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a b s t r a c t

Rate constants for the planar H + HD ? H2 + D reaction with J = 0 have been calculated employing
reduced dimensionality, mixed quantum/classical and full quantum computations based on the flux–flux
correlation function formalism. It has been found that reduced dimensionality and mixed quantum/clas-
sical calculations afford quite similar results. This suggests that, for direct reactions occurring in the gas
phase, there is no advantage in using the more involved mixed quantum/classical approach. On the other
hand, the comparison between approximate and accurate results indicates that both, reduced dimension-
ality and mixed quantum/classical approaches, work well at medium and high temperatures. As
expected, they fail at very low temperatures where tunnelling prevails.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Currently, many gas phase reactions can be thoroughly studied
using computational methods entirely based on first principles [1–
3]. However, there is still much interest in the development and
application of approximate methods. This interest stems from
two main sources. First, the computational demands of calcula-
tions entirely based on first principles increases very rapidly with
the number of the atoms involved. Therefore, it is important to
have reliable alternatives to treat polyatomic systems. Second,
through a careful analysis of the performance of approximate
methods one can get deep insight into the details of the reactive
process under study. For example, the comparisons between accu-
rate and approximate results or between approximate results of
different sorts may shed light on the validity of the assumptions
made in non-accurate calculations.

Within the Born–Oppenheimer approximation, two basic steps
are required to perform accurate computations [2]. First, electronic
structure calculations are needed to determine the potential en-
ergy surface (PES) that governs the dynamics of the nuclei. Second,
the quantum dynamics of the nuclei on the given PES has to be
evaluated. Rate constants, as well as other parameters characteris-
ing reactivity, are extremely sensitive to the energy and configura-
tion of the transition state (TS). But, at configurations close to the
TS, electronic structure calculations become very demanding be-
cause bonds which are partially broken and partially formed need
to be described. Accordingly, only high level ab-initio methodolo-
gies with very large basis sets can provide data of the required
accuracy [2]. Then, the electronic energies have to be fitted to
ll rights reserved.
provide a PES that can be used in dynamical calculations. For poly-
atomic reactions, this fitting is also very challenging.

On the other hand, using standard techniques, the description of
the quantum dynamics of the nuclei requires the use of a basis set
or grid representation for each degree of freedom. Therefore, the
memory needed to perform the computations roughly scales as
Nf, where N is the average size of the basis set or grid, while f is
the number of degrees of freedom of the system. This extremely
unfavourable scaling with f prevents the accurate treatment of
many polyatomic reactions of applied interests. Highly efficient
methods, such as MCTDH [3], are able to treat systems larger than
the standard techniques, because they require smaller values of N.
In fact, this method has pushed the limit of accurate computations
of k(T) to twelve internal degrees of freedom several years ago [4].
However, eventually, the exponential scaling with f always poses a
limit.

Reduced dimensionality (RD) [5,6] and mixed quantum/classi-
cal (mixed-Q/C) [7–9] approximations are two strategies devel-
oped to deal with quantum dynamical computations in processes
that involve several atoms. They have been extensively used to
study gas phase reactions, within the framework of reactive scat-
tering theory [10–12]. Mixed-Q/C computations have also been
employed in direct calculations of k(T) in condensed phases [13–
15]. Only very recently, mixed-Q/C computations were proposed
for direct calculations of k(T) in gas phase [16]. Both methods rely
on the fact that not all the internal motions of a reactive system are
equally important. Therefore, an accurate treatment is only given
to those terms of the Hamiltonian related to the most relevant
motions.

RD and mixed-Q/C methods differ in the way they treat the less
important modes. In RD calculations, the variables describing these
modes are fixed. Accordingly, all terms in the Hamiltonian that
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Figure 1. Jacobi coordinates employed in the definition of the hyperspherical
coordinates q and d. The angle a, that describes the bending vibration at the
transition state, is also shown.
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contain derivatives for these variables vanish. In mixed-Q/C com-
putations the less important motions are treated classically, while
effective potentials are added to the quantum and classical Hamil-
tonians in order to allow for energy transfer between the subsys-
tems. Briefly, it could be said that the RD approach treats the less
important modes as mere spectators while the mixed-Q/C one con-
siders them as part of a classical bath.

Thermal rate constants can be directly computed from evalua-
tions of the flux–flux correlation function (Cff(t)), using the formal-
ism developed by Miller and co-workers [17,18]. This formalism
provides an appropriate framework for the use of RD and mixed-
Q/C approximations, because the weak coupling between relevant
and non-relevant degrees of freedom, assumed by these ap-
proaches, can be fulfilled to a good degree. In calculations of Cff(t),
the thermal wave packets only sample a small region of the PES,
around the TS [19]. Within this region, it is not so difficult to find
a coordinate system which provides a good separation. This is
not always the case of reactive scattering calculations, since the
nature and importance of the motions described by some coordi-
nates change when going from the asymptotic regions to the tran-
sition state. Thus, for example, coordinates describing translational
and rotational motions, at the asymptotic parts of the PES, describe
quantized vibrations at the strong interaction region. On the other
hand, direct evaluations of k(T) require shorter propagation times
than those typically employed in reactive scattering calculations
[20]. Therefore, the non-important modes have less time to inter-
act with the relevant modes and modify their dynamics.

In spite of the similarities there are also significant differences
between RD and mixed-Q/C calculations. Basically, it could be said
that RD calculations are somewhat simpler or less-involved than
the corresponding mixed-Q/C ones. While an RD evaluation of Cff(t)
requires a single propagation of the thermal wave packets, the
mixed Q/C approach requires the calculation of many trajectories
[15]. Besides, mixed-Q/C propagation schemes need significantly
smaller integration steps than the full quantum ones, in order to
keep the energy of the combined system constant. Altogether,
these two facts make the mixed-Q/C computations more time con-
suming than the RD ones. But there is an even more important fea-
ture that differentiates these two approaches. Mixed-Q/C
calculations need a full-dimensional PES, while RD computations
can be performed with a RD-PES. This is an extremely simplifying
feature that, as Kerkeni and Clary have demonstrated, allows for
good estimations of k(T) in polyatomic reactions, at a reasonable
computational cost [21–23]. Because of the reduced size of the po-
tential that needs to be developed, RD surfaces can be evaluated at
higher levels of theory than full-D surfaces. This often increases the
accuracy of the calculated rate constants. It is, therefore, interest-
ing to know whether the more-involved mixed-Q/C approach pro-
vides different results than the RD approach. Otherwise one should
prefer employing RD calculations.

In this Letter we compare the results of RD and mixed-Q/C di-
rect computations of k(T). Mainly, we want to know if the esti-
mates obtained with the two approaches are similar or not. If
not, we want to establish which of the two methods provides the
best estimate. In order to do so, we also perform comparisons with
full quantum (full-QM) results. The reactive system used to answer
these questions is a planar version of the H + HD ? H2 + D reaction
with J = 0. We should note that, with the same computational ef-
fort, we could have done the calculations in 3D since both, the pla-
nar and 3D J = 0 Hamiltonians have three internal degrees of
freedom. However, the use of the planar Hamiltonian allows a clo-
ser comparison between the methods. In the plane, the operator
that describes the bending motion at the TS nicely transforms into
its classical counterpart, when the procedure developed by Ratner
et al. [24] is applied. This does not hold for the operator that de-
scribes the bending motion in 3D. In this case, an ad-hoc classical
Hamiltonian would have to be introduced. Such a procedure, which
would add a putative source of difference between RD and mixed-
Q/C results, would clearly interfere in the comparison.

The H + H2 ? H2 + H reaction is the simplest and the most stud-
ied system [25]. Because of this, it is usually employed to test
approximated methodologies. In this work we use an isotopic var-
iant of it, in order to differentiate between the two different prod-
uct channels. The methods we are testing are aimed to treat
reactions of the general type A + BC ? AB + C, where only one prod-
uct channel is relevant, or where the different product channels
can be treated independently. In the next section we describe the
methodology employed to perform the computations. Then, in Sec-
tion 3, we present and discuss the results. Section 4 finishes this
letter highlighting the main conclusions of the work.

2. Methodology

The full quantum Hamiltonian for the planar H + HD ? H2 + D
reaction with J = 0 can be written asbH ¼ bK q þ bK b þ V : ð1Þ

Here bK q is the kinetic energy operator that describes the symmetric
and asymmetric stretching vibrations at the TS, while bK b describes
the corresponding bending motion. The last term of Eq. (1) accounts
for the potential energy of the system.

The operator bK q was expressed in hyperspherical coordinates q
and d defined as

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lRR2 þ lrr2

q
;

d ¼ arctan
ffiffiffiffiffilr
p

rffiffiffiffiffiffilR
p

R

� �
;

where r and R are the lengths of the Jacobi vectors depicted in Fig-
ure 1 while lr and lR are the corresponding reduced masses,

lr ¼ mHmD=ðmH þmDÞ;
lR ¼ mHðmH þmDÞ=ð2mH þmDÞ:

In the last two equations, mH and mD are the masses of isotopes pro-
tium and deuterium, respectively.

Employing atomic units, the operator bK q takes the form

bK q ¼ �
1
2

@2

@q2 þ
1
q2

@2

@d2

 !
� 1

8
1

Iaðq; dÞ
þ 1

IbðqÞ

� �
; ð2Þ

where Ia = q2sin2(d)cos2(d) and Ib = q2. The last two terms of Eq. (2)
appear when the wave function is scaled so that the volume ele-
ment is just dqdd. Finally, the kinetic energy operator for the bend-
ing vibration takes the form

bK b ¼ �
1

Iaðq; dÞ
@2

@a2 ; ð3Þ
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where a is the angle between vectors r and R, as shown in Figure 1.
Curvilinear coordinates as the ones employed here, tend to mini-
mise the correlation between variables. Therefore they are appro-
priate for implementing approximations like the mixed-Q/C one,
which relies on the validity of the time-dependent-self-
consistent-field approach [24].

Reduced dimensionality computations were performed by
fixing the bending angle to its transition state value (a# = p).
Accordingly, the RD Hamiltonian reads

bHRD ¼ bK q þ V q; d;a#
� �

: ð4Þ

The mixed-Q/C model was defined so that bK q belongs to the quan-
tum subsystem while bK b belongs to the classical one. The potential
energy terms for the quantum and classical subsystems were de-
fined as

Vqðq; dÞ ¼ Vðq; d;a#Þ;
VbðaÞ ¼ Vðq#; d#;aÞ � Vðq#; d#;a#Þ;

where q# and d# are the values taken by these variables at the tran-
sition state. Therefore, the coupling potential is

V coupðq; d;aÞ ¼ Vðq; d;aÞ � Vqðq; dÞ þ VbðaÞ
� �

: ð5Þ

These definitions produce relatively small values of Vcoup in the re-
gion sampled by the thermal wave packets and this helps to im-
prove the quality of the quantum/classical separation.

To obtain the effective Hamiltonians to be used in the quantum/
classical propagations we followed the procedure developed by
Ratner et al. [24]. The solution of the full-dimensional time-
dependent Schrödinger equation is proposed to have the form
w(q,d,a,t) = /q(q,d,t)/b(a,t). Besides it is assumed that /b(a,t) =
a(a,t)e� iS(a,t)t/⁄, with a(a,t) being an approximate delta function
centred at a(t). By introducing this ansatz in the Hamiltonian of
Eq. (1) and then taking the limit ⁄ ? 0, the following effective
Hamiltonians are obtained, provided that the dependence of bK b

with q and d is ignored [26],

bHeff
q ¼ bK q þ Vqðq; dÞ þ Vcoup q; d;aðtÞð Þ; ð6Þ

bHeff
b ¼

p2
a

2Ia
þ VbðaÞ þ Vcoupðq; d;aÞ

� �
q;d: ð7Þ

In these equations, the symbol h . . . iq,d indicates averaging over
the quantum wave function while Ia is the value given to Ia(q,d)
when its dependence with the hyperspherical variables is ignored.
We tested two different ways of assigning Ia. In the simplest
approach, named QC–TS, we set Ia ¼ Iaðq#; d#Þ. Alternatively, we
used Ia ¼ Iaðq; dÞh it¼0

q;d , where the superscript t = 0 indicates that
the integral is evaluated using the initial thermal wave packet.
We named this approach as QC–AVE. We found that the two ap-
proaches give very similar results, with the QC–TS values always
below the QC–AVE ones by 1–4%. Since, in turn, the QC–AVE values
were always closer to the full-QM results, we will only present and
discuss in section 3 the mixed-Q/C results obtained with the QC–
AVE approach.

During mixed-Q/C calculations, the state of the quantum sub-
system was propagated by numerical integration of the time-
dependent Schrödinger equation, corresponding to the effective
Hamiltonian of Eq. (6). The state of the classical subsystem was
propagated using the classical equations of motion, corresponding
to the Hamiltonian of Eq. (7). This propagation scheme is the one
usually employed in mixed-Q/C computations. It conserves the en-
ergy of the composed system, in the limit of infinitely-small time
steps. Thus, the quality of the trajectories can be assessed by ana-
lysing the variations of the total energy.

Full quantum direct evaluations of k(T) were based on the
expression proposed by Miller et al. [18],
Q rðTÞkðTÞ ¼
Z 1

0
CffðtÞdt; ð8Þ

where Qr(T) is the reactant partition function per unit volume, while
the flux–flux correlation function is given by,

CffðtÞ ¼ Tr bF ðbÞeibHt=�hbFe�ibHt=�h

	 

: ð9Þ

Here bF ¼ ½bH; h� is the flux operator, h is the Heaviside step function,
b = (kT)�1 and bFðbÞ is the Boltzmannized flux operator

bF ðbÞ ¼ e�bbH=2bFe�bbH=2: ð10Þ

By introducing the spectral decomposition of bFðbÞ in Eq. (9), a
numerically convenient expression to evaluate Cff(t) is obtained
[15],

CffðtÞ ¼
XNf

j¼1

fjhujðtÞjbF jujðtÞi: ð11Þ

Here fj and juji are the eigenvalues and eigenfunctions of bFðbÞ,
respectively, Nf is the number of eigenfunctions of bFðbÞ with non-
negligible eigenvalues, while the jujðtÞi’s are the time-evolved juji,

jujðtÞi ¼ e�ibHt=�hjuji: ð12Þ

The eigenfunctions juji were obtained by diagonalizing the repre-
sentation of bFðbÞ in the basis set of eigenfunctions of bH. In turn,
the eigenfunctions of bH were obtained by diagonalizing the repre-
sentation of this operator in a direct-product particle-in-a-box
DVR basis set, for the variables q, d and a. The calculation of the
eigenfunctions of bFðbÞ only included eigenfunctions of bH with
eigenvalues smaller than Elim. Similarly, in the summation of Eq.
(11) we only considered eigenfunctions jujiwhose eigenvalues fulfil
jfj=f1j P Fmin.

Reduced dimensionality and mixed-Q/C estimations of Cff(t)
were obtained from

CffðtÞ � Q#
b CAPP

ff ðtÞ; ð13Þ

where Q#
b is the partition function of the modes that receive an

approximate treatment, while APP = RD or QC indicates which of
the two approaches is being employed to estimate the flux–flux cor-
relation function. Eq. (13) would hold exactly if the separation be-
tween important and non-important modes were exact.

The RD flux–flux correlation function, CRD
ff , was calculated using

an expression similar to Eq. (11), with the only difference that the
flux operator, and therefore thermal-flux eigenfunctions, corre-
sponded to the RD Hamiltonian of Eq. (4) instead of the full-QM
one of Eq. (1). The procedure followed to obtain and propagate
the RD thermal-flux eigenfunctions was similar to the one em-
ployed in full-QM computations. The mixed-Q/C flux–flux correla-
tion function was evaluated with the formula proposed by Wang et
al. [15]

CQC
ff ¼ Q#

b
1

Ntraj

XNtraj

n¼1

XNf

j¼1

fq;j un
q;jðtÞ bF q

��� ���un
q;jðtÞ

D E
q;d
: ð14Þ

In this expression Ntraj is the number of mixed-Q/C trajectories, bF q is
the flux operator corresponding to the effective quantum Hamilto-
nian of Eq. (6), while fq,j and juq,j(t)i are the eigenvalues and time-
evolved eigenfunctions of bF qðbÞ. The superscript n denotes the
trajectory being used to evaluate jun

q;jðtÞi. The trajectories of Eq.
(14) were initiated by selecting the classical coordinate and
momentum at random from their classical distribution probabili-
ties, while the quantum subsystem was set at a given eigenstate
of bF qðbÞ. The trajectories were integrated using the PICKABACK
algorithm, which is especially suited for mixed-Q/C propagations



Table 1
Parameters employed in RD, mixed-Q/C and full-QM computations.

QM RD QC

Vmax/kcal mol�1 65.0 65.0 65.0
Elim/kcal mol�1 30.0 40.0 40.0
Fmin 1.0e�2 1.0e�3 1.0e�3
dmin 0.08 0.08 0.08
dmax 0.96 0.96 0.96
Nd 30 50 50
qmin/a.u. 70.0 70.0 70.0
qmax/a.u. 290.0 290.0 290.0
Nq 30 60 60
amin/rad 1.02 – –
amax/rad 4.36 – –
Na 20 – –
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Figure 2. Values of the integral
R1

0 CAPP
ff ðtÞ at T = 200 K for APP = RD (blue) and

APP = QC (red). The results of ten individual mixed-Q/C trajectories are also
presented (black). (For interpretation of the references in colour in this figure
legend, the reader is referred to the web version of this article.)
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Figure 3. Values of the integral
R1

0 CAPP
ff ðtÞ at T = 1000 K for APP = RD (blue) and

APP = QC (red). The results of ten individual mixed-Q/C trajectories are also
presented (black). (For interpretation of the references in colour in this figure
legend, the reader is referred to the web version of this article.)
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[20]. The procedure used to obtain the eigenvalues and eigenfunc-
tions of bF qðbÞ was the same as the one employed in RD calculations.
Following Wang et al. [15], the coupling potential Vcoup(q, d, a) was
not included in bHq at the time of calculating the eigenvalues and
eigenfunctions of bF qðbÞ.

The values of the parameters defined in this section, that were
used to obtain the results presented in the next section, are shown
in Table 1. Other parameters, which have not been explicitly men-
tioned before, but are needed to reproduce the calculations, are
also included in the Table. These are: the sizes of the primitive
DVR grids (Nd, Nq and Na), the minimum and maximum values ta-
ken by each coordinate ([dmin:dmax], [qmin:qmax] and [amin:amax])
and the maximum value of the potential energy, for the DVR points
included in the evaluation of the Hamiltonian matrix (Vmax). All the
computations were performed using the BKMP2 surface of Booth-
royd et al. [27,28].

Approximately 100 mixed-Q/C trajectories for each tempera-
ture value are needed to compute thermal rate constants with neg-
ligible statistical uncertainty. This means that the time required by
a mixed-Q/C evaluation of k(T) is, at least, two orders of magnitude
larger than that of a RD computation. Besides, one must consider
that a single quantum/classical trajectory takes significantly longer
than a RD trajectory. This is mainly due to the shorter time-steps
required by the mixed-Q/C propagation. In our implementation,
we used 5.0 � 10�3 fs for mixed-Q/C trajectories and 1.0 � 10�1 fs
for the RD ones. With this setting, the ratio between the CPU times
required by a mixed-Q/C trajectory and a RD one was about 50. We
note, however, that this ratio can be sensitive to the system under
study.

3. Results and discussion

Combining Eq. (8) with Eq. (13), the following expression is ob-
tained for the approximated k(T)s

Q rðTÞk
APPðTÞ ¼ Q#

b

Z 1

0
CAPP

ff ðtÞdt: ð15Þ

The comparison of this expression with Eq. (8) shows that there are
two factors determining the agreement between approximated and
full quantum rate constants. One is a dynamical factor contained in
the integral

R1
0 CAPP

ff ðtÞdt. The other one is a thermodynamical factor
corresponding to the partition function of the modes treated
approximately. However, only the former is relevant in the compar-
ison between RD and mixed-Q/C calculations. Accordingly, we will
use it henceforth to evaluate the agreement between the two
approaches.

Mixed-Q/C and RD values of the integral
R1

0 CAPP
ff ðtÞdt are shown

in Figures 2 and 3, for the lowest (200 K) and the highest (1000 K)
temperatures considered in this work, respectively. We also pres-
ent there the results of a few individual mixed-Q/C trajectories, se-
lected at random, in order to illustrate their typical behaviour. It
can be noted that computations done at 1000 K reach their asymp-
totic values faster than computations done at 200 K. Another dif-
ference is that the results of individual trajectories are much
more spread out at 200 K than at 1000 K. In fact, these two features
are related to each other. The thermal wave packets move faster at
higher temperatures. Accordingly they leave the strong interaction
region in a shorter time. But, for the same reason, the influence of
the classical subsystem onto the quantum one is smaller, produc-
ing trajectories which look pretty similar to each other.

Figures 2 and 3 show that mixed-Q/C results are below the RD
ones, and that the difference between them is larger at the lowest
temperature. A more quantitative comparison can be done using
the data of Table 2. There, we present the results obtained at five
different temperatures between 200 K and 1000 K. The data in
the Table confirm the trends observed in Figures 2 and 3. The fact
that the agreement between RD and mixed-Q/C results becomes
better at higher temperatures is not surprising. It can be under-
stood with the same reasoning discussed in the previous para-
graph. At higher temperatures the thermal wave packets move
faster and therefore have less time to interact with the classical



Table 2
Converged values of

R1
0 CAPP

ff ðtÞdt for APP = RD and QC. The statistical uncertainty of
the QC results is given within parenthesis.

T=K RD QC

200 4.41e�17 3.88(0.05)e�17
400 8.77e�11 7.87(0.03)e�11
600 1.60e�08 1.49(0.02)e�08
800 2.41e�07 2.26(0.02)e�07
1000 1.30e�06 1.26(0.01)e�06
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subsystem. In the limit of very high temperatures the two
approaches should agree, within their statistical and numerical
uncertainties. On the other hand, we have no explanation for the
fact that mixed-Q/C results underestimate the RD ones. Moreover,
we do not know whether this is a general feature or just one un-
ique to the present reaction. It would be necessary to study several
reactions, involving different mass combinations and potential en-
ergy surfaces, in order to address that question. Nevertheless, we
should note that the differences are small. In the worst case, found
at 200 K, the mixed-Q/C value underestimate the RD one by just
�12%.

Finally, in order to be able to compare with full-QM calcula-
tions, the values of the integral

R1
0 CAPP

ff ðtÞdt, computed at different
temperatures, were multiplied by the partition function of the
bending mode. The partition functions were calculated using the
eigenvalues of the one-dimensional Hamiltonian, corresponding
to the bending vibration at the transition state. Similar results
are obtained when the partition functions are approximated using
the harmonic frequency of that mode. The results are presented in
Figure 4. The agreement between approximated and full-QM re-
sults is very good at the higher temperatures, but deteriorates at
lower temperatures. At 1000 K, the RD results underestimate the
full-QM ones by just 6.6%, while at 400 K this error increases to
18.1%. At 200 K, where the reaction occurs mainly by tunnelling,
the approximated values fail to give a good estimate of the full-
QM results. This failure gives a strong indication of the limitations
of the models employed here, to deal with such situations.

At this point, we should note that the PES employed in the RD
computations did not include a zero point energy correction for
the bending mode. Instead, they were performed on the bare
electronic PES. In this sense, our computations are similar to RD scat-
tering calculations that employ a simple energy shifting approxima-
tion. The evidence collected so far, from reactive scattering
1 2 3 4 5
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1e-12
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1e-08
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T
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/ a
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.
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QC
QM

Figure 4. Converged values of Qr(T)k(T) for J = 0 as a function of T. Full-QM (full-
line, black), RD (dashed-line, blue); mixed-Q/C (full-line, red). (For interpretation of
the references in colour in this figure legend, the reader is referred to the web
version of this article.)
calculations [10], indicates that the adiabatic correction provides
more accurate results than the energy shifting approximation.
Therefore, the comparison between RD and full-QM computations
presented here could probably be improved by adding the zero point
energy of the bending mode to the electronic PES.

The H + HD ? H2 + D reaction with J = 0 has only three degrees
of freedom, while the method we are testing is aimed at dealing
with larger systems. Thus, one important question immediately
arises. How much of what we have learned in this work can be
extrapolated to more complex cases? A conclusive answer to this
question requires the comparison between RD and mixed-Q/C re-
sults, and between them and full-QM results, for a significant num-
ber of polyatomic reactions. However, for the time being, some
tentative answers can be given by exploring the causes for the
agreement or disagreement between the results obtained through
different approaches. The fact that RD and mixed-Q/C calculations
produce nearly the same results is related to the short time it takes
for the flux–flux correlation function to converge to zero. Thus, one
can expect that this finding remains true for all direct abstraction
reactions taking place in gas phase. For such systems, the much
simpler RD approach should be preferred to the mixed-Q/C ap-
proach, because it provides the same (or perhaps higher) accuracy
with less computational effort. This situation is completely differ-
ent from that found in the study of condensed phase reactions
[13,14], where the bath modes play a far more important role [29].

On the other hand, the poor agreement between full-QM and
approximated results found at 200 K indicates that, where tunnel-
ling prevails, the three degrees of freedom of the system are re-
quired to account for reactivity. Accordingly, it is not appropriate
considering the bending vibration as a non-important mode. The
relevance of these low-frequency bending vibrations has been
highlighted in a recent study, in which the performance of RD
models applied to the H + CH4 reaction was analysed [30]. For a
small system as the one treated in this work, the only solution is
to perform full-QM calculations. However, when dealing with lar-
ger systems, RD models with three or four degrees of freedom
could be employed. These models could explicitly include the
low-frequency bending vibrations of the TS in their Hamiltonians.
Today, three and even four dimensional quantum dynamical com-
putations are readily affordable, provided that an appropriate PES
is available. We note, however, that computing accurate surfaces
in four dimensions can be a challenge. Surely, this is one of the
challenges to overcome in order to implement RD direct computa-
tions of k(T) with more than two dimensions.
4. Conclusions

We have calculated mixed quantum/classical (mixed-Q/C), re-
duced dimensionality (RD) and full quantum rate constants for
the planar H + HD ? H2 + D reaction with J = 0, using the formalism
of the flux–flux correlation function. The comparison between RD
and mixed-Q/C results suggests that there is no advantage in using
the more involved mixed-Q/C approach. However, since the system
analysed in this letter is relatively small, additional tests should be
made on larger systems, such as H + CH4, in order to confirm this
suggestion. On the other hand, the comparison between approxi-
mated and accurate results shows that, while both approaches
work well at medium and high temperatures, they fail to repro-
duce full quantum results at very-low temperatures where tunnel-
ling prevails. This failure was attributed to the limitations of the RD
and mixed-Q/C models studied here. Both models treat the bend-
ing vibration of the TS approximately. This vibration is required
to properly describe the tunnelling regime. When dealing with lar-
ger and more complicated reactions this problem could be miti-
gated by defining larger RD Hamiltonians which include such a
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vibration. Also, the use of a zero point energy correction for the
modes not considered in the RD model could help to improve the
performance of the approach.
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