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a b s t r a c t

The notion of quantum discord introduced by Ollivier and Zurek [Phys. Rev. Lett 88
(2001) 017901] (see also Henderson and Vedral [J. Phys. A 34 (2001) 6899]) has attracted
increasing attention, in recent years, as an entropic quantifier of non-classical features
pertaining to the correlations exhibited by bipartite quantum systems. Here we generalize
the notion so as to encompass power-law q-entropies (that reduce to the standard Shannon
entropy in the limit q → 1) and study the concomitant consequences. The ensuing, new
discord-like measures we advance describe aspects of non-classicality that are different
from those associated with the standard quantum discord. A particular manifestation of
this difference concerns a feature related to order. Let D1 stand for the standard, Shannon-
based discord measure and Dq for the q ≠ 1 one. If two quantum states A, B are such
that D1(A) > D1(B), this order-relation does not remain invariant under a change from
D1 to Dq.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The degree of understanding of quantum correlations (QC) underlies our current picture of Nature [1,2]. It has been
recently found that there exist important manifestations of the quantumness of correlations in composite systems that are
different from those of entanglement-origin (EO) and that may be relevant in quantum information technologies [3–6].
The quantifier of these non-EO correlations is called the quantum discord (QD) D1 and is based, for a bipartite system,
on Shannon’s mutual information. We are thus speaking of an information-theoretic (IT) tool. For pure states, QD does
not add any QCs, but that is not the case for mixed states. The D1-concept, advanced in the pioneer paper by Ollivier
and Zurek [4], quantifies: (i) the minimum change in the state of the system and (ii) the information on one of its parts
induced by a measurement of the other one. If the state has only classical correlations, D1 vanishes, which implies that the
quantum discord concept somehow quantifies the ‘‘correlational-quantumness’’. It has been evaluated for several families
of states both in its original form and in variously altered versions and generalizations. A particularly compelling instance
expresses the QD-notion in terms of conditional density operators [7]. Interesting operational QD-interpretations have also
been advanced [6]. Evaluating QD requires a rather involved optimization procedure, analytical expressions being known
in just a few instances [8–14]. D1 is built up as an entropic difference, the difference between a quantum entropic measure
and its classical counterpart, which is derived from local measurements on one or both of the participant subsystems. Its
amount is a new feature D1(A) of the quantum state A, which in turn induces a D1-amount ‘‘ordering’’ for states of the form
D1(A) > D1(B), for instance.

∗ Correspondence to: Departamento de Física Atómica Molecular y Nuclear, Instituto Carlos I de Física Teórica y Computacional, 18071 Granada, Spain.
E-mail addresses: anamajtey@ugr.es (A.P. Majtey), arplastino@ugr.es, plastino@fisica.unlp.edu.ar (A.R. Plastino), angeloplastino@gmail.com

(A. Plastino).

0378-4371/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2011.11.062

http://dx.doi.org/10.1016/j.physa.2011.11.062
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:anamajtey@ugr.es
mailto:arplastino@ugr.es
mailto:plastino@fisica.unlp.edu.ar
mailto:angeloplastino@gmail.com
http://dx.doi.org/10.1016/j.physa.2011.11.062


2492 A.P. Majtey et al. / Physica A 391 (2012) 2491–2499

Now, IT-tools come in many distinct varieties. Given the immense body of literature that has been generated in the
past two decades concerning physically motivated statistical formalisms based on generalizations of Shannon’s information
measure (see Refs. [15–18] and references therein), it seems both natural and necessary to tackle the QD issues from this
generalized angle, in the hope of gaining interesting insights, and, in particular, so as to establish the invariance or not of
the discord-induced order under a change of the prevailing statistics, from Shannon’s to its many rivals.

To show that this is indeed a fruitful endeavor is the aim of the present paper, in which a generalization of the quantum
discord concept, in the context of generalized statistics, will be advanced and the ‘‘ordering-question’’ answered. In Section 2
we introduce our conceptual QD-extension, discussing its main properties in Section 3. Next we present some results for
general bipartite states, focusing attention on analytical results.We also performnumerical simulations for randombipartite
states (Section 4). Finally, some conclusions are drawn in Section 5.

2. Retracing Ollivier and Zurek’s path à la Tsallis for getting a quantum q-discord

The Tsallis power-law q-entropy was introduced in Ref. [19] as an extension of the Shannon entropy as follows Ref. [15]

Hq(X) = −


x

p(x)q lnq p(x), (1)

where the q-logarithm is defined by lnq(x) ≡
x1−q

−1
1−q , p(x) ≡ p(X = x) is the probability distribution of the pertinent random

variable X , and q is any nonnegative real number. The Tsallis entropy converges to Shannon’s in the limit q → 1. Hq plays a
fundamental role in recent developments of statistical mechanics [15–18,20]. The generalization has indeed received a lot
of attention in the last years, with about 2000 papers containing interesting results and useful applications, many of them
in the complex systems’ area [15–18,20] but also in connection with a variegated family of quantum mechanical settings
(see, for example Refs. [21–32]). In what follows we retrace the developments of Ref. [4] in a Tsallis, q-context. Thus, just by
setting q = 1 we recover the Ollivier–Zurek quantities. We begin then with the mutual information, defined as

Iq(X : Y ) = Hq(X)+ Hq(Y )− Hq(X, Y ), (2)

and the following chain rule holds [33]:

Hq(X, Y ) = Hq(Y )+ Hq(X |Y ), (3)

where the conditional entropy reads

Hq(X |Y ) =


y

p( y)qHq(X |y). (4)

The chain rule gives the relation between a conditional entropy and a joint entropy. Using this relationwe can define another,
classically equivalent, expression for the mutual information

Jq(X : Y ) = Hq(X)− Hq(X |Y ). (5)

The I − J difference is of the essence for Ollivier–Zurek goals, after expressing the two quantifiers in quantal fashion. Let us
then do the same with Iq and Jq. Iq can be easily generalized defining appropriate density matrices for the quantum systems,
ρA, ρB, and ρA,B, and applying then the q-generalization of von Neumann’s entropy Sq(ρ) = −Tr(ρq lnq ρ). One has

Iq(A : B) = Iq(ρA,B) = Sq(ρA)+ Sq(ρB)− Sq(ρA,B). (6)

To generalize the Jq-expression, following Ref. [4], we focus on a perfect measurements of ρB defined by a set of projectors
{Π

(B)
j } such that


jΠ

(B)
j = 1. Accordingly,

Jq(ρA,B)
{Π

(B)
j }

= Sq(ρA)− Sq(ρA|{Π
(B)
j }), (7)

where

Sq(ρA|{Π
(B)
j }) =


j

pqj Sq(ρA|Π
(B)
j
), (8)

with the state of A given, once the measurement is performed, by

ρA|Π
(B)
j

= Π
(B)
j ρA,BΠ

(B)
j /TrA,BΠ

(B)
j ρA,B, (9)

and pj = TrA,BΠ
(B)
j ρA,B.

The two classical expressions for the standard mutual information we have presented above are identical, but this is not
necessarily so in the quantum case Actually, the quantum discord is defined as the minimum possible difference between



A.P. Majtey et al. / Physica A 391 (2012) 2491–2499 2493

the two possibilities, given by an optimum set of {Π
(B)
j } [4]. Thus, we are to be concerned here with what happens to the

expressions Iq and Jq. Introduce the quantity

Cq(ρA,B) := sup
{Π

(B)
j }

Jq(ρA,B)
{Π

(B)
j }
. (10)

We define now our quantum q-discord as the difference

ϑq(ρA,B) = Iq(ρA,B)− Cq(ρA,B). (11)

This quantum q-discord is the minimum of the difference between Eqs. (6) and (7). We normalize this measure via a trivial
re-scaling in order to compare, in an adequate way, different quantities:

Dq(ρA,B) =
q − 1

1 − 21−q
ϑ(ρA,B). (12)

For similar reasons, log denotes the logarithm of base 2. In what follows ρA,B ≡ ρ. Note that limq→1 Dq(ρ) = D1(ρ).

3. Properties of the generalized quantum discord

We see thatDq ≥ 0 for q ∈ (0, 1), and thismight be related to the concavity of the q-conditional entropy Sq(ρA,B)−Sq(ρB)
with respect to ρA,B. Indeed, ϑq becomes negative if q grows from 1 → ∞, negativity increasing with q. Quite convenient is
the particular case q = 2, since it requires only to compute the traces of ρ2, ρ2

B , ρ
2
k , and matrix-diagonalization is avoided,

making computations more efficient. Taking the limit q → ∞ of the normalized measure we obtain

lim
q→∞

Dq =


0, mixed states,
1, pure states. (13)

To study the positivity of the q-discord we consider separately two cases: pure states and mixed states.

3.1. Pure states

For pure states, that is ρ = |Ψ ⟩⟨Ψ |, the q-discord takes the form ϑ(ρ) = Sq(ρA) and the quantum q-discord coincides
with the reduced (quantum) Tsallis entropy. We can easily verify this fact by casting |Ψ ⟩ in its Schmidt decomposition form
|Ψ ⟩ =


i λi|ii⟩. Thus, since the q-entropy is positive for all q,

ϑq(|Ψ ⟩⟨Ψ |) ≥ 0, ∀q. (14)

3.2. Mixed states

In the case of mixed states our q-discord is positive only for values of q in (0, 1). In order to demonstrate the positivity
of the q-discord for mixed arbitrary states we follow [4] and consider the proposition: Sq(ρA|{Π

(B)
j }) = Sq(ρ

(D)
A,B)− Sq(ρ

(D)
B ),

with ρ(D)A,B =


j pjρj. Now, ρ(D)A,B is block diagonal and as in the q = 1 case, doing a block by block analysis the proposition
can be proved. Now we need to verify the inequality:

Sq(ρA|{Π
(B)
j }) ≥ Sq(ρA,B)− Sq(ρB). (15)

By recourse of the previous preposition we can establish the following relation for any measurement {Π
(B)
j }

Sq(ρA|{Π
(B)
j }) = Sq(ρ

(D)
A,B)− Sq(ρ

(D)
B ), (16)

and by the (conjectured) concavity (see below) of the conditional entropy (Sq(ρ)− Sq(ρB)) with respect to ρ for q ∈ (0, 1)
we are led to

Sq(ρ
(D)
A,B)− Sq(ρ

(D)
B ) ≥ Sq(ρA,B)− Sq(ρB). (17)

3.3. Random generation of states in an N-dimensional Hilbert space

The set of states in an N-dimensional Hilbert space can be regarded as a product-space of the form [35,34],

H = P ×∆,

where P stands for the family of all complete sets of ortho-normal projectors {P̂i}Ni ,


i P̂i = I (I the identity matrix), and
∆ is the convex set of all real N-tuples of the form {λ1, . . . , λN}; λi ∈ R;


i λi = 1; 0 ≤ λi ≤ 1. Any state in H takes the

form ρ =


i λiP̂i.
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Fig. 1. Probability distribution for ∆q for different values of q < 1 for which the concavity is verified. Inset: PDF(∆q) for different q > 1. The curves are
left-shifted. All curves were constructed using the order of 106 (numerically generated) states. All depicted quantities are dimensionless.

In order to exploreH we introduce an appropriatemeasureµ on this space. Such ameasure is required to compute volumes
within H , as well as to determine what is to be understood by a uniform distribution of states on H . An arbitrary state ρ of
our N-dimensional Hilbert space can always be expressed as a product of the form

ρ = UD[{λi}]UĎ. (18)

Here U is an N × N unitary matrix and D[{λi}] is an N × N diagonal matrix whose diagonal elements are, precisely, our
above defined {λ1, . . . , λN}. The group of unitary matrices U(N) is endowed with a unique, uniformmeasure, known as the
Haar measure, ν [34]. On the other hand, the N-simplex∆, consisting of all the real N-uples {λ1, . . . , λN} appearing in (18),
is a subset of a (N − 1)-dimensional hyperplane of RN . Consequently, the standard normalized Lebesgue measure LN−1 on
RN−1 provides a measure for ∆. The aforementioned measures on U(N) and ∆ lead to a measure µ on the set S of all the
states of our quantum system [34,35],

µ = ν × LN−1. (19)

If one needs to randomly generate mixed states, this is to be done according to the measure (19).

3.4. Concavity of the conditional entropy in the interval (0 < q < 1)

Here we attempt a numerical verification of the concavity of the conditional entropy for q ∈ (0, 1), that is,

∆q = Sq(ρ)− Sq(ρA)− {t[Sq(σ )− Sq(σA)] + (1 − t)[Sq(ξ)− Sq(ξA)]} ≥ 0, (20)

where ρ = tσ + (1 − t)ξ , ρA is the reduced density matrix corresponding to ρ, σA (ξA) the reduced density matrices of σ
(ξ ) and, finally, 0 ≤ t ≤ 1.

The concavity of the standard conditional entropy (q = 1) was proved in Ref. [36] by assuming the validity of a lemma
by Lieb [37]. The proof is rather difficult even in this case [36]. As a first step we evaluate numerically the inequality (20) by
generating random states in an N-dimensional Hilbert space. In order to assess, for these randomly generated states, how
the concavity-requirement is satisfied, we evaluate (20) for a large enough number of simulated states (σ and ξ ). We set
N = 4 for the dimension of the state-space in all simulations and we randomly generate t ∈ [0, 1].

We investigate the positivity of∆q, upon which the concavity of the conditional q-entropy is based, by constructing the
probability distributions for the values of∆q. The corresponding distributions, for different values of q, are depicted in Fig. 1.
In the inset we plot the probability distribution of∆q for q = 2 and q = 5. The curves are constructed using of the order of
106 states. These simulations provide us with strong evidence about the validity of the conjecture advanced above on the
concavity of the conditional q-entropy and, consequently, on the positivity of the quantum q-discord for 0 < q < 1.

4. Relation between q-discord and orthodox discord

Let us now investigate the relation between the q-discord and its original counterpart for different sorts of states.
We beginwith Bell diagonal states. These are two-qubit stateswithmaximally-mixed reduced-densitymatrices and have

the form

ρA,B = ρ =
1
4


I +

3
j=1

cjσj ⊗ σj


(21)
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Fig. 2. (a) Dq for the Werner state, as a function of c , for different values of q. (b) Dq for Werner states, as a function of the degree of mixedness measured
by the linear entropy, for different values of q. All depicted quantities are dimensionless.

where cj are real constants constrained by certain conditions (in order to have a well defined density operator ρ) and σj’s
are the Pauli operators. Let λi = λi(cj) ∈ [0, 1], (i = 0, . . . , 3) be the eigenvalues of ρ

λ0 =
1
4
(1 − c1 − c2 − c3),

λ1 =
1
4
(1 − c1 + c2 + c3),

λ2 =
1
4
(1 + c1 − c2 + c3),

λ3 =
1
4
(1 + c1 + c2 − c3). (22)

The marginal states of ρ are ρA = I/2 and ρB = I/2. Thus, the quantum q-mutual information of ρ is

Iq(ρ) = −4

1
2

q

lnq
1
2

+


i

λ
q
i lnq λi (23)

and

Cq(ρ) = 2

1
2

q 
− lnq

1
2

+


1 − c
2

q

lnq
1 − c
2

+


1 + c
2

q

lnq
1 + c
2


, (24)

where c := max{|c1|, |c2|, |c3|}. We find, for a general (Bell-diagonal) two-qubit state,

ϑ(ρ) = −2

1
2

q 
lnq

1
2

+


1 − c
2

q

lnq
1 − c
2

+


1 + c
2

q

lnq
1 + c
2


+


i

λ
q
i lnq λi. (25)

Let us specialize (25) to the particular instance c1 = c2 = c3 = −c , i.e., the celebrated Werner states,

ρ = (1 − c)
I
4

+ c|Ψ−
⟩⟨Ψ−

|, c ∈ [0, 1], (26)

with |Ψ−
⟩ =

1
√
2
(|01⟩ − |10⟩). By following Ref. [9] one easily obtains

ϑ(ρ) = − 2

1
2

q 
lnq

1
2

+


1 − c
2

q

lnq
1 − c
2

+


1 + c
2

q

lnq
1 + c
2


+ 3


1 − c
4

q

lnq
1 − c
4

+


1 + 3c

4

q

lnq
1 + 3c

4
, (27)

and, as seen in Fig. 2, positivity prevails for the prototype-mixed state. In Fig. 2 we plot the (normalized) q-discord as a
function of the state-parameter c for different values of q and also as a function of the mixedness-degree as given by the
linear entropy

SL =
4
3
[1 − Trρ2

],

trivially related to the purity γ of a state via SL = 1 − γ . As expected, an inverse relationship between mixedness-degree
and quantum correlations is displayed. We remark on the single-valuedness of the Werner-relation between q-discord and
mixedness, even for q = 1
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Fig. 3. (a) Dq for α states, as a function of α, for different values of q. (b) Dq for α states, as a function of the degree of mixedness, for different values of q.
All depicted quantities are dimensionless.

Fig. 4. Difference between Dq of two α states as a function of the parameter q. A non trivial ordering relation is found. All depicted quantities are
dimensionless.

4.1. α states

We also will study the quantum q-discord for the following one-parameter states

ρα =



α

2
0 0

α

2
0

1 − α

2
0 0

0 0
1 − α

2
0

α

2
0 0

α

2

 (28)

where 0 ≤ α ≤ 1. Let ξ = max{|α|, |2α − 1|}. The q-discord becomes

ϑ(ρ) = −2

1
2

q 
lnq

1
2

+


1 − ξ

2

q

lnq
1 − ξ

2
+


1 + ξ

2

q

lnq
1 + ξ

2


+ 2


1 − α

2

q

lnq
1 − α

2
+ αq lnq α. (29)

In Fig. 3 we depict the quantum q-discord as a function of the state’s parameters for different values of q and also plot it as
a function of the linear entropy. Positivity again prevails. The single-valuedness between discord and mixedness is lost for
these states. This was already noted in [38] for the case q = 1.

4.1.1. Discord-differences for two α-states
In Fig. 4 we display the difference between the q-discord of two α-states (corresponding to α = 0.4 and α = 0.5,

respectively), as a function of q.
This difference takes negative or positive values depending on the range of q. This is indeed a novel feature. A relation of

order for quantum states based on the discord-concept cannot univocally be established, because it depends on the entropic
quantifier one chooses to employ. In other words, the quantal correlations that the discord quantifies are seen in different
manners by distinct entropic quantifiers. This lack of uniqueness is the leitmotif of the present considerations.
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Fig. 5. Dq (q = 2) vs D1 for α, β-like states. All depicted quantities are dimensionless.

4.2. (α, β) state

As a last particular kind of special state to be analyzed, consider the two-parameters state

ρα,β =
1
2

α 0 0 α
0 1 − α − β 0 0
0 0 1 − α + β 0
α 0 0 α

 , (30)

where 0 ≤ α ≤ 1 and α − 1 ≤ β ≤ 1 − α. We display the q = 2-discord versus the q = 1-discord for this state
in Fig. 5. A strong correlation is exhibited between the two q-measures. This could be taken as evidence that changing
q from its original q = 1-value does not per se modify the overall manner in which q-discord quantifies quantum
correlations.

4.3. Arbitrarily mixed two-qubit states

Here, we focus our discussion on general (pure or mixed) states of two qubits. For such system we can parametrize the
basis of the measurement by θ and φ,

|ψ⟩ = cos(θ)|0⟩ + eiφ sin(θ)|1⟩ (31)
|ψ⊥⟩ = e−iφ sin(θ)|0⟩ − cos(θ)|1⟩.

We numerically search the θ − φ space for the set of values that maximize Eq. (10). The resultant density operator
ρA|Π

(B)
j

= ρj, when such measurements are performed on subsystem B, is

ρj =
1
pj
(I ⊗Π

(B)
j )ρ(I ⊗Π

(B)
j ), (32)

where each complete set, composed of two elements, of possible measurements is defined as follows,

Π
(B)
1 = |ψ⟩⟨ψ | (33)

Π
(B)
2 = |ψ⊥⟩⟨ψ⊥|.

We randomly generate states uniformly distributed according to themeasureµ and by recourse of the previously described
optimization procedure. Of course, we numerically search for θ and φ and compute the q-discord for these states. In Fig. 6
we display the correlation between the discord and the q-discord for different values of q. Negative values of the q-discord
are depicted in the plot for the case q > 1 (q = 2). Fig. 7 depicts the probability distribution of finding a given value of
q-discord in the whole space of two-qubit states for q = 0.5, 1, 2.

We also compute the difference between the q-discord and the discord between pairs of randomly generated states ρ
and σ . In Fig. 8 we plot the resultant differences of the q-discord versus similar differences (for the same pair of states)
corresponding to 1-discord. This plot depicts the pertinent results.

Overall, our numerical simulations confirm the conclusions reached by the analysis of special kinds of states.
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Fig. 6. Dq as a function of D1 for randomly generated two-qubit states (a) q = 0.5, (b) q = 2. All depicted quantities are dimensionless.

Fig. 7. Probability distribution of finding an arbitrary two-qubit state with a given value of q-discord for different values of q. The curves were constructed
using 105 generated random states. All depicted quantities are dimensionless.

Fig. 8. Dq(ρ)− Dq(σ ) as a function of D1(ρ)− D1(σ ) (a) q = 0.5, (b) q = 2. All depicted quantities are dimensionless.

5. Conclusions

We have introduced a new family of quantum discord measures that quantifies quantum correlations based in the chain
rule relating the (i) conditional- and (ii) joint-Tsallis entropies. Via two types of study

• of special kinds of quantum states
• arbitrary, randomly generated mixed states,

we have been able to extract the following conclusions:

1. There is a strong correlation between the ‘‘new’’ q-discord and the original one of Ollivier and Zurek.
2. However, an order-relation for quantum states based on discord lacks unity because it definitely depends on the

quantifier one chooses to employ. This means that q-discord functionals corresponding to different values of q measure
different aspects of the non-classicality (quantumness) of correlations.
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This last fact should constitute strong stimulus for establishing a more detailed assessment of just what kind of
correlations the discord concept quantifies.
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