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ABSTRACT

The two-fluid short-wave theory (TF-SWT) mode of the one-dimensional two-fluid model (TFM) [A. Clausse and M. Lopez de Bertodano,
“Natural modes of the two-fluid model of two-phase flow,” Phys. Fluids 33, 033324 (2021)] showed that the incompressible kinematic and
Kelvin–Helmholtz instabilities are the source of the long-standing ill-posed question. Here, the stability of the short wave mode is analyzed
to obtain an unstable incompressible well-posed TFM for vertical slug flow, where inertial coupling and drag play the key role. Then, a com-
putational method is implemented to perform non-linear simulations of slug waves. Linear stability analyses, i.e., characteristics and disper-
sion, of a variational TF-SWT for vertical slug flows are presented. The current TFM is constituted with a lumped-parameter model of
inertial coupling between the Taylor bubble and the liquid. A characteristic analysis shows that this conservative model is parabolic, and it
provides a base upon which other models can be constructed, including short-wave damping mechanisms, like vortex dynamics. The disper-
sion analysis shows that depending on the interfacial drag, the problem can be kinematic unstable. A new kinematic condition in terms of
the inertial coupling and the interfacial drag is derived that is consistent with previous theoretical and experimental results. The material
waves, which are predicted by linear stability theory, then develop into nonlinear slug waveforms that are captured by the numerical simula-
tions. These and the horizontal stratified flow waves of previous research illustrate the TFM capability to model interfacial structures that
behave like waves. Otherwise, when the physics of the TF-SWT waves is ignored, the model is ill-posed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086196

I. INTRODUCTION

While two-fluid model (TFM) computational fluid dynamics has
made significant advances in recent years,1 together with the associ-
ated modeling of two-phase turbulence,2 Vaidheeswaran and Lopez de
Bertodano3 demonstrated that the TFM stability difficulties remain
unchanged in 3D vs 1D; they simply move to a smaller scale.
Furthermore, early and recent attempts to resolve the ill-posed TFM
condition4 may be construed as mathematical or numerical artificial
regularizations that do not address the fundamental short wave insta-
bilities that arise from the TFM derivation starting from first princi-
ples. On the other hand, the short wave stability problem becomes
self-evident with the new two-fluid short-wave theory (TF-SWT)
formulation.

A new variational TFM formulation by Clausse and Bertodano,5

based on the volumetric and drift fluxes, revealed its two natural

modes. The resulting momentum equations are the drift-flux model
(DFM) equation of Ishii6 and the TF-SWT equation of Pauchon and
Smereka,7 which reduces to shallow-water theory as an asymptotic
case. The TF-SWT addresses the long-standing ill-posed problem8

because the kinematic and Kelvin–Helmholtz (KH) instabilities are
the source of it and may be resolved with appropriate short-wave
physics pertaining to these instabilities.9 Therefore, the identification
of the TF-SWTmode clarifies both the ill-posed problem and its phys-
ically based solutions. Since the DFM mode is well-posed hyperbolic,9

the current analyses are focused on the TF-SWT equation stability
only.

The KH stability of horizontal wavy flow was analyzed previously
by the authors.10 In that case, surface tension and viscosity played the
key role in the linear and nonlinear stabilities of the local waves,
respectively. In the present work, the kinematic stability of the short
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wave mode is analyzed to obtain an unstable incompressible well-
posed TFM for vertical slug flow, where it is shown that inertial cou-
pling and drag play the key role. Furthermore, the versatility of the full
TFM for all types of two-phase flow waves is illustrated by the analysis
of acoustic waves11 in bubbly flows, where the same mechanisms are
also significant.

While the mechanistic derivation of the TFM is ubiquitous in
engineering practice, the variational approach, first derived by
Geurst,12 has been presented in scientific publications only. When the
inertial mechanisms are included on an ad hoc mechanistic basis,
Wallis13 demonstrated that there is an issue of objectivity with well-
known potential flow solutions, e.g., accelerating flow around a sphere.
The relevance of the variational TFM then is that the inertial coupling
of the phases is clearly defined in terms the flow topology used to con-
stitute the model, and it is inherently objective. Wallis14 applied the
variational technique to derive the inertial coupling for various flow
configurations. In particular, he obtained the potential slug flow cou-
pling using a lumped-parameter approach. Clausse and Bertodano5

identified the importance of the inertial coupling model of Wallis14 for
slug flow TFM stability. The present work is a further exploration of
this topic.

Characteristic analyses of the TFM are commonplace; in particu-
lar, Ramshaw and Trapp15 showed that surface tension makes a TFM
for separated flow well-posed, and Geurst12 showed that inertial cou-
pling does the same in bubbly flow. Although less common, TFM dis-
persion analyses have also been performed, e.g., the kinematic
shallow-water theory stability analysis for horizontal stratified two-
phase flow.9 In the present analysis, the kinematic instability analysis
is extended to slug flow, and it is shown that slugging begins when the
kinematic wave speed exceeds the void wave propagation speed. A
new two-phase formulation of the kinematic condition, involving both
inertial coupling and interfacial drag, is obtained from the TF-SWT
equations.

The bubbly to slug flow kinematic transition has also been inves-
tigated experimentally. For example, Saiz-Jabardo and Bour�e16 identi-
fied two waves, i.e., the void wave and the kinematic wave, “the higher
speed wave (kinematic) being closely correlated with the appearance
of slugs.” They also proposed the instability condition c2 � vg > 0,
which is equivalent with the analytic condition, vw � Vgj > 0,
obtained in the present work. Park et al.17 later confirmed this result
by measuring the amplification of the void waves. However, a two-
phase theory for the kinematic instability is missing.

Nonlinear numerical simulations of the mechanistic 1D TF-SWT
have been performed by the authors for horizontal wavy flow and ver-
tical bubbly flow, using a second order numerical method with a flux
limiter.9 The same code has been modified and is used in the present
work with the variational TFM. The verification of the numerical
TFMmethod is generally performed with the well-known water faucet
shallow-water theory problem of Ransom,18 which involves the propa-
gation of a kinematic discontinuity. A new TF-SWT verification prob-
lem with the inertial coupling of Wallis14 has the advantage that it
removes the two-phase KH instability, which is a limitation of the
water faucet problem9 when the mesh is refined. A secondary objective
of the current work is to carry out this verification in terms of the Lax
equivalence theorem.19 According to Roache,20 “verification is solving
the equations right; validation is solving the right equations.” This
work is focused on verification.

This paper outline is as follows. First, the TF-SWT is presented as
one mode of the full variational TFM,5 which may be analyzed inde-
pendently for the case of fixed volumetric flux. A characteristic analy-
sis of the conservative TF-SWT equations with the lumped parameter
slug flow inertial coupling of Wallis14 then shows that the model is
parabolic. Third, the dispersion analysis with interfacial drag is per-
formed to demonstrate that, depending on the correlation, a well-
posed unstable model may be obtained. Finally, a nonlinear simulation
with the verified numerical model, including inertial coupling and
drag and surface tension, shows the appearance of slug flow pulse
waves that are bounded. Appendix A shows that the conservative TF-
SWT momentum equation may be simplified further into a Burgers
equation that is decoupled from the void propagation equation for the
specific case of negligible density ratio. Since Burgers equation has an
analytic solution, it enables the numerical verification of the TF-SWT
computational model, and the stability of the numerical method is
demonstrated by a mesh convergence test. Appendix B shows the deri-
vation of the TF-SWTmodel for the Wallis topology of slug flow.14

II. MODEL EQUATIONS

We start with the TF-SWT derived by Clausse and Bertodano.5

The model is valid for a 1D incompressible two-fluid flow with con-
stant volumetric flux j; that is why it is also called the fixed-flux
model.9 Then, the virtual power principle, which generalizes the varia-
tional formulation to include dissipative flows in a consistent way,
gives the following set of equations for the void fraction, a2, and the
drift flux, J , in a vertical channel,1

Da2
Dt
þ @J
@x
¼ 0; (1)

DCJ
Dt
� @

@x
1
2
C0J2

� �
¼ F; (2)

where D=Dt ¼ @=@t þ j@=@x, a1 ¼ 1� a2, and the subscript a refers
to the derivative with respect to a2. The two-fluid inertia, C, is written
in dimensionless form as

C ¼ r
a2
þ 1

a1
þ
m a2ð Þ
a21a

2
2
; (3)

where r ¼ q2=q1 and m a2ð Þ is an algebraic function representing the
inertial coupling between phases. The lumped-parameter model of
inertial coupling for slug flow is (see Appendix B)

m a2ð Þ ¼
as � a2
1� as

� �
1� a2ð Þa2; (4)

where as is the void fraction in the section containing the Taylor-
bubble (see Fig. 12).

The interfacial force term in the momentum equation is given by

F ¼ 1� rð Þg � r�
@3a2
@x3
� 1
2
CD

D
ur urj j: (5)

The first term is the buoyancy force. The second term is the surface
tension force, which here is modeled following the expression derived
in Ref. 9, assuming a valid direct extension of the formula for stratified
flow. The resulting coefficient is given by r� ¼ rD=q1, where r is the
surface tension andD is the pipe diameter. The last term is the interfa-
cial drag, where the relative velocity, ur ¼ u2 � u1, should be later
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expressed in terms of the state variables, namely, ur ¼ J= a2a1ð Þ. CD is
a dimensionless interfacial-drag coefficient, which is generally mea-
sured in steady-state conditions by correlating its effects with the state-
variables. This coefficient will be discussed in Sec. IIIC.

Equations (1)–(3) reduce to the Saint Venant equations for hori-
zontal flow when m a2ð Þ ¼ 0; r ¼ 0; j ¼ 0, and F ¼ gD @a1

@x is the
hydrostatic term. Therefore, the mathematics of the TF-SWT equa-
tions is similar to that of shallow-water theory, so the existing mathe-
matical stability analysis of Whitham’s21 is used in the present work.

III. LINEAR STABILITY
A. Characteristic analysis

In engineering practice, the ill-posed condition of the Euler 1D
TFM has been dealt with either significant numerical viscosity or arti-
ficial closure models. In particular, the first-order upwind (FOU)
method with coarse mesh sizes is generally used. The presence of
excessive numerical diffusion from the FOU scheme leads to damping
of the local material or void waves, which are important for dynamic
predictions of two-phase instabilities. Another common technique
used is the addition of artificial interfacial momentum transfer terms,
which affect the mathematical nature of the TFM governing equations,
rendering them well-posed. However, once the role of the TF-SWT
has been identified from energetic variational means, the derivation of
physical constitutive models pertaining to specific flow regimes may
be used instead. Moreover, the variational formulation satisfies objec-
tivity, i.e., frame invariance, which complicates the mechanistic force-
based derivation of the TFM and is seldom addressed.

The characteristics are found by linearizing the TF-SWT equa-
tions, i.e., Eqs. (1) and (2), with zero on the right-hand side, around
the general steady state a ¼ ao and J ¼ Jo for the state variables
/ ¼ a2; J½ �T , that is

A
@

@t
/þ B

@

@x
/ ¼ 0: (6)

Solving the characteristic equation, Det B� cA½ � ¼ 0 results in the
eigenvalues c

c ¼ jo þ
C0o6

ffiffiffiffi
D
p

Co
Jo; (7)

where the subscript “o” means that the quantity is evaluated at the
steady state, and the prime indicates the derivative with respect to a2.

It can be shown that the discriminant, D, for Eqs. (3) and (4) is1

D ¼ C02o �
1
2
CoC

00
o ¼ 0: (8)

This leads to the following simplification of the eigenvalues:

c ¼ jo �
C0o
Co

Jo ¼ jo þ Vgj; (9)

where Vgj is the drift flux velocity of Zuber and Findlay.22 Thus, the
speed of the void waves is c ¼ u2o, i.e., the unperturbed gas phase
velocity. Since D ¼ 0 for the lumped-paremeter slug flow, the model is
parabolic, and the non-dimensional eigenvalues c� ¼ c� joð Þ=Vgj are
simply c�1;2 ¼ 1. Therefore, the inertial coupling of Wallis14 eliminates
the elliptic character of the TFM equations, providing a physical base

to address the TFM ill-posed condition without artificial
regularization.

B. Dispersion analysis

The role of the non-conservative drag force leads to an instability,
closely related to the kinematic instability of Whitham for single phase
shallow-water theory.21 The surface tension is also considered in the
analysis because the instability is otherwise ill-posed.

The dispersion relation is obtained from the perturbation of
/ ¼ /

o
þ d/

o
ei kx�xtð Þ. The linearized equations can now be written

as

A
@

@t
d/þ B

@

@x
d/þ C

@3

@x3
d/þ F/d/ ¼ 0: (10)

The coefficient matrices for Eq. (10) are given in Appendix C. Using
the notation in Ref. 5, the following dispersion relation for the material
waves is then obtained:

x ¼ jok�
C0

C
Jk� i

FU
2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i
FU
2

� �2

þ iFa2kþ r�k4

C

s
; (11)

where U ¼ CJ; FU ¼ @F
@U ; and Fa2 ¼ @F

@a2
. In Sec. IIIA, the radical was

zero but now it depends on C; F, and r, and the problem is unstable.
The dispersion relation may be written in more conventional terms to
show the association of the current instability with the kinematic
shallow-water instability of Whitham.21 Starting with the definition of
the kinematic velocity in two-phase flow,

vw ¼
@J
@a2

����
F

¼ � Fa2

FJ
¼ � 1

2
C�0D
C�D

J; (12)

where C�D ¼ CD=Dpipea22 1� a2ð Þ2, it follows that

vw � Vgj ¼ �
Fa2

CFU
¼ � 1

2
C�0D
C�D
þ C0

C

 !
J; (13)

so the dispersion relation has the same form as Whitham’s

x ¼ jo þ Vgjð Þk� i
FU
2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i
FU
2

� �2

� i vw � Vgjð ÞFU kþ r�

C
k4

s2
4

3
5
:

(14)

The first term on the RHS corresponds to the characteristic wave
speed of Sec. IIIA, and the terms in square brackets emerge from the
addition of interfacial drag and surface tension. In this particular case
of vertical slug flow, the significant hydrostatic term of horizontal flow
is not present, so the dispersion relation is not exactly the same as
Whitman’s shallow-water theory result.21 The instability condition,
vw � Vgj > 0, acquires a new two-fluid formulation given by Eq. (13),
but the kinematic instability is essentially the same in the sense that it
corresponds with the two waves observed experimentally.16,17

Furthermore, the effect of the size and shape of the bubbles on the
transition, also observed experimentally,23 becomes clear from the
new formulation since the inertial coupling and the drag strongly
depend on them.

For the current model, the inertial problem is at the verge of
instability, i.e., it is parabolic, and then the kinematic term, vw � Vgjð Þ,
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makes the problem unstable. Furthermore, the wave growth rate
becomes infinity at zero wavelength without surface tension, unlike
single phase shallow-water theory, i.e., for k!1 then xi !1.
However, the linear stabilization of the TFM, first published by
Ramshaw and Trapp,15 may be obtained adding surface tension, i.e.,
the last term in Eq. (14) suppresses the wave growth for wavenumbers
higher than those of the capillary waves. The model then becomes
well-posed dispersive,21 i.e., the wave speed depends on the wave num-
ber. Thus, the traditional classification of partial differential equations
is insufficient to describe the complexities of this mode of the TFM,
but the more recent classification of Whitham21 may be used.
Furthermore, since the DFM mode of the TFM is always hyperbolic,9

the local stability difficulties of the TFM are shown to belong to the
TF-SWT mode only. Finally, since the linear stability theory of the
DFM is well-understood,24 the current analysis complements the fluid
dynamic understanding of the stability of the full TFM.

C. Slug flow stability

The 1D variational TF-SWT requires a constitutive model for the
non-conservative (dissipative) interfacial drag force in addition to the
conservative inertial forces. The interfacial drag force is discussed in
this section since it determines whether the 1D variational TF-SWT is
unstable, giving rise to the growth of slug flow waves. A drag coeffi-
cient CD was obtained from the experimental data of Cheng et al.23

using a force balance between interfacial drag and buoyancy. This CD

accounts for the dispersed, clustered bubbly and slug flow regimes. For
the drag coefficient, CD, given below in Eq. (15), the relative velocity
ur ¼ u2 � u1 was calculated using the reported values of void fraction
a2 and the gas and liquid volumetric fluxes, i.e., j2 ¼ a2u2 and
j1 ¼ ð1� a2Þu1, respectively,

C exp
D ¼ 2 e�29:41a

4þ61:26a3�48:61a2þ9:33aþ1:32: (15)

For comparison, the drag coefficient of Ishii and Chawla25 for slug
flow is given by

Cslug
D ¼ 9:8 1� a2ð Þ3: (16)

The experimentally derived CD differs from the drag coefficient Cslug
D

as shown in Fig. 1. It can be seen that C exp
D is close to Cslug

D for the aver-
age void fraction range of a2 � 0:5.

The drag coefficient of Ishii and Chawla25 for churn flow is also
of interest to the stability of the model:

Cchurn
D ¼ 8

3
1� a2ð Þ2 (17)

and, following the trend, one may propose a general drag coefficient of
the form:

CD ¼ CD1 1� a2ð Þn: (18)

The dispersion relation obtained with the experimental drag coeffi-
cient is shown in Fig. 2. The model with surface tension is well-
posed,15 i.e., for k!1; xi ! 0.

To explain why the model simulations result in pulse waves, it is
necessary to look into the form of the drag coefficient. In single-phase
flow, the growth rate of the kinematic shallow-water theory instability
is dependent on the slope of the drag force, and the same applies for

the 1D variational TF-SWT. When Ishii’s slug-flow drag correlation,
Eq. (16), is used, the relative kinematic wave speed, Eq. (13), is positive
for all void fractions, as shown in Fig. 3, so the TFM is unstable.
However, when the experimental drag is used, the figure shows that
the problem becomes stable for low and high void fraction so it is bi-
stable, leading to the topology of slug flow. Furthermore, for the churn
flow correlation of Ishii and Chawla, Eq. (17), the TFM becomes
exactly stable due to the simple formulations of the constitutive mod-
els, i.e., Eqs. (4) and (17). This clearly does not happen in reality, and
therefore, a more advanced model would be necessary. Furthermore, it
is clear from Fig. 3 that the model becomes stable for n < 2 in Eq.
(18), and that the stability may be controlled changing n. So, the

FIG. 1. Experimental interfacial drag coefficient based on force balance between
drag and gravity.

FIG. 2. Dispersion relation for a2 ¼ 0:5.
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formulation of the drag force allows the regularization of the TFM if
short waves are undesirable or if the flow regime is stable. However,
removing the short waves for unstable flow begs the question of the
necessity of the TFM vs the DFM.

D. Film flow stability

Assuming constant as, the lumped-parameter geometry of slug-
flow is not valid for void fractions higher than as. Instead, the inertia
and the drag can be modified such that vw � Vgj ¼ 0 beyond
as ¼ 0:92, so the film model becomes stable. The modified inertia is
m a2ð Þ ¼ 0, so there is no coupling, and the drag coefficient is set to
Wallis annular flow correlation.26 The modified inertia is then

C ¼ r
a2
þ 1

a1
; a2 > as: (19)

We employ Eqs. (11.9) and (11.24) of Wallis13 for the drag due to the
shear stress on the wavy annular film,

� dp
dx
¼ Cfsg

2
D

qg j
2
g ; Cfsg ¼ 0:005 1þ 90 1� a2ð Þ½ �: (20)

It can then be shown that the film becomes neutrally stable, i.e.,
the kinematic condition is precisely zero, with the approximation
Cfsg ffi 0:005½1þ 90 1� asð Þ� and the inertial coupling given by
Eq. (19) with r � 1. However, in the simulations shown in Sec. IV,
a2 < as practically all the time, so the film flow model is addressed
only for completeness.

Finally, a Dirac function in the inertial coupling was inserted to
cap the void fraction in the Taylor bubble region, so a � 1, given the
restriction for closed channels, i.e.,

ms að Þ ¼ � ds

1� að Þ2
; ds ¼ 10�4: (21)

IV. NONLINEAR STABILITY
A. Slug flow simulations

The equations of the 1D variational TF-SWT were solved numer-
ically using a 1D FORTRAN code.9 The equations are discretized
using the second order finite difference method on a staggered grid
arrangement using the flux limiter function based on the general
piecewise limiter scheme of Waterson and Deconick.27 The SMART
flux limiter scheme was chosen due to its capability to resolve shock
like structures. For time advancement, the third order Runge–Kutta
scheme of Gottileb and Shu28 was chosen. The verification of the
TF-SWT computational model, in the sense of the Lax equivalence
theorem, is given in Appendix A. A new Two-Fluid Burgers problem
was developed to perform the verification.

The conditions of the experiment of Cheng et al.23 were used for
this simulation. The dimensions of the test section are L ¼ 4:1m
and Dpipe ¼ 0:0289m: The void measurements were obtained with
six impedance probes along the test section. The other measurements
are two flow meters for the water and the air, and several pressure
taps.

A simulation was performed with the experimental drag
model of Eq. (15) and as ¼ 0:92, using the numerical code outlined
above. The inlet boundary conditions are jin ¼ 1:12m

s ; ain ¼ 0:523;
and Uin ¼ C Jin ¼ 3:0m=s, i.e., F ¼ 0 in Eq. (5), with a sinusoidal
perturbation added to “seed” the wave growth. The node density
N ¼ 1000 nodes=m was shown to converge in Appendix B. The
computational domain was approximately four times longer,
x 2 ½0; 15m� to obtain the fully developed Taylor bubbles shown
in Figs. 5 and 6.

B. Discussion

The most dangerous wave number obtained with the stability the-
ory ranges between k ¼ 10 and 100m�1, as shown in Fig. 4. This is in
agreement with the initial stage of the void fraction profile develop-
ment close to the channel inlet in Fig. 5. However, as these waves
develop, non-linear effects are triggered, leading toward a sustained
train of soliton-like waves with longer wave lengths (k	 6m�1).

FIG. 3. Kinematic relation, Eq. (13).

FIG. 4. Linear theory; wave growth speed.
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This is in agreement with the experimental observations16,17 and Ref.
23. The series of pulses obtained in the numerical simulation corre-
sponds to the linearly bi-stable conditions at low and high void frac-
tions, i.e., 0.2 and 0.9, of the dispersion stability analysis shown in Fig.
3. The instability in the intermediate range switches the void fraction
between the two stable values. The shape of the void pulses is similar to
the void fraction wave obtained for the void propagation verification
shown in Fig. 9. However, a computational domain of 15m was neces-
sary to obtain the fully developed slugs, as shown in Fig. 5.

Comparing the time series of the simulation at the exit, Fig. 6,
with the time series of the experiment at the probe located at
x ¼ 3:55m, Fig. 7, the height of the pulses is in agreement for
as ¼ 0:92. The wavelength is also similar because of the inlet condi-
tion, which, despite the chaos in between, prevails toward the exit.
However, the shape of the top of the waves differs from the experiment
since the physics of the dome of the Taylor bubble is missing, as shown
in Appendix B.

It is clear from this discussion that the inertial-coupling model of
Wallis14 for slug flow, the only one available in the literature, is not
sufficient to describe the full dynamics observed in the experiment,
e.g., the long range “drafting” from the entrained vortex behind the
Taylor bubble is missing. However, it is sufficient to reveal the nature
of the pulses in terms of the stability theory of the novel TF-SWT
approach. In particular, it allows a new definition of the kinematic
condition for slug flow and the nonlinear development of the pulse
waves.

V. CONCLUSIONS

This work illustrates a method to develop an unstable but physi-
cally well-posed incompressible TFM for slug flow, based on linear
and nonlinear stability analyses of the TF-SWT mode. The common
practice to apply artificial regularizations to force the TFM to become
hyperbolic to preclude local instabilities is both unphysical and unnec-
essary. For instance, the current TFM is parabolic-dispersive.

The current instability is kinematic, like the well-known shallow-
water theory case of single-phase flow.21 This two-phase formulation
incorporates short wave physics, i.e., inertial coupling and interfacial
drag, to constitute an unstable well-posed model of the local material
waves. The dispersion analysis results in a new kinematic condition
that extends the kinematic stability theory of Whitham21 to slug flow
and is consistent with experiments.

The waves, which are predicted by the linear stability theory,
develop into nonlinear pulse waveforms. These waveforms, corre-
sponding to the topology of slug flow, are originally determined by the
bi-stable kinematic relation between inertial coupling and the drag
correlation, and the pulse form is driven by nonlinear dynamics
obtained by the simulation. The dispersion analysis also shows that
the drag correlation determines the overall stability of the model, so
the local waves may be removed by changing it. Thus, removing the
slug flow instability is a way to regularize the TFM for system analysis.

These results are only conceptual, since some relevant physics,
discussed in Sec. IVB, is missing. However, the TFM simulation

FIG. 5. Spatial distribution of void fraction pulses (a2 vs x) from 1D TF-SWT slug
flow simulations.

FIG. 6. Time series plot of void fraction pulses (a2 vs t) from 1D TF-SWT slug flow
simulations.

FIG. 7. Time series plot of void fraction pulses (a2 vs t) from Cheng et al.23 for slug
flow.
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obtains the topology of slug flow1 because the interfacial waves remain
embedded in the new TF-SWT formulation, even when the interfaces
have been removed by the TFM averaging. So, the simulations of verti-
cal slug flow waves and of the horizontal stratified flow waves of previ-
ous research10 illustrate that the TFM still maintains the capability to
model those interfacial structures that behave like waves. Otherwise,
when this capability is ignored, the model is ill-posed.

The present model is highly ideal, and therefore, there is plenty
of room for improvement. The reason for the simplicity chosen in this
version is that, at the current development stage of the variational
model, it is important to identify and quantify the instability mecha-
nisms involved in slug flow. These instabilities are produced by the
interplay between the interfacial drag and the inertial coupling. The
latter is a non-dissipative mechanism, which can only be correctly
derived from first principles by means of the variational principles of
fluid mechanics. The basic lumped parameter model used in the pre-
sent version is characterized by a single parameter, namely, as, which,
for the sake of simplicity, was kept constant for all regimes. Future
studies will address more sophisticated models, which may include the
variation of as with the local void fraction and additional inertial-
coupling terms due to recirculation within the representative volume
element.
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APPENDIX A: TWO-FLUID BURGERS EQUATION

The 1D variational TF-SWT equations without the interfacial
drag and gravity for the slug flow model of Wallis14 are re-written
in terms of a2 and U ¼ CJ as

@a2
@t
þ @

@x
U
C

� �
¼ 0; (A1)

@U
@t
� @

@x
C0U2

2C2

� �
¼ 0: (A2)

Since rp ¼ q2=q1 � 1 for an air–water two-phase mixture, the
non-dimensional two-phase inertia C, Eq. (4), simplifies as

C ¼ as
1� as

� �
1
a2
; (A3)

C0 ¼ � as
1� as

� �
1

a22
: (A4)

Using Eqs. (A3) and (A4), the 1D variational TF-SWT equations
can be simplified as

@a2
@t
þ @a2U

@xþ
¼ 0; (A5)

@U
@t
þ U

@U
@xþ
¼ 0; (A6)

where xþ ¼ 1�as
as

x. Thus, it can be seen that the slug flow model of
Wallis14 for negligible rp simplifies the momentum equation of the
1D variational TF-SWT equations into a two fluid Burgers equa-
tion. Furthermore, Eq. (A6) is decoupled from the void propagation
equation, Eq. (A5). The significance of the Two Fluid Burgers equa-
tion lies in the fact that it has a well-known analytical solution
obtained by the method of characteristics, and this enables an ana-
lytical solution for the void propagation equation as well. Therefore,
these equations are used here to verify the TFM.

For the numerical simulations of the two fluid Burgers equa-
tion, a piecewise linear initial condition is chosen for U :

U xþ 0ð Þ; 0ð Þ ¼ U0 ¼ aþ b xþ;

a ¼ 2:03;

b ¼
�0:2; for xþ � 0:1;

0:2; for 0:1 � xþ � 0:2;

0; for xþ � 0:2:

8>><
>>:

(A7)

The analytical solution for U� from the method characteristics is

U xþ; t
� �

¼ aþ b xþ

1þ b t
: (A8)

The non-dimensional inertia C with the rp � 1 simplification
was implemented in the code to solve for a2 and U . The simulations
were run for 25 s. The comparisons of the simulation results with
the analytical solution for different mesh sizes are shown in Fig. 8,
using a piecewise initial condition for U . It can be seen that the
numerical solution converges to the analytical solution as the mesh
size decreases, and the initial piecewise solution for U develops a
shock at the rear with an expansion wave at the front.

The next step of verification involves the void propagation
equation, i.e., the continuity equation Eq. (A5) along with the Two
Fluid Burgers equation, i.e., the momentum equation, Eq. (A6). As
before, a piecewise initial condition is used for a2:

a2 xþ 0ð Þ; 0ð Þ ¼ a20 ¼ pþ q xþ;

p ¼ 0:5;

q ¼
0:05; for xþ � 0:1;

�0:05; for 0:1 � xþ � 0:2;

0; for xþ � 0:2:

8>><
>>:

(A9)

The initial condition for U is the same used in the two fluid Burgers
problem. The solution for the void propagation equation follows

a2 xþ; t
� �

¼ pþ q xþ þ b t � a qð Þt
1þ b tð Þ2

: (A10)

The comparisons of the simulation results with the analytical
solution for different mesh sizes for a2 xþ; tð Þ are shown in Fig. 9. It
can be seen that the numerical solution converges to the analytical
solution as the mesh size decreases, and the solution is unique as
the initial piecewise condition for a2 develops into a quasi-square
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wave with three distinct material shocks. At this point, it is appro-
priate to compare this result with the water faucet problem, which
is the standard verification of the TFM for material shocks. Unlike
the current problem, the water faucet is for single phase Shallow-
Water Theory, so when used for TFM verification, the mesh cannot
be refined beyond a certain point because a KH instability develops
at the discontinuity and the overshoot grows unbounded.9

Nevertheless, Figs. 10 and 11 show that before that point, the code
converges for the current problem at the same rate as previous sim-
ulations of the water faucet problem9 using the same code, i.e., for
problems with shocks, the rate of convergence is 	Oð0:7Þ. For
smooth solutions, it has been already shown that the code has
second-order convergence.9

APPENDIX B: VARIATIONAL DERIVATION OF THE
WALLIS INERTIAL COUPLING COEFFICIENT

The derivation of the inertial coupling coefficient for the slug
flow model of Wallis14 is discussed here. Consider a unit cell config-
uration of a cylindrical bubble, representing a Taylor bubble, mov-
ing in the axial direction along with the liquid in a vertical pipe as
shown in Fig. 12. The bubble moves with velocity u2, and it occupies a
fraction as of the cross section of the pipe. The liquid in the unit cell
has two different uniform velocities: uf in the film around the Taylor
bubble and us in the liquid slug behind the Taylor bubble.

From Fig. 12, the volume averaged gas void fraction a2 is

FIG. 8. Comparison of numerical solution of 1D variational TF-SWT Burgers equa-
tion with analytical solution for different grid sizes using a piecewise initial condition.

FIG. 9. Comparison of numerical solution of 1D variational TF-SWT’s void propaga-
tion equation with analytical solution for different grid sizes using a piecewise initial
condition.

FIG. 10. Convergence rate of water faucet problem9 with different flux-limiter
schemes.

FIG. 11. Convergence rate of the two fluid Burgers problem with the SMART flux-
limiter scheme.
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a2 ¼
Hg D2

g

H D2
: (B1)

The fraction of the cross-sectional area of the pipe occupied by the
cylindrical bubble is given by

as ¼
D2
g

D2
: (B2)

Using the fixed volumetric flux approximation (i.e., constant j),
since the variational formulation ensures Galilean invariance, one
can chose any inertial coordinate frame to derive the final form of
inertial coupling; the relative velocity is the same in all inertial sys-
tems. Therefore, to simplify the derivation, let us chose a coordinate
frame moving with velocity j, so that with respect to this frame,
j ¼ a2u2 þ a1u1 ¼ 0, and we have

u1 ¼
�a2u2
1� a2

;

us ¼ 0;

uf ¼
as

1� as

� �
u2:

(B3)

Now we can define the volume averaged kinetic energy density K of
the two-phase mixture in the unit cell as

K ¼ 1
2
q2a2u2

2 þ 1
2
q1 1� asð Þ

Hg

H

� �
uf

2: (B4)

By using the definition of drift flux J ¼ a1a2ur , we can write u1, u2;
and uf as

u1 ¼
�J

1� a2
;

u2 ¼
J
a2
;

uf ¼
�as
1� as

� �
J
a2
:

(B5)

Using Hg=H ¼a2=as, the kinetic energy density K can be rewritten
as

K ¼ 1
2
J2

a2
q2 þ q1

as
1� as

� �� 	
: (B6)

Following Pauchon and Smereka,7 representing the net two-phase
inertia as C, the kinetic energy density K can be written as

K ¼ 1
2
C J2; (B7)

where the definition of the two-phase inertia C follows

C ¼
q2 þ q1

as
1� as

� �
a2

: (B8)

The definition of the inertial coupling coefficient mða2Þ can be
obtained from the definition of C using the following relation:

C ¼ q1

a1
þ q2

a2
þ

q1 m a2ð Þ
a12a22

: (B9)

From Eqs. (B8) and (B9), the inertial coupling coefficient mða2Þ for
the slug flow model of Wallis14 is

m a2ð Þ ¼ 1� a2ð Þa2
as � a2
1� as

� �
: (B10)

A desirable feature of mða2Þ in Eq. (B10) is that it leads to zero
added mass for the limiting case of a1 ¼ 1� a2 ¼ 0 and a2 ¼ 0.
An undesirable feature is that it becomes negative for a2 > as.
Figure 13 shows the plot of mða2Þ for as ¼ 0.92.

FIG. 12. Wallis’ lumped parameter model for slug flows.

FIG. 13. Inertial coupling coefficient for the slug flow model of Wallis.14
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APPENDIX C: COEFFICIENT MATRICES FOR LINEAR
STABILITY ANALYSYS

The matrices for Eq. (10) are

/ ¼
a2

U

" #
; (C1)

A ¼ I; B ¼
�U0 C0

C2

1
C

�U0
2

2
C0

C2

� �
a
�U0C0

C2

2
66664

3
77775; (C2)

C ¼
0 0

rDpipe

q1
0

2
64

3
75; (C3)

F/ ¼
0 0

Fa2 FU

" #
: (C4)
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