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Abstract 
 

In recent years, the area of IoT human-computer interaction has developed rapidly. The 

network access point (AP) is one of the most important parts of the IoT environment. 

The Wi-Fi signal in an environment can not only handle communications but is also 

able to be a human activity/gesture sensor. The objects, living, and activities in the 

environment can affect the Wi-Fi signal in the air. Those effects will lead to waveform 

change in the Channel State Information (CSI) of Wi-Fi, which has been used in 

previous research for human activity/gesture recognition. However, the previous 

studies are environment dependent; they need to be trained again for a new environment. 

To tackle the dependency problem on the environment, this paper proposes a noise 

removal technique from the CSI. This paper adopts a low-cost Wi-Fi hardware, 

Raspberry Pi, to build an environment-independent gesture recognition system. Then, 

we remove noise from the environment and extract raw gesture CSI data for recognition. 

We adopt an LSTM model to classify the gestures. Our experimental evaluation 

confirmed that we successfully removed the noise depending on the environment, 

including an apartment and an office. However, we could not confirm the improvement 

in the environment-independency of gesture recognition, which leads to two possible 

future works: 1) environment-dependent CSI amplitude management and 2) adopting 

CSI phase data.



3 

 

 

Table of Content 
 

1. Introduction ............................................................................................................ 4 

2. Related work ........................................................................................................... 7 

2.1 Sensors ................................................................................................................. 7 

2.1.1 Non-wearable sensors .................................................................................... 7 

2.1.2 Wearable sensors ........................................................................................... 8 

2.2 Channel State Information ................................................................................... 8 

3. Proposed Method .................................................................................................. 11 

3.1 Noise removal from the CSI data ....................................................................... 13 

3.2 Gesture recognition ............................................................................................ 14 

4. Experimental Evaluation ...................................................................................... 16 

4.1 Experiment setup ................................................................................................ 16 

4.2 Experiment Process ............................................................................................ 18 

5. Result and Discussion ........................................................................................... 22 

5.1  Noise Removal Result ..................................................................................... 22 

5.2  Classification Result ........................................................................................ 23 

5.3  Discussion ....................................................................................................... 27 

6. Conclusion and future plan ................................................................................... 29 

7. Reference .............................................................................................................. 30 

 

  



4 

 

 

1. Introduction 

In recent years, the area of IoT human-computer interaction has developed rapidly. 

Smart devices, such as home security cameras, smart locks, and smart lambs, are 

becoming popular in people’s houses[1]. With the popularity of smart devices, their 

usage has become more complicated. Users are facing trouble in setting up their smart 

homes[2]. A reason for the troubles is that traditional interaction ways, like touching 

and voice, cannot satisfy all use cases. Another reason is that sensors used in a smart 

home could be invasive to the residents. For example, a camera is a popular human 

activity monitoring sensor that can collect rich data; however, the resident camera is 

considered invasive for security-related tasks. Thus, the demand for more reliable ways 

of human-computer interactions is growing.  

Network access points (APs) are one of the most important parts of the IoT 

environment. APs are also the most basic and popular network devices in human society. 

Wi-Fi signal is responsible for data transferring between APs and all devices in an 

environment, which handles tasks more than communications. The objects, living, and 

activities in the environment can affect the Wi-Fi signal transferred in the air. Those 

effects will lead to waveform changes in the Wi-Fi signal. Since Qifan Pu’s paper in 

2013 [3], such a Wi-Fi waveform feature has been used in gesture and activity 

recognition. In the later years, algorithms and learning models like SVM [4][5], kNN 

[6][7], and CNN [8] have been used in the recognition system and achieved significant 

progress. Channel State Information (CSI) is the data extracted from Wi-Fi that can 

describe how wireless signal is transmitted from transmitter to receiver. According to a 

survey on Wi-Fi sensing, the research based on CSI shows that an activity/gesture 

recognition system based on CSI is feasible [9].  

The remained problem when adopting CSI for human activity/gesture recognition 

is the environment-dependent problem. CSI data contains information of Wi-Fi signal 

during the travel from transmitter to receiver. The environment information, like objects 

in the room or the room's shape, will also affect CSI data. In this case, the trained model 
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for gesture recognition can only be applied to the trained environment. If researchers 

want to apply the recognition system in a new environment, they need to gather enough 

CSI data for all gestures and train a new model. 

Another issue in CSI extraction is the requirement of a specific hardware 

environment. Linux 802.11n CSI Tool [10] and Atheros CSI Tool [11] are two popular 

CSI extraction tools released in 2011 and 2015. The tools can extract CSI data from 

Intel 5300 NIC and a series of Qualcomm Atheros NICs like AR9380 or AR9382. 

Another CSI extraction tool is the Software Defined Radio (SDR) platforms such as 

Software Radio Peripheral (USRP), which can measure WI-Fi data in wide range of 

frequency [3]. However, those SDR are specialized developing hardware that can 

provide uncommon features such as directional antennas. These three tools are 

primarily chosen for previous research [9]. However, the NICs for two software tools 

are no longer popular in today’s devices. The 802.11n NICs cannot support later Wi-Fi 

protocols and standers like 802.11ac. Therefore, our research chooses nexmon_csi [12], 

which was released in 2019, as a CSI extractor. This tool supports the newer 802.11ac 

Wi-Fi standard and can collect data from an 80MHZ Wi-Fi signal with 256 subcarriers. 

Note that the previous tools can only extract CSI from a 40HMZ Wi-Fi signal with 128 

subcarriers.  

In this research, we focus on using the CSI from Raspberry Pi 4 to build an 

environment-independent human gesture recognition system. To overcome the 

environment-dependent problem, we use a larger density of CSI to collect and analyze 

CSI patterns from the environment. Then, we remove the environment-depend CSI 

from raw gesture CSI data to achieve environment independence. Then, we train an 

LSTM model for gesture recognition tasks in the research. 

In the experiment, we adopt Raspberry Pi B3+/B4 hardware board for APs in which 

Broadcom Wi-Fi chips where the nexmon_csi can extract CSI. The nexmon_csi allows 

a higher resolution in the CSI data, which increases the system's accuracy. We build our 

experiment environment in a single-room apartment and an office environment. The 

data from the two environments are used for model training and environment-

independency testing. 
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 This thesis is organized as follows. In Section 2, we explain the current sensors for 

human activity/gesture recognition and the background of CSI. Then, we discuss the 

advantages and disadvantages of those sensors in related works. The CSI knowledge is 

introduced in the later part. Section 3 proposes our research method about how we 

gather CSI and the analyzing method. In Section 4, we explain our experiment setup 

and discuss the results of the experiments. Finally, we conclude our research in Section 

5.  
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2. Related work 

 The related work of this paper includes introducing the present human 

activity/gesture recognition system with different types of sensors, the advantages and 

disadvantages of sensors, and the introduction of CSI. 

 

2.1 Sensors 

 The human activity/gesture recognition system can be classified by sensors used in 

the system. To collect data, a researcher needs kinds of sensors for human 

activity/gesture monitoring. According to sensors’ usage, sensors can be classified as 

non-wearable or wearable. 

 

2.1.1 Non-wearable sensors 

 Non-wearable sensors include all that are not designed to be carried/wearied by 

humans. The best-known examples are cameras and depth sensors. This CSI-based 

thesis is also a kind of non-wearable sensor as a wireless signal approach.  

 A camera sensor is the most popular activity/gesture recognition approach. One 

example is the security camera which provides activity detection. Using one or multiple 

cameras to perform vision-based human activity recognition is mature in today’s 

research[13]. However, vision-based solutions face two disadvantages. The first 

problem is that the camera is sensitive to light conditions. Although parts of cameras 

can work in low-light environments, changing light conditions or complicated light 

conditions are still challenges to vision-based solutions. The second problem is a 

security issue. A full-day work camera in residents is considered intrusive. The security 

of the camera cannot be guaranteed to users. 

Another category of non-wearable sensors is the depth sensor or depth camera. 

Depth sensors can detect the distance from the sensor to objects in the environment, 

which can be applied to detect human activity. A famous example of a depth sensor is 

Kinect by Microsoft. XBOX 360 Kinect contains one RGB camera sensor, one infrared 

sensor, and an infrared projector. The projector sends infrared light to objects in front 

of the Kinect during the work. The reflected infrared light is captured by an infrared 
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sensor and calculated the depth by analyzing the pattern, which changes according to 

the distance. 

The third kind of non-wearable sensor is a wireless signal. Electricity waves like 

Wi-Fi, Millimeter-wave [14], or other waves like sound waves [15] are in this category. 

As an advantage, part of wireless waves can collect signals traveling through objects, 

which makes it possible to detect human activity through a wall. The issues of the 

wireless signal-based solution include complex noise from the environment and 

distance sensitivity for a high-frequency wave like Millimeter-wave. 

2.1.2 Wearable sensors 

 Wearable sensors include sensors designed to be attached to the human body: 

Inertial Measurement Unit (IMU), Electromyogram (EMG), and glove sensors. 

Wearable sensors provide usable space; on the other hand, wearable sensors are easier 

to be intrusive. 

 IMU sensors are common in many devices: smartphones, smart watches, or rings. 

IMU can measure the inertial of activity for recognition. Smart watches can provide 

arm activity detection. However, IMU can only measure the inertial of limbs wearing 

the device, which limits its activity/gesture recognition ability. 

 EMG sensors can detect electric signals in muscles. EMG sensors are mainly used 

for medical purposes. In recent years, research based on EMG sensors has made much 

progress[16]. The electric signal difference between people with different body sizes is 

one of this area's main challenges. 

 The glove sensors perform well in gesture recognition because of their full hand 

coverage; however, it is the most intrusive approach and does not fit the use case for 

daily life. 

 

2.2 Channel State Information 

 Channel State Information, or CSI, is a channel property of a communication link. 

CSI describes the traveling information from transmitter to receiver. CSI is used to 

monitor the communication link’s situation. Researchers also figure out its effective 
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[19] “The Key Benefits and Differences between OFDM and OFDMA?” Extreme Networks, 28 Oct. 2022, https://www.extremenetworks.com/extreme-

networks-blog/ofdm-and-ofdma-subcarriers-what-are-the-differences/. 

 

performance in activity detection, recognition, breath, and even heart rate 

detection[17][18]. 

 One CSI frame contains N matrixes, where N is the number of subcarriers. In a 

multiple-input and multiple-output (MIMO), 802.11 a/g/n/ac Wi-Fi signal is divided 

into numbers of subcarriers through Orthogonal Frequency Division Multiplexing 

(OFDM)[19]. The 802.11ac use Very High Throughput Orthogonal Frequency Division 

Multiplexing (VHT-OFDM). The number of subcarriers is related to the channel 

bandwidth of the communication signal. Under VHT-OFDM, the frequency bandwidth 

for each subcarrier is 312.5 kHz[20]. Thus, let B be the channel bandwidth, then the 

number of subcarriers N is: 

 

N = B / 312500 (1) 

 

From equation (1), for an 80 MHz bandwidth 802.11ac transmission, the 80 MHz is 

divided into 256 subcarriers. For a matrix in one subcarrier, the matrix H’s shape is (I, 

J), where I is the number of transmitters and J is the number of receivers.  

 

HIJ = [

ℎ1,1 ⋯ ℎ1,𝑗
⋮ ⋱ ⋮

ℎ𝑖,1 ⋯ ℎ𝑖,𝑗

] (2) 

 

, where 1<=i<=I and 1<=j<=J. Each element hi,j of CSI matrix H is called Channel 

Frequency Response (CFR). Channel is the communication path of a transmitter-

receiver pair. CFR is the frequency response for each channel, representing the system’s 

response by the magnitude and phase differences between the input and output 

frequency. Let Xi (f, t) be the frequency and phase domain of the transmitted signal 

frequency f of receiver i and Yj (f, t) be the frequency and phase domain of the received 

signal frequency f of transmitter j. Then, equation (3) represents the input-output 

relationship of a channel at time t in Wi-Fi communication. 
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Yj (f, t) = hi, j (f, t) * Xi (f, t) (3) 

, where hi, j (f, t) is the CFR of transmitter-receiver pair (i, j) at time t. The overall system 

can be written as 

 

y = Hx + n (4) 

 

, where y and x are received and transmitted vectors, respectively. H is the CSI matrix, 

and n is the noise vector. The amplitude of CSI is |H|, and the phase of CSI is ∠H. 

Amplitude and phase of CSI will change according to the object, living, and activity in 

the environment during the signal traveling, which allows a researcher to extract 

environment information from CSI. 
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3. Proposed Method 

With the development of Wi-Fi-based sensing technologies, the ability of Wi-Fi-

based sensing in human activity/gesture recognition is growing. However, existing Wi-

Fi-based sensing technologies face an environment-dependent challenge that limits 

their application. The features extracted from CSI data not only contain features of 

activity/gesture but also contain information about the environment. The environment 

information differs according to objects, living, and activities in the environment. Thus, 

the machine learning or deep learning model must be trained with data from new 

environments. This problem prevents the researcher from applicating Wi-Fi-based 

sensing technologies. In addition, the common tool used in previous research, Linux 

802.11n CSI Tool, can only support 802.11n Wi-Fi with at most 40MHz bandwidth. 

This tool can extract 30 subcarriers’ CSI from an Intel 5300 NIC. This low data 

resolution caused by low subcarrier number is a possible reason for the environment-

independent problem. 

To solve the environment-dependent problem, we propose an environment-

independent approach that recognizes gestures in a different environment using the 

same LSTM model in this paper. During the research, we collect gesture CSI data and 

environment CSI data. By applying noise cancellation methods, we extracted important 

data from CSI data and removed the environment CSI data from gesture CSI data. 

Finally, we pass the gesture-only CSI data into our LSTM model for gesture recognition. 

This research uses a Raspberry Pi with nexmon_csi firmware to collect CSI data. 

Nexmon_csi is a sub-project of nexmon released by Secure Mobile Networking Lab 

[12][21]. Nexmon is a C-based firmware patching framework for Wi-Fi chips that allow 

users to complete works like frame injection. The nexmon_csi is a CSI extraction tool 

that can extract CSI from specific Broadcom Wi-Fi chips. The nexmon_csi support 

802.11a/g/n/ac Wi-Fi signal in different channels and bandwidths with a different 

number of transmitters and receivers.  
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In this research, we choose channel 36, 80MHz bandwidth 5GHz frequency, as the 

research Wi-Fi standard. We choose 80MHz bandwidth 5GHz frequency because larger 

bandwidth provides a larger subcarrier number. 80MHz bandwidth Wi-Fi signal 

provides 256 subcarriers, which is about eight times of subcarriers of the data from the 

Linux 802.11n CSI Tool. We chose channel 36 because channel 36 is a 5GHz channel 

that allows Wi-Fi signals in most countries and is supported by our experiment AP [20]. 

To collect enough frequency of data used in later model training, we use iperf3 to 

generate data flow. The Raspberry Pi, which sends data, works as a client, and a PC 

connected to AP via ethernet works as a server. 

 The nexmon_csi extractor provides a mac address function during extraction. For 

choosing a suitable Wi-Fi setting, we tested the performance of CSI extraction under 

different data flow from different devices. 

Table 1 shows CSI extraction performance in two settings with different speeds. 

The first four records shown as “Pi” are CSI extracted only from the Raspberry Pi as 

an iperf3 client. The second four records shown as “All” are from all devices in the 

environment that communicates in channel 36, 80MHz bandwidth 5GHz frequency Wi-

Fi, which includes Raspberry Pi, smartphones, laptops, and other devices 

communicating in the same Wi-Fi settings. Although CSI packets from all devices have 

a higher packet collection frequency, the noise percentage is also higher than CSI from 

Raspberry Pi. Our research is to build an environment-independent human gesture 

recognition system. Since less environmental noise is important for our research, we 

choose only to use CSI from Raspberry Pi. 

 

Table 1: CSI extractor performance under different situations 

Filter Speed (Mbite/s) Average frequency (Hz) Non-noise data #Packets in 10s
85 788.34 94.61% 7460.38
60 651.58 89.06% 5739.43
40 422.79 95.06% 4009.86
20 225.56 94.12% 2120.06
85 2242.57 70.66% 15825.56
60 1908.73 67.60% 12905.48
40 1334.24 69.65% 9288.21
20 712.05 92.74% 6602.99

Pi

All
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3.1 Noise removal from the CSI data 

 The next step is to preprocess the CSI data for model training. We adopted three 

steps to reduce the effect of useless data: noise frame cancellation, subcarrier removal, 

and environment CSI removal. 

 

1. Noise frames removal 

We use frame control information from CSI packets to filter out noise frames. 

While Raspberry Pi is seeding Wi-Fi packets via iperf3 to AP, it also generates 

other Wi-Fi packets like beacon signals. A Wi-Fi frame contains a frame 

control field that represents the types and subtypes of the frame. Those frames 

without correct frame types are considered noise and removed in this step, and 

only Raspberry Pi and AP iperf3 communication frames are reserved. 

 

2. Noise subcarriers removal 

The noise subcarriers are removed. 80MHz bandwidth 802.11ac Wi-Fi 

contains 256 subcarriers. Not all subcarriers are used for communications. The 

non-communication subcarriers include guard/null subcarriers for resisting 

interference from adjacent channels. Pilot subcarriers for detecting frequency 

offsets and phase noise, which contain random sequences, are also considered 

noise subcarriers. By analyzing the CSI data for each subcarrier, we found 48 

subcarriers containing CSI that are not relative to the experiment. Those 

subcarriers are either null or contain some random data. In this step, we remove 

those 48 subcarriers from CSI. 

 

3. Environment CSI removal 

The third step is to remove environment CSI. We use a CSI extractor to extract 

CSI from the environment in several situations: an empty room, a human 

nearby, and a human in the room. After analyzing the feature of CSI in those 

situations, an environment CSI data (or idle CSI) data with no gesture is 
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gathered. These CSI data are considered environmental noise and removed 

from the whole CSI data. 

 

3.2 Gesture recognition 

We define the following five gestures in Table 2 and Figure 1. 

  

Table 2: Gesture names and descriptions 

Gesture Description 

Palm down Start from about 30 cm above the desktop, wave the 

experimenter’s forearm down with palm face down until touching 

the desk. 

Palm up Start from the desktop, wave the experimenter’s forearm up with 

palm face up until it is about 30 cm above the desktop. 

Knock knock Knock the desktop two times with a fist. 

Finger tap Tap the desktop two times with three fingers. (index finger, 

middle finger, and ring finger) 

Drag Drag the palm on the surface of the desktop left and right two 

times. 

 

Figure 1: five kinds of gestures 

 

We adopt an LSTM model to classify the above gestures because CSI is a data 

sequence. In this step, we design our own LSTM to classify designed gestures from 



15 

 

 

CSI. The BiLSTM model is build with Pytorch 1.10.2. The input data is a (250, 208) 

matrix, where 250 is averaged 2500 long CSI sequence and 208 is the number of 

subcarriers after removing noise subcarriers from 256 original subcarrier. The output is 

the possibility for five kinds of gestures. The loss would be calculated with 

CrossEntropy method. The BiLSTM contains two bidirectional layers and 512 hidden 

units in each layer. The structure of the BiLSTM model is introduced in Figure 2. 

 

Figure 2: BiLSTM model structure 
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4. Experimental Evaluation 

4.1 Experiment setup 

 The experiment contains four devices: two Raspberry Pi 4, one router as an access 

point, and a PC. Raspbian Buster Lite (Raspberry Pi OS) with kernel version 5.10.92 

are installed in two Raspberry Pi. One of Raspberry Pi’s has nexmon_csi firmware 

configured and is responsible for collecting CSI data. The other Raspberry Pi is 

connected with AP via 5GHz Wi-Fi. During the experiment, the PC is connected to AP 

via ethernet and SSH to two Raspberry Pi. AP’s 5GHz Wi-Fi can only be accessed via 

channel 36, 80 bandwidths. Only two Raspberry Pi and the PC are connected to the AP 

during the experiment. 

 

 

Figure 3: Raspberry Pi and AP 

  

During the experiment, an iperf3 data flow is generated, assuming a PC as a server 

and Raspberry Pi as a client. The Raspberry Pi sends Wi-Fi packets to AP in 80Mbites, 

which allows the CSI extractor to collect around 800 packets per second. The extractor 

collects 2,500 packets as a CSI file, which is approximately three seconds long. Mac 

address filter is added to the extractor during the experiment, so only CSI from 

Raspberry Pi is collected, as shown in Figure 4. 
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Figure 4: System overview 

The experiment is held in two environments: a single-room apartment and an office 

room. During the experiment, the Raspberry Pi response for CSI collection is placed 

beneath a desk in both single-room and office environments. The Raspberry Pi response 

for sending Wi-Fi packets and AP is placed about three meters away from the user, as 

shown in Figure 5 and Figure 6. 

In the single-room environment, the extractor raspberry pi is placed 40 cm higher 

than the iperf3 client raspberry pi and 80 cm higher than the AP. In the office 

environment, all devices are at the same height. The desk surface in the single-room 

environment is made of wood, and in the office environment is made with metal 

materials. In addition, two sides of the office room are glass instead of walls. 

 

 

Figure 5: Single-room environment setting 
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Figure 6: Office environment setting 

 

4.2 Experiment Process 

 The followings show the experiment process. We invited three experimenters, A, 

B, and C, who are university students. 

 

1) CSI data collection 

The experiment starts with CSI data collection. Then, five different gestures defined 

in Section 3.2 are performed.  

 

1-1) In the single-room environment with experimenter A 
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⚫ 100 CSI gesture samples performed by experimenter A for each gesture 

are collected, i.e., 500 samples in total.  

⚫ 400 CSI data from the empty room environment are collected. 

⚫ 400 CSI data from the environment with experimenter A sitting aside at 

the desk are collected.  

1-2) In the office environment with experimenters A, B, and C 

 

⚫ (experimenter A) 40 CSI gesture samples performed for each gesture 

are collected, i.e., 200 samples in total. 

⚫ 200 CSI data from the empty room environment are collected. 

⚫ (experimenter A) 100 CSI data from the environment with experimenter 

A sitting aside at the desk are collected.  

⚫ (experimenter B and C) 30 CSI gesture samples performed by each 

experimenter are collected, i.e., 300 samples in total (2 experimenters x 

30 samples x 5 gestures). 

⚫ (experimenter B and C) 50 CSI data from the environment with 

experimenters B and C sitting aside at the desk are collected, i.e., 100 

CSI data in total. 

 

2) Noise CSI data removal 

The collected CSI data in the first step were transposed to CSI amplitude data and 

passed to noise removal steps.  

 

2-1) non-iperf3 frames are removed from 2500 Wi-Fi frames by analyzing the 

frame control information in a CSI frame. Frame control is a field in a Wi-

Fi frame that contains informations of the frame. Three fields are always 

included in the frame control: protocol version, type and subtype. The type 

and subtype of a frame can be used to figure out the correct frames we need. 

2-2) Then, the 48 subcarriers which contain null or random data are removed 

from 256 subcarriers. These subcarriers includes subcarriers that are not 
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used for data transferring like pilot subcarriers or guard subcarriers. Those 

subcarriers containing noise data significantly differ from other subcarriers, 

which can affect later model training, as shown in Figure 7 and Figure 8..  

2-3) After previous two steps, the CSI sample will be averaged into 250 frames 

long data to unite the shape and accelerate the tanning process. The shape 

of the CSI is (250, 208) now. The average CSI for an experimenter sitting 

aside at the desk is calculated and removed from the CSI samples. 

 

Figure 7: CSI amplitude frame with noise subcarriers 

 

Figure 8: CSI amplitude frame without noise subcarriers 
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3) Classifier model learning – bidirectional LST model 

 

3-1) A bidirectional LSTM model is adopted to classify the CSI data. The 

bidirectional LSTM is built with Pytorch version 1.10.2. It contains 512 

hidden states and two hidden layers. The loss function is Cross-Entropy, and 

reducing the learning rate according to valid loss is applied.  

3-2) Two models are trained and valid with CSI amplitude data from the single-

room environments and the office envrionment, respectively. Each CSI is 

passed into the model as a (250, 208) float matrix. The data set contains 100 

gesture CSI samples for each gesture, which is 500 CSI samples in total. 

Twenty percent of each gesture samples are used as test data by applying the 

5-fold cross-validation method. The remaining eighty percent of CSI 

samples are divided into train and valid data by applying 5-fold cross-

validation.  

 

Then, the trained model is used to evaluate the environment’s independency with 

CSI data from the other environment. Finally, we compare the classification results w/ 

and w/o the preprocessing methods. The final result is evaluated with a confusion 

matrix and classification report. 
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5. Result and Discussion 

5.1  Noise Removal Result 

 The preprocessing noise removal method include three steps: 

1) Remove non-iperf3 frames. This step removes frame that have false frame 

control field in a CSI frame. The result of this step can be shown in Figure 9 

and Figure 10, which is a low quanlity CSI example that have 35% of non-

iperf3 frames. 

 

Figure 9: CSI sampel with 35% of non-iperf3 frames 

 

Figure 10: CSI sample with 35% of non-iperf3 frames removed 
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2) Remove guard/pilot subcarriers. This step removes subcarriers that contains 

null/random values. The performance of this step can refer to Figure 7 and 

Figure 8 above. By removing peak and vellay on a CSI frame data, the 

remaining CSI is more distinguishable. 

Remove average envrionment data. This step removes the calculated average 

environment CSI from original CSI data. We sample CSI data for the experimenter sit 

aside at the desk and consider it as envrionment CSI. The result of this step is can be 

refered in the classification result. 

 

5.2  Classification Result 

Figure 11 and Figure 12 show the confusion matrix for five kinds of gesture 

recognition in the single-room environment with experimenter A and the office 

environment with experimenter A with the model trained with the single-room 

envrionment with gestures by experimenter A. 

 

 

Figure 11: Confusion matrix for the single-room environment 
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Figure 12: Confusion matrix for the office environment 

 

Tables 4 to 8 show the classification results. The training and testing data 

relationship for reports are shown in Table 3. All results include test conditions w/ and 

w/o the preprocessing methods. All models are trained for 40 epochs. A 5-fold cross-

validation method is applied in all training and testing parts.  

 

Table 3: The classification report tables’ information 

Table Trained with data from Tested with data from 

4 The single-room environment by 

experimenter A 

The single-room environment 

by experimenter A 

5 The office environment by 

experimenter A 6 

The office environment by experimenter A 
7 

The single-room environment 

by experimenter A 

8 
The single-room environment by 

experimenter A  

The office environment by 

experimenters B and C 
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Table 4: Classification result for gesture in the single-room environment by the model 

trained with the single-room environment data (experimenter A) 

Gesture 
With preprocess Without preprocess 

Precision Recall F1 Precision Recall F1 

Palm down 1.00  0.98  0.99  0.07  0.20  0.09  

Palm up 1.00  0.99  0.99  0.08  0.23  0.10  

Knock knock 0.85  0.96  0.90  0.10  0.21  0.12  

Finger tap 0.89  0.91  0.90  0.08  0.16  0.09  

Drag 0.93  0.81  0.86  0.14  0.28  0.16  

Marco Avg. 0.93  0.93  0.93  0.09  0.22  0.11  

 

Table 5: Classification result for gesture in the office environment trained with the 

single-room environment data (experimenter A) 

Gesture 
With preprocess Without preprocess 

Precision Recall F1 Precision Recall F1 

Palm down 0.40  0.09  0.14  0.09  0.20  0.10  

Palm up 0.21  0.30  0.25  0.09  0.24  0.11  

Knock knock 0.00  0.00  0.00  0.10  0.21  0.12  

Finger tap 0.32  0.90  0.47  0.07  0.17  0.09  

Drag 0.13  0.05  0.07  0.07  0.19  0.10  

Marco Avg. 0.21  0.27  0.19  0.08  0.20  0.10  

 

Table 6: Classification result for gesture in the office environment by the model trained 

with the office environment data (experimenter A) 

Gesture 
With preprocess Without preprocess 

Precision Recall F1 Precision Recall F1 

Palm down 0.45 0.38 0.38 0.04 0.16 0.06 

Palm up 0.42 0.43 0.42 0.06 0.29 0.10 

Knock knock 0.88 0.91 0.89 0.03 0.12 0.04 

Finger tap 0.76 0.95 0.83 0.06 0.14 0.07 

Drag 0.86 0.75 0.79 0.06 0.27 0.09 

Marco Avg. 0.67  0.68  0.66  0.05  0.20  0.07  
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Table 7: Classification result for gesture in the single-room environment by the model 

trained with the office environment data (experimenter A) 

Gesture 
With preprocess Without preprocess 

Precision Recall F1 Precision Recall F1 

Palm down 0.30  0.45  0.34  0.05  0.16  0.07  

Palm up 0.12  0.34  0.17  0.07  0.29  0.11  

Knock knock 0.02  0.00  0.00  0.03  0.13  0.05  

Finger tap 0.49  0.11  0.17  0.07  0.13  0.08  

Drag 0.01  0.00  0.01  0.07  0.28  0.11  

Marco Avg. 0.19 0.18 0.14 0.06 0.20 0.08 

 

Table 8: Classification result for gesture in the office environment from experimenters 

B and C by the model trained with the single-room environment data from experimenter 

A 

Gesture 
With preprocess Without preprocess 

Precision Recall F1 Precision Recall F1 

Palm down 0.12  0.13  0.09  0.10  0.19  0.11  

Palm up 0.26  0.88  0.39  0.12  0.24  0.14  

Knock knock 0.00  0.00  0.00  0.08  0.22  0.11  

Finger tap 0.00  0.00  0.00  0.05  0.16  0.08  

Drag 0.00  0.00  0.00  0.07  0.19  0.09  

Marco Avg. 0.08 0.20 0.10 0.08 0.20 0.11 

 

 Based on the above results, our findings are shown below. 

 

1) Environment-independent classification 

This research aims to build an environment-independent gesture recognition system 

based on Raspberry Pi. However, as shown in Tables 5 and 7, the model trained in 

the single-room environment did not perform well in office environment data. 

Besides, the model trained in the office environment did not perform well in the 

single-room environment data. 

 

2) Classification in the same environment and proposed noise removement 
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Table 4 (single room) and Table 6 (office) show the ability to classify the five 

different gestures. Especially the result in the single room environment shows the 

0.93 as F1-score, which shows the effectiveness of our proposed noise removement 

method when comparing w/o the noise removement method. However, in the office 

environment, F1-socore becomes worse as 0.19 even if we adopt the noise 

removemnet method. The reason includes a) the number of CSI data and b) other 

noise we could not remove. 

 

3) Experimenter dependency 

Comparing Table 4 (tested with experimenter A with the model trained by 

experimenter A) and Table 8 (tested with experimenter B and C with the model 

trained by experimenter A), we confirmed the degradation of the classification 

performance, which means the classification model is depended on experimenters.  

 

 

5.3  Discussion 

 

 Based on the above results, we analyze the results and show future improvement. 

 

1. The material of objects in two environments affects the CSI pattern 

significantly. Although the Raspberry Pi as CSI extractor in both environments 

is placed beneath the desk, the materials of the two desks are different. The 

metal material desk in the office environment makes Wi-Fi signals with a 

lower penetration rate and higher reflection rate, which decreases the 

amplitude of CSI from those Wi-Fi signals through the desktop. The material 

difference between desks makes the CSI amplitude pattern from the two 

environments cannot match up. 

2. The second possible factor is that the three-thin glasses wall of the office room 

may cause less environment CSI data collection. The thicker wall in the single-
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room environment may reflect more Wi-Fi signals back to the room and carry 

more room information. 

 

To improve the performance, the following two methods should be considered in 

the future: 

 

1. Apply the CSI amplitude changing method in the CSI data processing steps, 

i.e., measuring the effect of desk material on the CSI amplitude change in 

different subcarriers during the gestures. Then having the same amplitude may 

help the model classify different environments.  

2. Add CSI phase data into the method. Although only CSI amplitude is analyzed 

in this research, the CSI phase contains important information that can estimate 

Angle-of-Arrival (AoA) and Time-of-Flight (ToF). These two kinds of 

information can be used to analyze the signal reflection and have the potential 

to estimate human gesture/activity and environmental information.  
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6. Conclusion and future plan 

This paper focuses on environment-independent gesture recognition based on Wi-

Fi CSI collected by Raspberry Pi. We propose a method to preprocess the CSI before 

the machine learning process. The method aims to reduce environmental noise and 

provide environment-independency for the gesture recognition system. 

The experimental result shows that the noise removal method works; however, 

environment-independent gesture recognition based on Raspberry Pi with environment 

CSI amplitude analysis is unreliable. The environment CSI amplitude processing allows 

the model to perform well in its training environment. However, the CSI difference 

between environments is affected by other factors, including the material of the objects 

in the environment. 

The result of the model in a single-room environment shows Raspberry Pi’s ability 

and potential in CSI data collection and recognition. The higher data quality than those 

from previous CSI tools and lower cost allows it to be a reliable research device for 

future research. 

Our future work is to apply and test two possible methods that may solve the 

environment-independent problem. The first is to measure the CSI amplitude effect of 

object material on Wi-Fi traveling, which may cause different gesture CSI patterns in 

different environments. The second method is to include the CSI phase in the research. 

The CSI phase can be used to estimate Angle-of-Arrival (AoA) and Time-of-Flight 

(ToF), two important factors for analyzing the objects, living, and environments in Wi-

Fi traveling. For testing the two methods’ ability, more experiment is in planning. 
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