Ob-
ject-Relational Schemas. In Proc. of the Argentinian Symposium of Software
Engineering (ASSE 2005). ISSN: 1666-1087. Pág. 65-79. 34 JAIIO, Rosario,
Santa Fe, Argentina (2005).

5. Lee, S.H, Kim, S. J. and Kim, W.: The BORD Benchmark for Object-Rela-
tional Databases. In Proc. of the 11th International Conference on Database
and Expert Systems Applications (2000).

6. Mahnke, W.: Towards a modular, object-relational schema design. In Proc.
of the 14th International Conference on Advanced Information Systems
Engineering (CAiSE’2002) (2002).

7. Marcos, E., Vela, B., Cavero, J.M. and Cáceres, P.: Aggregation and Composi-
tion in Object-Relational Database Design. In Proc. of the Fifth East-European
Conference on Advances in Databases and Information Sytems, Vilnius
Lithuania (2001)

8. Melton, J. ISO/IEC 9075-2:2003 (SQL/Foundation), ISO standard. (2003).

