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Abstract

eSports is competitive gaming at a professional level in which players or teams compete against each
other. eSports is growing in popularity around the world and has many business opportunities. eS-
ports tournaments live streaming plays a central role in the growth by attracting the audience with
heated battles between professional players. Viewers who watch the streaming less frequently are po-
tential customers of eSports, but they struggle to understand the complicated game rules of eSports.
We aim to generate captions automatically that clearly explain eSports videos to support them. Prelim-
inary experiments showed that more object-centric video feature extraction is needed in the eSports
domain. We extend the video understanding model based on Transformer with an object detection
model and achieve about six times the performance of existing methods in evaluating tubelet action
detection. We introduce object queries to address the problems of existing approaches: the different
sizes of detected objects and the high cost of high-frequency object detection. We also use the recurrent
structure to store object information in object queries, allowing us to capture extended temporal con-
texts without a heuristic linking algorithm. Our proposedmodel may be widely applicable not only to
eSports videos but also to sports video analysis and equipment anomaly detection in factories. Further
research is required to apply our proposed model to data with few labels and much noise.
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論文要旨

eスポーツはプロレベルでプレイヤーが競い合うゲームである．eスポーツは世界中
で人気を集めており，ビジネスチャンスを多く含んでいる．特に大会配信はプロ同士
の激しい戦いで観客を興奮させ，eスポーツの成長の一躍を担ってきた．大会配信を
見る頻度が少ない視聴者こそ eスポーツの潜在的な顧客であるといえる．大会配信を
楽しむ上で彼らの障壁は eスポーツの複雑なゲームルールの理解である．この問題を
解決するため，本研究は eスポーツ動画をわかりやすく説明するキャプションの生成
に取り組む．事前実験によって，eスポーツドメインではより物体に注目した動画特
徴抽出手法が必要だとわかった．我々は物体検出モデルを用いて動画理解モデルを拡
張し，Tubelet Action Detectionの実験において既存手法の約 6倍の性能を達成した．従
来手法の課題である，検出物体のサイズの違いと高頻度な物体検出のコストの高さを
object queriesによって解決した．また，再帰構造を導入し，object queriesに物体の情報
を保持することで，ヒューリスティックな接続アルゴリズムなしに長い時間的な文脈
を捉えることが可能になった．本研究の成果は eスポーツ動画のみならず，スポーツ
動画の解析や工場における機器の異常検知などにも応用することが可能である．ラベ
ルが少なくノイズが多いデータに対しても提案モデルを適用可能にするため，更なる
研究が必要である．

iv





Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisor, Prof. Edgar Simo-Serra.
Without his continuous kind advices, I would not have completed my master research. I have learned
a lot from him such as how to conduct research projects and how to write persuasive papers.

I also thank the staff and members of the Simo-Serra laboratory. Discussions and chats with the
younger students have made mymonotonous days enjoyable, and I have deepened my knowledge and
learned new things from them.

Finally, my special thanks to my mother who has been an unstinting source of support.

vi





Contents

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Problem Settings and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Feed-forward Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Deep LearningModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 AttentionMechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 RelatedWork 16
3.1 Video Captioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Video Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Contrastive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Video Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Video Captioning for eSports 22
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Video Feature ExtractionModel . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 CaptioningModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



5 Unsupervised Frame Feature Extraction for eSports 27
5.1 Unsupervised Pretraining for Object Detection . . . . . . . . . . . . . . . . . . . . 27
5.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Object-Centric Tubelet Action Detection 33
6.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.2 Extracting Object Features . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.3 Object-Centric Tubelet Attention . . . . . . . . . . . . . . . . . . . . . . 36
6.1.4 Tubelet Tracking with Queries . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3.2 Baselines andMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Conclusions 42
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliography 45

2



Listing of figures

1.1 Overview of our contributions and future directions . . . . . . . . . . . . . . . . . 7

2.1 Network diagram for the two-layer neural network [7]. . . . . . . . . . . . . . . . . 10
2.2 RNN structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Transformer - model architecture [83]. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Overview of Vision Transformer [18]. . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Overview of Masked Transformer [101]. . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 A SlowFast Network [23] with Slow pathway for low temporal resolution and Fast

pathway for high temporal resolution. . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Four categories of object-centric video tasks. . . . . . . . . . . . . . . . . . . . . . 21

4.1 Qualitative comparison of video captioning datasets. . . . . . . . . . . . . . . . . . 23
4.2 Decoding the outputs in parallel in PDVC [8]. . . . . . . . . . . . . . . . . . . . . 24
4.3 Comparison of generated captions in LoL-V2T. Red indicates the same representa-

tions between videos, and blue indicates representations within a video. . . . . . . . 25
4.4 Comparison of generated captions in ActivityNet Captions from PDVC [86]. . . . . 25

5.1 Overall framework of the pretraining method for object detection: DETReg [5]. . . . 28
5.2 Overall of our data processing using buffers on main memory. . . . . . . . . . . . . 29
5.3 The output of Selective Search for a frame in LoL-V2T. The input frame is cropped

inside the pink line box to prevent focusing on information UI outside the box. . . . 30
5.4 Qualitative results of unsupervised object detection for LoL-V2T. The left is the out-

put of the model we trained, and the right is the output of the Selective Search we
used for the supervised signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Overview of our proposed tubelet action detection model. . . . . . . . . . . . . . . 35
6.2 Qualitative results of tubelet action detection. Green indicates ground truth and red

indicates prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3



Listing of tables

4.1 Performance of video captioning asmeasured byMETROR [4]. For temporal action
proposals, MART and PDVC do not predict, andMasked Transformer uses ground
truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 General results for tubelet action detection withMultiSports [49]. . . . . . . . . . . 41

4



1
Introduction

1.1 Motivation

eSports is competitive gaming at a professional level in which players or teams compete against each
other for championships or prizemoney [60]. eSports is growing in popularity across all ages, genders,
and regions. The revenue is increasing year by year and is expected to reach 1.38 billion by the end of
2022 (+16.4% from 2021) [60]. eSports tournaments play a central role in the growth. The audience
of professional eSports tournaments is also increasing annually, reaching 532 million in 2022. The
occasional viewers, who watch professional eSports less than once a month, account for 271 million
people [60]. Reaching out to them will lead to further development of eSports.

The audience of eSports tournaments live streaming gets excited about watching the advanced and
skilled gameplays of professional players and heated battles between professional teams. Skilled players
use their knowledge and experience to focus on the gameplay of theprofessional players, while beginner
players need help understanding the complicated rules of eSports games. For beginner players, clearly
showing the gameplay in the live streaming is thus important for the occasional viewers to enjoy the
tournaments. The tournament’s live streaming should be a chance to attract occasional viewers to the
eSports game.

We believe that captions, which clearly explain the gameplay, will keep the interest of the occasional
viewers in the eSports game. Currently, commentators are always present at large tournaments. Their
explanations of the situation and highlights allow even those unfamiliar with the game rules to enjoy
the live streaming. However, only some people understand the eSports titles well enough to explain
the advanced gameplay in the tournaments and have developed their talking skills. For even them,
keeping up with increasing eSports titles, fast-paced trends, and game updates is challenging. We aim
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to support them and occasional viewers with agents that understand and can explain game videos via
captions.

1.2 Problem Settings and Challenges

Video Captioning Model understands input videos and generates captions to explain events in the
video. Recently, video captioning has been greatly advanced by deep learning technology. The deep
learning model in video captioning can be categorized into two approaches. The first approach is to
reveal the correspondence between objects in the video and words in the caption [11, 62, 82, 92, 95,
98, 99]. The second ismapping the video feature space to the text feature space through self-supervised
learning [25, 77, 102]. These approaches rely on video feature extraction models [10, 74, 80] to con-
vert the videos into vectors. This model is pre-trained on simple videos, which include a few objects
to explain with large motion. However, eSports videos are more complicated than these videos in con-
taining multiple objects in a frame, objects are much smaller than the frame, and the object’s motion
is tiny. The extent to which existing approaches can be applied to the eSports domain is thus unclear.
In addition, since the eSports domain is relatively young, fewwell-developed datasets exist. This study
therefore aims to construct video feature extraction models for the eSports domain with limited data.

1.3 Our Approach

In this thesis, we advance three approaches towards video captioning for the eSports domain, as shown
in Figure 1.1.

First, we experimentally apply existing video captioningmethods to the eSports domain to evaluate
current video feature extraction models. This experiment shows that all captioning models struggle
significantly with eSports videosmore than human action videos, and improvements are needed in the
video feature extraction model.

Second, we consider how to train a video feature extraction model on unlabeled data. Specifically,
we train anobject detectionmodel for characters in eSports videos inunsupervised settings. The results
demonstrate that the model capture not only characters but also objects that should be included in
the background (e.g., bushes and walls). We realized that the model needs to recognize the temporal
dynamics of the game rules and the characters to distinguish between background and foreground.

Finally, we extend the video understanding model with an object detection model to recognize
object-specific temporal dynamics. The object information is transported from the detector to the
video understanding model via object queries in DETR [8]. This allows adaptive supporting long
temporal dynamics while reducing the frequency of using the detector. As a first step toward unsuper-
vised learning, we evaluate our model in the tubelet action detection task using a sports video dataset
similar to eSports in a supervised setting.
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Figure 1.1: Overview of our contributions and future directions

1.4 Organization of the Thesis

This thesis begins with the background of our research in Chapter 2. It will then go on to related work
in video captioning and video feature extraction in Chapter 3. Chapter 4 describes the experimentally
applying existing video captioningmethods to the eSports domain. Chapter 5 explains the experiment
of video feature extraction in the unsupervised setting. Chapter 6 presents our approach using object
queries for tubelet action detection. Finally, Chapter 7 summarizes our findings and limitations in this
thesis. We also discuss future directions for this research.
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2
Background

This chapter will briefly review the fundamental techniques associated with this study.

2.1 Machine Learning

Machine learning is one of the most common methods for finding rules or knowledge contained in
data. Considering the example of object detection. Each object in an image can be represented by a
vector comprising real numbers of colors of all pixels. The goal is to build a model that takes such a
vector as input and predicts an object label and coordinates of a box surrounding the object, called
bounding box, as output.

Studies of machine learning show the importance of training methods and model architectures.
Training methods can be categorized into supervised learning, unsupervised learning, and reinforce-
ment learning. Regarding model architecture, deep learning has been studied widely in recent years,
andwewill describe it in the next section. This section describes supervised learning and unsupervised
learning used in our approach.

Supervised learning refers to problems in which training data consists of pairs of input data and cor-
responding ground truth data. It is divided into classification problems and regression problems. The
goal of a classification problem is to assign an input vector to one of a finite number of discrete cate-
gories, while the goal of regression problems is to predict one ormore continuous variables as outputs.
In the example of object detection, predicting object labels corresponds to the classification problem,
and predicting bounding boxes corresponds to the regression problem.

Unsupervised learning has been utilized to solve problems where the training data are only input
vectors and no corresponding target labels. One of the most commonmethods of unsupervised learn-
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ing is clustering, which is to discover groups of similar exampleswithin the training data. Unsupervised
learning can play a key role in reducing costly labeling in the construction of the training dataset and
has received attention in feature representation extraction in recent years.

2.2 Neural Networks

Neural network is one of the basic types of machine learning, and deep learning, which we will discuss
later, is based on it. Neural networks are used as multiple layers of logistic regression models with
continuous nonlinearities, known as multilayer perceptron (MLP). For many applications, MLP can
be significantly more compact and flexible than other machine learningmodels such as support vector
machine. Instead, since the likelihood function is not a convex function of themodel parameters, there
is no guarantee that the training will converge to a globally optimal solution. However, in practical
applications, it is often advantageous to feed new data to a compact and flexible model.

2.2.1 Feed-forwardNetwork

As a neural networkwith a basic structure, we briefly discuss themechanismof a feed-forward network
(FFN). ‘FFN’ are often treated the same as ‘MLP’ in general, and this thesis follows this. The smallest
element that makes up a neural network is a unit. A unit receives multiple inputs and multiplies each
input by a different weight and adds a bias. The sum is then input to an activation function σ, and the
resulting value z is the output of the unit. The calculation of the units is as in Eq. (2.2).

u = Wx+ b, (2.1)

z = σ(u), (2.2)

W denotes the weight, b denotes the bias, and σ denotes the activation function. There are various
types of activation functions for different purposes. One of the most common activation functions is
rectified linear unit (ReLU), as shown in Eq. (2.3). An advantage of ReLU is that it can reflect changes
in the input to the output as long as the input is not negative.

σ(u) = max(u, 0), (2.3)

The combination of several units is called a layer.
FFN is computed in order from the previous layer. An example of a simple two layers FFN is shown

in Figure 2.1. The number of units and layers can be freely changed, enhancing the expressive power
of FFN. Various networks with different layer shapes, numbers, and order of computation have been
proposed, which are discussed in Section 2.3.
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Figure 2.1: Network diagram for the two-layer neural network [7].

2.2.2 Network Training

Theproblemofdetermining thenetworkparameters is solvedbyminimizing a function that represents
the error between the predictions and the ground truths, which is called the objective (loss) function.
In regression problems, the squared error shown in Eq. (2.4) is often used.

E(w) =
1

2

N∑
n=1

∥dn − y(xn;w)∥ , (2.4)

where y(xn;w) denotes a network to be optimized, w denotes the network parameters, and dn de-
notes a ground truth. Many objective functions are based on squared error, and the objective function
needs to be customized depending on tasks. The differentiable objective function offers stochastic gra-
dient descent (SGD) for minimizing the objective function. We will describe SGD in the next section.

2.2.3 Stochastic Gradient Descent

SGD is themost popularmethod forminimizing the objective function. The gradient is the first deriva-
tive of the objective function, as shown in Eq. (2.5).

∇E ≡ ∂E

∂w
, (2.5)

SGD searches for local optimal solutions by iteratively updatingw. A single update movesw a tiny
distance in the negative gradient direction.

wt+1 = wt − ϵ∇E, (2.6)
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where wt denotes the current weights, and wt+1 denotes the updated weights. ϵ is a constant that
defines the magnitude of w updates, called the learning rate. Learning rate greatly affects training
performance but is often determined empirically.

The cost of calculating the gradient increases as the number of layers increases. Backpropagation is
often used as an efficient calculation method. Since backpropagation is a linear calculation, the gradi-
ent may diverge or disappear depending on the weight, called the vanishing gradient problem. There
are some techniques for solving the problem, such as skip connection and residual connection.

2.3 Deep LearningModel

Deep learning is a machine learning technique that uses networks of many layers described in Sec-
tion 2.2.1. The section below describes basic deep learning models and techniques.

2.3.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of FFN that can be applied to problems that use
images as input, such as image classification. CNNs have convolution layers, which calculate as

ui,j =

H−1∑
p=0

H−1∑
q=0

x(i+p),(j+q) hp,q, (2.7)

where xi,j denotes the pixel value of the pixel (i, j) in an inputW ×W image, and hp,q denotes the
pixel value of the pixel (p, q) in anH ×H image, which is called filter (W > H). The convolution
operation is to extract color patterns from the input image that are similar to the color patterns of the
filter. CNN has shown high performance in a wide range of fields, including image recognition.

2.3.2 RecurrentNeural Network

Recurrent neural network (RNN) is a type of neural network with cycles inside. By having cycles,
RNNs can temporarily store information and change their behavior according to the stored data. It
allows for capturing the context in a sequence of data, such as speech, language, or video. The simple
RNN structure is shown in Figure 2.2, and the calculation in RNN is shown in Eq. (2.9).

Zt = σmid(WinX+WrZ
t−1), (2.8)

Yt = σout(W
outZt), (2.9)

The notation is described below:

• X denotes input.
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Figure 2.2: RNN structure.

• Zt denotes the output of the middle layer at time t.

• Y represents the output of the model at time t.

• Win,Wr, andWout are the weights between layers.

• σmid and σout denote the activation functions.

Byhaving a cycleWr, themodel can treat theoutput at time t−1 as the input at time t. Theoretically,
RNN can deal with the entire input history in the past. In practice, however, it can only go back a
limited history because repeating past outputs as inputs of the current layer is equivalent to increasing
the number of layers and may cause the vanishing gradient problem described in Section 2.2.3. Long-
ShortTermMemory (LSTM) [32]wasproposed to achieve long-termmemorybyusingmemoryunits.

2.3.3 AttentionMechanism

Attention mechanism weights the elements in a set by importance according to interest. For example,
when recognizing the type of animal in a giraffe image, the attention mechanism gives high weight
to just the giraffe part. We denote the content of interest as a vector q and each feature of the input
sequence as zi and r as a function that measures the relationship between q and zi.

ri = r(zi,q), (2.10)

Various functions can be used for r; the most common is the inner product of z and q.

r(z,q) =
z⊤q√
D

(2.11)

To avoid polarizing the output to 0 and 1 in the next step, the inner product is divided by the square
root of the dimensionality D of z and q. We then normalize r1, . . . , rN of all data in the sequence
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Figure 2.3: Transformer - model architecture [83].

with a softmax function.

ai = softmaxi(r1, ..., rN ) =
exp(ri)∑N
l=1 exp(rl)

, (2.12)

Finally, we calculate the weighted average of the input sequence zi with ai as the weight.

z =
N∑
i=1

aizi, (2.13)

z can be regarded as the extracted part of the input sequence closely related to q.
In the following section, we describe transformer [83], the most successful architecture that uses

the attention mechanism.

2.3.4 Transformer

Transformer [83] is the most successful architecture that was proposed in the field of machine trans-
lation. The transformer has been developed as a model that takes sequence data as input and output,
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such as sentences written in natural language. A significant advantage of the transformer is that it can
process the entire information of sequence data at once. RNNs and LSTMs repeatedly use the output
as input, which causes the vanishing gradient problem as described in Section 2.3.2, but the problem
does not occur with the transformer.

The model architecture of the transformer is shown in Figure 2.3. The transformer has three com-
ponents: multi-head attention, normalization, and feed-forward network. The core component is
multi-head attention, which contains the attention mechanism described in the previous section.

LetK,V be the inputs of multi-head attention andQ be the query. The attention is calculated as
follows.

A(Q,K,V) = softmax

(
QK⊤
√
D

)
V, (2.14)

Inmulti-head attention,H calculations of the attention are run in parallel. For each head, row vectors
of Q,K,V is linearly mapped to a D′-dimensinal space (D′ = D/H). In other words, introduce
WQ

h ,W
K
h ,W

V
h ∈ RD×D′ and transform asQ → QWQ

h ,K → KWK
h ,V → VWV

h , the head
is calculated as follows.

headh = A(QWQ
h ,KWK

h ,VWV
h ), (2.15)

where headh ∈ RM×D. headh are connected and linearly mapped byWO ∈ RD×D.

AM(Q,K,V) = [head1, ..., headH ]W
O, (2.16)

AM(Q,K,V) is the output of the multi-head attention. WQ
h , W

K
h , WV

h , and WO are the learn-
ing parameters. If Q, K and V are the same, this component is called self-attention and is used to
emphasize the important part in the sequence.

The order of elements in a sequence data is essential and must be reflected in the model’s input.
The transformerperformspositional encoding, adding information indicating the sequence’s position.
Specifically, a vector pi with the same length as xi is created, representing the position of xi in the
sequence, and is added to or concatenated with xi. pi is a vector of fixed values using a sine wave or a
vector of learning parameters.

The disadvantage of the transformer is that the computational cost in Eq. (2.14) is enormous. In ad-
dition, since the transformer uses positional encoding, the input sequence is limited to a fixed length.
When applying the transformer to video tasks, these shortcomings are significant constraints for de-
signing model architecture.

The transformer has been applied to natural language processing, but now vision transformer (ViT)
has been proposed, which can be applied to computer vision. As shown in Figure 2.4, the input of ViT
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Figure 2.4: Overview of Vision Transformer [18].

is a sequence of patches into which the image is split. While CNN tends to extract local features of the
image thanks to filters, ViT tends to extract global features of the image thanks to self-attention [69].
However, there is little difference in performance between CNN and ViT in various tasks. Since we
believe the attention mechanism is effective for recognizing the motion in the video, we will use an
extension of ViT to video in our approach.
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3
RelatedWork

This chapter is divided into two sections. The first section will describe research on video caption-
ing. The second section will review research on video feature extraction, which is one of the essential
techniques in video captioning.

3.1 Video Captioning

Video captioning is a task that takes a video as input and generates captions describing events in the
video as outputs. Video captioningmodels require recognizing video and grounding language abilities,
it contributes significantly to the robot’s visual and conversational skills. Recent trends in large-scale
models [68, 70, 73] started in natural language processing have led to a proliferation of studies in vision
and language. Although video captioning is related closely to the trend, the mechanism that can un-
derstand a video’s temporal context and generate coherent sentences has yet to be established. In this
section, we first review the study of Zhou et al. [101], mainly used as a baseline in video captioning,
and describe the recent studies and problems with them.

Zhou et al. proposed a simple video captioning model [101] that combines a video understanding
model, Temporal Segment Networks (TSN) [85], and a captioning model, Transformer [84]. The
procedure consists of two steps: first, features are extracted from the input video using TSN, and then
the features are transformed into sentences using the Transformer, as shown in Figure 3.1. Most re-
search on video captioning has utilized the two-step procedure and has focused on how to ground the
features of the video understanding model to the captioning model.

The basic approach to ground the video understanding model into the captioning model is explic-
itly mapping object regions to words in the texts. GVD [99] constructed ActivityNet-Entities, which
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Figure 3.1: Overview ofMasked Transformer [101].

includes entity-level bounding box annotations based on Activity Net Captions [42], and trained the
captioningmodel with the annotations. Zhang and Peng proposed amodel [94] for features represent-
ing temporal dynamics of salient objects extracted by an object detector such as Mask R-CNN [29].
This model can extract detailed dynamics for each object but has yet to extract dependencies between
objects. Several studies [62, 95, 98] have proposed networks representing relationships between ob-
jects using GNNs and other methods to address this problem. HMN [92] splits captions into three
hierarchical levels: entity, predicate, and sentence, and proposed dedicated loss functions for each level.
At the entity level, words are mapped to object region features extracted by Faster R-CNN [71]. How-
ever, using pre-trained object detectors suffers from limited cover for different domain objects and
training costs. Chen and Jiang, Vaidya et al. proposed models that use attention modules to extract
spatial information without external object detectors [11, 82].

More recent attention has focused on self-supervised learning since BERT [16] appeared. BERT is
a pretraining method for word embedding, where sentences are transformed into queries using word
embedding and partially masked, and multi-Transformer blocks are trained to predict the token of
the masked parts. Since a video can be treated as a sequence of frames, just like sentences, the BERT
framework can be directly applied to video language tasks. VideoBERT [77] is the first study to apply
BERT to video tasks and proposes to concatenate video tokens and word tokens for pretraining. Sun
et al. discretized video features into video tokens via clustering, but detailed local information, e.g.,
interacting objects and human actions, could be lost during clustering [77]. ActBERT [102] adds
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verbs from the texts and object regions extracted by the object detector to the tokens for this problem.
Ging et al. focused on long-range temporal dependencies and proposed three hierarchy levels in video
and language: frame/word, clip/sentence, and video/paragraph [25].

Much current literature on the captioning model has paid particular attention to the Transformer
since Zhou et al. introduced it. MART [44] combines an encoder and a decoder and has amemory up-
dater like LSTM to maintain a long-term context. PDVC [86] regards the Transformer as a converter
of aggregate data and generatesmultiple captions in parallel. However, thesemodels depend on offline-
extracted video features by 2D/3D CNNs trained on video understanding tasks. Aafaq et al. argued
that careful designing of visual features is important and proposed a method to apply Short Fourier
Transform to CNN features of the video [1]. SwinBERT [52] trains the entire model, including the
video feature extractor, by inputting the video directly into Video Swin Transformer [54] instead of
CNNs.

Overall, these studies suggest that capturing relationships between objects in the video and self-
supervised learning with large-scale datasets are useful for grounding the video understanding model
to the captioning model. However, few studies have examined video feature extraction, such as object
detection and understanding models. In the next section, we will review the existing studies on video
feature extraction.

3.2 Video Feature Extraction

The sectionbelowreviewsmodels and trainingmethods for extracting latent space features fromvideos.
The recentmethods of video feature extraction can be classified in terms of the training procedure into
contrastive learning and video understanding. We will first describe contrastive learning and then ex-
plain video understanding, especially tubelet action detection, which is closely related to this study.

3.2.1 Contrastive Learning

ContrastiveLearning is self-supervised learning acquiring a feature representation spacewithout ground
truth labels. For a single query objectx, positive examplex+ andK negative examplesx−

1 , ...,x
−
K are

prepared. A network z = f(x;w), which calculates feature z from x, are trained to attract x and x+

and repel x−
1 , ...,x

−
K from x. The loss function for the network training is called InfoNCE [61] and

is represented as

E(w;x, {xi}i=0,...,K) = − log
exp(sim(z, z+)/τ)∑K
i=0 exp(sim(z, z−i )/τ)

, (3.1)

where sim(·, ·) denotes the similarity between feature vectors, the inner product is used for this.
Several studies of pre-training for image classification have demonstrated that contrastive learning is
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Figure 3.2: A SlowFast Network [23] with Slow pathway for low temporal resolution and Fast pathway for high temporal resolution.

effective for visual tasks, and then it has been applied to video tasks. SimCLR [13] uses a sample from
a query image for a positive example and samples from the different images from the query image for
negative samples. While SimCLR is a simple frameworkwith only one encoder, it assumes amplemem-
ory space that can take a largeK . MoCo [28] smoothes feature transitions using the second encoders
with different weights, calledmomentum encoder, and reduces the requiredmemory space by putting
the negative samples in a queue. SwAV [9] avoids calculating contrastive loss for all negative samples
by introducing clustering and comparing images at the cluster level. Furthermore, pre-training for ob-
ject detection [5], which does not require bounding boxes and class labels, has been proposed as an
extension of SwAV.

Most studies in contrastive learning for video tasks have focused on temporal dynamics and consis-
tency. CVRL [67] extends SimCLR to video tasks, treating clips sampled temporally distant from the
query sample as negative samples. Similarly, VideoMoCo [64] extends Moco to video tasks, sampling
query clips to drop out several frames and adding temporal decay. Jenni and Jin used relative tempo-
ral transformations such as frame rate or playback direction as criteria for splitting positive and neg-
ative samples [37]. Some studies use additional information for temporal dynamics and consistency:
graphs representing space-time correspondence [35], motion vectors from P-frames inmp4 [34], opti-
cal flow [40], foreground-background [17], and temporal gradient [89].

This section briefly summarizes the literature on contrastive learning in video feature extraction.
Many published studies describe how to learn temporal dynamics and consistency. However, they
suppose to use large memory, and how to reduce batch size for training in limited resources remains
unclear.
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3.2.2 Video Understanding

Video understanding, also called ActionRecognition, is a task that takes a video as input and predicts a
class of the video as output. After deep learning emerged, most researchers have usedCNN andTrans-
former, successful methods in image classification. Simonyan and Zisserman was one of the first to
apply CNN to video understanding and propose two-stream CNN trained on RGB images and opti-
cal flow [74]. Tran et al. expanded 2D-CNNto 3D-CNNfor videos [80]. Carreira andZisserman have
provided a large-scale action classification dataset, Kinetics, and reports that pre-training on the large-
scale dataset is effective for video understanding tasks [10]. After the success of two-stream networks,
several studies have explored models that capture temporal dynamics with only RGB images because
of the high computational costs of optical flow. Feichtenhofer et al. proposed a two-pathway SlowFast
model, which has a path for capturing semantic information from sparse frames and a path for captur-
ing rapidly changing motion by operating at high temporal resolution. They reduce the number of
channels in the second path to support high temporal resolution without model oversizing. Feichten-
hofer has shown that increasing the temporal and spatial resolution of the input is more effective than
increasing the depth and parameters of CNN [22].

Recent studies [2, 6, 20, 47, 55, 57] have focused on applyingTransformers to video understanding.
Since Self-Attention is computationally expensive when applied directly to long sequences, improving
computational efficiency is needed in video understanding. Motionformer [66] improves computa-
tional efficiency by approximating the inner product inAttentionusing a small size of prototype vector
and aggregates information along implicitly determined motion paths. However, Kowal et al. found
thatmost examined spatiotemporalmodels [6, 10, 20, 22] are biased toward spatial information except
for certain two-stream architectures, such as SlowFast [23] in [41].

We can divide studies focusing on objects into Tubelet Action Detection, Object-Centric Action
Recognition, and Group Action Recognition. Together with Multi-Object Tracking, we organize
these groups according to the procedure for solving the tasks and create Figure 3.3. Tubelet Action
Detection is to predict the set of bounding boxes (called tubelet) and the action label of each object
from video features. Object-Centric Activity Recognition [31, 58] is to predict the class of the whole
video using the information of objects obtained by external object detectors. Group Activity Recog-
nition [24, 27, 46] targets team sports and predicts the individual action class of each player and the
group action class of the team from the video features of players extracted by ground truth bound-
ing boxes. Multi-Object Tracking [59, 87, 93] is to detect objects frame by frame and map objects
between frames. Since eSports videos havemultiple characters performing actions simultaneously and
these actions are graphically decorated, extracting each character’s actions in eSports videos is more
complicated than in videos targeted in previous studies. Therefore, tubelet action detection is most
relevant to our study in that it focuses on the motion of each object in a video.

Tubelet action detection can be divided into frame-level [12, 63] and tubelet-level detection, and
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Figure 3.3: Four categories of object-centric video tasks.

tubelet-level detection ismore related toour study than frame-level detectionbecause our study focuses
on each object’s temporal dynamics. The following is a brief description of tubelet-level detection.
Taking a tubelet as a representation unit was proposed by Jain et al. [36]. ACT-detector [39] uses an
object detector frame-by-frame to extract ROI features and predict an action label from the stacked
features of all frames. Similar to other video tasks, methods applying 3D-CNN [33] and LSTM [45]
were proposed in tubelet action detection. STEP [91] proposed a method to sequentially improve
tubelets based on the video features obtained from I3D [10]. Zhao and Snoek embeds RGB images
andoptical flow into a single two-in-one streamnetworkwith their proposed layers [96]. TACNet [75]
defined the ambiguous frames as transitional states, not including any bounding boxes, and proposed
a network to distinguish them. MOC [50] first predicts the coordinates of the center points in the
bounding boxes in the center frame and then uses them to predict the trajectory in all frames and box
sizes. CFAD [51] introduces the two-step procedures that first estimate coarse spatiotemporal action
tubes from video streams and then refine the tube’s location based on key timestamps. TubeR [97] is
the first to apply the Transformer to this field and predicts simultaneously the positions and classes of
tubelets and transitional states from video representations extracted by I3D [10]. HIT [21] leverages
not only the RGB stream but also the hand and pose stream. In addition, since most studies support
a limited length of videos, they process separately for each clip and apply the linking algorithm to the
clips.

We leverage object queries in DETR [8] to improve the ability to capture long-term temporal con-
text without the linking algorithm. We also use an object detector that allows us to capture even small
objects that are difficult to capture with 3D-CNNs.
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4
Video Captioning for eSports

We experimented with video captioning using state-of-the-art methods to see how well the existing
video feature extraction performs for eSports videos. In this chapter, we will review our large-scale
dataset for eSports video captioning and then discuss the state-of-the-art methods. The results demon-
strate the need to improve video feature extraction performance for eSports videos and to collect well-
organized caption data.

4.1 Dataset

We use LoL-V2T [79] and ActivityNet Captions [42]. LoL-V2T is a large-scale dataset for eSports
video captioning, including 9,723 clips extracted from the competition footage of the popular eSports
gameLeague of Legends and 62,677 captions. The captions are sentences converted from the commen-
tator’s utterances into subtitles using automatic speech recognition (ASR) and segmented by sentence
segmentation. ActivityNetCaptions is an open-domain dataset in video captioning and is constructed
by annotating captions by hand for videos fromActivityNet [19]. ActivityNet Captions is often used
as a benchmark.

LoL-V2T differs from general video captioning datasets such as ActivityNet in two aspects. The
first aspect is the object’s size; the objects in LoL-V2T are much smaller than those in ActivityNet
Captions. The second aspect is graphic effects; the videos in LoL-V2T include artificially created 3D
characters with graphic effects, while the videos in ActivityNet captions include humans in natural
images. We can see these differences in Figure 4.1.
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(a) LoL-V2T (b)ActivityNet Captions

Figure 4.1: Qualitative comparison of video captioning datasets.

4.2 Model

We use models with the two steps approach extracting video features and generating sentences from
the features, as described in Section 3.1.

4.2.1 Video Feature ExtractionModel

WeuseTSN [85] for video feature extraction, whichmany researchers [44, 99, 101] have utilized. TSN
splits a video into small segments and extracts features fromRGB images and optical flow for each seg-
ment using twoCNNs. Xiong et al. proposed using TSN for video feature extraction in video caption-
ing [90]. We could not apply their network to LoL-V2T because they published the extracted features
of ActivityNet Captions, not the network. Therefore, we use TSN trained on Kinetics-400 [10] pub-
lished in [14]. Themodel in [90] uses InceptionV3 [78] for optical flow, while themodel in [14] uses
ResNet [30]. We use the features provided in [90] for ActivityNet Captions.

4.2.2 CaptioningModel

We use Masked Transformer [101], MART [44], and PDVC [86] for the captioning model. Masked
Transformer is a naïve application of Transformer to video captioning, as detailed in Section 3.1. This
model also includes the temporal action proposal, which is a network that predicts the timestamp of
actions in videos proposed in [100]. To simplify the problem in this study, we exclude this part and
target only the pure captioning problem. MART is an extended Transformer by a memory module
to keep the state of video segments and sentence history. With this module, MART has a structure
similar to LSTM, which integrates the encoder and decoder of Transformer. PDVC applies Trans-
former as a converter of the query set proposed by DETR [8] to video captioning. CNNs extract
the video features; the event queries are converted from the features by Transformer. PDVC predicts
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Figure 4.2: Decoding the outputs in parallel in PDVC [8].

Table 4.1: Performance of video captioning asmeasured byMETROR [4]. For temporal action proposals,MART and PDVCdo not predict,

andMasked Transformer uses ground truth.

Methods LoL-V2T ActivityNet Captions

Masked Transformer [101] 8.58 11.20
MART [44] 11.50 15.68
PDVC [86] 1.64 15.80

the event number of the video, timestamps, and captions from the event queries in parallel, as shown
in Figure 4.2. Predicting all outputs in parallel prevents the generated captions from relying on the
performance of the timestamp prediction.

4.3 Evaluation

Wemeasure the performance of video captioningwith an automatic evaluationmetric: METEOR[4],
which indicates how similar the generated sentences and the ground truth are; the higher, the better.
The quantitative results are shown in Table 4.1. What stands out in the table is that all methods per-
form lower in LoL-V2T than in ActivityNet Captions. PDVC especially resulted in the lowest value
of LoL-V2T.

We also show the qualitative results in Figure 4.3. This figure shows that the generated sentences
containmany similar patterns; the sentences generated byMasked Transformer andMART repeat the
same expressions in a video (blue); Masked Transformer and PDVC use the same phrases in different
videos (red). We also quote the results from PDVC in Figure 4.4 for comparison. By comparing Fig-
ure 4.3 and Figure 4.4, we can see that the generated sentences for LoL-V2T are more complicated
than those for ActivityNet Captions.
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Masked Transformer:  i think that 's a lot of damage that you can see that the <unk> <unk> is going. i 'm gon na. i 'm gon na.
MART:  the gold lead. I mean you can see that the gold lead is still in the mid lane for the side of the. a very nice. Lane and the.
PDVC:  i think that is a very good job of the game. <unk> is gonna be able to get the kill.
Ground-Truth:  lane continue to fight for experience so as knows as the <Champion> he is never solar carrying this lane so instead he uses 
his advantage to help out the other side of the map

Masked Transformer:  i think that 's a lot of damage that you can see that. <unk> <unk> <unk>. they 're gon na get a lot of damage down here.
MART:  I think that this is a really good play for vitality to be able to do it. you can see that the gold lead. I think that this is a really 
good play for vitality to be able to do it in the game.
PDVC: UNK is gonna be able to get the kill. i think that is a very good.
Ground-Truth:  his old <Team> is actually going to die out of the time that was an oopsie other choice will die as well

Figure 4.3: Comparison of generated captions in LoL-V2T. Red indicates the same representations between videos, and blue indicates

representations within a video.

Figure 4.4: Comparison of generated captions in ActivityNet Captions from PDVC [86].
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4.4 Discussion

The most obvious finding is that LoL-V2T is significantly more difficult than ActivityNet Captions.
We can explain this by two factors. Firstly, the captions in LoL-V2T contain noise because ASR from
the video subtitles automatically generated them. The noise harms the training of the captioning
model. Secondly, objects are much smaller than the spatial resolution of the video frame, as shown
in Figure 4.1. The objects may also be downsized by resizing or encoding to a size difficult to recog-
nize.

Another interesting finding is that the generated sentences contain repeated expressions. A possible
explanation for this could be that the ability to classify videos is limited when encoding video into
features. Although TSN was pre-trained on Kinetics-400 in this experiment, it naturally needs to be
trained on LoL-V2T.However, since LoL-V2T is not labeled for cations on videos, we could not train
TSN in the same way as Kinetics-400.

Surprisingly, PDVCwas found to performpoorly against LoL-V2T. Insufficient teacher signalsmay
cause this. PDVC is designed to be trainedwith temporal action proposal, but it was omitted from the
training for simplicity in this experiment.

Thus, we needwell-organized caption data and improvement of the video feature extractionmodel.
Since building such a caption dataset is costly, we seek to improve the video extraction model as a first
step.
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5
Unsupervised Frame Feature Extraction for eSports

In this chapter, we will describe our attempts to improve video feature extraction, the need for which
was revealed in our preliminary experiments with the video captioning in Chapter 4. Since victory
or defeat depends on the character’s skills or positions in eSports, character behavior is the most im-
portant factor in classifying eSports videos. We thus apply an existing unsupervised object detection
method to LoL-V2T to be able to extract characters from eSports videos. We also build a mechanism
to obtain video frame by frame in the data processing. Qualitative demonstrates that the model can
detect the characters even with unsupervised learning but cannot distinguish background and fore-
ground objects.

5.1 Unsupervised Pretraining for Object Detection

When deep learning was first introduced to video understanding models, the mainstream approach
was to aggregate the outputs of 2D-CNNs applied frame by frame. Following this trend, this study
investigates how to train 2D-CNNmodels to detect characters from a frame as the first step in recog-
nizing character behavior in eSports videos. Since the eSports video dataset LoL-V2T does not include
bounding box labels, we focus on the unsupervised learning method DETReg [5].

DETReg is a method for pre-training the entire object detection, including object localization and
embedding components. Many existing methods before DETReg were limited to learning embed-
dings by contrastive learning, as described in Section 3.2.1. UP-DETR [15] extends these methods to
object detection but still needs to include additional pre-training for localization.

Specifically, supervised learning is performed on a single input image using three types of pseudo-
ground truths: bounding box, class, and embedding. The pseudo ground truth bounding boxes are
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Figure 5.1: Overall framework of the pretrainingmethod for object detection: DETReg [5].

obtained by Selective Search [81] as it requires no training data. SwAV [9] obtains the pseudo ground
truth embeddings as one of the strongest performing methods for pretraining image classifiers. Since
the ground truth class represents a foreground object or background, no additional labels are needed.
A bipartite matching problem is defined between these pseudo-labels and the predictions, and the loss
function is calculated between the matched pairs. Let us denote by y the pseudo ground truth set of
objects, and ŷ = {ŷi}Ni=1 the set of N predictions. A permutation of N elements δ ∈ SN with the
lowest cost in is searched.

δ̂ = argmin
δ∈SN

N∑
i

Lmatch(yi, ŷδ(i)), (5.1)

whereLmatch(yi, ŷδ(i)) is a pair-wise matching cost between pseudo ground truth yi and a prediction
with index δ(i) and is proposed in DETR [8]. Each element i of the pseudo ground truth set can
be denoted as a yi = (ci,bi) where ci is the target class, and bi ∈ [0, 1]4 is a vector that defines
the pseudo ground truth box’s center coordinates, height, and width relative to the input image size.
Lmatch is defined as

Lmatch(yi, ŷδ(i)) =

N∑
i=1

[
− log p̂δ̂(i)(ci) + 1{ci ̸=∅}Lbox(bi, b̂δ̂(i))

]
, (5.2)

where δ̂ denotes theoptimal assignment, and p̂δ̂(i)(ci)denotes theprobability of class ci. Lbox(bi, b̂δ̂(i))

is defined as

Lbox(bi, b̂δ̂(i)) = λiouLiou(bi, b̂δ(i)) + λL1∥bi − b̂δ̂(i)∥, (5.3)

where λiou, λL1 ∈ R are hyperparameters. For Liou, the generalized IoU loss [72] is used. This opti-
mal assignment is computed efficientlywith theHungarian algorithm [43]. The loss function contains
the embeddings (the pseudo ground truth is denoted as zi, and a prediction is denoted as ẑδ̂(i)) and
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can be represented using the optimal δ as follows

L(y, ŷ) =
N∑
i=1

[
λfLclass(ci, p̂δ̂(i)) + 1{ci ̸=∅}(λbLbox(bi, b̂δ̂(i))) + λeLemb(zi, ẑδ̂(i))

]
, (5.4)

whereLclass is the cross entropy loss, andLemb is theL1 loss.

5.2 Data Processing

Webuild data processing to allowvideos to be saved and read as videofiles. Many researchers save videos
as image files and read them as images. For example, UCF101[76] and JHMDB [38] save every frame
as an image. The disadvantage of this method is that it requires enormous storage because it does not
apply video compression techniques. This is not a problem forUCF and JHMDBbecause of their low
spatial resolution, but it is expected to becomemore serious in the future when high-resolution videos
become the focus of research (e.g., LoL-V2T [79] and MultiSports [48]). However, when processing
frame by frame in random order, loading video frame by frame takes a long time to decode and uses
ample space of the main memory. To solve this problem, we develop a data processing method that
builds buffers on main memory and pools videos there.

Theoverall of our data processing is shown in Figure 5.2. First, several videos are loaded into abuffer
inmemory in a separate thread from themain thread. Themain thread extracts a frame from the buffer
that has already been loaded and loads a frame for training (e.g., PyTorch’s DataLoader [65]). While
reading a frame from one buffer, the other buffer is loaded. This procedure is executed in parallel by
processes for the number of GPUs. Note that the video’s allocation to the GPU and buffer size must
be determined before training.
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Figure 5.3: The output of Selective Search for a frame in LoL-V2T. The input frame is cropped inside the pink line box to prevent focusing

on information UI outside the box.

The benefit of this approach is that the overall execution time can be significantly reduced by run-
ning the load in a different thread from the main thread. Performing preprocessing, such as resizing
frames to a fixed size, in the different thread could be faster than loading from image files. Furthermore,
this process can be performed onmulti-GPUs to achieve higher speeds throughmulti-processing (e.g.,
PyTorch’s DistributedDataParallel [65]). The disadvantage is that it requires a certain large size of
mainmemory. We used amachine with 250GB ofmainmemory, and our experiment used about 100
GB of space for 30,000 frames.

5.3 Evaluation

5.3.1 Settings

Weuse LoL-V2T [79] for the training dataset. Since LoL-V2T is only labeledwith captions and cannot
be evaluated for object detection,we conduct a qualitative evaluation. Wedonot use SwAVembedding
in this experimentbecause the improvementbySwAV is limited, as described inDETReg. Thenumber
of all frames in LoL-V2T is 197040, and themodel is trained for five epochs as inDETReg. We resized
the size of the frames input to Selective Search to 200x200. The input was also cropped to the game
screen to prevent the attention of selective search from being drawn to the information UI displayed
outside the game screen, as shown in Figure 5.3. We set the hyperparameters the same as in DETReg.
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5.4 Results

The qualitative results are shown in Figure 5.4. Interestingly, we can observe that the model trained
withDETReg can recognize the characters, even though selective search does not recognize themwell.
For example, the model recognizes the character on the right side of the third row of frames, but the
selective search does not. In addition, while selective search surrounds the densely populated charac-
ters area with a single bounding box, the model attaches a bounding box to each character inside the
area (in the center of the first or second row of the frames). However, the model also puts boxes on
objects unrelated to the game rules, such as a bush (upper part of the third row of the frames) and a
rock (lower left part of the fourth row of the frames). The result shows that the unsupervised learning
method is effective for acquiring the ability to recognize game characters in eSports videos. DETReg
can refine the noisy results of the selective search with a large amount of data, and themodel is enough
to recognize objects in the frame. However, it also recognizes objects that should be treated as back-
ground. This result suggests that themodel with unsupervised learning fromonly images cannot learn
game rules that depend on temporal context. Therefore, it is necessary to research learning methods
to recognize characters’ motion from the temporal context without teacher signals.
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Figure 5.4: Qualitative results of unsupervised object detection for LoL-V2T. The left is the output of the model we trained, and the right

is the output of the Selective Search we used for the supervised signal.
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6
Object-Centric Tubelet Action Detection

The experiments up to this point have shown the necessity of a video understanding model that recog-
nizes the characters in the eSports video and then understands their movements. In this chapter, we
will describe our proposed model that detects objects in a video and recognizes the detailed temporal
dynamics of the objects.

Several models have been proposed in video understanding with the supervised setting. In video
understanding, the approach using the proposals provided by the object detection model to localize
the features to objects has shown high performance. However, challenges remain in the method of
applying thedetector. Applying thedetector to all frames [31] is costly, while applying it only to the key
frame and replicating the proposals to the remaining frames [88] cannot support the intense motion.
In tubelet action detection, bounding boxes and classes are predicted based on the coordinates of the
center point of the box [50] generated from the features extracted by the 2D/3D CNN backbone or
coarse proposals generated from inference to the previous clip [91]. However, since 2D/3D-CNN
extracts temporally localized features, these approaches split the input video split into short segments
for processing and use the linking algorithm for longer videos.

We leverage object queries as a medium to keep object information. The object queries were pro-
posed by DETR [8], which showed that the Transformer decoder could transform a particular vector
set into a vector set containing object coordinates and class information using image features. We ex-
tract the object’s temporal dynamics from the video features using the attention mechanism with the
object quries, i.e., the model uses object queries instead of features cropped from video features by
bounding boxes and RoI Align. Since attention extracts the parts of the video feature that are similar
to the object queries, we can avoid information loss due to duplication of the bounding box of the key
frame and resizing to absorb differences in object size. In addition, we assume that the objects in the
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neighboring frames do not change. If the object itself does not change, there is no need to update the
object queries frequently, and it is sufficient to apply the detector only to key frames.

Inspired by Trackformer [59], we also propose a tracking algorithm for tubelet action detection.
Our tracking algorithm includes object queries extracted from keyframes in the previous clip as input
to the decoder in detecting the key frame in the following clip. The tubulet detected by object queries
from the previous clip is linked to the corresponding tubulet in the previous frame.

We choose the tubelet action detection task, which evaluates the object’s bounding box, rather than
the video understanding task, which only predicts the class. We also evaluate our proposed model
using a sports video dataset similar to eSports in a supervised setting as a first step toward unsupervised
learning.

6.1 Approach

6.1.1 FrameworkOverview

The input video is first split into clips of fixed lengthT , and then a clip Ii ∈ RT×3×H×W of resolution
H×W is input to themodel. Ourmodel consists of extracting object queries from the center frame of
a clip by the object detector and transforming them into tubelet queries using features from all frames
of the clip. Each object query for an object o is represented by d-dimensional vector zobjo ∈ Rd,
and each tubelet query for a tube tu is represented by ztubetu ∈ RT×d. According to Trackformer,
we use Deformable DETR [103] for the object detection model in our model. Tubelet bounding
boxes and class labels are predicted in parallel from the tubelet queries. The object queries in clip i are
concatenated with the initial object queries and reused as the input of the detector in clip i+ 1. This
process is applied repeatedly to all clips to predict the tubelets for the entire video. An overview of the
proposed approach can be seen in Figure 6.1.

6.1.2 Extracting Object Features

We assume that most objects in a clip are in the center frame and apply the object detector to the
center frame to extract detailed spatial information about the objects. We follow Trackformer to use
Deformable DETR, which consists of the ResNet50 [30] CNN backbone and Transformer encoder-
decoder architecture. The image features zimg of the center frame are extracted byResNet50 and then
refined by the Transformer encoder. The Transformer decoder transformsN embeddings zobj of size
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Figure 6.1: Overview of our proposed tubelet action detectionmodel.
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d into the embeddings containing object identification and position, which are called object queries.

zimg = Encoder(Backbone(I
(T
2
)

i )) (6.1)

zobj = Decoder(zimg, zobj) (6.2)

ybox = Headbox(z
obj) (6.3)

ycls = Headcls(z
obj), (6.4)

where I(
T
2
)

i denotes the center frame of the clip Ii, and zobj = {zobj0 ...zobjN } denotes a set of N
object queries. Although the object detection model is trained to predict the bounding boxes and
classes of the objects in a frame (Eq. (6.3) and Eq. (6.4)), we use the output queries of the Transformer
Decoder in Deformable DETR directly as the object queries (Eq. (6.2)). Deformable DETR is pre-
trained on the frames containing one or more bounding boxes in the target dataset, and the weights
are frozenwhen training and inference in tubelet action detection. The output queries are applied non
maximum suppression (NMS) to the predictions of the frozen bounding box head and class head to
reduce redundant queries.

6.1.3 Object-Centric Tubelet Attention

In order to add temporal dynamics to the extracted object queries, we refine the object queries accord-
ing to the clip features using attention. To begin this process, we convert the clip into a sequence of ST
tokens xst ∈ Rd, for a spatial resolution of S and a temporal resolution of T , following the existing
video transformers [2, 6, 66]. We use a cuboid embedding [2, 66] for projecting the input volume to
Rd, equivalent to a 3D convolution with downsampling. The clip embeddings is added to a learnable
position encoding e ∈ Rd for spatial and temporal dimensions separately, zclipst = xst + ess + ett.
The object queries are replicated by temporal resolution T , zobjo ∈ RT×d, and are added to the tem-
poral position encoding ett. For simplicity, we use the dimension of single-head attention as the same
dimension as multi-head attention in the following.

The clip embeddings are updated to aggregate spatiotemporal features in the clip by a sequence of
the Transformer layers consisting of layer normalization [3], multi-head attention (MHA) [83], resid-
ual connection [30], and a feed-forward network (MLP), as in theTransformer decoder [84]. Consider
a set of query, key, and value vectors q,k,v for the input of the MHA. For the clip embeddings, the
MHA is a self-attention and is represented as

q̃ = MHA(LN(q),LN(k),LN(v)) + q (6.5)
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The inputs are calculated as linear projections:

qst = Wqz
clip
st ,kst = Wkz

clip
st ,vst = Wvz

clip
st , (6.6)

whereWq,Wk,Wv ∈ Rd×d are projection matrices. The output q̃ is the updated clip embeddings
z̃clip ∈ RST×d and becomes the input k and v of the next layer.

The tubelet queries are obtained by the cross attention on the updated clip embeddings and the
object queries. The inputs of the cross attention are calculated similarly to Eq. (6.6)

qot = Wqz
obj
ot ,kst = Wkz̃

clip
st ,vst = Wvz̃

clip
st , (6.7)

The cross attention operation is the same as in Eq. (6.5). The tubelet queries are further input to the
MLP.

q̃ = MLP(LN(q̃)) + q̃, (6.8)

The tubelet queries are the outputs q̃ ∈ RT×O×d ofM iterations of the self-attention, cross attention,
MLP, and layer normalization.

We use Trajectory attention [66] for the MHA, which divides the attention operation into two
stages corresponding to space and time. It is superior to the joint space-time attention [2, 6] in its
capture of temporal dynamics. In addition, introducing the approximating scheme to the attention
operation reduces the computational cost and memory requirements.

The bounding boxesb ∈ [0, 1]N×T×4 and class probabilitiesp ∈ [0, 1]N×T×Nclass are computed
in parallel using theMLP heads from the tubelet queries. Note that the probability of classes per tube
is calculated by the average of p in the temporal dimension.

6.1.4 Tubelet TrackingwithQueries

In order to achieve tracking objects between clips, we introduce the concept of track queries into our
proposed approach based on Trackformer [59]. Track queries trace the object’s appearance through a
video sequence while adapting to changes in shape and position as the object motions.

Track queries are initialized using the object queries detected in the previous clip i − 1. The valid
object queries have a tubelet classification score aboveσobject and do not predict the background class.
TheNtrack valid object queries in clip i− 1 are combined as track queries with object queries for clip
i and are input to the decoder in Eq. (6.9). The number of object queries in clip i is thusN +Ntrack.
Note that no track queries are used for clip 0.

zobj = Decoder(zimg,Concat(zobj, ztrack)), (6.9)
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Once a query has started tracking, it is removed from the track queries when its tubelet classification
score drops below σtack, or when non-maximum suppression (NMS) deletes it.

6.2 Training

We first find optimal bipartite matching δ between the predicted tubelets and ground truth tubelets,
and then compute the objective function between the matched pairs. Let use denote by y the ground
truth set of tubelets, and ŷ = {ŷi}N+Ntrack

i=1 the set of N + Ntrack predicted tubelets. We define
the cost function as Eq. (6.10) and search the index δ(i) of the prediction for yi at minimum cost by
Hungarian algorithm [43].

Let use denote by yi = (ci,bi) the each element of ground truth set, and ŷj = (ĉj , b̂j) one
ofN + Ntrack predicted tubelets. ci and ĉj are the class labels. bi ∈ [0, 1](T

′×4) is the set of center
coodinates and its height andwidth of box in the ground truth tubelet; since an objectmay only appear
in part of the clip, the number of box is denoted as T ′ ≦ T . On the other hand, since the prediction
is generated for the entire clip, the number of the prediction b̂j ∈ [0, 1](T×4) is T . We consider y
as a set of sizeN + Ntrack padded with∅ (no tubelet), and we will denoteN + Ntrack asN in the
following. The cost functionLmatch is defined as

Lmatch = λclsLclass + Lbox (6.10)

Lclass =
N∑
i=1

− log p̂δ(i)(ci) (6.11)

Lbox =
N∑
i=1

1{ci ̸=∅}
∑
t∈ψ

λiouLiou(b
(t)
i ,b

(t)
δ(i)) + λL1∥b(t)

i − b
(t)
δ(i)∥, (6.12)

where p̂δ(i)(ci) is the probability of class ci, andψ is the product set of the frames in the ground truth
tube and the prediction tube. We use the generalized IoU [72] loss for Liou. Liou and L1 loss are
normalized by the number of tubelets inside the batch. Lmatch is used not only as a cost function for
the bipartite matching, but also as an objective function for the training.

6.3 Evaluation

This section describes the details of the evaluation for our approach.

6.3.1 Dataset

We perform experiments onMultiSports [49], containing 3200 sports video clips with 66 fine-grained
classes in four sports. Compared to other similar datasets [38, 76], the spatial resolution of 1280x720
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is higher, andmulti-person boxes are labeled per frame. The temporal resolution is 25 FPS. It is similar
to eSports videos in that the object size is significantly tiny relative to the frame size, multi-object in a
frame, and object’s motion is fast and subtle.

6.3.2 Baselines andMetrics

We use two baselines, MOC [50] and Motionformer [66]. MOC first predicts the coordinates of the
center point of the box from 2D/3D CNN backbone features and then predicts bounding boxes and
classes basedon the coordinates. Motionformer [66] is a videounderstandingmodel using trajectory at-
tention. We replace self-attention inMotionformer with cross attention as in Eq. (6.7) and use tubelet
queries as zobj, which we call thisMotionformer+TQ. Our method differs from Motionformer+TQ
in that object queries from the detector are used for the tubelet queries.

We report the video-mAP [26] with different IoU thresholds to evaluate spatiotemporal action de-
tection.

6.3.3 Implementation Details

We follow the hyperparameters in Deformable DETR [103] for our object detector. We initialize with
themodelweights from [103] pre-trainedonCOCO[53]. Our object detector operates1×480×854,
while our videomodel operates 16× 224× 224 videos with temporal stride 2. Our model uses patch-
size 2 × 16 × 16. The trajectory attention has 6 layers, 8 heads, and an embedding dimension of
256. We empirically set the number of tubelet queries to 32 and σobject and σtrack to 0.4. We use
the AdamW [56] optimizer with initial learning rate 2.0e − 4 for tubelet action detection. During
inference, NMS with threshold 0.4 is applied to the predicted boxes in the center frame to reduce
redundant tubelets. All models are trained for 50 epochs.

6.3.4 Results

InTable 6.1, we compare ourmethod against the baselines. TheMOC results are borrowed from [49].
Wefind that ourmethodperforms favorably against the baselines in both IoU thresholds. In particular,
it outperforms MOC by a wide margin in video-mAP@0.5. Our method is also significantly higher
thanMotionformer +TQ, suggesting that object queries from the detector are the key to performance.

We show the qualitative results of our approach and Motionformer + TQ in Figure 6.2. We can
observe that ours can detect multi-person individually while Motionformer + TQ can detect only a
single person. We can also see that ours generates the correct box without confusion about changes in
the scene. For Motionformer + TQ, the detected box only covers a little of the ground truth, even the
player’s face, which is large on the screen.
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Figure 6.2: Qualitative results of tubelet action detection. Green indicates ground truth and red indicates prediction.

40



Table 6.1: General results for tubelet action detection withMultiSports [49].

Method video-mAP@0.2 video-mAP@0.5

MOC [50] 12.13 0.77
Motionformer + TQ [66] 3.45 0.15
Ours 14.89 4.89

In summary, we show from Table 6.1 and Figure 6.2 that our proposed method is superior to the
baselines.
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7
Conclusions

7.1 Summary

In this thesis, we investigated eSports video captioning through three approaches.
First, we experimentally evaluate existing video feature extraction methods to the eSports domain

through video captioning. We confirmed that the existing captioning models struggle significantly
with eSports videosmore than human action videos, and improvements are needed in the video feature
extraction model.

Second, we experimented with unsupervised learning in object detection to recognize eSports char-
acters with unlabeled data. We realized that the model needs to understand the temporal dynamics of
the game rules and the characters.

Finally, we extend the video understanding model based on Transformer with an object detection
model to recognize object-centric temporal dynamics. We introduce object queries to address the prob-
lem of existing methods: the different sizes of detected objects and the high cost of high-frequency
object detection. We also use the recurrent structure to identify tubelet correspondence between clips
without any heuristic linking algorithm. Our experimental results showed that our approach outper-
formed baselines and demonstrated the effectiveness of object queries from the detector.

7.2 Future Directions

A limitation of this study is that we left to train our object-centric action tubelet detectionmodel with
unlabeled eSports videos. We aim to generate captions using our object-centric video feature extraction
model in the eSports domain where datasets are not well-developed. As a first step, we proposed a
feature extraction model and evaluated it on a well-developed sports video dataset in the supervised
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setting. Future work will extend our model to the unsupervised setting and bring the model to the
feature extraction part of video captioning.
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