
A Functional Language with Hypergraphs as

First-Class Data

A Thesis Submitted to the Department of Computer Science and Communications

Engineering,

the Graduate School of Fundamental Science and Engineering of Waseda University

in Partial Fulfillment of the Requirements for the Degree of Master of Engineering

Submission Date: January 23rd, 2023

Jin Sano

(5121F053–7)

Advisor: Prof. Kazunori Ueda

Research guidance: Research on Parallel Knowledge Information Processing

Abstract

A Hypergraph is a generalized concept that encompasses more complex data structures

than trees, such as difference lists, doubly-linked lists, skip lists, and leaf-linked trees.

Normally, these structures are handled with destructive assignments to heaps, which is

opposed to a purely functional programming style. These low-level operations are tiresome

and prone to errors and are difficult to be verified.

To propose a new language to overcome the situation, we firstly discuss a hypergraph

transformation language, HyperLMNtal. The language is a simple term language with

syntax-directed semantics. As far as we have surveyed, this is the only calculus that

has syntax-directed semantics which handle hypergraph matching and rewriting. We

carefully observe the properties of HyperLMNtal; especially, the relation with terms and

the denoted hypergraphs. This gives a theoretical foundation for the semantics of the new

functional language and the type system we will introduce later.

Then, we propose a new functional language, λGT , that employs hypergraphs as im-

mutable, first-class data and supports pattern matchings for them. In λGT , we do not

rewrite one global heap with destructive assignment. Instead, hypergraphs are immutable

local values that can be bound to variables, decomposed by pattern matchings with pos-

sibly multiple wildcards, in which the matched subgraphs may be used separately, passed

as inputs of functions, and composed to construct larger graphs. To formalize the lan-

guage, we incorporate the syntax and the semantics of HyperLMNtal into a call-by-value

λ-calculus.

Finally, we construct a new type system, FGT , for the λGT language. In FGT , we

define the type of graphs using graph grammar. This can be regarded as an extension

of regular tree grammar, on which algebraic data types are based. Our approach is in

contrast with the analysis of pointer manipulation programs using separation logic, shape

analysis, etc. in that (i) we do not consider destructive operations but pattern matchings

over graphs provided by the new higher-level language that abstract pointers and heaps

away and that (ii) we pursue what properties can be established automatically using a

rather simple typing framework.

Acknowledgements

I would like to thank my advisor, Prof. Kazunori Ueda, for not just simply giving me

useful advice consistently but also letting me cultivate a new research area instead of

taking over the existing work in our lab or forcing a direction. I always felt like I was

treated as an independent researcher at the forefront — in fact, becoming a researcher

with a brand new theory and application was my greatest dream ever since my childhood

— which motivated me a lot. I must also apologise for almost all of my work being slow

and unsteady and express my heartfelt gratitude for the time and effort spent on support

despite this.

My colleague Kunihiro Hata always saved me with his keen insight and extensive

experience in algebra. Much of the foundation of the work in Sections 2.3 to 2.5, in

particular, is due to his helpful advice. Every time, no matter how vague or elementary my

questions are, he kindly tells me his insightful thoughts, and we think together. Besides,

you are a great person. I appreciate your extreme gentleness and decent attitude every

day. If everyone had co-workers as great as you, no one would ever complain about work

again. Thank you so much for being there for me.

I always admire my friend Masaki Nakata for his exceptional work ethic and incredible

enthusiasm. I have never seen such a hard-working individual. It’s truly inspiring. Al-

though we have been in different environments for a few years, he keeps noticing me and

keeping me motivated. Every time I got stuck or felt lazy, I imagined that you would sit

next to me as you had done two years ago, overcome every obstacle, and show progress.

I could not live without having lunch with members of our lab, including Ren Imagawa.

You make coming to work each day such a pleasure. To be honest, most days, I come to

the lab for lunch. I cannot imagine that we would ever have such a wonderful time again.

I will always remember my best time at this lab.

Mr Naoki Yamamoto, I must apologise for my rude and challenging demeanour. For-

give me; I greatly respect you, and that’s why I want to surpass you. I am so confident

that you will deserve the degree. Work hard!

I am always grateful for my family and their continued encouragement and support.

I owe my life to so many people, and I wish them all the best.

5

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

Jin Sano

January 23rd, 2023

Contents

1 Introduction 1

1.1 HyperLMNtal: Hypergraph Transformation Formalism 2

1.2 The λGT Language and the Type System FGT 2

1.3 Contributions . 3

1.4 Thesis Roadmap . 4

1.5 Syntactic Conventions . 4

2 HyperLMNtal: A Hypergraph Transformation Formalism 5

2.1 Introduction . 5

2.2 HyperLMNtal . 7

2.2.1 Syntax of Graphs and Rewriting Rules 8

2.2.2 Structural Congruence . 9

2.2.3 Reduction Relation . 13

2.3 The Denoted Hypergraphs . 13

2.4 Hypergraph Operations and a Translator From Terms to Graphs 16

2.4.1 Graph Operations . 16

2.4.2 Term to Graphs Translator . 22

2.5 Soundness of the Translation From Terms to Graphs 23

2.6 Related Work . 25

2.7 Further Work . 26

3 λGT : A Functional Language with Hypergraphs as First-Class Data 29

3.1 Introduction . 29

3.2 Informal Introduction to λGT . 30

3.3 Syntax and Semantics of λGT . 35

3.3.1 Syntax of λGT . 36

3.3.2 Operational Semantics of λGT . 39

3.4 Program Examples in Detail . 44

3.5 Reference Interpreter . 47

3.5.1 Motivation . 47

3.5.2 Implementation . 48

3.5.3 Discusson . 54

3.5.4 Related Work . 54

4 FGT : A Type System for λGT 57

4.1 Introduction . 57

4.2 Type System . 57

i

ii Contents

4.2.1 Syntax and Rules for FGT . 58

4.2.2 Examples . 59

4.2.3 Properties of FGT . 62

4.2.4 Type Checking Case Expressions 64

4.3 Extending the Type System . 65

4.3.1 Motivation . 66

4.3.2 Extension on FGT . 67

4.3.3 Proving the Antecedent of the Rule 71

4.4 Automatic Verification on the Extended Type System 73

4.4.1 Constraints on Production Rules 75

4.4.2 Fusion Elimination . 76

4.4.3 The Algorithm . 76

4.5 Related Work . 78

4.5.1 Functional Language with Graphs 78

4.5.2 Typing Frameworks for Graphs . 78

4.5.3 Separation Logic . 79

4.6 Further Work . 80

4.6.1 Extend the Type System to Handle Untyped Graph Contexts . . . 80

4.6.2 Extension on the Type System: Polymorphism and Type Inference 80

5 Conclusions and Further Work 83

5.1 Conclusions . 83

5.2 Further Work . 83

A Proof of properties of HyperLMNtal 93

B Proof of properties of FGT 97

B.1 Theorem 4.2 (FGT and HyperLMNtal reduction) 97

B.2 Theorem 5.2 (decomposing graph with the last applied production rule) . 99

1
Introduction

Hypergraphs are a generalized concept that encompasses more complex data structures

than trees, such as difference lists, doubly-linked lists, skip lists [Pug90], and leaf-linked

trees (Figure 1.1).

Normally, these structures are handled with destructive assignments to heaps, which

is opposed to a purely functional programming style. These low-level operations are

tiresome and prone to errors and are difficult to be verified.

Without garbage collection, programming with heaps and pointers may lead to sig-

nificant bugs with memory. Some of these bugs can be detected with type systems. For

example, some garbage-free imperative programming languages, such as Rust, utilize a

linear type to ensure memory safety. This works when using tree-based data structures,

but when they come with sharing, we need to pay costs for shared pointers to ensure

memory safety, which can also easily leak memory when they have cycles.

On the other hand, many functional languages support Algebraic Data Types (ADTs).

Compared to a low-level programming with heaps and pointers, this allows more declar-

ative programming and makes it easier to read and write programs, and also makes

verification easier. In fact, using ADTs, we can recursively define the shapes of data

structures and can use them with a guarantee of the shapes by type systems. We can

handle them purely, without destructive assignments, with pattern matchings, in contrast

with programming with heaps and pointers. However, with ADTs, we can construct only

trees, and more complex data structures cannot be handled.

Many of the practical functional programming languages support reference types (e.g.,

ref type in OCaml, IORef type in Haskell) and we can construct more complicated

structures than trees using these. However, this style implies imperative programming

with destructive assignments, this is again tiresome and prone to errors as well as pointer

programming. Furthermore, although the type systems and garbage collectors provide

pointer safety, they only check the type of the referenced local values, not the global

shape of structures, which is not sufficient when handling complex structures, considering

that handling these with low-level operations is prone to errors.

To overcome the situation, we aim to incorporate Graph Transformation [Roz97] to a

functional language. In this research, we propose a new purely functional language, λGT ,

that employs hypergraphs as immutable, first-class data and supports pattern matchings

for them, and a new type system FGT for the language.

1

2 1.1. HyperLMNtal: Hypergraph Transformation Formalism

Difference List

C C C C

1 2 3 4

Doubly-Linked List

C C C C C

1 2 3 4

Skip List

C C C C C

1 2 3 4

Leaf-Linked Tree

C

C C

C1

2 3

4 5

Threaded Tree

C

C C

C1

2 3

4 5

Figure 1.1: Examples of complex graph structures

Our approach is in contrast with the analysis of pointer manipulation programs using

separation logic [Rey02], shape analysis, etc. in that (i) we consider graph structures

formed by higher-level languages that abstract pointers and heaps away and guarantee

low-level invariants such as the absence of dangling pointers and that (ii) we pursue what

properties can be established automatically using a rather simple typing framework.

1.1 HyperLMNtal: Hypergraph Transformation Formalism

Graph Transformation Systems (GTSs) are computational models and programming (or

modeling) languages based on graphs and their rewritings [Ehr+06; Roz97]. Of various

GTSs, HyperLMNtal [UO12] is a rewriting language that supports hypergraphs. With

hypergraphs, we can express structures more complex than trees, e.g., difference lists,

doubly-linked lists, skip lists, and leaf-linked trees.

HyperLMNtal allows us to handle these data structures declaratively with rewrite

rules that are activated by pattern matching. Furthermore, GTS has cultivated a unique

style of type checking frameworks such as Structured Gamma [FM98]. However, GTSs are

in general based on destructive rewriting and do not support higher-order functions. In

contrast, functional languages basically work with immutable data structures and support

higher-order functions, making them highly modular. This motivates us to study how we

can incorporate the data structure of HyperLMNtal into the λ-calculus.

1.2 The λGT Language and the Type System FGT

We propose a new functional language, λGT , that features hypergraphs as a first-class data

structure. The λGT language allows us to handle complex data structures declaratively

Chapter 1. Introduction 3

with a static type system. Intuitively, the core language is a call-by-value λ-calculus that

employs hypergraphs as values and supports pattern matching for them.

In order to formalize hypergraphs in a syntax-directed manner, we employ the tech-

niques developed in a hypergraph rewriting language HyperLMNtal [UO12; SU21]. While

various different formalisms have been proposed to handle the shapes of graphs, including

bisimulation (to handle “equivalence” of cyclic structures) and morphism (in a category-

theoretic approach), we believe that our approach enables type checking relatively easily.

We also propose a new type-checking algorithm that automatically performs this verifi-

cation using structural induction.

1.3 Contributions

The main contributions of this paper are threefold.

1. We investigate the properties of a proposed hypergraph transformation formalism,

HyperLMNtal.

(a) We redefine the syntax and the semantics of HyperLMNtal carefully. We have

already proposed these in our previous work [San21; SU21]. However, the

definition has a problem with a substitution, which is critical since this leads

to all the terms being congruent with the term in which all the hyperlinks have

the same name. We have also proved some properties of fusions, that connects

hyperlinks, and free links (See Section 2.2 for the definitions of these) that

characterize these as an equivalence relation (Section 2.2.2).

(b) We define the denoted hypergraphs by HyperLMNtal terms and define a map-

ping from HyperLMNtal terms to the hypergraphs: t2gs . Since HyperLMNtal

has a notion of fusions and free links (Section 2.2), which plays a key role in

subgraph matching and the composition of graphs, the definition of translated

hypergraphs is not trivial. We extend the existing hypergraph formalism to

meet our calculus.

(c) We prove that structurally congruent terms are mapped to isomorphic graphs

using t2gs : i.e., the mapping satisfies soundness.

2. We propose λGT , a purely functional language that handles data structures beyond

algebraic data types.

(a) We propose the syntax and the semantics of the language and examine their

validity with some running examples.

(b) We implement a reference interpreter, a reference implementation of the lan-

guage. We believe this is usable for further investigation, including in the

design of real languages based on λGT . The interpreter is written in only 500

lines of OCaml [Ler+22] code, which is strikingly concise.

4 1.4. Thesis Roadmap

3. We propose a new type system FGT for the λGT language.

(a) We describe the syntax and the typing rules of the basic FGT and prove some

properties including soundness.

(b) We extend the typing framework for the λGT language so that can successfully

handle more manipulations of graphs, including which could not be handled in

a previous study, Structured Gamma.

1.4 Thesis Roadmap

The rest of this thesis is organized as follows. Chapter 2 describes HyperLMNtal, a

calculus model based on hypergraph transformation. Chapter 3 gives the syntax and

the operational semantics of the proposing language λGT , and describes our reference

interpreter. Chapter 4 describes FGT , a new type system proposed for λGT . We firstly

introduce the basic system and extend it later to cover more powerful operations. Finally,

Chapter 5 concludes the dissertation and hints possible future work.

1.5 Syntactic Conventions

Throughout the paper, we use the following syntactic conventions.

For some syntactic entity E,
−→
E stands for a sequence E1, . . . , En for some n (≥ 0).

When we wish to mention the indices explicitly, E1, . . . , En will also be denoted as
−→
Ei

i
.

The length of the sequence
−→
E is denoted as |

−→
E |.

For a set S, the form S{s} stands for the set S such that s ∈ S (or equivalently,

S = S ∪ {s}).
For some syntactic entities E, p and q, a substitution E[q/p] stands for E with all the

(free) occurrences of p replaced by q. An explicit definition will be given if the substitution

should be capture-avoiding. For substitutions of hyperlinks, we use a slightly different

syntax E〈q/p〉 for clarity.
In order to focus on novel and/or non-obvious aspects of the language, constructs and

properties that can be defined/derived in the same manner as those of standard functional

languages will be described rather briefly.

We denote a reflexive transitive closure of a relation R as R∗ and reflexive transitive

symmetric closure of R as R≡. We may denote an equivalence relation with a quotient

set.

We may denote by [x 7→ y] as a first-class function such as [x 7→ y](z)
def
= z[y/x].

Notice that a function {x 7→ y} is slightly different from this: the domain of the latter is

a singleton set only consists of x.

Hereinafter we may simply refer to hyperlinks as links, and hypergraphs as graphs.

2
HyperLMNtal: A Hypergraph Transformation

Formalism

2.1 Introduction

A hypergraph is a generalization of a graph in which an edge can join any number of

vertices. Hypergraphs are important both in theory and application [Ehr+06; Roz97] since

hypergraphs allow us to model various data structures in programming, especially those

that use heaps and pointers in imperative programming, in a highly general setting. Since

most of the programming languages and verification frameworks are designed as term

languages, a simple term language and its semantics are desirable both for programming

and modelling with these data structures and for the verification of the programs that

use such data structures.

Since (hyper)graphs and their operations are more complex than trees, it is not suffi-

cient to define the syntax of a term language; in order to provide terms with an appropriate

interpretations as graphs, we need to define an equivalence relation, for example with a

finite set of rules over terms, which is far from trivial.

It is known that there exists a simple term language, 2pdom-algebra [LP17], that can

express graphs whose treewidth is up to 2. Recently, the language proved to be sound

and complete using Coq [DP20]. Since we want to enable dealing with more complex data

structures than what 2pdom-algebra can express, in this paper, we investigate the property

of HyperLMNtal [UO12], what which is a term language that can express hypergraphs

with arbitrary treewidth.

HyperLMNtal is extended from LMNtal [Ued09]. LMNtal is a programming language

based on hierarchical graph rewriting. Flat LMNtal is a subset of LMNtal which does

not allow a hierarchy of graphs. Links in graphs that LMNtal handles are restricted

to have at most two endpoints. On the other hand, HyperLMNtal allows hyperlinks,

apart from normal links, which can interconnect an arbitrary number of endpoints. Flat

HyperLMNtal [SU21; San21] is a subset of HyperLMNtal that disallows normal links and

hierarchies of hypergraphs: the data structure of Flat HyperLMNtal is formed only by

hyperlinks and nodes.

In the previous study, we proposed a calculus for Flat HyperLMNtal [SU21; San21],

which is a simple term language with syntax-directed semantics. Hereinafter we simply

5

6 2.1. Introduction

refer to our calculus as HyperLMNtal. The design of HyperLMNtal is based on Process Al-

gebra [SW01] and features the notions of free names and bindings (ν), which are common

in programming languages, with syntax-directed semantics. As far as we have surveyed,

HyperLMNtal is the only language that has syntax-directed semantics which handles hy-

pergraph matching and rewriting. Since most of the calculi for the basis of programming

languages, such as λ-calculus and IMP, are defined as Structural Operational Semantics

(SOS) [Plo04], it would be smoother to incorporate the calculus for HyperLMNtal than

existing graph transformation formalisms based on algebraic approaches [Roz97] to other

calculi with SOS when we incorporate hypergraphs into those calculi.

Intuitively, hypergraphs denoted by the language have labelled vertices and (hy-

per)edges connected to vertices through ports. Such graphs are called labelled port graphs [FP18],

but ours extend the edges to hyperedges. The notion of a port is important to model

data structures that appear in programming since it corresponds to accessors of structs

or records.

HyperLMNtal defines a congruence relation over terms with a finite set of axioms:

Structural Congruence rules. The calculus was proposed for giving a semantics of the

implementation of the programming language and a model checker [GHU11]. The im-

plementation assumes that the congruence relation on terms is equivalent to graph iso-

morphism on heaps but this is yet to be proved. Also, using the calculus, we proposed a

new purely functional language λGT and a type system FGT [SYU23]. We aim to give a

theoretical foundation on the semantics of λGT and the FGT at the same time.

Contributions

The main contributions in this chapter are the following:

1. We redefine the syntax and the semantics of HyperLMNtal carefully. We have

already proposed these in our previous work [San21; SU21]. However, the definition

has a problem with a substitution, which is critical since this leads to all the terms

being congruent with the term in which all the hyperlinks have the same name. We

have also proved some properties of fusions, that connects hyperlinks, and free links

(See Section 2.2 for the definitions of these) that characterise these as an equivalence

relation (Section 2.2.2).

2. We define the denoted hypergraphs by HyperLMNtal terms and define a mapping

from HyperLMNtal terms to the hypergraphs: t2gs . Since HyperLMNtal has a

notion of fusions and free links (Section 2.2), which plays a key role in subgraph

matching and the composition of graphs, the definition of translated hypergraphs is

not trivial. We extend the existing hypergraph formalism to meet our calculus.

3. We prove that structurally congruent terms are mapped to isomorphic graphs using

t2gs : i.e., the mapping satisfies soundness.

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 7

Chapter Map

The rest of this chapter is organized as follows. Section 2.2 introduces HyperLMNtal,

a simple term language to denote hypergraphs. After describing the syntax, We give

the definition of the equivalence of terms by defining Structural Congruence rules on

terms. We investigate the properties of fusions and free links that characterize these as

an equivalence relation in Section 2.2.2. We also define a reduction relation, which relies

on pattern matching on hypergraphs. Section 2.3 describes the hypergraphs denoted by

HyperLMNtal. We also give the definitions of the equivalence of hypergraphs by defining

Graph Isomorphism on hypergraphs. Section 2.4 defines some operations on graphs and

a mapping from HyperLMNtal term to hypergraphs; t2gs . Section 2.5 proves that the

structurally congruent terms are mapped to graph-isomorphic graphs using the function

t2gs : the soundness of the function. Section 2.6 describes related work and Section 2.7

gives a summary and future work.

2.2 HyperLMNtal

HyperLMNtal is extended from LMNtal [Ued09]. LMNtal is a computational model and a

programming language based on hierarchical graph rewriting. Flat LMNtal is a subset of

LMNtal which does not allow a hierarchy of graphs. Links in graphs that LMNtal handles

are restricted to have at most two endpoints. On the other hand, HyperLMNtal [UO12]

allows hyperlinks, apart from normal links, which can interconnect an arbitrary number

of endpoints. Flat HyperLMNtal is a subset of HyperLMNtal that disallow normal links

and hierarchies of hypergraphs: the data structure of Flat HyperLMNtal is formed only

by hyperlinks and nodes.

The design of HyperLMNtal is based on Process Algebra [SW01] and features the

notions of free names and bindings, which are common in programming languages, with

syntax-directed semantics. These characteristics are advantageous when giving opera-

tional semantics structurally. As far as we have surveyed, Flat HyperLMNtal is the

only computational model that has syntax-directed semantics which handles hypergraph

matching and rewriting. Since the λ-calculus and many other computational models de-

rived from the λ-calculus are are defined as Structural Operational Semantics (SOS) [Plo04],

it would be smoother to incorporate Flat HyperLMNtal than other graph transformation

formalisms based on algebraic approaches [Roz97].

The following subsections are based on Flat HyperLMNtal, except that hypergraphs

and rewrite rules are separated from each other for the sake of formulation. Hereinafter

we simply refer to this language as HyperLMNtal, hyperlinks as links, and hypergraphs

as graphs.

8 2.2. HyperLMNtal

2.2 Syntax of Graphs and Rewriting Rules

Before moving on to the definitions of HyperLMNtal, we would like to introduce some

basic concepts.

Definition 2.2.1.

1. V is a denumerable set of vertices. We use V to denote a finite subset of it and v

to denote its elements.

2. X is a denumerable set of link names. We use X to denote a finite subset of it and

X,Y, Z,W to denote its elements.

3. A port is the pair of a vertex and a non-zero natural number such as 〈v, i〉 ∈ V ×N>0.

Labelled port graphs [FP18] generalise the ports by allowing them to be named by

elements of an arbitrary finite set. However, we can easily encode an element of

the set with a natural number and generalise our framework in a straightforward

manner.

4. P is a possibly infinite set of atom names, which are labels that are assigned to

vertices. We use p to denote its elements.

The syntax of HyperLMNtal is given in Figure 2.1. 0 denotes an empty graph. p(
−→
X)

is an atom. Intuitively, it is a node of a data structure with label p and links
−→
X ; for

example, Nil (X), Cons (Y, Z,X), etc. X ./ Y is called a fusion, which fuses the link X

and the link Y into a single link. (G,G) is a composition or gluing of graphs. νX.G hides

the link X.

We abbreviate νX1. . . . νXn.G to νX1 . . . Xn.G, which can be denoted as ν
−→
X.G. The

pair of the name p and the arity n = |
−→
X | of an atom p(

−→
X) is referred to as the functor 1

of the atom and is written as p/n.

The set of free link names in hypergraph G is denoted as fn(G), which is defined

inductively in Figure 2.2.

Example 2.2.1 (A Singleton List in HyperLMNtal Term). νY.(Cons (Y,X),Nil (Y)).

Informally, this corresponds to the following: X C

v1

2 1
N

v2

1 , where C stands for

Cons and N for Nil.

Definition 2.2.2 (Abbreviation). We introduce the following abbreviation schemes:

1. A nullary atom p() can be simply written as p.

2. Term Notation: νY.(p(
−→
X,Y,

−→
Z), q(

−→
W,Y)) where Y /∈ {

−→
X,
−→
Z ,
−→
W} can be written as

p(
−→
X, q(

−→
W),
−→
Z).

1Synonym of function symbol and function object; not to be confused with functors in category theory.

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 9

Graph G ::= 0 Null

| p(
−→
X) Atom

| X ./ Y Fusion

| (G,G) Molecule

| νX.G Hyperlink Creation

Rewrite Rule r ::= G −→ G Rule

Figure 2.1: Syntax of HyperLMNtal

fn(0)
def
= ∅

fn(p(
−→
X))

def
= {
−→
X}

fn(X ./ Y)
def
= {X,Y }

fn((G1, G2))
def
= fn(G1) ∪ fn(G2)

fn(νX.G)
def
= fn(G) \ {X}.

Figure 2.2: The set of free link names

Rules have the form G −→ G. The two Gs are called the left-hand side (LHS) and

the right-hand side (RHS), respectively.

Definition 2.2.3 (Syntactic condition on rules). A ruleG1 −→ G2 should satisfy fn(G1) ⊇
fn(G2).

The condition indicates that we must denote a new hyperlink in the scope of a ν (new)

on the RHS of a rule.

The semantics of HyperLMNtal comes with two major ingredients, structural congru-

ence ≡ and reduction relation ⇝ on graphs.

2.2 Structural Congruence

Since graphs are more complex than trees, it is not sufficient to define the syntax of the

term language but we need to define an equivalence relation. For the purpose, we exploit

the notion of Structural Congruence, which originates from process algebra. Structural

congruence defines what terms (represented in the syntax of Figure 2.1) are essentially

the same.

Definition 2.2.4 (Link Substitution). G〈Y1, . . . , Yn/X1, . . . , Xn〉 is a link substitution

that replaces all free occurrences of Xi with Yi as defined in Figure 2.3. Here, the

10 2.2. HyperLMNtal

X〈
−→
Z /
−→
Y 〉 =

Zi if X = Yi

X if X /∈ {
−→
Y }

0σ = 0

p(
−→
X)σ = p(X1σ, . . . , Xnσ)

(G1, G2)σ = (G1σ,G2σ)

(νX.G)〈
−→
Z /
−→
Y 〉 =

νX.G〈
−→
Z ′/
−→
Y ′〉 if X = Yi

∧
−→
Z ′ = Z1, . . . , Zi−1, Zi+1, . . . , Zn

∧
−→
Y ′ = Y1, . . . , Yi−1, Yi+1, . . . , Yn

νX.G〈
−→
Z /
−→
Y 〉 if X /∈ {

−→
Y } ∧X /∈ {

−→
Z }

νW.((G〈W/X〉)〈
−→
Z /
−→
Y 〉) if X /∈ {

−→
Y } ∧X ∈ {

−→
Z }

∧ W /∈ fn(G) ∧W /∈ {
−→
Z } ∧W 6= X

Figure 2.3: Hyperlink Substitution

X1, . . . , Xn should be mutually distinct. Note that, if a free occurrence of Xi occurs

at a location where Yi would not be free, α-conversion may be required.

Definition 2.2.5 (Structural Congruence). We define the relation ≡ on graphs as the

minimal equivalence relation satisfying the rules shown in Figure 2.4. Two graphs related

by ≡ are essentially the same and are convertible to each other in zero steps.

(E1), (E2) and (E3) are the characterization of molecules as multisets. (E4) and (E5)

are structural rules that make ≡ a congruence. (E6) and (E7) are concerned with fusions.

(E7) says that a closed fusion is equivalent to 0. (E6) is an absorption law of ./, which

says that a fusion can be absorbed by connecting hyperlinks. Because of the symmetry of

./, (E6) says that an atom can emit a fusion as well. (E8), (E9) and (E10) are concerned

with hyperlink creations.

We give two important theorems showing that the symmetry of ./ and α-conversion

can be derived from the rules of Figure 2.4.

Theorem 2.2.1 (Symmetry of ./).

X ./ Y ≡ Y ./ X

Proof. See Chapter 3 of [San21].

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 11

(E1) (0, G) ≡ G

(E2) (G1, G2) ≡ (G2, G1)

(E3) (G1, (G2, G3)) ≡ ((G1, G2), G3)

(E4) G1 ≡ G2 ⇒ (G1, G3) ≡ (G2, G3)

(E5) G1 ≡ G2 ⇒ νX.G1 ≡ νX.G2

(E6) νX.(X ./ Y,G) ≡ νX.G〈Y/X〉 where X ∈ fn(G) ∨ Y ∈ fn(G)

(E7) νX.νY.X ./ Y ≡ 0

(E8) νX.0 ≡ 0

(E9) νX.νY.G ≡ νY.νX.G

(E10) νX.(G1, G2) ≡ (νX.G1, G2) where X /∈ fn(G2)

Figure 2.4: Structural congruence on HyperLMNtal graphs

Thus, (E6) can be used also when we have a local link on the right-hand side of ./.

Theorem 2.2.2 (α-conversion of hyperlinks). Bound link names are α-convertible in

HyperLMNtal, i.e.,

νX.G ≡ νY.G〈Y/X〉 where Y /∈ fn(G)

Proof. See Chapter 3 of [San21].

Properties of Fusions

Here, we show that fusions simply define an equivalence relation in the congruence rules.

These properties are not trivial since X,Y and Z are free links and a fusion cannot fuse

free links (Notice that (E6) fuses X to Y where X is a local link).

Firstly, Theorem 2.2.3 shows that we can rename any link X to Y , and vice versa, if

there exists a fusion X ./ Y , even if X and Y are both free link names. For example,

(X ./ L,Leaf(Zero, X,R)) ≡ (X ./ L,Leaf(Zero, L,R)). Also, (X ./ X,X ./ Y) ≡ (X ./

Y,X ./ Y) holds as a corollary, which we will use later to prove Theorem 2.2.5.

Theorem 2.2.3 (Renaming free links using a fusion). (X ./ Y,G〈X/Z〉) ≡ (X ./

Y,G〈Y/Z〉).

Proof.

(X ./ Y,G〈X/Z〉)
≡(E6) νZ.(Z ./ X, (Z ./ Y,G))

≡(E2), (E3), (E4) νZ.(Z ./ Y, (Z ./ X,G))

≡(E6) νZ.(Y ./ X,G〈Y/Z〉)
≡(Symmetricity of fusion) νZ.(X ./ Y,G〈Y/Z〉)
≡(Absorb unused name binding) (X ./ Y,G〈Y/Z〉)

12 2.2. HyperLMNtal

An equivalence relation should satisfy reflexivity, which can be understood as Theo-

rem 2.2.4.

Theorem 2.2.4 (Reflexivity of fusions). For all G, such that X ∈ fn(G), G ≡ (X ./

X,G).

The condition X ∈ fn(G) is necessary not to change the set of free link names in

congruent terms.

Proof.

G

≡(Absorb unused name binding) νZ.G

≡(E6) νZ.(Z ./ X,G)

≡(E6) νZ.(Z ./ Z, (Z ./ X,G))

≡(E2), (E3), (E4), (E5) νZ.(Z ./ X, (Z ./ Z,G))

≡(E6) νZ.(X ./ X,G)

≡(Absorb unused name binding) (X ./ X,G)

Also, we show that the same fusions can be contracted as in Theorem 2.2.5. This

characterise fusions to be not a multiset but a set; i.e., the multiplicity of fusions does

not matter.

Theorem 2.2.5 (Fusion Contraction). X ./ Y ≡ (X ./ Y,X ./ Y).

Proof.

X ./ Y

≡Theorem 2.2.4 (X ./ X,X ./ Y)

≡(E2), Theorem 2.2.3 (X ./ Y,X ./ Y)

Finally, we show that fusions satisfies transitivity as in Theorem 2.2.6.

Theorem 2.2.6 (Transitivity of fusions). (X ./ Y, Y ./ Z) ≡ (X ./ Z, (X ./ Y, Y ./ Z)).

Proof.

(X ./ Y, Y ./ Z)

≡Theorem 2.2.4 (X ./ X, (X ./ Y, Y ./ Z))

≡(E2), (E3), (E4), Theorem 2.2.3 (X ./ Y, (X ./ Y, Y ./ Z))

≡(E2), (E3), (E4), Theorem 2.2.3 (X ./ Z, (X ./ Y, Y ./ Z))

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 13

2.2 Reduction Relation

We give the reduction relation of HyperLMNtal that defined the small-step semantics

of the language. Note, however, that λGT described in the next subsection has its own

operational semantics without incorporating the reduction relation described here. We

nevertheless introduce the reduction relation of HyperLMNtal here because it serves as

the basis of the graph types of λGT described in Chapter 4.

Definition 2.2.6 (Reduction Relation). For a set P
def
= {−→r } of rewrite rules, the reduction

relation⇝P on graphs is defined as the minimal relation satisfying the rules in Figure 2.5.

(R1)
G1 ⇝P G2

(G1, G3)⇝P (G2, G3)

(R2)
G1 ⇝P G2

νX.G1 ⇝P νX.G2

(R3)
G1 ≡ G2 G2 ⇝P G3 G3 ≡ G4

G1 ⇝P G4

(R4)
(G1 −→ G2) ∈ P

G1 ⇝P G2

Figure 2.5: Reduction relation on HyperLMNtal graphs

2.3 The Denoted Hypergraphs

In this section, we introduce the hypergraphs denoted by the language.

The graph denoted by the language has labelled vertices and edges connected to ver-

tices through ports. Such graphs are called labelled port graphs [FP18], but ours extend

the edges to hyperedges.

Our graphs also have a notion of free links, which are links that can be connected to

the outer graphs. This naturally extends the existing definitions of hypergraphs [Ehr+06].

Definition 2.3.1 (Graph-Theoretic Graph). A graph-theoretic graph is represented by

a quadruple G
def
= 〈V, F, L,L 〉, where:

1. V is a set of vertices,

2. the triple F
def
= 〈X, R, π〉, denotes free links where:

(a) X is a set of free link names,

(b) R is an equivalence relation on a set of free link names X, and

(c) π : X→P(V × N>0) is a function from link names to sets of ports.

14 2.3. The Denoted Hypergraphs

3. L ⊂P(V × N>0) is a set of local links, quotient set of ports, and

4. L : V → P is a labelling function.

The definition of hypergraphs in graph theory [Ehr+06] is basically a triple of vertices,

hyperedges and a labelling function as follows: 〈V,E,L 〉 where E ⊆P(V). Notice that

L ⊂P(V × N>0) in our graphs generalises E in hypergraphs in graph theory. Also, our

graphs have the notion of free links F , which does not exist in the definition of hypergraphs

in graph theory. Our graphs also feature the notion of ports. Thus, our graphs are more

generalised than that in graph theory.

Since R defines the equivalence classes of free link names, i.e., sets of the free links

that are connected, and π defines the set of ports that a free link is connected to, π

should return the same set of ports if and only if it took free link names that are in

the same equivalence class. Or more formally, π and R should satisfy the relations in

Definition 2.3.2.

Definition 2.3.2 (Well-definedness condition of π). π and R in Definition 2.3.1should

satisfy X1 RX2 ⇒ π(X1) = π(X2) and X1 ¬RX2 ⇒ π(X1) ∩ π(X2) = ∅.

Example 2.3.1 (A Singleton List in Graph-Theoretic Graph notation). The graph-

theoretic graph of Example 2.2.1 is

〈{v1, v2}, 〈{X}, {{X}}, {X 7→ {〈v1, 2〉}}〉 , {{〈v1, 1〉, 〈v2, 1〉}}, {v1 7→ Cons, v2 7→ Nil}〉
in which the equivalence relation is represented with a quotient set as {{X}}.

For graph G , we denote fnG (G) to obtain the set of free link names in G : i.e.,

fnG (〈V, 〈X, R, π〉, L,L 〉) def
= X. We use G to denote a non-empty set of (possibly infinite)

graphs. G is a non-empty set of all graphs.

We define a notation for an empty set of free links and empty graph since they are

likely to be identity elements of the operations we will define later.

Definition 2.3.3 (Empty set of free links and empty graph). F 0 def
= 〈∅,∅,∅〉, G 0 def

=

〈∅, F 0,∅,∅〉.

Mappings of Graphs

In order to discuss the properties of graphs denoted by HyperLMNtal, we define a mapping

of graphs.

We firstly introduce some general combinators for convenience. Notice that these

are just syntactic sugars that can be replaced with verbose expressions that do not use

combinators. In accordance with the conventions of functional languages, parentheses are

sometimes omitted in the application, and function application is left-associative.

Definition 2.3.4 (General Combinators).

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 15

1. appi f
〈−→xj

j
〉

def
=
〈−→yj j〉 where yj =

f(xj) if j = i

xj if j 6= i.

2. mapS f S
def
= {f(s) | s ∈ S}.

3. mapR f R
def
= {〈f(x), f(y)〉 | 〈x, y〉 ∈ R}.

4. fst
〈−→xi

i
〉

def
= x1, snd

〈−→xi
i
〉

def
= x2, and thd

〈−→xi
i
〉

def
= x3.

Theorem 2.3.1 (mapS f is homomorphic over (P(S),∪,∅)). For an arbitrary set S and

a function f , mapS f (S1∪S2) = (mapS f S1)∪ (mapS f S2) holds for any set S1, S2 ⊆ S.

Proof. Trivial from the definition.

Definition 2.3.5 (Restriction of a relation). R\x def
= {〈y, y′〉 | 〈y, y′〉 ∈ R, y 6= x, y′ 6= x}.

Notice that if R is an equivalence relation on a set S, R \ x is an equivalence relation

on a set S \ {x}.
Using the combinators we have defined in Definition 2.3.4, we define some mappings

for graphs as follows:

Definition 2.3.6 (Graph Mappings).

1. mapV
G f 〈V, F, L,L 〉 def=

〈
mapS f V,mapV

F f F, (mapS ◦mapS ◦ app1) f L,L ◦ f−1
〉

where mapV
F f 〈X, R, π〉 def

= 〈X, R, ((mapS ◦ app1) f) ◦ π〉 where f must be a bijec-

tion.

2. mapX
G f 〈V, F, L,L 〉 def=

〈
V,mapX

F f F, L,L
〉
wheremapX

F f 〈X, R, π〉 def= 〈Y, R′, π′〉
where Y

def
= mapS f X, R′ def

= (mapR f R)≡, and π′ : Y → V × N>0, Y 7→⋃
X∈f−1([Y]R′)

π(X).

3. mapX
G

def
= mapS ◦mapX

G .

mapV
G simply applies f to all the vertices that appear in the given graph. mapX

G applies

f to the free link names in the given graph, but since the f may merge the equivalence

classes of free link names, we need to redefine them carefully. R′ is the smallest equivalence

relation that contains (mapR f R). Since R is an equivalence relation and is symmetric,

(mapR f R) is also symmetric, thus (mapR f R)≡ = (mapR f R)∗. Then π′ is defined

according to R′ to meet Definition 2.3.2. If f is a bijection, the operation can be much

simpler: R′ def
= (mapR f R) and π′ def

= π ◦ f−1 by Definition 2.3.2.

We check that the operation preserves the well-definedness property of π (Defini-

tion 2.3.2).

Theorem 2.3.2. π satisfies the well-definedness condition (Definition 2.3.2) after mapV
G

and mapX
G . Or more formally, for all G , f , and 〈V, 〈X, R, π〉, L,L 〉 def

= mapV
G f G ,

X1 RX2 ⇒ π(X1) = π(X2) and X1 ¬RX2 ⇒ π(X1)∩ π(X2) = ∅ holds, and so does with

mapX
G .

16 2.4. Hypergraph Operations and a Translator From Terms to Graphs

Proof. It is trivial for mapV
G f since f is a bijection. For mapX

G f , Y1 R
′ Y2 ⇒ π′(Y1) =

π′(Y2) is trivial from the definition and Y1 ¬R′ Y2 ⇒ π(Y1) ∩ π(Y2) = ∅ also holds since

∀X1, X2 ∈ X, Y1 = f(X1), Y2 = f(X2).(X1 R X2 ⇒ Y1 (mapR f R) Y2 ⇒ Y1 R′ Y2),

∀Y1, Y1 ∈ Y, X1 ∈ f−1([Y1]R′), X1 ∈ f−1([Y2]R′).(Y1 ¬R′ Y2 ⇒ X1 ¬R X2 ⇒ π1(X1) ∩
π2(X2) = ∅).

Example 2.3.2 (A Singleton List).

G1
def
= 〈{v1, v2}, 〈{X}, {{X}}, {X 7→ {〈v1, 2〉}}〉 , {{〈v1, 1〉, 〈v2, 1〉}}, {v1 7→ Cons, v2 7→ Nil}〉 ,

G2
def
= 〈{v3, v4}, 〈{X}, {{X}}, {X 7→ {〈v3, 2〉}}〉 , {{〈v3, 1〉, 〈v4, 1〉}}, {v3 7→ Cons, v4 7→ Nil}〉

then mapV
G fV G1 = G2 where fV = {v1 7→ v3, v2 7→ v4}.

Theorem 2.3.3. mapV
G f G 0 = G 0 and mapX

G f G 0 = G 0 for any f .

Proof. Trivial from the definitions.

Using the mappings we have defined so far, we define a graph isomorphism, G ∼= G ′,

as in Definition 2.3.7. For example, G1 and G2 in Example 2.3.2 are graph-isomorphic,

i.e., G1
∼= G2.

Definition 2.3.7 (Graph isomorphism). G ∼= G ′ iff ∃fV .(G ′ = mapV
G fV G) where fV :

fst(G)→ fst(G ′) is a bijection.

2.4 Hypergraph Operations and a Translator From Terms to

Graphs

In this section, terms simply refers to HyperLMNtal graphs, and graphs refers to graph-

theoretic graphs.

We define some operations on graphs and discuss their properties. Then, define how

to transform HyperLMNtal terms to graph-theoretic graphs.

2.4 Graph Operations

We define some operations on graphs and discuss their properties.

Merging Free Links

To compose graphs from subgraphs, intuitively, we need to be able to connect edges. This

corresponds to the operations that we introduce in the following:

Definition 2.4.1 (Merging free links). 〈X1, R1, π1〉 + 〈X2, R2, π2〉
def
= 〈X1 ∪X2, R, π〉

where R
def
= (R1 ∪R2)

∗ and π : X1 ∪X2 →P
((⋃

X1∈X1
π1(X1)

)
t
(⋃

X2∈X2
π2(X2)

))
,

X 7→
(⋃

X1∈X1.X1RX π1(X1)
)
t
(⋃

X2∈X2.X2RX π2(X2)
)
.

The operation can be done if and only if the π1 and π2 satisfies the following: ∀ports1 ∈
π1(X1), ports2 ∈ π2(X2).(ports1 ∩ ports2 = ∅).

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 17

Here, R is the smallest equivalence relation that contains R1 ∪ R2. Notice that the

operation is defined only when all the ports in the images of π1 and π2 are disjoint. This

condition is required to ensure the property Definition 2.3.2 after the operation as we

will prove in Theorem 2.4.7. We also use a summation notation as follows:
∑

1≤i≤n Fi
def
=

F1 + · · ·+ Fn.

Example 2.4.1.〈
{X1, X2, X3, X4, X5, X6}, {{X1, X2}, {X3, X4}, {X5, X6}},
{X1, X2 7→ {〈v1, 1〉}, X3, X4 7→ {〈v1, 2〉, 〈v2, 2〉}, X5, X6 7→ {〈v2, 1〉}}

〉
+

〈
{X2, X6, X7}, {{X2, X6}, {X7}}, {X2, X6 7→ {〈v3, 1〉}, X7 7→ {〈v4, 1〉}}

〉
=
〈
{X1, X2, X3, X4, X5, X6, X7}, {{X1, X2, X5, X6}, {X3, X4}, {X7}},
{X1, X2, X5, X6 7→ {〈v1, 1〉, 〈v2, 1〉, 〈v3, 1〉}, X3, X4 7→ {〈v1, 2〉, 〈v2, 2〉}, X7 7→ {〈v4, 1〉}}

〉
We check that the operation preserves the well-definedness property of π (Defini-

tion 2.3.2).

Theorem 2.4.1. π satisfies the well-definedness property (Definition 2.3.2) after the free

link merge.

Proof. X R′ X ′ ⇒ π(X) = π(X ′) is trivial from the definition and X ¬R′ X ′ ⇒ π(X) ∩
π(X ′) = ∅ is also trivial with the side condition of the operation.

Theorem 2.4.2. + over F is commutative, associative, and has an identity element F 0.

Proof. Straightforward using the property Definition 2.3.2.

Theorem 2.4.3 (mapV
F f from/to (F,+, F 0) is an endomorphism). mapV

F f (F1 +F2) =

mapV
F f F1 +mapV

F f F2.

Proof. ForX and R, by definition, mapV
F f does not change the values. Thus, the theorem

holds trivially. For π, the theorem holds because ((mapS ◦appi) f,∅) is an automorphism

over (P(V × N>0),∪,∅) by Theorem 2.3.1.

Graph Composition

Using the operation Definition 2.4.1, we can compose graphs from subgraphs as follows:

Definition 2.4.2 (Graph Composition).

〈V1, F1, L1,L1〉 + 〈V2, F2, L2,L2〉
def
= 〈V1 t V2, F1 + F2, L1 t L2,L1 tL2〉 where V1 ∩

V2 = ∅.

Notice that when V1 and V2 are disjoint, L1 and L2, domains of L1 and L2, and the

ports in the images of π1
def
= thd(F1) and π2

def
= thd(F2) are disjoint, respectively, which is

the required condition in + over F, too.

Theorem 2.4.4. + over G is commutative, associative, and has an identity element G 0.

18 2.4. Hypergraph Operations and a Translator From Terms to Graphs

Proof. Straightforward by Theorem 2.4.2.

Theorem 2.4.5 (mapV
G fV from/to (G,+,G 0) is an endomorphism).

mapV
G f (G1 + G2) = (mapV

G f G1) + (mapV
G f G2) where f(fst(G1)) ∩ f(fst(G2)) = ∅.

Proof. For V and L, + performs set union and mapV
G performs mapS, thus the theorem

holds by Theorem 2.3.1. For L , the theorem holds since (L1 tL2) ◦ f−1 = (L1 ◦ f−1)t
(L2 ◦ f−1). For F , the theorem holds by Theorem 2.4.3.

Since we need to compose all the graphs in the sets of graphs to define a mapping

from HyperLMNtal terms to graphs, we define a notation for that as follows:

Definition 2.4.3 (Graph Set Union).

G1 ⊗G2
def
= {G1 + G2 | G1 ∈ G1,G2 ∈ G2, fst(G1) ∩ fst(G2) = ∅}

Theorem 2.4.6. (P(G),⊗, {G 0}) is a commutative monoid.

Proof. Straightforward from Theorem 2.4.4.

Notice that ∅ is not a unit of the monoid since G⊗∅ = ∅, and G⊗∅ = G does not

always hold, either.

Link Name Hiding

Since the HyperLMNtal terms have a notion of a scope of link names, we need to define

an operation that corresponds to it.

Definition 2.4.4 (Link Name Hiding).

〈V, 〈X, R, π〉, L,L 〉 \X def
=

〈V, 〈X, R, π〉, L,L 〉 (X /∈ X)

〈V, 〈X′, R′, π′〉, L′,L 〉 (X ∈ X)

whereX′ def
= X\{X}, R′ def

= R\X, π′ def
= π|X′ , and L′ def

=

L ∃X ′ ∈ X′.X R X ′

L ∪ {π(X)} otherwise.

We discuss the properties with the link name hiding operation. First of all, π satisfies

the well-definedness property (Definition 2.3.2) after the link name hiding.

Theorem 2.4.7. For any G , X and 〈V, 〈X, R, π〉, L,L 〉 def= G \X, X1 RX2 ⇒ π(X1) =

π(X2) and X1 ¬RX2 ⇒ π(X1) ∩ π(X2) = ∅.

Proof. Trivial from the definition.

We discuss the distributivity of graph composition and link name hiding. This prop-

erty does not always hold as shown in the following:

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 19

Remark 1. There exists a G1,G2, and X such that fst(G1)∩fst(G2) = ∅ and (G1+G2)\X 6=
(G1 \X) + (G2 \X); for example, graphs G1 and G2 which are connected with the link X.

We need some restriction for the property to hold.

Theorem 2.4.8. (G1 + G2) \X = (G1 \X) + G2 if X /∈ fnG (G2).

To prove the theorem, we need to prove some lemmas.

Lemma 2.4.1. Let R1 and R2 be equivalence relations on sets S1 and S2, respectively,

then (R1 ∪R2)
∗ \ x = ((R1 \ x) ∪R2)

∗ holds if x /∈ S2.

Proof. (R1 ∪R2)
∗ \ x ⊇ ((R1 \ x) ∪R2)

∗ is trivial from the definition. By definition,

(R1 ∪R2)
∗ \ x = {〈y0, yn〉 | y0 6= x, yn 6= x, y0 (R1 ∪R2) · · · (R1 ∪R2) yn}. Here, for

all yi−1, yi, yi+1 such that yi−1 (R1 ∪R2) yi (R1 ∪R2) yi+1, if yi = x then since x /∈ S2,

we need to use R1 before and after yi, that is, they should satisfy yi−1 R1 yi R1 yi+1.

Since R1 is an equivalence relation and is transitive, yi−1 R1 yi+1 holds: we can omit any

yi (0 < i < n) such that yi = x in y0 (R1 ∪R2)· · ·(R1 ∪R2)yn. Therefore, (R1 ∪R2)
∗\x ⊆

((R1 ∪R2) \ x)∗ = ((R1 \ x) ∪R2)
∗.

Lemma 2.4.2. Let R1 and R2 be equivalence relations on sets S1 and S2, respectively.

Then, x (R1 ∪R2)
∗ y ⇒ ∃y′ ∈ S1.(y

′ 6= x ∧ x R1 y
′ ∧ y′ (R1 ∪R2)

∗ y) if x /∈ S2 and y 6= x.

Then, we prove the Theorem 2.4.8.

Proof of Theorem 2.4.8. Let x (R1 ∪R2)
∗ y be such that x /∈ S2 and y 6= x, which is

equivalent to x (R1 ∪R2) y1 (R1 ∪R2) · · · (R1 ∪R2) yn where yn = y. Since x /∈ S2, y1

should satisfy x R1 y1. If y1 = x, then x R1 y1 (R1 ∪R2) · · · (R1 ∪R2) yn can be rewritten

be x R1 y1 R1 y2 (R1 ∪R2) · · · (R1 ∪R2) yn. Repeating the operation less than n times,

we can obtain y′ such that y′ 6= x ∧ x R1 · · ·R1 y
′ (R1 ∪R2) · · · (R1 ∪R2) yn since yn 6= x.

Since R1 is an equivalence relation and is transitive, x R1 y
′ holds.

Proof. Since \X only changes F and L, we only need to consider these. Let the free

links of Gi as 〈Xi, Ri, πi〉. For X, the theorem holds trivially. For R, it follows from

Lemma 2.4.1. Let R
def
= (R1 ∪R2)

∗.

For π, for all Y ∈ (X1 ∪X2) such that X 6= Y , if X R Y then by Lemma 2.4.2, there

exists Y ′ ∈ X1 such that Y ′ 6= X∧XR1Y
′∧Y ′RY since X is not in the support set of R2.

Therefore, by Definition 2.3.2, π1(X) = π2(Y
′). Thus, since Y ′ ∈ X1\{X}∧Y ′ (R \X)Y ,

π1(X) = π2(Y
′) ⊆

⋃
Y1∈X1\{X}.Y1(R\X)Y π1(Y1). Therefore,

⋃
Y1∈X1.Y1RY π1(Y1) =⋃

Y1∈X1\{X}.Y1(R\X)Y π1(Y1) ∪

π1(Y1) if X R Y

∅ otherwise
=
⋃

Y1∈X1\{X}.Y1(R\X)Y π1(Y1),

thus the theorem holds.

For L, by Lemma 2.4.2, X RX ′ ⇒ ∃X ′′ ∈ X1.(X
′′ 6= X ∧X R1 X

′′ ∧X ′′ R X ′) since

X is not in the support set of R2. Therefore, ∃X ′ ∈ (X1 ∪X2) \ {X}.X R X ′ ⇒ ∃X ′′ ∈

20 2.4. Hypergraph Operations and a Translator From Terms to Graphs

X1 \ {X}.X R1 X
′′. Since the converse is trivial, ∃X ′ ∈ (X1 ∪ X2) \ {X}.X R X ′ =

∃X ′′ ∈ X1 \{X}.X R1X
′′, which makes the side conditions for L in the link name hidings

equivalent.

mapV
G and \X is commutative without imposing any restrictions.

Theorem 2.4.9. mapV
G f (G \X) = (mapV

G f G) \X for any G , and X.

Proof. Trivial if X /∈ X. Case X ∈ X. For V and L , since \X does not change the

values, the theorem holds. For X and R, since mapV
G f does not change the values, the

theorem holds. For π′, since (((mapS ◦ app1) f) ◦ (π|′X)) = (((mapS ◦ app1) f) ◦ π)|′X, the
theorem holds. For L, the theorem holds trivially if the value of L does not change in

link name hiding. Otherwise, the theorem holds since by Theorem 2.3.1, (mapS ◦mapS ◦
app1) f (L ∪ {π(X)}) = ((mapS ◦mapS ◦ app1) f L) ∪ {(((mapS ◦ app1) f) ◦ π)(X)}.

Theorem 2.4.10. G 0 \X = G 0 for any X.

Proof. Trivial from the definition.

Lemma 2.4.3. fnG (G \X) = fnG (G) \ {X} for any X and G .

Proof. Trivial from the definition.

Theorem 2.4.11. (G \X) \ Y = (G \ Y) \X

Proof. Trivial if X = Y . Otherwise, case X /∈ fnG (G): by Lemma 2.4.3 and the premise,

X /∈ fnG (G \Y). Therefore, (G \X)\Y = G \Y = (G \Y)\X. Case Y /∈ fnG (G): same as

the case above. Case X,Y ∈ fnG (G): let 〈V, 〈X′, R′, π′〉, L′,L 〉 = 〈V, 〈X, R, π〉, L,L 〉\X,

then 〈V, 〈X′, R′, π′〉, L′,L 〉 \ Y = 〈V, 〈X′′, R′′, π′′〉, L′′,L 〉 where

1. X′′ def
= X′ \ {Y } = (X \ {X}) \ {Y } = X \ {X,Y },

2. R′′ def= {〈Z,Z ′〉 | Z,Z ′ ∈ X′′.Z R′ Z ′}
= {〈Z,Z ′〉 | Z,Z ′ ∈ X′′.(Z,Z ′ ∈ X′ ∧ Z R Z ′)} ∵ Definition of R′

= {〈Z,Z ′〉 | Z,Z ′ ∈ X′′.Z R Z ′} ∵ Z,Z ′ ∈ X′′ ⇒ Z,Z ′ ∈ X′,

3. π′′ def
= π′|X′′ = (π|X′)|X′′ = π|X′′ (∵ X′′ ⊂ X′), and

4. L′′ def=

L′ ∃Y ′ ∈ X′′.Y R′ Y

L′ ∪ {π(Y)} otherwise.

=


L′ PX ∧ PY

L′ ∪ {π(X)} ¬PX ∧ PY

L′ ∪ {π(Y)} PX ∧ ¬PY

L′ ∪ {π(X)} ∪ {π(Y)} ¬PX ∧ ¬PY

where PX
def
= ∃X ′ ∈ X′.X R X ′ and PY

def
= ∃Y ′ ∈ X′′.Y R′ Y ′.

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 21

Since X 6= Y , X ∈ X′ ⇔ X ∈ X′′. Therefore, PX ⇔ ∃X ′ ∈ X′′.X R X ′.

By definition of R′, PY ⇔ ∃Y ′ ∈ X′′.(Y, Y ′ ∈ X′.Y R Y ′). Since Y ∈ X and X 6= Y ,

Y ∈ X′ always holds. Also, Y ′ ∈ X′′ ⇒ Y ′ ∈ X′. Thus, PY ⇔ ∃Y ′ ∈ X′′.Y R Y ′.

Since the definitions of X′′, R′′, π′′, L′′ are symmetric with respect to X and Y , the

theorem holds.

Since we need to α-convert link names later, we need some theorems to handle these.

Theorem 2.4.12 (Alpha-Conversion).
(
mapX

G [X 7→ Y] G
)
\ Y = G \X if Y /∈ fnG (G)

for any X,Y , and G .

Proof. Since Y /∈ fnG (G), [X 7→ Y] can be replaced with a bijection of which domain is

fnG (G). Thus, mapX
G can be much simpler as we have explained earlier and the result

follows straightforwardly.

Theorem 2.4.13.
(
mapX

G [X 7→ Y]
(
mapX

G [Y 7→ Z] G
))
\Z = (G \X) if X 6= Y ∧Z 6=

Y ∧ Z /∈ fnG (G). for any X,Y, Z, and G .

Proof. We firstly prove
(
mapX

G [X 7→ Y]
(
mapX

G [Y 7→ Z] G
))
\Z = mapX

G [X 7→ Y] (G \
Y) if X 6= Y ∧ Z 6= Y ∧ Z /∈ fnG (G). and then use Theorem 2.4.12.

For the former, since Z /∈ fnG (G), [Y 7→ Z] can be replaced with a bijection as in

Theorem 2.4.12. Thus, mapX
G can be much simpler as we have explained earlier and the

results follows straightforwardly. Since we have replaced Y with Z, Y /∈ fnG (mapX
G [Y 7→

Z] G), thus we can use Theorem 2.4.12 later.

Since Z 6= X ∧ Z 6= Y , \Z and mapX
G [X 7→ Y] commutes as follows:

Theorem 2.4.14. (mapX
G [X 7→ Y] G)\Z = mapX

G [X 7→ Y] (G \Z). if Z 6= X ∧Z 6= Y

for any X,Y, Z, and G .

Proof. The theorem holds straightforwardly from the definitions of the operations.

HyperLMNtal terms includes a fusion, which corresponds to the following graph:

Definition 2.4.5 (Fusion in Graph-Theoretic Graphs).

X ./ Y
def
= {〈∅, 〈{X,Y }, {{X,Y }}, {X 7→ ∅, Y 7→ ∅}〉,∅,∅〉}

We prove that composing a fusion is equivalent to connect free link X to Y by renaming

X to Y .

Theorem 2.4.15. (X ./ Y + G)\X =
(
mapX

G [X 7→ Y] G
)
\X where X ∈ fnG (G)∨Y ∈

fnG (G) for any X,Y , and G .

Notice that X ./ Y +G can be done always without imposing a restriction on vertices

since X ./ Y does not have vertices.

Proof. The theorem holds straightforwardly from the definitions.

22 2.4. Hypergraph Operations and a Translator From Terms to Graphs

2.4 Term to Graphs Translator

We introduce a function to transform a term to graphs. Intuitively, this function returns

a set of all the isomorphic graphs that corresponds to the given term.

Definition 2.4.6 (Term to Graphs).

t2gs(p(
−→
Xi

i
))

def
= {〈{v},

∑
i {〈{Xi}, {{Xi}}, {Xi 7→ {〈v, i〉}}〉} ,∅, {v 7→ p}〉 | v ∈ V}

t2gs((G,G′))
def
= t2gs(G)⊗ t2gs(G′)

t2gs(νX.G)
def
= {G \X | G ∈ t2gs(G)}

t2gs(0)
def
= {G 0}

t2gs(X ./ Y)
def
= {X ./ Y }

Theorem 2.4.16 (Link Substitution). t2gs(G〈Y/X〉) = mapX
G [X 7→ Y] t2gs(G) for any

X,Y , and G.

Proof. We prove this by induction on the structure of G.

Case G = 0.

t2gs(0〈Y/X〉) = t2gs(0) = {G 0} = mapX
G [X 7→ Y] {G 0} = mapX

G [X 7→ Y] t2gs(0).

Case G = p(
−→
Xi

i
).

t2gs(p(
−→
Xi

i
)〈Y/X〉) = t2gs(p(

−−−−−−→
Xi〈Y/X〉

i

)) = mapX
G [X 7→ Y] t2gs(p(

−→
Xi

i
)).

Case G = X ./ Y .

Follows straightforwardly from the definition.

Case G = (G1, G2).

t2gs((G1〈Y/X〉, G2〈Y/X〉)) = t2gs(G1〈Y/X〉) ⊗ t2gs(G2〈Y/X〉) = mapX
G [X 7→

Y] t2gs(G1)⊗mapX
G [X 7→ Y] t2gs(G2) = mapX

G [X 7→ Y] (t2gs(G1)⊗ t2gs(G2)) =

mapX
G [X 7→ Y] t2gs(G) where t2gs(G1〈Y/X〉) = mapX

G [X 7→ Y] t2gs(G1) and

t2gs(G2〈Y/X〉) = mapX
G [X 7→ Y] t2gs(G2) by induction hypothesis.

Case G = νZ.G′.

We split the cases according to the cases in the hyperlink substitution Defini-

tion 2.2.4.

Case Z = X. Since X /∈ fnG (G \ Z) for any G , mapX
G [X 7→ Y] t2gs(νZ.G′) =

t2gs(νZ.G′). Therefore, the theorem holds.

Case Z 6= X∧Z 6= Y . By Theorem 2.4.14 and induction hypothesis, t2gs(G〈Y/X〉) =
t2gs(νZ.G′〈Y/X〉) = {G ′ \ Z | G ′ ∈ t2gs(G′〈Y/X〉)} = {G ′ \ Z | G ′ ∈ mapX

G [X 7→
Y] t2gs(G′)} = mapX

G [X 7→ Y] {G ′ \Z | G ′ ∈ t2gs(G′)} = mapX
G [X 7→ Y] t2gs(G).

Case Z 6= X ∧ Z = Y .

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 23

t2gs((νZ.G′)〈Y/X〉)
= t2gs(νW.(G′〈W/Z〉)〈Y/X〉) case Z 6= X ∧ Z = Y ∧W /∈ fnG (G

′) ∧W 6= Y

=
{
G ′ \W

∣∣ G ′ ∈ mapX
G [X 7→ Y] (mapX

G [Z 7→ W] t2gs(G′))
}
∵ Induction Hypothesis

= mapX
G [X 7→ Y] {G ′ \ Z | G ′ ∈ t2gs(G′)} ∵ Theorem 2.4.13

= mapX
G [X 7→ Y] t2gs(νZ.G′).

2.5 Soundness of the Translation From Terms to Graphs

In this section, we prove that the structurally congruent terms are mapped to isomorphic

graphs using the function t2gs ; i.e., the soundness of the function.

We firstly prove that, for an term G, all the graphs in the set which is returned by the

function t2gs are graph-isomorphic.

Theorem 2.5.1 (Well-definedness of the t2gs function). ∀G ,G ′ ∈ t2gs(G).G ∼= G ′.

Proof. We use induction on the structure of G.

Case G = 0 or G = X ./ Y .

Since t2gs(G) is a singleton set, the theorem holds trivially.

Case G = p(
−→
X).

Let G = 〈{v}, F,∅, {v 7→ p}〉 where F =
∑

i {〈{Xi}, {{Xi}}, {Xi 7→ {〈v, i〉}}〉} and
G = 〈{v′}, F ′,∅, {v′ 7→ p}〉 where F ′ =

∑
i {〈{Xi}, {{Xi}}, {Xi 7→ {〈v′, i〉}}〉}. Let

fV
def
= {v 7→ v′}, be a bijection.

The theorem holds straightforwardly for those other than F . For mapV
F f F = F ′,

the theorem holds as follows:

mapV
F f

∑
i {〈{Xi}, {{Xi}}, {Xi 7→ {〈v, i〉}}〉}

=
∑

i mapV
F f {〈{Xi}, {{Xi}}, {Xi 7→ {〈v, i〉}}〉} ∵ Theorem 2.4.3

=
∑

i {〈{Xi}, {{Xi}}, {Xi 7→ {〈v′, i〉}}〉}

Case G = (G1, G2).

By definition of (P(G),⊗, {G 0}),

1. G ∈ t2gs(G1) ⊗ t2gs(G2) satisfies G = G1 + G2 where G1 ∈ t2gs(G1) ∧ G2 ∈
t2gs(G2) ∧ fst(G1) ∩ fst(G2) = ∅, and

2. G ′ ∈ t2gs(G1) ⊗ t2gs(G2) satisfies G ′ = G ′
1 + G ′

2 where G ′
1 ∈ t2gs(G1) ∧ G ′

2 ∈
t2gs(G2) ∧ fst(G ′

1) ∩ fst(G ′
2) = ∅.

By induction hypothesis, there exist bijections fV 1, fV 2 such that G ′
1 = mapV

G fV 1 G1

and G ′
2 = mapV

G fV 2 G2.

24 2.5. Soundness of the Translation From Terms to Graphs

Since fst(G1)∩ fst(G2) = ∅, dom(fV 1)∩dom(fV 2) = ∅, and since fst(G ′
1)∩ fst(G ′

2) =

∅, img(fV 1) ∩ img(fV 2) = ∅.

Since an union of bijections whose domains and images are disjoint is a bijection,

fV
def
= fV 1 t fV 2 is a bijection.

By Theorem 2.4.5, mapV
G fV G = mapV

G fV (G1+G2) = (mapV
G fV G1)+(mapV

G fV G2) =

(mapV
G fV 1 G1) + (mapV

G fV 2 G2) = G ′
1 + G ′

2 = G ′.

Therefore, there exists a bijection, fV , such that mapV
G fV G = G ′.

Case G = νX.G′.

By definition of t2gs , G1,G2 ∈ t2gs(G) satisfies G1 = G ′
1 \X and G2 = G ′

2 \X where

G ′
1,G

′
2 ∈ t2gs(G′).

Here, by induction hypothesis, For all G ′
1,G

′
2 ∈ t2gs(G′), there exists a bijection fV

such that G ′
2 = mapV

G fV G ′
1.

Therefore, by Theorem 2.4.9, G2 = G ′
2 \X = (mapV

G f G ′
1)\X = mapV

G f (G ′
1 \X) =

mapV
G f G1.

Thus, there exists a bijection, fV , such that mapV
G fV G1 = G2.

We then prove that t2gs returns the same set of graphs if it takes structurally congruent

terms.

Theorem 2.5.2 (Structural Congruence ⇒ Graph Isomorphism). G ≡ G′ ⇒ t2gs(G) =

t2gs(G′)

Proof. We use induction on the structure of terms and split the cases by the rule in

Definition 2.2.5.

Case (E1). t2gs((0, G)) = t2gs(0) ⊗ t2gs(G) = {G 0} ⊗ t2gs(G) = t2gs(G) by Theo-

rem 2.4.6.

Case (E2). t2gs((G1, G2)) = t2gs(G1)⊗t2gs(G2) = t2gs(G2)⊗t2gs(G1) = t2gs((G2, G1)).

by Theorem 2.4.6.

Case (E3). t2gs((G1, (G2, G3))) = t2gs(G1)⊗ t2gs((G2, G3)) = t2gs(G1)⊗ (t2gs(G2)⊗
t2gs(G3)) = (t2gs(G1) ⊗ t2gs(G2)) ⊗ t2gs(G3) = t2gs((G1, G2)) ⊗ t2gs(G3) =

t2gs(((G1, G2), G3)). by Theorem 2.4.6.

Case (E4). By induction hypothesis,begin t2gs(G1) = t2gs(G2). Therefore, t2gs((G1, G3)) =

t2gs(G1)⊗ t2gs(G3) = t2gs(G2)⊗ t2gs(G3) = t2gs((G2, G3)).

Case (E5). By induction hypothesis, t2gs(G1) = t2gs(G2). Therefore, t2gs(νX.G1) =

{G \X | G ∈ t2gs(G1)} = {G \X | G ∈ t2gs(G2)} = t2gs(νX.G1).

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 25

Case (E6). t2gs(νX.(X ./ Y,G)) = {(X ./ Y + G) \X | G ∈ t2gs(G)} ={(
mapX

G idX 7→Y G
)
\X

∣∣ G ∈ t2gs(G)
}

= t2gs(νX.G〈Y/X〉) by Theorem 2.4.16

and Theorem 2.4.15

where X ∈ fnG (G)∨Y ∈ fnG (G) by the side condition of the rule, X ∈ fn(G)∨Y ∈
fn(G).

Case (E7). νX.νY.X ./ Y ≡ 0 t2gs(νX.νY.X ./ Y) = G 0 = t2gs(0).

Case (E8). t2gs(νX.0) = {G \X | G ∈ t2gs(0)} = {G \X | G ∈ {G 0}} = {G 0 \X} =
{G 0} = t2gs(0) by Theorem 2.4.10.

Case (E9). By Theorem 2.4.11, t2gs(νX.νY.G) = {G \X | G ∈ t2gs(νY.G)} = {G \X |
G ∈ {G \ Y | G ∈ t2gs(G)}} = {(G \ Y) \X | G ∈ t2gs(G)} = {(G \X) \ Y | G ∈
t2gs(G)} = {G \ Y | G ∈ {G \X | G ∈ t2gs(G)}} = {G \ Y | G ∈ t2gs(νX.G)} =
t2gs(νY.νX.G).

Case (E10). νX.(G1, G2) ≡ (νX.G1, G2) where X /∈ fnG (G2)

By Theorem 2.4.8, and the side condition of the rule, X /∈ fnG (G2),

t2gs(νX.(G1, G2)) = {(G1 + G2) \X | G1 ∈ t2gs(G1),G2 ∈ t2gs(G2), fst(G1) ∩ fst(G2) = ∅}
= {(G1 \X) + G2 | G1 ∈ t2gs(G1),G2 ∈ t2gs(G2), fst(G1) ∩ fst(G2) = ∅} = t2gs((νX.G1, G2)).

Since ≡ is defined as a reflective transitive closure of the relation in Definition 2.2.5,

the theorem holds by using the rules repeatedly.

2.6 Related Work

Since graphs and their operations are more complex than trees, there are diverse for-

malisms for graphs and the equivalence definitions.

It is known that there exists a simple term language, 2pdom-algebra [LP17], that can

denote labelled graphs whose treewidth is up to 2. The terms written in the language

can be translated to graphs using the function g. The language has a finite set of axioms

that defines the congruence over terms. In [LP17], the authors have proved that all

the congruent terms are translated to graph-isomorphic graphs and the terms that are

mapped to graphs-isomorphic graphs are congruent; i.e., the translation satisfies both

soundness and completeness. Recently, the language has formally proved to be complete

using Coq [DP20].

On the other hand, HyperLMNtal deals with a superclass of the graphs denoted

by 2pdom-algebra. Since HyperLMNtal deals with hypergraphs, does not impose the

treewidth limitation, has a notion for ports, which is important for the application in

programming and verification, and has a notion of fusions and free links, which plays a

big role for subgraph matchings.

26 2.7. Further Work

UnCAL [BFS00] is a calculus of a query language for graph-based databases. The

language features recursive operation over graphs. The equivalence of the graphs is defined

with a bisimulation.

In [HMA18], the authors have axiomatized the equivalence relations of UnCAL graphs.

Our research investigates the axiomatization of the equivalence based on graph-isomorphism,

which is different from those based on bisimulation. For example, there exist cyclic graphs

which are distinguished in our axioms but are handled as the same graphs in UnCAL.

In [Bas94], the authors describe that the equivalence problem of the terms containing

otherwise uninterpreted associative, commutative, and associative-commutative function

symbols and commutative variable-binding operators is polynomially equivalent to the

graph isomorphism problem. They have described proof for the soundness and the com-

pleteness of the translation, but the discussion focuses on the computational complexity

and lacks a precise definition of the translator function from terms to graphs.

Also, the terms in [Bas94] do not have the notion of fusion in HyperLMNtal. Since

HyperLMNtal and λGT utilizes fusion for the matching, this is important.

In [KM09], the authors discuss that the structural congruence in process algebra is

equivalent to graph isomorphism. Since our calculus is based on process algebra, this can

be an important related work. This paper also focuses on computational complexity and

utilizes the theorem in [Bas94], but they do not prove that the structural congruent terms

are graph-isomorphic in a rigorous manner.

Separation Logic is a verification framework for imperative languages using heaps and

pointers. Since heaps and pointers can be generalized with hypergraphs, the logic is closely

related to HyperLMNtal. In particular, Symbolic Heap, the subset of separation logic, also

introduces the notion of graphs and associates the logic with it. Separation Logic [Rey02]

does not axiomatize the equivalence of heaps but defines it with an isomorphism with

a bijection of addresses. However, axiomatizing isomorphism of hypergraphs facilitates

inductive arguments and is advantageous for verification.

2.7 Further Work

We have proved the soundness but we leave the proof of completeness theorem, i.e., the

terms mapped to graph isomorphic graphs by the function are structurally congruent, for

future work. We are planning to prove this in the following steps.

We first define a function to transform hypergraphs to HyperLMNtal terms, g2ts , and

prove that the graph-isomorphic graphs are mapped to structurally congruent terms by

the function g2ts . Since the structural congruence rules enable the reordering of atoms

(vertices) and α-conversion of local link names, we believe that this can be proved without

difficulty. Then, we are to prove that the term transformed from a term using t2gs and

g2ts are structurally congruent; ∀G.(∀G ∈ g2ts(G).(∀G′ ∈ t2gs(G).(G ≡ G′))). This may

be difficult depending on the definition of g2ts . If we can prove the former 2 theorems,

Chapter 2. HyperLMNtal: A Hypergraph Transformation Formalism 27

we can prove the completeness theorem by combining the theorems.

Formal proof using proof assistants such as Coq as in 2pdom-albegra[DP20] is left as

future work. We believe there is no big hurdle since the definitions of HyperLMNtal and

graphs and their operations are given formally and are not that complicated though it

may require a huge amount of effort.

Our ultimate goal is to clarify the relation between existing graph transformation

formalisms and our calculus. In this paper, we only discuss the relationship between

structural congruence and graph isomorphisms. HyperLMNtal is capable of matching and

rewriting graphs using structural congruence. We believe that it is necessary to investigate

and prove how this relates to the subgraph isomorphism and pushout in existing graph

transformations. In addition, we are considering utilizing the results of this study as a

basis for the implementation of λGT and a more powerful verification on FGT .

3
λGT : A Functional Language with Hypergraphs as

First-Class Data

3.1 Introduction

λGT is a functional language to support graphs as first-class data. λGT enables us to

construct and pattern match graphs as well as Algebraic Data Types. The key features

of λGT are the following.

Data structures more complex than trees. Algebraic Data Types (ADT) in purely

functional languages can only represent tree structures. On the other hand, in λGT , not

just lists and trees but also difference lists, skip lists [Pug90], doubly linked lists, leaf

linked trees, and threaded trees, etc, can be handled succinctly.

Graphs as first-class data. Not pointers or references to a global heap but graphs

are first-class, i.e., values, in this language. That is, graphs can be dynamically created,

graphs can be bound to variables, be input and output of functions, and be dynamically

discarded.

Powerful pattern matching mechanism. When matching ADTs in functional languages,

we can only use the patterns that allow only the matching of a fixed region near the root

of the structure. On the other hand, we enabled more powerful matching based on Graph

Transformation [Ehr+06; Roz97].

Syntax-driven semantics. To establish the semantics of λGT , we incorporated that

of HyperLMNtal [UO12; SU21] into call-by-value λ calculus. Unlike definitions common

in conventional graph transformations, such as the triplet of a set of vertices, a set of

sets of vertices (hyperlinks), and a labelling function, the graphs in HyperLMNtal can be

constructed compositionally from subgraphs. These syntax and semantics follow the style

of π-calculus [SW01] rather than traditional algebraic graph transformation formalism.

This makes it easier to incorporate graphs into λ-calculus.

Type System. The type system of λGT incorporates graph grammar and use infinite

decent. We will introduce this later in Chapter 4.

First-class functions. Functions are first-class data in λGT as well as in other functional

languages.

Immutability. Graphs are immutable in this language. We do not rely on destructive

rewriting but employ immutable composing and decomposing with pattern matchings.

29

30 3.2. Informal Introduction to λGT

Contributions

In this chapter, we propose a purely functional language, λGT , that handles data structures

beyond algebraic data types; hypergraphs. Since hypergraphs can be more complex than

trees, it requires non-trivial formalism. In this chapter, we define the formal syntax and

semantics of λGT and examine their validity with some running examples.

Since its formalism is more complicated than ordinary functional languages, its imple-

mentation should be also more complicated. λGT is even more advanced than ordinary

graph transformation systems. Graph transformation systems rewrite one global graph

with rewriting rules. On the other hand, in λGT , graphs are immutable local values

that can be bound to variables, decomposed by pattern matchings with possibly multi-

ple wildcards, in which the matched subgraphs may be used separately, passed as inputs

of functions, and composed to construct larger graphs. Therefore, it is not trivial to

implement the language.

Thus, we implemented a reference interpreter, a reference implementation of the lan-

guage. We believe this is usable for further investigation, including in the design of real

languages based on λGT . The interpreter is written in only 500 lines of OCaml [Ler+22]

code, which is strikingly concise1.

Chapter Map

The rest of this chapter is organized as follows. Section 3.2 introduces λGT informally.

Section 3.3 gives the formal syntax and the operational semantics of λGT . In Section 3.4,

we give a more detailed explanation of the examples we have introduced informally in

Section 3.2. Section 3.5 describes our reference interpreter. Since our language has a new

type system we will introduce in the next chapter, which is also a key element of the

novelties of our language, we do not discuss related work in this chapter but in the next

chapter.

3.2 Informal Introduction to λGT

In this section, we introduce λGT informally. We will give the formal syntax and semantics

of the language later in Section 3.3.

Consider the case where we want to enable adding an element to the end of a list

efficiently. In imperative languages, we will prepare a pointer that points to the address

of the last node (sentinel node) of the list. Adding a new element to the list can be done

with the destructive assignment to the sentinel node with a new number and the address

to the newly created sentinel node. We also need to update last ptr to point to the new

1The source code is available at https://github.com/sano-jin/lambda-gt-alpha. We have also

implemented a visualizing tool that runs on a browser, which is available at https://sano-jin.github.

io/lambda-gt-online/.

https://github.com/sano-jin/lambda-gt-alpha
https://sano-jin.github.io/lambda-gt-online/
https://sano-jin.github.io/lambda-gt-online/

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 31

sentinel node. These low-level operations are tiresome and prone to errors, e.g. we can

easily forget to update last ptr.

1 2 3 4

sentinel

last ptr

head ptr

In λGT , such data structure can be abstracted to a difference list ; a list with a link

to the last node, as follows. Adding a new element to the list can be understood as

concatenating a singleton list to the list. Note that the free links and the indices of ports

are omitted in the graphical representation for the sake of simplicity.

C C C

1 2 3

(1)

We can represent a program with a function that takes two difference lists and returns

the concatenated difference list as the following. Notice that the input and output of the

function are not pointers to a global heap but graphs as local values. λGT can handle

graphs as first-class data (i.e., values) in such a manner.

λ x y

x y

C

1

C

2

−→val λ y

C

1

y

C

2

−→val C C

1 2

Although we will not discuss in detail in this chapter (See Chapter 4), we have also pro-

posed a new type system for the language, which is extended from the typing framework

32 3.2. Informal Introduction to λGT

nodes −→
r1

nodes −→
r2

C nodes

nat

Figure 3.1: Production rules for a difference list.

for graph transformation based languages [FM97; FM98; YU21]. In this type system, the

types of graphs are defined using graph grammar. For example, the type of a difference

list can be defined using the production rules in Figure 3.1.

Informally, we can say graph has a type if we can obtain the graph from the type

applying production rules zero or more times. The following example shows that we can

obtain a difference list with two elements using the production rules.

nodes

⇝r2

C nodes

nat

⇝r2

C

nat

C

nat

nodes

⇝r1

C

nat

C

nat

λGT can not only handle graphs as input/output of functions, but also able to pattern

match graphs. This is more powerful than those of traditional functional languages with

Algebraic Data Types. With Algebraic Data Types, normally, only the root of a tree can

be matched. Taking the last element of a list needs iterating from the head of the list.

On the other hand, in λGT , we can pop the last element in one step.

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 33

case x of

y C

z

→ Some (y , z)

| otherwise → None

Here, we used an option type (Some and None) and a tuple to return both the popped

list and the element. λGT we will describe in the next section does not have option type

and tuple explicitly. However, they can be easily introduced directly to the language or

encoded without extension.

For example, Some x can be encoded as
Some

x

and (y
, z) as

,

y z

. If we have bound (1) to x , then the obtained result will

be

(
C C

1 2 , 3

)
.

The values in λGT are undirected graphs. However, it will be suitable for the links in

the graphs to be directed when compiling to an impure functional language program using

reference types. In λGT , we can easily encode directed edges. The links in the difference

lists we have introduced can be regarded as directed edges from left to right or from up

to down.

C C C

1 2 3

(1− b)

However, if the list consists only of forward pointers, it will be difficult to match

backward efficiently such as matching to the last node of the list. Therefore, we consider

making it a doubly linked list as the following. We can easily rewrite the program to

handle this.

34 3.2. Informal Introduction to λGT

nodes −→
r1

Nil

nodes −→
r2

C1 nodes

nodes −→
r3

C2 nodes

Figure 3.2: Production rules for 2-level skip list.

C C C

1 2 3

λGT can handle not only difference lists but also various data structures. Skip list is

a list with extra edges, as shown in Figure 3.4. The extra edges can be used to make

searching more efficient. In λGT , the skip list of level 2 can be expressed as shown in

Figure 3.5, using the production rules in Figure 3.2.

Suppose we want to represent a skip list of arbitrary level. A skip list using a list of

links to the nodes to be skipped can be represented as in Figure 3.6. Figure 3.3 shows

the production rules for such lists. The rules exploit difference lists to link to a skipped

node after Forking. The list of skipping links is terminated with the neXt atom.

For operations that cannot be performed by simply decomposing and composing

graphs, we can prepare atoms to behave as markers and use them for matching. For

example, a map function that applies a function to the element of the leaves in a leaf-

linked tree can be expressed as Table 3.7.

Here, if
+1

is a function that returns the successor of a given number, and we have

bound

N

N

N

N

L

L L

L L

1

2 3

4 5
to

t
, then evaluating the program will result

in

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 35

nodes −→
r1

nodes −→
r2

C forks

nat

forks −→
r3

F

forks nodes

forks −→
r4

X nodes

Figure 3.3: Production rules for an arbitrary-level skip list.

head 1 2 3 4 5

Figure 3.4: 2-level skip list with heaps and pointers.

N

N

N

N

L

L L

L L

2

3 4

5 6

.

3.3 Syntax and Semantics of λGT

This section describes the syntax and the semantics of λGT , which is a small, call-by-value

functional language that employs hypergraphs as values and supports pattern matching

for them. The main design issue is how to represent and manipulate hypergraphs in the

setting of a functional language and how to let hypergraphs and abstractions co-exist in

a unified framework.

36 3.3. Syntax and Semantics of λGT

C2

1

C1

2

C2

3

C1

4

C2

5

Nil

Figure 3.5: 2-level skip list in λGT .

C

1

F

F

X C

2

X C

3

F

X C

4

X C

5

X

Figure 3.6: n-level skip list (n = 3).

3.3 Syntax of λGT

The λGT language is composed of the following syntactic categories.

• X denotes a Link Name.

• C denotes a Constructor Name.

• x denotes a Graph Context Name.

The syntax of the language is given in Figure 3.8. T is a template of a graph. It

extends graphs in HyperLMNtal defined in Figure 2.1 with graph contexts. A graph

context x[
−→
X], where

−→
X is a sequence of different links, is a wildcard in pattern matching

corresponding to a variable in functional languages, It matches any graph with free links
−→
X . Free links of a graph could be thought of as named parameters (or ‘access points’) of

the graph. C(
−→
X) is a constructor atom. Intuitively, it is a node of a data structure with

links
−→
X . We allow λ-abstractions as the names of atoms in graph templates T (and its

subclass G to be defined shortly). The λ-abstraction atoms have the form (λx[
−→
X].e)(

−→
Y).

Intuitively, the atom takes a graph with free links
−→
X , binds it to the graph context x[

−→
X]

and returns the value (defined in Figure 3.9) obtained by evaluating the expression e with

the bound graph context. Notice that the λ-abstraction (λx[
−→
X].e) is just the name of an

atom: λ-abstraction atoms can be incorporated into data structures just like atoms with

constructor names. This is how λGT supports first-class functions in a graph setting. The

free link(s)
−→
Y of the atom can be used to connect the atom to other structures such as

lists to form a graph structure containing a first-class function. The links
−→
X and the links

appearing in the graphs of the body expression e are not the free links of the atom.

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 37

let map f x =

let rec helper x′
=

case
x′ of

y

L

m z

→

let z′ = f z in

helper
y

L

z′ m

| y

m

→ y

in

helper x

m

in

map +1 t

Figure 3.7: A map function for leaf linked trees.

(case e1 of T → e2 | otherwise→ e3) evaluates e1, checks whether this matches the

graph template T , and reduces to e2 or e3. The details are described in sections 3.3.2–

3.3.2. The case expression covers just two cases in pattern matching, but we can nest the

expression to handle more cases. (e1 e2) is an application.

Note that some graph rewriting languages including Interaction Nets [Mac06] and Hy-

perLMNtal have encodings of the λ-calculus [Mac04; YU16] in which both abstractions

and applications are encoded using explicit graph nodes and (hyper) links. In contrast,

λGT features abstractions and applications at the language level so as to retain the stan-

dard framework of functional languages.

38 3.3. Syntax and Semantics of λGT

Graph Template

T ::= 0 Null

| x[
−→
X] Graph Context

| v (
−→
X) Atom

| X ./ Y Fusion

| (T, T) Molecule

| νX.T Hyperlink Creation

Atom Name

v ::= C Constructor Name

| λx[
−→
X].e Abstraction

Expression

e ::= T Graph

| case e of T → e | otherwise→ e Case

| (e e) Application

Figure 3.8: Syntax of λGT

G stands for a value of the language λGT , which is T not containing graph contexts.

Henceforth, we may call both G and T a graph when the distinction is not important.

Definition 3.3.1 (Syntactic condition on expressions). A λ-abstraction atom is not al-

lowed to appear in the pattern T of the case expression case e1 of T → e2 | otherwise→
e3.

Definition 3.3.2 (Abbreviation rules for graph contexts). We introduce the following

abbreviation schemes to graph contexts as well as we have done to atoms.

1. The parentheses of nullary graph contexts can be abbreviated. For example, x[] can

be abbreviated as x.

2. Term Notation: νX.(v (. . . , X, . . .), x[. . . , X]) can be abbreviated as v (. . . , x[. . .], . . .).

The same can be done for embedding atoms (or graph contexts) in the argument of

a graph context (or atoms), respectively.

Definition 3.3.3 (Free functors of an expression). We define free functors of an expression

e, ff (e), in Figure 3.10. Free functors are not to be confused with free link names.

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 39

Value

G ::= 0 Null

| v (
−→
X) Atom

| X ./ Y Fusion

| (G,G) Molecule

| νX.G Hyperlink Creation

Figure 3.9: Value of λGT

ff (case e1 of T → e2 | otherwise→ e3) =

ff (e1) ∪ (ff (e2) \ ff (T)) ∪ ff (e3)

ff ((e1 e2)) = ff (e1) ∪ ff (e2)

ff (x[
−→
X]) = {x/|

−→
X |}

ff (v (
−→
X)) = ∅

ff (X ./ Y) = ∅

ff ((λx[
−→
X].e)(

−→
Y)) = ff (e) \ {x/|

−→
X |}

ff ((T1, T2)) = ff (T1) ∪ ff (T2)

ff (νX.T) = ff (T)

Figure 3.10: Free functors of an expression

3.3 Operational Semantics of λGT

First, we define the congruence rules (≡) and the link substitutions, T 〈Y/X〉 andG〈Y/X〉,
for T and G in the same manner as we have defined in Section 2.2. Although there is no

graph context in Flat HyperLMNtal, the link substitution for x[
−→
X] in T can be defined

in the same way as the one for atoms in HyperLMNtal.

Graph Substitution

We define graph substitution, which replaces a graph context whose functor occurs free by

a given subgraph. The substitution avoids clashes with any bound functors by implicit α-

conversion (capture-avoiding substitution). Graph substitution is not to be confused with

hyperlink substitution. Intuitively, hyperlink substitution just reconnects hyperlinks. On

the other hand, graph substitution performs deep copying at the semantics level (though

it could or should be implemented with sharing whenever possible).

We define capture-avoiding substitution θ of a graph context x[
−→
X] with a template

40 3.3. Syntax and Semantics of λGT

(T1, T2)θ = (T1θ, T2θ)

(νX.T)θ = νX.Tθ

(x[
−→
X])[T/y[

−→
Y]] =

if x/|
−→
X | = y/|

−→
Y | then T

〈−→
X/
−→
Y
〉

else x[
−→
X]

(C(
−→
X))θ = C(

−→
X)

(X ./ Y)θ = X ./ Y

((λx[
−→
X].e)(

−→
Z))[T/y[

−→
Y]] =

if x/|
−→
X | = y/|

−→
Y | then (λx[

−→
X].e)(

−→
Z)

else if x/|
−→
X | /∈ ff (e) then (λx[

−→
X].e[T/y[

−→
Y]])(

−→
Z)

else (λ z[
−→
X].e[z[

−→
X]/x[

−→
X]][T/y[

−→
Y]])(

−→
Z)

where z/|
−→
X | /∈ ff (e).

(case e1 of T → e2 | otherwise→ e3)θ

= case e1θ of T → e2θ | otherwise→ e3θ

(T1 T2)θ = (T1θ T2θ)

Figure 3.11: Graph Substitution

T in e, written e[T/x[
−→
X]], as in Figure 3.11. The definition is standard except that it

handles the substitution of the free links of graph contexts in the third rule.

Matching

We say that T matches a graph G if there exists graph substitutions θ such that G ≡ T
−→
θ .

The graphs in the range of substitutions should not contain free occurrence of graph

contexts: i.e., the substitution should be ground. Since the matching of λGT does not

involve abstractions (by Def. 3.3.1), in which case G of λGT is essentially the same as G

of HyperLMNtal, we employ the ≡ defined in Figure 2.4. For example, Figure 3.12 shows

the matching of a difference list.

Note that the matching of λGT is not subgraph matching (as is standard in graph

rewriting systems) but the matching with the entire graph G (as is standard in pattern

matching of functional languages). For this reason, the free link names appearing in a

template T must exactly match the free links in the graph G to be matched. This is to be

contrasted with free links of HyperLMNtal rules that are effectively α-convertible since

the rules can match subgraphs by supplementing fusion atoms ([SU21, section 4.4]). The

matching can be done non-deterministic. We are planning to put constraints over the

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 41

X C C Y

1 2

G

νZ.(

νZ1.(Cons(Z1, Z,X), 1(Z1)),

νZ2.(Cons(Z2, Y, Z), 2(Z2))

)

≡

X x C Y

2

T

νZ.(

x[Z,X],

νZ2.(Cons(Z2, Y, Z), 2(Z2))

)

[
Z C W

1

/
Z x W

]

θ

[
νZ1.(Cons(Z1, Z,W), 1(Z1))

/
x[Z,W]

]

Figure 3.12: Example of the graph matching

42 3.3. Syntax and Semantics of λGT

G ≡ T
−→
θ

Rd-Case1
(case G of T → e2 | otherwise→ e3) −→val e2

−→
θ

¬∃
−→
θ .G ≡ T

−→
θ

Rd-Case2
(case G of T → e2 | otherwise→ e3) −→val e3

fn(G) = {
−→
X}

Rd-β

((λx[
−→
X].e)(

−→
Y)G) −→val e[G/x[

−→
X]]

e −→val e
′

Rd-Ctx
E[e] −→val E[e′]

Figure 3.13: Reduction relation of λGT

graph templates in case expressions to ensure deterministic matching but it is a future

task.

Reduction

We choose the call-by-value evaluation strategy. The reason we did not choose call-by-

need (or call-by-name) is to avoid infinite graphs to use infinite-descent in the verification

later in Section 4.4.

In order to define the small-step reduction relation, we extend the syntax with evalu-

ation contexts defined as follows:

E ::= [] | (case E of T → e | otherwise→ e) | (E e) | (G E) | T

As usual, E[e] stands for E whose hole is filled with e.

We define the reduction relation in Figure 3.13.

Definition 3.3.4 (Abbreviation rules for λ-abstraction atom). We introduce a shorthand

notation similar to the λ-calculus.

1. Application is left-associative.

2. (λx[
−→
X].(λ y[

−→
Y].e)(

−→
Z))(

−→
Z) can be abbreviated as

(λx[
−→
X] y[

−→
Y].e)(

−→
Z).

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 43

let append [Z] = (λx[Y,X] y[Y,X]. x[y[Y], X])(Z)

in append [Z] Cons(1, Y,X) Cons(2, Y,X)

−→val (λx[Y,X] y[Y,X]. x[y[Y], X])(Z) Cons(1, Y,X) Cons(2, Y,X)

−→val (λ y[Y,X]. x[y[Y], X])(Z)[Cons(1, Y,X)/x[Y,X]] Cons(2, Y,X)

= (λ y[Y,X].Cons(1, y[Y], X))(Z) Cons(2, Y,X)

−→val (Cons(1, y[Y], X))(X)[Cons(2, Y,X)/y[Y,X]]

= Cons(1,Cons(2, Y), X)

Figure 3.14: An example of reduction: append operation on difference lists

3. ((λx[
−→
X].e1)(

−→
Y)e2) can be abbreviated as let x[

−→
X] = e2 in e1. The

−→
Y will disappear

immediately after evaluating the expression, doing nothing, in β-reduction. Thus,

we omit the links in the abbreviation.

For example, we can describe a program to append two singleton difference lists as

follows (detailed description of difference lists will be given in Example 4.2.2):

let append [Z] =

(λx[Y,X] y[Y,X].

x[y[Y], X]

)(Z)

in append [Z] Cons(1, Y,X) Cons(2, Y,X)

We show the whole process of reduction of this program in Figure 3.17 and graphically

in Figure 3.15, which we have already shown in Section 3.2 informally, omitting free link

names and port indices.

Firstly, the λ-abstraction atom is bound to the graph context append [Z]2. The bound

λ-abstraction atom is a function that takes two difference lists, both having X and Y as

free links, and returns their concatenation also having X and Y as its free links.

2It may appear that the Z of append [Z] does not play any role in this example. However,

such a link becomes necessary when the append is made to appear in a data structure (e.g., as in

νZ.(Cons(Z, Y,X), append [Z])). This is why λ-abstraction atoms are allowed to have argument links.

Once such a function is accessed and β-reduction starts, the role of Z ends, while the free links inside

the abstraction atom start to play key roles.

44 3.4. Program Examples in Detail

let =append

Z
1 λ .xX Y y
X Y

xX y
 Y

Z

12 12

12 12

in append

Z
1 X YCons

2

1

1

3

1

X YCons
2

1

2

3

1

val

λ .xX Y y
X Y

xX y
 Y

Z

12 12

12 12

X YCons
2

1

1

3

1

X YCons
2

1

2

3

1

X YCons
2

1

2

3

1
λ .y
X Y X y
 Y

Z

12 122

1

1

3

1

Cons

val
X Y2

1

1

3

1

Cons 2

1

2

3

1

Cons

val

Figure 3.15: Visualized version of the reduction process in Figure 3.17.

Small numbers around a non-unary atom indicate the ordering of arguments, and a small

dot among edges stands for a fusion of the edges.

A program that pops the last element of a difference list can be described as follows.

let pop[Z] =

(λx[Y,X].

case x[Y,X] of

y[Cons(z, Y), X]→ y[Y,X]

| otherwise→ x[Y,X]

)(Z)

in pop[Z] Cons(1,Cons(2, Y), X)

This will result in Cons(1, Y,X).

3.4 Program Examples in Detail

This section describes some of the programs we have introduced informally in Section 3.2

in detail with the formal semantics in order to discuss the implementation algorithm in

later sections.

For the sake of explanation, the graph of evaluation results may be rewritten using

the structural congruence rules.

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 45

let append [Z] =

(λ x[Y,X].

(λ y[Y,X].

νZ.(x[Z,X], y[Y, Z])

)(Z))(Z)

in append [Z] Cons(1, Y,X) Cons(2, Y,X)

Figure 3.16: Append operation on difference lists

let append [Z] = (λx[Y,X]. (λ y[Y,X]. x[y[Y], X])(Z))(Z)

in append [Z] Cons(1, Y,X) Cons(2, Y,X)

−→val (λx[Y,X]. (λ y[Y,X]. x[y[Y], X])(Z))(Z) Cons(1, Y,X) Cons(2, Y,X)

−→val (λ y[Y,X]. x[y[Y], X])(Z)[Cons(1, Y,X)/x[Y,X]] Cons(2, Y,X)

= (λ y[Y,X].Cons(1, y[Y], X))(Z) Cons(2, Y,X)

−→val (Cons(1, y[Y], X))(X)[Cons(2, Y,X)/y[Y,X]]

= Cons(1,Cons(2, Y), X)

Figure 3.17: An example of reduction: append operation on difference lists

Graphs as Inputs and Output of a Function

For example, we can describe a program to append two singleton difference lists as in

Figure 3.16.

We show the whole process of reduction of this program in Figure 3.17, whose process

is already shown graphically in Section 3.2.

Firstly, the λ-abstraction atom is bound to the graph context append [Z]3. The bound

λ-abstraction atom is a function that takes two difference lists, both having X and Y as

free links, and returns their concatenation also having X and Y as its free links.

Pattern Matching Graphs

Figure 3.18 shows the program, a slightly simplified version of the program introduced in

Section 3.2, that matches the difference list and removes the last node. If Cons(1,Cons(2, Y), X)

is bound to x[Y,X], this will result in Cons(1, Y,X).

3It may appear that the Z of append [Z] does not play any role in this example. However,

such a link becomes necessary when the append is made to appear in a data structure (e.g., as in

νZ.(Cons(Z, Y,X), append [Z])). This is why λ-abstraction atoms are allowed to have argument links.

Once such a function is accessed and β-reduction starts, the role of Z ends, while the free links inside

the abstraction atom start to play key roles.

46 3.4. Program Examples in Detail

let pop[Z] =

(λx[Y,X].

case x[Y,X] of

y[Cons(z, Y), X]→ y[Y,X]

| otherwise→ x[Y,X]

)(Z)

in pop[Z] x[Y,X]

Figure 3.18: Pop operation on a difference list

Without the term-notation abbreviation, the graph template used in the matching can

be written as νW.(y[W,X],Cons(Z, Y,W), z[Z]). The matching in this template proceeds

as the following, which is mostly the same as we have explained in Figure 3.12 in the

previous section.

Cons(1,Cons(2, Y), X)

≡ νWZ.(y[W,X],Cons(Z, Y,W), z[Z])

[Cons(1,W,X)/y[W,X], 2(Z)/z[Z]]

In order to implement the language precisely, we also need to consider the corner case;

for example, the matching which exploits fusion.

Consider if a singleton list νZ.(Cons(Z, Y,X), 1(Z)) is bound to x[Y,X]. We need a

subgraph that has free links W and X, the free links of the graph context y[W,X] in the

graph template, which does not exist in the list. Thus the matching would not proceed

without supplying subgraphs.

This time, we need to firstly supply a fusion atom. Then we can match y[W,X] to the

supplied fusion atom. The matching proceeds as follows.

Cons(1, Y,X)

≡ νWZ.(W ./ X,Cons(Z, Y,X), 1(Z))

= νWZ.(y[W,X],Cons(Z, Y,W), z[Z])

[W ./ X/y[W,X], 1(Z)/z[Z]]

Therefore, the program will result in Y ./ X.

The supplied fusion does not always appear in the result; it may be absorbed and does

not appear explicitly in the return value. Consider the program in Figure 3.19 that cycles

the elements by taking the last node of the difference list and reconnecting it to the head.

In this program, the supplied fusion can be absorbed.

If Cons(1, Y,X) is bound to x[Y,X], this will result in Cons(1, Y,X). The pattern

matching proceeds in the same way as in the previous program. Thus we will obtain

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 47

let rotate[Z] =

(λx[Y,X].

case x[Y,X] of

y[Cons(z, Y), X]→ Cons(z, y[Y], X)

| otherwise→ x[Y,X]

)(Z)

in rotate[Z] x[Y,X]

Figure 3.19: Rotate operation on a difference list

the substitution [W ./ X/y[W,X], 1(Z)/z[Z]]. Substituting the graph template on the

right-hand side of → will result in Cons(1, Y,X) as follows.

νWZ.(Cons(Z,W,X), z[Z], y[Y,W])

[W ./ X/y[W,X], 1(Z)/z[Z]]

= νWZ.(W ./ X,Cons(Z, Y,X), 1(Z))

≡ Cons(1, Y,X)

The program using the map function for leaf-linked trees in Figure 3.7 in Section 3.2 also

uses the matching with supplying fusions.

Such fusion-complementary matching does not appear in ordinary ADT matching in

functional languages. Also, formalization using fusions is not common in ordinary graph

transformations, as well as the tools based on them. Thus, it is a challenge to deal with

it.

3.5 Reference Interpreter

In this study, we have implemented a reference interpreter: the POC of the λGT language.

We firstly describe the motivation to implement a reference interpreter, then explain our

implementation, and give some discussion on our implementation.

3.5 Motivation

We implement a reference interpreter, a reference implementation of the language, which

has several potential uses as follows.

For research of the design of real languages. λGT is a computational model with a new

concept. While the operational semantics are defined, this only defines the behavior as

a computational model, and does not define how we can implement data structures and

perform efficient pattern matching. It is ultimately up to the language designer to decide

how to implement this.

48 3.5. Reference Interpreter

If general hypergraphs are handled purely and no restrictions are placed on pattern

matching to them, an efficient implementation will be difficult. Therefore, in designing

a real language, it is realistic to put in appropriate restrictions while using the type

system as support. However, these constraints should not exclude practicality. Actual

programming using the reference interpreter is useful to determine whether or not it is

practical to include constraints.

For testing future implementations. We intend to build a more efficient implementation

in the future. However, since we are dealing with complex data structures, we need to do

low-level programming making full use of pointers at the meta-level, which is not easy.

Therefore, it is assumed that development will proceed with testing. To test the results, it

is useful to have an implementation that outputs the correct results, even if the execution

efficiency is poor.

To develop applications using λGT . It is better to have a runtime to find and test

programs that can be written concisely using λGT .

To develop tools. This study pioneers a method for representing graphs in terms of

terms, and gives a semantics based on them. This is advantageous in terms of semantics

and verification. However, it is not clear whether it is easy for users to write. If we are

dealing with graphs, it is considered more intuitive to be able to draw them graphically.

Therefore, the editor of λGT may be GUI-based. It would be advantageous to be able to

actually run the tool when developing tools．

3.5 Implementation

Overview

The goal of this study is to implement as simple as possible, without regard to efficiency.

Our implementation consists of only 500 lines of OCaml code as shown in Table 3.1.

This is about half of the lines of a reference interpreter of a graph transformation-based

language GP 2[Bak15], which is about 1,000 lines of Haskell code [Bak+15]. This is

striking considering that our language does not only support graph transformation but

we have incorporated it into a functional language without sacrificing functional language

features such as higher-order functions.

The interpreter is composed of pure functions without destructive operations. We

used lists to represent graphs.

Parser

Our current implementation is not intended to provide a complete language that can be

used in real-world programming. The final design of the concrete syntax is left to the

designer of the actual language. There is even a possibility of providing a graphical UI

and not allowing the language to be written in texts. In this study, we gave a concrete

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 49

Table 3.1: LOC of the interpreter

File LOC

eval/match ctxs.ml 79

parser/parser.mly 70

parser/lexer.mll 51

eval/syntax.ml 47

eval/eval.ml 43

eval/pushout.ml 42

eval/match atoms.ml 36

eval/preprocess.ml 36

parser/syntax.ml 16

eval/match.ml 11

parser/parse.ml 4

bin/main.ml 3

SUM 438

syntax that is easy to parse. The syntax is not sophisticated enough for programmers to

write easily. However, this still satisfies our purpose.

We define the concrete syntax as follows:

• Link name starts from a capital letter with an underscore as a prefix. For example,

_X.

• νX1. . . . νXn. is written as nu _X1 . . . _Xn..

• λ-abstraction atom (λx[
−→
X].e)(

−→
Y) is written with < and > as follows:

<\x[_X1, ..., _Xn]. e> (_Y1, ..., _Ym).

• The graph templates appears in expressions should be surrounded with { and }.

For example, The example Figure 3.7 we have introduced in Section 3.2 can be written

in the concrete syntax as in Figure 3.20.

The interpreter preprocesses graphs before moving on to the evaluation. In our imple-

mentation, values, i.e., graphs, are represented with lists of atoms without link creations

inside; i.e., prenex normal form. We call them host graphs. Links are classified into free

links with string names and local links α-converted to fresh integer ids. In this thesis,

we denote Li for the local link with the id i and FX for the free link with the name X.

Fusion atoms with local link(s) are absorbed beforehand. Currently, we assign numbers

starting from 1,000 to the local links in the template to avoid conflict with the host graphs

50 3.5. Reference Interpreter

1 let f[_X] =

2 {<\x[_X]. {nu _X1 _X2. (Succ (_X1 , _X), x[_X1])}>(_X)}

3 in

4

5 let map[_X] =

6 {<\f[_X].{<\x[_L , _R , _X].

7 let rec helper[_X] x2[_L , _R , _X] =

8 case {x2[_L , _R , _X]} of

9 {nu _L2 _R2 _X2 _X3. (

10 y[_L , _R , _X , _L2 , _R2 , _X2],

11 Leaf (_X3 , _L2 , _R2 , _X2),

12 z[_X3],

13 M (_L2)

14)} ->

15 let z2[_X] = {f[_X]} {z[_X]} in

16 {helper[_X]}

17 {nu _L2 _R2 _X2 _X3 _X4. (

18 y[_L , _R , _X , _L2 , _R2 , _X2],

19 Leaf (_X3 , _L2 , _R2 , _X2),

20 z2[_X3],

21 M (_R2)

22)}

23 | otherwise -> case {x2[_L , _R , _X]} of

24 { y[_L , _R , _X], M (_R) } -> { y[_L , _R , _X] }

25 | otherwise -> {Error , x2[_L , _R , _X]}

26 in {helper[_X]} {x[_L , _R , _X], M (_L)}

27 >(_X)}>(_X)} in

28

29 {map[_X]}

30 {f[_X]}

31 {

32 nu _X1 _X2 _X3 _X4 _X5. (

33 Node (_X1 , _X2 , _X),

34 Leaf (_X4 ,_L , _X3 , _X1),

35 Zero (_X4),

36 Leaf (_X5 , _X3 , _R , _X2),

37 Zero (_X5)

38)

39 }

Figure 3.20: Map leaves of a leaf-linked tree.

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 51

whose local links are assigned numbers starting from 04.

The interpreter transforms graph templates to a pair of the list of the atoms and the

list of the graph contexts. For example, the graph template y[Cons(z, Y), X], the pattern

in the Figure 3.18, is transformed into the following.

〈 [Cons(L1001, FY , L1000)] ,

[y [L1000, FX] , z [L1001]] 〉
(3.1)

Whereas the host graph Cons(1, Y,X) is transformed into the following.

[Cons(L0, FY , FX), 1(L0)] (3.2)

This preprocessing occurs every time evaluating the expression. This can be easily

optimized to be memorized. However we focused more on the simplicity of the implemen-

tation.

Matching Graphs

The interpreter firstly tries to (i) match all the atoms in the template to the host graph,

(ii) supply fusions if necessary, and then (iii) match the graph contexts to the rest of the

host graph. The interpreter backtracks if the consequent matching failes.

(i) Matching atoms.

We take an atom from the head of the list of atoms in the graph template and try to

find the corresponding atom from the host graph. If the matching succeeds, the atom in

the host graph is removed.

To match an atom, we need to check that they have the same name and the corre-

spondence of links. Since the local link names are α-convertible, it is not sufficient only

to check that they have the same link names. Therefore, we exploit a link environment, a

mapping from the local link names in the template to the link names in the host graph.

Using structural congruence rules such as (E6), we can fuse local link names. There-

fore, it seems that different link names can be mapped to the same link name, and

vice-versa. However, since we have absorbed all the fusion atoms that have local links

in the graph template, the former situation is impossible. Thus the link environment is

functional, i.e., the same link names are mapped to the same link name. Notice the latter

is still possible since we can supply fusion atoms to the host graph in the matching.

The matching of link names using the link environment proceeds as in Figure 4.13.

Free links in the template match links with the same names in the host graph (line 7–

8). On the other hand, the matching of local links in the template (line 10–14) is more

flexible, since we can α-convert them.

For example, the atom Cons(L1001, FY , L1000) in the template (3.1) can be matched to

the atom Cons(L0, FY , FX) in the host graph (3.1) with link environment

{L1000 7→ FX , L1001 7→ L0} (3.3)

4This may be too ad-hoc solution but is simple and does work in our examples.

52 3.5. Reference Interpreter

and we have

[1(L0)] (3.4)

left in the host graph.

(ii) Supplying Fusions.

After all the atoms in the template have matched, we substitute link names in the host

graph with inverse of the obtained link environment. For example, the rest host graph

(3.4) becomes the following.

[1(L1001)] (3.5)

We supply fusion atoms to the host graph using the link environment obtained in the

matchings of atoms. If the mapping is not injective, then we should supply fusion atoms

to the host graph. For example, if we obtain the link environment

{L1000 7→ L0, L1001 7→ L0}

then we should supply L1000 ./ L1001.

If a local link in the template is mapped to a free link in the host graph, then we

also need to supply a fusion since a local link does not match a free link without such

treatment. For example, in the link environment (3.3), we have a mapping {L1000 7→ FX}.
Thus, we should supply L1000 7→ FX and obtain

[1(L1001), L1000 ./ FX] (3.6)

as the rest subgraph.

Since we have preprocessed the template to have no fusion atoms with local links, this

fusion-supplying task can be performed after all the atoms have matched. However, since

graph contexts can match with fusions, we need to perform the task before moving on to

the matching of graph contexts.

(iii) Matching Graph Contexts.

Limitation. We place the following two limitations on the graph contexts to make the

implementation simple: (i) the graph that a graph context can match is connected and

(ii) the local links of a graph context are connected to atom(s). The matching that does

not satisfy these two constraints can be highly non-deterministic, which we believe is not

practical and thus is not the main scope of our language.

The matching of a graph context x[
−→
X] with subgraph G, initially Null, proceeds as

follows.

1. Find all the atom(s) with link
−→
Y where {

−→
Y } ∩ {

−→
X} 6= ∅. Add the atoms to G.

2. Update
−→
X with {

−→
Y } \ {

−→
X} and iterate from (1) again.

3. If we obtain no more newly added atom, then check the free links of G is the same

as the links of the graph context x[
−→
X].

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 53

1 let check link

2 σ (* Link environment *)

3 X (* Link in the template *)

4 Y (* Link in the host graph *)

5 =

6 match (X,Y) with

7 (FX , FY) →
8 if X = Y then Some σ else None

9 (FX , Li) → None

10 (Li, Y) →
11 if Li 7→ Z ∈ σ then

12 if Y = Z then Some σ

13 else None

14 else Some (σ ∪ {Li 7→ Y })

Figure 3.21: Link name matching

For example, y[L1000, FX] and z[L1001], the graph contexts in (3.1), can match host

graphs L1000 ./ FX and 1(L1001), the subgraphs in (3.6), respectively. After the matching,

we obtain the following graph substitution.

[L1000 ./ FX/y [L1000, FX] , 1(L1001)/z [L1001]] (3.7)

Graph Substitution

Graph substitution can be done by adding the matched atom(s) G to the host graph, the

list of atoms. However, we need to take care of link names. As we have defined in Fig-

ure 3.11 in Section 3.3, we need to substitute the link names of G with the link names of the

graph context in an evaluating template. Therefore, if we have matched G with x[
−→
X] and

the template has x[
−→
Y], we need to update G with substitution 〈Y1/X1〉 . . .

〈
Y|

−→
Y |/X|

−→
X |

〉
.

We also need to reassign ids for the local links since composing graphs may result in a

conflict of ids.

With the obtained graph substitution (3.7), we can instantiate the template on the

right-hand side of → in Figure 3.18, [y[FY , FX]], which will result in

[FY ./ FX] (3.8)

Our implementation absorbs fusions as much as possible after graph substitutions.

The fusion atom in (3.8) cannot be absorbed since both its links are free links. On the

other hand, the example in Figure 3.19 will result in

[L1000 ./ FX ,

Cons(L1001, FY , L1000),

1(L1001)

]

54 3.5. Reference Interpreter

which will be normalized and reassigned ids to obtain the following.

[Cons(L0, FY , FX), 1(L0)]

The Evaluator

The evaluator is implemented just as these for functional languages. It takes an environ-

ment, a mapping from graph contexts to the matched subgraphs, and an expression to

evaluate.

3.5 Discusson

The soundness of the matching seems to be trivial but the precise discussion or formal

verification is a matter for the future.

The pattern matching we have implemented in the interpreter is not complete; i.e.,

there exists a graph that should be matched but failed in our current implementation.

For example, (X ./ L,Leaf(Zero, X,R)) should be able to be matched with (X ./

L,Leaf(Zero, L,R)) since they are congruent by Theorem 2.2.3. However, Figure 4.13

matches a free link name with that which has precisely the same name, thus the exam-

ple fails because X cannot be matched with L. It seems to be not that difficult to deal

with this example, but to design a complete matching algorithm and verify it, we need to

investigate more on the theoretical foundation of HyperLMNtal congruence.

The implementation in this study is only a Proof of Concept: execution efficiency is

not considered. To improve execution performance to the same level as the corresponding

imperative code, it is necessary to develop static analysis. We are planning to extend

the type system to check the direction (polarity) of links [Ued14], and then perform

ownership checking [DM05]. Then, we develop a method to a transpile to a lower-level

code using reference types in functional languages such as OCaml or an imperative code

with pointers.

3.5 Related Work

There are several languages based on graph transformations. For example, AGG [RET12],

GAMMA [BL93], Structured Gamma [FM98], GP [MP08], GP 2 [Bak15], GROOVE [Gha+12],

GrGen.NET [JBK10], (Hyper) LMNtal [Ued09; UO12; SU21], PORGY [Fer+14], and

PROGRES [SWZ97]. However, as far as we know, few published implementations have

focused on simplicity.

HyperLMNtal, which is the language we have incorporated, has the compiler [LMN]

and the runtime SLIM [SLI; GHU11]. The compiler is written in Java in around 12,000

lines and the runtime is written in C++ in around 47,000 lines. SLIM is highly optimized

and enables non-deterministic execution and model checking, which is out of the scope of

our language and implementation. Thus, we cannot say our implementation surpasses it.

Even so, the contrast with the 500 lines of OCaml code for our interpreter is conspicuous.

Chapter 3. λGT : A Functional Language with Hypergraphs as First-Class Data 55

GP 2 has a reference interpreter [Bak+15]. This is written in around 1,000 lines

of Haskell sources without sacrificing performance significantly. Though we sacrificed

performance, we have implemented the language that exceeds graph transformation in

about half of the lines in OCaml.

4
FGT : A Type System for λGT

4.1 Introduction

In this chapter, we propose a new type system, FGT , for the λGT language. In FGT , we

define the type of graphs using graph grammar. This can be regarded as an extension

of regular tree grammar, on which algebraic data types are based. We also develop a

new type-checking algorithm that automatically performs this verification using structural

induction. Our approach is in contrast with the analysis of pointer manipulation programs

using separation logic [Rey02], shape analysis, etc. in that (i) we consider graph structures

formed by higher-level languages that abstract pointers and heaps away and guarantee

low-level invariants such as the absence of dangling pointers and that (ii) we pursue what

properties can be established automatically using a rather simple typing framework.

Contributions

The main contributions in this chapter are twofold.

1. We define the syntax and the typing rules of the basic FGT and prove some properties

including soundness.

2. We extend the typing framework for the λGT language so that can successfully

handle more manipulations of graphs, including which could not be handled in a

previous study, Structured Gamma.

Chapter Map

The rest of this chapter is organized as follows. Section 4.2 introduces the new type

system, FGT proposed for λGT . Section 4.3 extends the system FGT to cover powerful

operations based on graph transformation. Section 4.4 discusses the algorithm for the

extended FGT . Section 4.5 describes related work. Section 4.6 describes related work.

4.2 Type System

In this subsection, we propose a type system, FGT , for the λGT language. We define the

type of graphs using graph grammar. This can be regarded as an extension of regular

57

58 4.2. Type System

Atom Name for Types

τ ::= α Type Variable

| τ (
−→
X)→ τ (

−→
X) Arrow

RHS of Production Rules

T ::= τ (
−→
X) Type Atom

| C(
−→
X) Constructor Atom

| X ./ Y Fusion

| (T , T) Molecule

| νX.T Hyperlink Creation

Production Rule

r ::= α(
−→
X) −→ T Production Rule

Figure 4.1: Syntax of FGT

tree grammar, on which algebraic data types are based.

4.2 Syntax and Rules for FGT

Let α be a syntactic category denoting the identifier of a type name. The syntax of

types is given in Figure 4.1. It can be observed that the definition of a type employs both

inductive definition (standard in programming languages) and production rules (standard

in formal grammar). The reason for doing so is that, unlike ADTs, types of graphs

cannot be defined inductively in general. Thus we employed generative grammar as a

well-established formalism for defining graphs. Integrating it into FGT is the research

question of the present work.

We extend the λ-expression λx[
−→
X].e with type annotation τ (

−→
X) as λx[

−→
X] : τ (

−→
X).e.

Definition 4.2.1 (Abbreviation rule for an arrow atom). We introduce a shorthand

notation similar to an arrow in the typed λ-calculus, that is,

(τ1(
−→
X)→ (τ2(

−→
Y)→ τ3(

−→
Z))(

−→
W))(

−→
W)

can be abbreviated as

(τ1(
−→
X)→ τ2(

−→
Y)→ τ3(

−→
Z))(

−→
W).

Definition 4.2.2 (Syntactic constraints). A production rule α(
−→
X) −→ T should satisfy

fn(T) = {
−→
X}.

Chapter 4. FGT : A Type System for λGT 59

Let Γ be a typing context which is a set of the form x [
−→
X] : τ (

−→
X), where the x’s

are mutually distinct and t should be a type variable or an arrow. The typing relation

(Γ, P) ` e : τ (
−→
X) denotes that e has the type τ (

−→
X) under the type environment Γ and

a set P of production rules, whose typing rules are defined as follows.

Definition 4.2.3 (Rules for FGT). Typing rules for FGT is given in Figure 4.2.

Ty-App, Ty-Arrow, and Ty-Var are essentially the same as other functional languages

except that the type of FGT is written as an atom with free links. Ty-Var gets the type of

the variable from the type environment. Ty-Cong incorporates the structural congruence

rules. Ty-Alpha α-converts the free link names of both the graph and its type. This

rule corresponds to the fact that the free link names in the rules of HyperLMNtal are

(theoretically) α-convertible. Ty-Prod incorporates production rules to the type system.

Ty-Case is also defined in the same manner as in other functional languages, where Γ′ is

a type environment that maps types from all the graph contexts appearing in T , which

we will describe in detail in Section 4.2.4.

4.2 Examples

In this subsection, we introduce some of the production rules, which we believe describes

many of the types of the data structures for programming in practice.

Example 4.2.1 (Type of a natural number). The type of a natural number connected to

a free link X can be denoted as nat (X), where the production rules are follows.

nat (X) −→ Zero(X)

nat (X) −→ Succ(nat , X)

(Recall that the RHS of the latter rule is a shorthand of νN.Succ(N,X), nat (N) (Def. 2.2.2).)

Algebraic data types (ADTs) can be easily expressed in the same way as in this example:

our language and the type system is a natural extension of functional languages and their

type systems.

Example 4.2.2 (Type of a difference list). The λGT language can handle some data

structures that algebraic data types cannot handle. A difference list can be understood as

a list with an additional link to the last element. This is a popular data structure since

the early days of logic programming in which the links are represented as logical variables.

It allows us to append two lists in constant time. In functional programming, a difference

list can be implemented using a higher-order function that receives a subsequent list and

returns the entire list, but we wish to represent such data structures in the first-order

setting.

The production rules for a difference list can be defined as follows.

nodes (Y,X) −→ X ./ Y

nodes (Y,X) −→ Cons(nat , nodes (Y), X)

60 4.2. Type System

(Γ, P) ` e1 : (τ1(
−→
X)→ τ2(

−→
Y))(

−→
Z) (Γ, P) ` e2 : τ1(

−→
X)

Ty-App
(Γ, P) ` (e1 e2) : τ2(

−→
Y)

((Γ, x[
−→
X] : τ1(

−→
X)), P) ` e : τ2(

−→
Y)

Ty-Arrow
(Γ, P) ` (λx[

−→
X] : τ1(

−→
X).e)(

−→
Z) : (τ1(

−→
X)→ τ2(

−→
Y))(

−→
Z)

Ty-Var
(Γ{x[

−→
X] : τ (

−→
X)}, P) ` x[

−→
X] : τ (

−→
X)

(Γ, P) ` T : τ (
−→
X) T ≡ T ′

Ty-Cong
(Γ, P) ` T ′ : τ (

−→
X)

(Γ, P) ` T : τ (
−→
X)

Ty-Alpha
(Γ, P) ` T 〈Z/Y 〉 : τ (

−→
X)〈Z/Y 〉

where Z /∈ fn(T)

(Γ, P) ` T1 : τ1(
−→
X1) . . . (Γ, P) ` Tn : τn(

−→
Xn)

Ty-Prod
(Γ, P{α(

−→
X) −→ T }) ` T [T1/τ1(

−→
X1), . . . , Tn/τn(

−→
Xn)] : α(

−→
X)

where τi(
−→
Xi) are all the type atoms appearing in T

(Γ, P) ` e1 : τ1(
−→
X) ((Γ,Γ′), P) ` e2 : τ2(

−→
Y) (Γ, P) ` e3 : τ2(

−→
Y)

Ty-Case
(Γ, P) ` (case e1 of T → e2 | otherwise→ e3) : τ2(

−→
Y)

Figure 4.2: Typing rules for FGT

Example 4.2.3 (Typing a difference list with functions). Since λGT and its type system

FGT treat functions as first-class citizens, it is even possible to have a difference list with

functions as its elements. Figure 4.3 shows that the graph G = Cons(succ, Y,X) has

Chapter 4. FGT : A Type System for λGT 61

Ty-Var
(Γ{succ[Z1] : (nat (X)→nat (X))(Z1)}, P) ` succ[Z1] : (nat (X)→nat (X))(Z1)

Ty-Prod
(Γ, P{P1}) ` X ▷◁ Y : nodes (Y,X)

Ty-Alpha
(Γ, P) ` Z2 ▷◁ Y : nodes (Z2, X)

Ty-Prod
(Γ, P{P2}) ` G′ : nodes (Y,X) where G′ = νZ1Z2.(Cons(Z1, Z2, X), succ[Z1], Z2 ▷◁ Y), G ≡ G′

Ty-Cong
(Γ, P) ` G : nodes (Y,X) where G = Cons(succ, Y,X)

Figure 4.3: Type checking a difference list

type nodes (Y,X) under type environment Γ = succ[Z1] : (nat (X)→ nat (X))(Z1) and

production rules P = {P1, P2} where

nodes (Y,X) −→ X ./ Y · · · P1

nodes (Y,X) −→ Cons(nat (X)→ nat (X), nodes (Y), X) · · · P2

Example 4.2.4 (Type of a doubly-linked difference list). A doubly-linked difference list

is a list with four free links, two different links for each end. Although the (hyper)links

of λGT and HyperLMNtal are undirected, we are interested in using them to model di-

rected hyperlinks (roughly corresponding to pointers in imperative languages) that are to

be ‘followed’ in one direction. As with difference lists, the addition of elements to the tail

of the list can be done in constant time, as desired in representing deques. Of course,

doubly-linked lists that are not difference lists can also be handled in an obvious way.

nodes (F ′, B,B′, F) −→ F ./ B,B′ ./ F ′

nodes (F ′, B,B′, F) −→ νX.Cons(nat , F ′, nodes (X,B,B′), X, F)

Example 4.2.5 (Type of difference skip lists). By extending the type definition of differ-

ence lists, the type of unbounded-level skip lists can be defined. This implies that we can

also define a type for skip lists with a nil node at the end and/or whose level is fixed.

nodes (Y,X) −→ X ./ Y

nodes (Y,X) −→ Cons(nat , forks (Y), X)

forks (Y,X) −→ Next(nodes (Y), X)

forks (Y,X) −→ νZ.Fork(Z, forks (Z), X), nodes (Y, Z)

We also show the visualized version of production rules in Figure 4.4 and an example

difference skip list in Figure 4.5.

Example 4.2.6 (Type of a leaf-linked tree). A leaf-linked tree is a graph with three free

links (say X,L,R) which is a tree whose root is represented by X and whose leaves form

a difference list represented by L and R.

lltree (L,R,X) −→ L ./ X,Leaf(nat , R,X)

lltree (L,R,X) −→ νY.Node(lltree (L, Y), lltree (Y,R), X)

62 4.2. Type System

nodesX Y12 X Y

nodesX Y12 X Yforks23

1

1
2

forks

X

Y1
2

X

Y1
2

forks

X

Y1
2

Fork

X

forks 1
2
2

1
3

nat

Cons

Next

Ynodes 12

Figure 4.4: The production rules for the type of difference skip list

23

1

Cons

1

1
2

2

1
3

Next

Fork

2

1
3

Fork

23

1

Cons

2

1
2

Next 23

1

Cons

3

1
2

2

1
3

Next

Fork

(a)

(b)

3
2

1

Figure 4.5: An example of a skip list:(a) in our framework, (b) with pointers

Example 4.2.7 (Type of a threaded tree). A threaded tree is somewhat similar to a leaf-

linked tree but each non-terminal node has access to the the rightmost leaf the left subtree

and the leftmost leaf of the right subtree.

thtree (L,R,X) −→ L ./ X,Leaf(nat , R,X)

thtree (L,R,X) −→ Node(thtree (L,X), thtree (X,R), X)

4.2 Properties of FGT

This section discusses some properties of λGT and FGT . As mentioned in Section 3.3, we

keep the language small to focus on the handling of graph structures, more specifically

the handling of graphs by pattern matching with graph contexts. In particular, it has

no explicit mechanism (such as let rec or fix) to deal with recursive functions. This is

Chapter 4. FGT : A Type System for λGT 63

because those features can be achieved essentially in the same way as other functional

languages do.

Soundness of FGT

Lemma 4.2.1 (Progress). If (∅, P) ` e : τ (
−→
X), then e is a value or ∃e′.e −→val e

′.

Proof. By induction on the derivation of (∅, P) ` e : τ (
−→
X). Notice that the only new

extension from other functional languages in expressions (Figure 3.8) is Case, and the

Case expression is never stuck because if matching fails; it just branches to otherwise

and evaluation proceeds.

Lemma 4.2.2 (Substitution). If (Γ, P) ` e1 : τ1(
−→
Y1) and ((Γ, x[

−→
X1] : τ1(

−→
Y1)), P) ` e2 :

τ2(
−→
Y2) then (Γ, P) ` e2[e1/x[

−→
X1]] : τ2(

−→
Y2)

Proof. By induction on the derivation of ((Γ, x[
−→
X1] : τ1(

−→
Y1)), P) ` e2 : τ2(

−→
Y2).

Lemma 4.2.3 (Preservation). If (Γ, P) ` e : τ (
−→
X) and e −→val e′, then (Γ, P) ` e′ :

τ (
−→
X).

Proof. Proved using the Lemma 4.2.2.

Theorem 4.2.1 (Soundness). If (∅, P) ` e : τ (
−→
X), and e −→∗

val e
′ then e′ is a value or

∃e′′.e′ −→val e
′′.

Proof. Follows from Lemma 4.2.1 and Lemma 4.2.3.

Relation with Graph Reduction

Structured Gamma [FM98] is a first-order graph rewriting system developed to represent

and reason about the shapes of pointer data structures. The framework of Structured

Gamma was then adapted to LMNtal (whose graph structures are dual to those of Struc-

tured Gamma, roughly speaking) to design and implement LMNtal ShapeType [YU21].

Despite several syntactic variations (such as the duality of nodes/links and the pres-

ence/absence of hyperlinks), Structured Gamma and LMNtal ShapeType can (essentially)

handle graphs of λGT without λ-abstraction atoms. The typing relation à la Structured

Gamma and LMNtal ShapeType is defined as follows.

Definition 4.2.4 (Typing relation in Structured Gamma/LMNtal ShapeType). P ` τ :

α(
−→
X) iff α(

−→
X)⇝∗

P τ and τ does not contain type variables or arrow atoms

We have shown that the typing relation in our type system FGT subsumes the one in

Structured Gamma in the following sense.

64 4.2. Type System

Theorem 4.2.2 (FGT and HyperLMNtal reduction).

(Γ, P) ` T : τ (
−→
X)

⇔ τ (
−→
X)⇝∗

P T
−−−−−−−−−→
[τi(
−→
Yi)/xi[

−→
Xi]]

i

[
−−−−−−−−−−−−−→
τi(
−→
Zi)/(λ . . .)i(

−→
Wi)]

i

where

• Γ =
−−−−−−−−−→
xi[
−→
Xi] : τi(

−→
Xi)

i

,

• (λ . . .)i(
−→
Wi) are all the λ-abstraction atoms in T , and

• (Γ, P) ` (λ . . .)i(
−→
Wi) : τi(

−→
Zi)

Proof. For⇒, we can prove by induction on the last applied FGT rules. For⇐, We prove

by induction on the length of the reduction ⇝∗
P .

Note that if no graph contexts or λ-expressions appear in T , by Theorem 4.2.2, the

typing relation in FGT is equivalent to the one in Structured Gamma. In other words,

our type system is an extension of Structured Gamma to allow graph contexts and λ-

abstraction atoms. This allows us to take advantage of research results on Structured

Gamma, its derivative LMNtal ShapeType, and parsing of graphs using graph grammar.

Example 4.2.8 (Theorem 4.2.2 on the difference list example). Here, we see that Theo-

rem 4.2.2 holds on Example 4.2.3. Recall that (succ[Z1] : (nat (X)→ nat (X))(Z1), P) `
Cons(succ, Y,X) : nodes (Y,X) holds in FGT , which can also be shown using HyperLMNtal

reduction as follows.

nodes (Y,X)

⇝P2 νZ1Z2.(Cons(Z1, Z2, X), (nat (X)→ nat (X))(Z1), nodes (Y, Z2))

⇝P1 νZ1Z2.(Cons(Z1, Z2, X), (nat (X)→ nat (X))(Z1), Z2 ./ Y)

≡ νZ1.(Cons(Z1, Y,X), (nat (X)→ nat (X))(Z1))

= Cons(succ, Y,X)[(nat (X)→ nat (X))(Z1)/succ[Z1]]

4.2 Type Checking Case Expressions

λGT allows pattern matching of graphs. In pattern matching, graph contexts can be used

as wildcards. Since a graph context can match any graph as long as the sets of free links

are the same, we cannot naively ensure that the type of the graph matches the intended

type of the context. Therefore, we allow the typing annotation of graph contexts.

To allow type annotation in pattern matching, we extend the syntax of the graph

template T . A type annotation T : τ (
−→
X) ensures that the type of the graph matched

with T is of type τ (
−→
X).

To evaluate pattern matching with annotations, we extend the matching mechanism.

Match(G, T,
−→
θ) denotes that (i) the graph context T can match the graph G with graph

Chapter 4. FGT : A Type System for λGT 65

substitutions
−→
θ and that (ii) each subgraph of G matched by a subcontext of T satisfies

the type constraint attached to the subcontext. Match(G, T,
−→
θ) is defined inductively as

in Figure 4.6. It is a straightforward inductive argument to see that Figure 4.6 extends

the matching defined in Section 3.3.2 with the rule Mt-Ty for type checking.

The type annotations that do not match the type definitions of production rules could

be reported as bugs, which could be analyzed easily and statically. Also, for simplicity,

henceforth we will assume that all the graph contexts are type-annotated and make it a

future task to support unannotated graph contexts.

The matching can be non-deterministic; that is, given a graph and a pattern, there

may in general be more than one way in which graph contexts in the pattern are bound to

subgraphs. However, the non-determinacy of the matching does not affect the soundness

of the type system since the system proves that every execution path is type-safe.

The program that pops the last element of a difference list we have introduced in

Section 3.3.2 can be handled with type-annotations as follows.

(Γ, P) `
(λx[Y,X] : nodes (Y,X).

case x[Y,X] of

νZ1.Z2.(y[Z1, X] : nodes (Z1, X),

Cons(Z2, Y, Z1),

z[Z2] : nat (Z2))

→ y[Y,X]

| otherwise→ x[Y,X]

)(Z)

:

(nodes (Y,X)→
nodes (Y,X)

)(Z)

This can be typed using Ty-Case where the Γ′ stands for the annotated typing relations

y[Z1, X] : nodes (Z1, X), z[Z2] : nat (Z2).

4.3 Extending the Type System

In this subsection, we deal with an example which the type system in Section 4.2 fails to

verify. The type system in Section 4.2 was actually for parsing when dealing with graphs;

it just checks if the graph can be generated from the annotated type variable atom, i.e.,

the start symbol. Algebraic data types can be handled in this manner because they can

only be generated according to the grammar that defines the type. However, in the case of

graphs, more powerful operations are possible, for example the concatenation of difference

lists. In this subsection, we propose an extended verification framework to deal with such

cases.

66 4.3. Extending the Type System

fn(G) = {
−→
X}

Mt-Var
Match(G, x[

−→
X], [G/x[

−→
X]])

Mt-Triv
Match(G,G, [])

Match(G1, T1,
−→
θ1) Match(G2, T2,

−→
θ2)

Mt-Mol
Match((G1, G1), (T1, T2),

−→
θ1
−→
θ2)

where dom(
−→
θ1) ∩ dom(

−→
θ2) = ∅

Match(G, T,
−→
θ)

Mt-ν
Match(νX.G, νX.T,

−→
θ)

Match(G1, T,
−→
θ) G1 ≡ G2

Mt-Cong
Match(G2, T,

−→
θ)

Match(G, T,
−→
θ) G : τ (

−→
X)

Mt-Ty
Match(G, (T : τ (

−→
X)),

−→
θ)

Figure 4.6: Matching with a template and graph substitutions

4.3 Motivation

As a running example, we consider a typed version of the following program for appending

two difference lists introduced in Section 3.3.2.

(λ x[Y,X] : nodes (Y,X)

y[Y,X] : nodes (Y,X).

x[y[Y], X]

)(Z)

It seems natural that the following typing relation holds, where append [Z] is the λ-

Chapter 4. FGT : A Type System for λGT 67

abstraction atom above.

(Γ, P) `
append [Z] : (nodes (Y,X)→ nodes (Y,X)→ nodes (Y,X))(Z)

However, this program cannot be verified by directly using the rules in the type system

in Section 4.2.

Theorem 4.3.1. The append operation on difference lists fails to verify on the previously

defined FGT .

Proof. We need to prove

((x[Y,X] : nodes (Y,X), y[Y,X] : nodes (Y,X)), P) `
x[y[Y], X] : nodes (Y,X)

to verify the present example. Theorem 4.2.2 states that, if we can successfully prove the

typing relation using FGT , we should be able to prove nodes (Y,X)⇝∗
P nodes (nodes (Y), X).

However, applying the production rules of difference lists cannot increase the number of

nodes/2 atoms. Therefore, applying the production rules to the annotated type variable

atom nodes (Y,X) will never yield nodes (nodes (Y), X).

However, it is obvious that appending two difference lists returns a difference list, and

this operation should be supported. We extend the previously defined FGT to enable such

verification.

4.3 Extension on FGT

We start with the first attempt of the extension.

Definition 4.3.1 (Extension on FGT (Unrefined)). For a graph template T , it is sufficient

if the typing succeeds after replacing each graph context in T by all possible values of the

types attached to the graph context, or more formally, as in Figure 4.7.

The (apparently intuitive) rule in Definition 4.3.1 has ⇒ on the antecedent and the

typing relation we are going to define (the parameter of the generating function) appears

on the left-hand side of the ⇒. Unfortunately, then, we cannot ensure the monotonicity

of the generating function and the existence of a least fixed point, which is the typing

relation we want to define.

Now we consider how to fix this, which we have found is not trivial or straightforward.

If we define a typing relation, say R0, without Ty-Subst and define the left-hand side of

the ⇒ of Ty-Subst with R0, we can ensure the monotonicity of the generating function

and the typing relation becomes well-defined.

First, we prepare two sets of typing rules, one with all the :’s in Figure 4.2 rewritten

as :0 and the other as :1. Then, we can define R0 only with typing rules with :0, which is

well-defined.

68 4.3. Extending the Type System

∀
−→
Gi.

((
i∧(

(∅, P) ` Gi : τi(
−→
Xi)
))
⇒ (∅, P) ` T

−−−−−−−−→[
Gi/xi[

−→
Xi]
]i

: τ (
−→
X)

)
Ty-Subst (unrefined)(−−−−−−−−−→

xi[
−→
Xi] : τi(

−→
Xi)

i

, P

)
` T : τ (

−→
X)

where
−−−→
xi[
−→
Xi]

i

= ff (T)

Figure 4.7: Extension on FGT (unrefined)

∀
−→
Gi.

((
i∧(

(∅, P) ` Gi :0 τi(
−→
Xi)
))
⇒ (∅, P) ` T

−−−−−−−−→[
Gi/xi[

−→
Xi]
]i
:1 τ (
−→
X)

)
Ty-Subst (unrefined 2)(−−−−−−−−−−→

xi[
−→
Xi] :1 τi(

−→
Xi)

i

, P

)
` T :1 τ (

−→
X)

where
−−−→
xi[
−→
Xi]

i

= ff (T)

Figure 4.8: Extension on FGT (unrefined 2)

Next, we define the typing relation, say R1, using typing rule with :1 and the rule in

Figure 4.8 (Ty-Subst with :0 and :1). Since the left-hand side of ⇒ in Figure 4.8 uses the

already defined R0, it can be interpreted as a monotonic function and the typing relation

R1 is well-defined.

However, we cannot ensure the soundness if we define Ty-Subst in such a way because

the antecedent of the rule ensures the safety if Gi has a type τi(
−→
Xi) inR0 but the antecedent

does not ensure the safety when Gi has a type τi(
−→
Xi) only in R1. Since R1 can handle

more programs than R0, this may violate the soundness of the system.

For example, consider the case where Gi is a graph containing a function that con-

catenates difference lists and τi(
−→
Xi) contains an arrow type for a function that takes two

difference lists (as curried arguments) and return a difference list. Since it is not verifiable

in R0 that a function that concatenates difference lists returns a difference list, we can

make the left-hand side of⇒ on Ty-Subst false. In such a case, the antecedent of Ty-Subst

is satisfied no matter what the right-hand side of ⇒ is. Thus, we cannot ensure safety for

Chapter 4. FGT : A Type System for λGT 69

the case where we bound a graph containing a function that concatenates difference lists.

However, since the consequent of Ty-Subst uses :1, it allows the xi[
−→
Xi] to be bound to a

graph that includes a function that concatenates difference lists.

Therefore, we need a more refined framework that allows the indices we have attached

to : previously to be different for each type. Accordingly, we introduce the notion of ranks

for types and Ty-Subst.

If the typing on the left-hand side of⇒ does not use Ty-Subst, which we will define, it

can be interpreted as a monotonic function and is well-defined. Therefore, we introduce

ranks into Ty-Subst so that the left-hand side typing of ⇒ can only use Ty-Subst with a

lower rank that has already been defined.

We first introduce ranks to the type. We denote the type with Rank n (n ≥ 0) as

τn(
−→
X). We extend the rules in Figure 4.2 so that the types have ranks.

Definition 4.3.2 (Rules for FGT with ranks). Typing rules for FGT with ranks are given

in Figure 4.9. Notice that we have added a new typing rule Ty-Sub, a rule for subtyping.

Definition 4.3.3 (Extension on FGT (Refined)). The refined version of Definition 4.3.1

is shown in Figure 4.10.

Proposition 4.3.1. The typing rules are well-defined even if we add Definition 4.3.3.

Proof. In Definition 4.3.3, the ranks of the type on the left-hand side of ⇒, ni, are always

smaller than the rank of the type τn (
−→
X) on the consequent of the rule, n. The typing rules

in Figure 4.9 are defined so that the ranks do not increase when we read the rules upwards.

Thus, the typing relation used for the left-hand side of ⇒ in the antecedent of Ty-Subst

(of rank n) can be established using Ty-Subst with smaller ranks m (m < n) only (which

may actually be used when, for example, the Gi’s contain abstraction atoms). Suppose all

typing relations involving smaller ranks are well-defined. Then, since the typing relation

we are about to define does not appear in the left-hand side of ⇒, we can ensure the well-

definedness of the typing relation involving ranks up to n. Because the typing relation

containing types with rank 0 only does not involve Ty-Subst and is therefore well-defined,

by mathematical induction on rank, we can define a typing relation for all ranks.

The existence of the typing rule defined in Definition 4.3.3 does not violate the sound-

ness since using the rule ensures that a program can be typed without such a rule for all

the possible graphs bound to graph contexts.

Let us consider the typing of a function that concatenates difference lists. From now

on, we omit the “(∅, P) `” for brevity. Suppose we have already proven the following

(we will prove this in Section 4.3.3).

∀G1, G2.
(
G1 : nodes

n(Y,X) ∧G2 : nodes
m(Y,X)

⇒ νZ.(x[Z,X], y[Y, Z])
[
G1

/
x[Y,X]

][
G2

/
x[Y,X]

]
: nodesmax(n,m)(Y,X)

) (4.1)

70 4.3. Extending the Type System

(Γ, P) ` e1 : (τ1
n(
−→
X)→ τ2

m(
−→
Y))

m
(
−→
Z) (Γ, P) ` e2 : τ1

n(
−→
X)

Ty-App
(Γ, P) ` (e1 e2) : τ2

m(
−→
Y)

((Γ, x[
−→
X] : τ1

n(
−→
X)), P) ` e : τ2

m(
−→
Y) n ≤ m

Ty-Arrow
(Γ, P) ` (λx[

−→
X] : τ1

n(
−→
X).e)(

−→
Z) : (τ1

n(
−→
X)→ τ2

m(
−→
Y))

m
(
−→
Z)

Ty-Var
(Γ{x[

−→
X] : τn (

−→
X)}, P) ` x[

−→
X] : τn (

−→
X)

(Γ, P) ` T : τn (
−→
X) T ≡ T ′

Ty-Cong
(Γ, P) ` T ′ : τn(

−→
X)

(Γ, P) ` T : τn(
−→
X)

Ty-Alpha
(Γ, P) ` T 〈Z/Y 〉 : τn(

−→
X)〈Z/Y 〉

where Z /∈ fn(T)

(Γ, P) ` T1 : τ1
n1(
−→
X1) . . . (Γ, P) ` Tn : τm

nm(
−−→
Xm)

Ty-Prod
(Γ, P{α(

−→
X) −→ T }) ` T [T1/τ1(

−→
X1), . . . , Tm/τm(

−−→
Xm)] : αmaxni(

−→
X)

where τi(
−→
Xi) are all the type atoms appearing in T

(Γ, P) ` e1 : τ1
n(
−→
X)

((Γ,Γ′), P) ` e2 : τ2
m(
−→
Y)

(Γ, P) ` e3 : τ2
m(
−→
Y) n ≤ m

Ty-Case
(Γ, P) ` (case e1 of T → e2 | otherwise→ e3) : τ2

m(
−→
Y)

(Γ, P) ` e : τn (
−→
X) n < m

Ty-Cong
(Γ, P) ` e : τm(

−→
X)

Figure 4.9: Typing rules for FGT with ranks

Then, we can type the function using Ty-Sub, Ty-Subst (rank max(n,m) + 1), and

Ty-Arrow as shown in Figure 4.11.

Chapter 4. FGT : A Type System for λGT 71

∀
−→
Gi.

((
i∧(

(∅, P) ` Gi : τi
ni(
−→
Xi)
))
⇒ (∅, P) ` T

−−−−−−−−→[
Gi/xi[

−→
Xi]
]i

: τn (
−→
X)

)
Ty-Subst (rank n)(−−−−−−−−−−−→

xi[
−→
Xi] : τi

ni(
−→
Xi)

i

, P

)
` T : τn (

−→
X)

where n = maxni + 1,
−−−→
xi[
−→
Xi]

i

= ff (T).

Figure 4.10: Extension on FGT (refined)

Since the type system is monomorphic, we cannot type the following program.

((f : (nodesn(Y,X)→
(nodesm(Y,X)→
nodesmax(n,m)+1(Y,X)

)max(n,m)+1(Z)

)max(n,m)+1(Z)

x[Y,X] : nodes l(Y,X)

,

), P)

` f x[Y,X] (f x[Y,X] x[Y,X]) : τ k(Y,X)

We need to satisfy n = max(n,m) + 1, which is unsatisfiable.

Such programs can be typed introducing polymorphism for ranks. However, this paper

does not go into this and leaves it as future work.

4.3 Proving the Antecedent of the Rule

In order to apply Definition 4.3.3 to the present example, we need to prove that, for any

graphs to which x[Y,X] and y[Y,X] can be mapped, the substituted result must have the

type nodesn(Y,X), that is,

∀G1, G2.((G1 : nodes
n(Y,X) ∧G2 : nodes

m(Y,X))

⇒ νZ.(x[Z,X], y[Y, Z])[G1/x[Y,X]][G2/y[Y,X]]

= νZ.(G1〈Z/Y 〉, G2〈Z/X〉) : nodesmax(n,m)(Y,X)).

The above can be rewritten using Ty-Alpha as follows.

∀G1, G2.(G1 : nodes
n(Z,X) ∧G2 : nodes

m(Y, Z)

⇒ νZ.(G1, G2) : nodes
max(n,m)(Y,X))

(4.2)

72 4.3. Extending the Type System

Equation (4.1)
Ty-Sub

∀G1, G2.
(
G1 : nodes

n(Y,X) ∧G2 : nodes
m(Y,X)

⇒ νZ.(x[Z,X], y[Y, Z])
[
G1

/
x[Y,X]

][
G2

/
x[Y,X]

]
: nodesmax(n,m)+1(Y,X)

)
Ty-Subst

(rank max(n,m) + 1)((x[Y,X] : nodesn(Y,X), y[Y,X] : nodesm(Y,X)) , P)

` νZ.(x[Z,X], y[Y, Z]) : nodesmax(n,m)+1(Y,X)
Ty-Arrow

(x[Y,X] : nodesn(Y,X), P) `
(λ y[Y,X] : nodesm(Y,X). (nodesm(Y,X)→

νZ.(x[Z,X], y[Y, Z]) : nodesmax(n,m)+1(Y,X)

)(Z))max(n,m)+1(Z)
Ty-Arrow

(∅, P) `

(λx[Y,X] : nodesn(Y,X). (nodesn(Y,X)→
(λ y[Y,X] : nodesm(Y,X). (nodesm(Y,X)→

νZ.(x[Z,X], y[Y, Z]) : nodesmax(n,m)+1(Y,X)

)(Z))max(n,m)+1(Z)

)(Z))max(n,m)+1(Z)

Figure 4.11: Type checking a function that concatenate difference lists

We prove this by induction on the derivation of the antecedents. To do this, we need

a lemma and a theorem.

Lemma 4.3.1. For G : αn(
−→
X), the rule Ty-Prod with α/|

−→
X | on its LHS is used in the

derivation. Furthermore, only Ty-Cong and Ty-Alpha are used after the last application

of Ty-Prod.

Proof. Suppose we build a proof tree of G : αn(
−→
X) bottom-up. Since G is a value, we can

only use Ty-Cong, Ty-Alpha, Ty-Subst, Ty-Sub and Ty-Prod until a λ-abstraction atom

appears. Ty-Alpha, Ty-Subst, Ty-Sub, and Ty-Cong only inherit the annotated type

from the antecedent (although they may changes the rank) so they alone cannot make

the annotated type a type variable atom. If Ty-Prod does not appear but a λ-abstraction

atom appears and Ty-Arrow is used, the annotated type becomes an arrow and not a type

variable. Therefore, there must exist a Ty-Prod whose annotated type has the functor

α/|
−→
X |.

Theorem 4.3.2. For G : αn(
−→
Y), if the production rule used by last Ty-Prod was α(

−→
X) −→

T , there exists
−→
Gj

j
such that G ≡ T ′[

−−−−−−−→
Gj/τj (

−→
Xj)

j

] where

• T ′ = T
−−−−→
〈Yi/Xi〉

i

,

Chapter 4. FGT : A Type System for λGT 73

• τj (
−→
Xj) are all the type atoms appearing in T ′,

•
−−−−−−−−−→
Gj : τj

nj(
−→
Xj)

j

, and

• maxnj = n.

Proof. By induction on the derivation of G : αn(
−→
Y) after the last application of Ty-Prod

using Lemma 4.3.1.

Consider the case if the rule Ty-Prod used last in the derivation of G1 : nodes
n(Z,X)

was the one with the following production rule.

nodes(X2, X1)

−→ νX3X4.(Cons(X3, X4, X1), nat (X3), nodes (X2, X4)),

Then, by Theorem 4.3.2, we can decompose the graph G1 ≡ νX3X4.(Cons(X3, X4, X), G3, G4)

into G3 and G4, where G3 : nat
0(X3) and G4 : nodes

n(Z,X4). And we can proceed verifi-

cation by checking if the target graph has the desirable type for all possible values of G3

and G4.

We prove Equation (4.2) by induction on the derivation of G1 : nodesn(Z,X). We

split the cases based on the rule Ty-Prod used last in the derivation and decompose the

graph using Theorem 4.3.2.

For brevity, we denote the graph G of the type αn(
−→
X) as αn(

−→
X) and omit ∀G. Then

Equation (4.2) can be rewritten as

νZ.(nodesn1 (Z,X), nodesm2 (Y, Z)) : nodes
max(n,m)(Y,X).

The inference rule (or rule scheme, precisely speaking) that splits the cases by the last

application of Ty-Prod to derive βn

j
in G is expressed in the following form. Here, Gi is

the graph such that the last production rule used in the derivation of βn

j
is Pi.

G1 : α
l(
−→
X) . . . Gm : αl(

−→
X)

Case βn

j

G : αl(
−→
X)

The concatenation of difference lists can be verified as shown in Figure 4.12, where

the arrow ←↩ refers to using the induction hypothesis.

4.4 Automatic Verification on the Extended Type System

In Section 4.3, we typed the program by manually applying structural induction to the

target program. In this subsection, we describe a method to do this automatically. From

now on, we handle the cases where ranks are all zero and omit them. Extending the

algorithm to handle general rank is future work.

We construct a proof tree like what we have shown in Figure 4.12 bottom-up. Given

G : α(
−→
X), we can use the following strategies to verify those programs.

74 4.4. Automatic Verification on the Extended Type System

nodesm2 (Y,X) : nodesm(Y,X)

Ty-Cong
νZ.(X ▷◁ Z, nodesm2 (Y, Z)) : nodesm(Y,X)

Ty-Sub

νZ.(X ▷◁ Z, nodesm2 (Y, Z)) : nodesmax(n,m)(Y,X)

nat03(W1) : nat0(W1)

νZ.(nodesn4 (Z,X), nodesm2 (Y, Z)) : nodesmax(n,m)(Y,X)

Ty-Alpha

νZ.(nodesn4 (Z,W), nodesm2 (Y, Z)) : nodesmax(n,m)(Y,W)

Ty-Prod P2

νW.(Cons(nat03,W,X), νZ.(nodesn4 (Z,W), nodesm2 (Y, Z))) : nodesmax(n,m)(Y,X)

Ty-Cong

νZ.(Cons(nat03, nodes
n
4 (Z), X), nodesm2 (Y, Z)) : nodesmax(n,m)(Y,X)

Case nodesn1
νZ.(nodesn1 (Z,X), nodesm2 (Y, Z)) : nodesmax(n,m)(Y,X)

Figure 4.12: Verifying concatenation of difference lists

Ty-Prod: If we get a constructor atom C/n from G, we can check whether an annotated

type name atom α(
−→
X) can be derived from the target graph using Prod with a

production rule with α(
−→
X) on the LHS and C/n on the RHS. However, in order

to use a production rule, the subgraphs in G must have the types necessary for

the derivation. For this reason, the type checker is performed inductively on the

subgraphs.

Case β
i
: If we get a type annotated graph β

i
from G, we decompose it using Theo-

rem 4.3.2. Then check if G with its subgraph β
i
thus decomposed has type α(

−→
X).

←↩ : Induction hypotheses are used when applicable.

However, it is not that easy to do this automatically. Especially for more complex

examples.

1. We cannot easily separate a graph into subgraphs when using a production rule. It

is difficult to automatically separate and guess the type of a subgraph, prove it as

a subproblem, and proceed with the proof using it without any prior preparation.

2. The possibility that links may be fused later makes it difficult to get the correspon-

dence of link names in the target graph and the applying production rule.

Remember the production rules for leaf-linked trees in Example 4.2.6. Here, we

want to type check the following graph.

νY.Node(L, lltree(Y,R), X),Leaf(nat, L, Y) : lltree(L,R,X)

In this example, we try to apply the second rule

lltree(L,R,X) −→ νY.Node(lltree(L, Y), lltree(Y,R), X).

In this rule, the first link of the atom Node/3 is a(n anonymous) local link, say Y1,

but the corresponding link in the target graph is the free link L. Therefore, it is

necessary to proceed with the information that Y1 will be fused to L later, and to

check that the fusion occurs before the local link Y1 leaves the scope. Implementing

this becomes complex with more similar cases and is not that easy. In addition, it

is not trivial to add the structural induction hypothesis in this process and apply it.

Chapter 4. FGT : A Type System for λGT 75

3. A strategy is also needed for the decomposition of annotated contexts. In Fig-

ure 4.12, we decomposed nodes1(Z,X). If we decomposed nodes2(Y, Z), we would

not get the form to which induction hypothesis can be applied and verification would

fail.

Therefore, we restrict the production rules to facilitate disassembly into subgraphs by

introducing the notion of a root link. Also, fusions are absorbed first to prevent link fusion

from occurring later. And we decompose annotated contexts from the one holding a free

root link (e.g., nodes1 holding X in the proof goal of Figure 4.12).

4.4 Constraints on Production Rules

The type system FGT defined so far has imposed no restriction on production rules, even

disconnected graphs (multisets) could be handled. However, here, we design the type

system to efficiently support data structures of practical importance.

In order to handle graphs inductively with production rules easier, we introduce the

notion of root links.

Definition 4.4.1 (Root link). We call the last link of each atom as its root link.

We give a restriction on production rules so that we can find a spanning tree of a

graph by traversing the root links. Since a spanning tree can be found for any connected

graph, we can arrange the ordering of links of individual atoms in such a way that the

root links form the edges of a spanning tree. Thus the restriction on production rules will

not essentially sacrifice the expressive power of the data structure for practical programs.

We call a link X the root link of a graph G if every atom in the graph can be reached

through their root links from X.

Definition 4.4.2 (Constraints on production). A production rule should have the form

α(
−→
X,R) −→ τ , where the τ should be one of the following.

1. one or more fusions.

2. has one constructor atom C(
−→
Y ,R), zero or more type variable atoms αi(

−→
Yi), zero or

more fusions, and zero or more arrow atoms and satisfies all the following conditions.

(a) The root link R of C(
−→
Y ,R) occurs free in τ .

(b) The root link Ri of a type variable atom αi(. . . , Ri) should satisfy Ri ∈ {
−→
Y }

and all the Ri’s are mutually distinct.

All the examples we have introduced in Section 4.2.2 satisfy these constraints. There-

fore, we claim that most of the practical examples are covered even with the restrictions.

76 4.4. Automatic Verification on the Extended Type System

4.4 Fusion Elimination

Since fusion (./) is difficult to handle, we attempt to eliminate fusions (./) except when

they are generated directly from the annotated type variable atom by merging of produc-

tion rules.

Definition 4.4.3 (Fusion elimination). Let P▷◁ denote the set of production rules that

include fusion. And let P▷◁ denote the set of production rules without fusion. For each

production rule in P▷◁, we apply the production rules in P▷◁ to the type variable atom

in the RHS of the rule. This is done in n2 ways for n type variable atoms to cover all

combinations. We add the newly created rules, which includes the original one, to P ′.

We also add the rules that have no type variable atoms on RHS to P ′. If there exist rules

in P ′ and P▷◁ which have the annotated type variable α(
−→
X) on the LHS, we add the rule

whose LHS are replaced with α▷◁(
−→
X) to P ′.

Finally, we replace the annotated type variable α(
−→
X) with α▷◁(

−→
X).

We have observed that it is not always possible to eliminate fusion in this way. How-

ever, all of our practical examples can be successfully transformed by this method. A

more refined method of fusion elimination and a rigorous proof that the production rules

obtained by this operation are equivalent to the original ones will be the subject of future

work.

If fusion elimination succeeds, we can say that fusion will not appear “later” when

the production rule is applied backwards (Ty-Prod). On the other hand, we cannot deny

the possibility of occurrence of unabsorbable fusion when applying production rules to

decompose graphs (Case). However, this did not happen in our examples.

Once we eliminate fusions, it will be easy to check the correspondence of links. Firstly,

we α-convert link names so that all the link names are distinct. Then, the correspondence

of links in the target graph and the annotated type can be checked as follows. If they

are free links, check if they have the same name. If the links are local links, we check

the correspondence between the link in the target graph and the link in the annotated

type based on mapping. If the correspondence has not yet been established, add a new

correspondence. If the correspondence is already in place, we check that it is satisfied.

Figure 4.13 shows the algorithm to check the correspondence of links.

4.4 The Algorithm

It will be a little troublesome to implement the backward application of a production rule

to handle the reverse execution of Ty-Prod. Thus, we will first apply the production rule

to the annotated type and then remove the constructor atom both on the target graph

and the annotated type. Note that this will result in allowing graphs in the annotation

during the execution of this algorithm, which we refer to as an annotated graph.

Figure 4.14 shows the outline of the algorithm. The function check(G,α(
−→
X,R), P)

checks that (∅, P) ` G : α(
−→
X,R) where G possibly includes β(

−→
Y); type annotated graph

Chapter 4. FGT : A Type System for λGT 77

1 let check link name

2 L (* A set of local links of the target graph *)

3 f (* A mapping from the links in annotation to the links in the target graph

*)

4 (X, (* The link in the target graph *)

5 Y (* The link in the annotation *)

6)

7 =

8 if X /∈ L then

9 if X /∈ dom(f) ∧X = Y then Some f else None

10 else

11 if Y 7→ None ∈ f then Some (f updated with Y 7→ Some X)

12 else if Y 7→ Some X ∈ f then Some f

13 else None

Figure 4.13: Check link name

Gβ where Gβ : β(
−→
Y). The algorithm runs recursively with helper function (line 6) on the

atoms/type annotated graph with a root link R of the target graph G and the annotated

graph T .
Line 12 checks that the graph G has type T trivially. For example, G maybe the type

annotated graph whose annotated type was T or a λ-abstraction atom, whose typing

relation can be checked as the same as the other functional language (except that we may

need to apply this algorithm recursively for the graphs in its body expression).

From line 13, we split the cases by the atom with the root link of the target graph and

the annotated graph. If both atoms have constructor names with the same functor, then

we remove the atoms and run the algorithm recursively to all the subgraphs traversable

from their arguments.

If the atom in the annotated graph is a type variable atom α(
−→
Y), then we first try to

use induction hypotheses H (line 23 and line 28). Notice that we can use congruence rules

(Ty-Cong) and α-conversion of free links (Ty-Alpha) to absorb the syntactic difference

between (G : T) and hypothesis in H.

If we cannot prove it by the hypothesis, then we should proceed with the construction

of the proof tree with Ty-Prod or Case. If the root of the target graph is a constructor

atom CG(
−→
X) (line 22), then we apply the production rules whose LHS is α/|

−→
Y | and check

there exists a way to successfully construct a sub-proof. Notice that we add the current

typing relation to the induction hypotheses. If the root of the target graph is a type

annotated graph β(
−→
X) (line 27), then we decompose the graph using the production rules

of last Ty-Prod and check all of them satisfies the type.

Although we did not mention it in our pseudocode but we need to make sure that

78 4.5. Related Work

the links
−→
X and

−→
Y have a proper correspondence using the function we have shown in

Figure 4.13.

Theorem 4.4.1. The algorithm in Figure 4.14 is sound.

Proof. This is straightforward since we are constructing a proof tree. There is a concern

that soundness may be violated when the induction hypothesis is used, but this is not a

problem. This is because the size of the graph gets strictly smaller when the type checker

applies the structural induction. The structural induction hypothesis is added on line 26,

where a production rule is applied to the annotation, and the root of the annotated graph

always becomes a constructor atom. Therefore, the type checker does not proceed to the

cases except in line 14 in the recursion, and if this branch succeeds, the constructor atom

is removed, reducing the size of the graph. Therefore, it is sound by the infinite descent

method.

4.5 Related Work

Since graphs and its operations are more complex than trees, there are diverse formalisms

for graphs and graph types.

4.5 Functional Language with Graphs

FUnCAL [MA17] is a functional language that supports graphs as a first-class data struc-

ture. This language is based on an existing graph rewriting language, UnCAL . In UnCAL

(and FUnCAL), graphs may include back edges and their equality is defined based on

bisimulation. FUnCAL comes with its type system but does not support pattern matching

for user-defined data types, which classic functional languages support for ADTs.

Functional programming with structured graphs [OC12] can express recursive graphs

using recursive functions, i.e., let rec statements. Since they employ ADTs as the basic

structure, they can enjoy type-based analysis based on the traditional type system. On

the other hand, we can do further detailed type analysis by our language and type system.

Initial algebra semantics for cyclic sharing tree structures [Ham10] discusses how to

express graphs by λ-expressions. However, there is a large gap between λ-expressions

and pointer structures. On the other hand, we defined a graph based on nodes and

hyperedges, which has a clear correspondence to a pointer structure. This style is rather

suitable for future implementation. In addition, they do not support user-defined graph

types or verification based on them.

4.5 Typing Frameworks for Graphs

Structured Gamma [FM98] is a typing framework for graphs, in which types are defined

by production rules in context-free graph grammar. Shape Types [FM97] are similar but

the following restrictions are imposed on type definitions to ensure completeness of type

Chapter 4. FGT : A Type System for λGT 79

checking: (i) the state space of type checking must be confluent, and (ii) graphs supple-

mented during the type checking must consist only of a finite number of symbols. With

context-free graph grammar, we can express a broad and expressive class of types. How-

ever, type checking becomes harder and hence it does not cover some practical operations.

For example, the concatenation of difference lists and the pop operation from the tail of

them cannot be checked by either Shape Types or Structured Gamma. In this research,

we restrict the target grammar so that we can verify practical operations by structural

induction.

With Graph Types [KS93], we can define types of algebraic data structures accom-

panied by extra edges, where the destination of an extra edge is specified by a routing

expression. A routing expression is a regular expression over small-step traverse opera-

tions, which describes the relative position of the destination of an extra edge, and the

actual destination can be automatically computed based on it. In addition, Graph Types

provide a decidable monadic second-order logic on the types as a way of formal verifica-

tion and automatic program generation. For example, a constant-time concatenation of

doubly-linked lists as modification of pointers can be deduced by the logic.

Our type system FGT and Graph Types share the ideas that typed graphs consist of

a canonical spanning tree and auxiliary edges, and types are defined by production rules.

On the other hand, auxiliary edges and their modification are computed based on routing

expressions in Graph Types, whereas they are described by users and verified by the types

in our method. In addition, pattern matching based on the types can be described in our

language λGT .

4.5 Separation Logic

Our approach is in contrast with the analysis of pointer manipulation programs using

Separation Logic [Rey02], shape analysis [WSR00], etc.

Firstly, the target languages differ in many ways. Separation Logic and shape analysis

normally handle low-level imperative programs using heaps and pointers. In contrast, we

dispense with destructive operations and adopt pattern matching over graphs provided

by the new higher-level language λGT , which abstracts address, pointers and heaps away,

and features hyperlinks and operations on them including fusion and hiding.

Secondly, we pursue a lightweight, automatic type system for functional languages

rather than Hoare-style general verification for imperative languages. Separation Logic

allows us to use pure formulae that represent various non-spatial properties. The only

thing that seems to correspond to pure formulae in our type system is fusion (which can

be regarded as x = y in Separation Logic). This design choice reflects the fact that our

goal is not a formal system for software verification but a programming language and its

type system.

The problem discussed in Section 4.3, verification of an inductively defined structure

with structural induction, is close to the entailment problem of inductive predicates with

80 4.6. Further Work

symbolic heaps in Separation Logic, sometimes referred to as SLRD (Separation Logic

with Recursive Definitions). Cyclist [BGP12] performs automatic verification of the prob-

lem. However, the algorithm requires dynamic checking of the soundness condition. On

the other hand, we have restricted graph grammar and proved the soundness statically

as a (meta-)theorem. Antonopoulos et al. [Ant+14] show that the entailment problem

of general SLRD is undecidable. Therefore, decision procedures for them impose some

restrictions on SLRD. Iosif et al. [IRS13] propose a sub-class of SLRD, SLRDbtw, which

handles graphs with bounded treewidth. The restrictions imposed on the recursive defini-

tions are similar to the restrictions we have introduced in Section 4.4.1. However, they do

not allow empty graphs and cannot handle a difference list without elements. Tatsuta et

al. [TNK19] has imposed further restriction to SLRDbtw which corresponds to the notion

of root link in ours. A precise comparison of the algorithms in [TNK19] and our technique

will be the subject of future work.

4.6 Further Work

Finally, we address future work for the type system that is not mentioned in previous

subsections.

4.6 Extend the Type System to Handle Untyped Graph Contexts

In this paper, we introduced dynamic type checking (Section 4.2.4) and excluded untyped

graph contexts. However, verification with untyped graph contexts is necessary not just to

reduce the programmer’s extra effort since there exist programs that cannot be succinctly

handled without untyped graph contexts. For example, matching the leftmost leaf in a

leaf-linked tree is possible in λGT using a template consisting of the leftmost leaf and an

untyped graph context for the rest of the tree. However, we cannot denote the type of

the untyped graph context using the type of the leaf-linked tree because it is not a tree.

4.6 Extension on the Type System: Polymorphism and Type Inference

The proposed type system FGT is monomorphic. We can only define difference lists with

a specific element type, though introducing generic data types as in other functional

languages could be done in the same way.

However, for more complex data structures, introducing polymorphism may be not

that straightforward since we have introduced more powerful operations than the other

languages such as concatenation of difference lists. In λGT , concatenation of difference

lists can be done without explicitly handling constructor atoms, which may be typeable

as a generic function. However, since operations on data structures may not result in data

structures of the same type, we may need to verify programs with the type information

of the inputs, which seems to be a little incompatible with polymorphism.

Chapter 4. FGT : A Type System for λGT 81

The same thing can be said for type inference. Since we allow powerful operations

over data structures without explicitly denoting constructor names, it may be more dif-

ficult than in other functional languages and may require some non-obvious ingenious

techniques.

82 4.6. Further Work

1 let check (

2 G, (* Target graph *)

3 α(
−→
X,R), (* Annotated type atom *)

4 P (* Production rules *)

5) =

6 let rec helper (

7 R, (* Root link *)

8 G, (* Target subgraph *)

9 T , (* Annotated graph *)

10 H (* Induction hypotheses *)

11) =

12 if trivially G : T then true

13 match (v (
−→
X,R) or α(

−→
X,R) in G, τ (

−→
X,R) in T) with

14 CG(
−→
X,R), CT (

−→
Y ,R) →

15 if CG/|
−→
X | 6= CT /|

−→
Y | then false

16 else

17 ∀i.
18 if Xi and Yi are the roots of the non-empty subgraph Gi and Ti

then

19 helper (R,Gi, Ti, H)

20 else

21 Xi and Yi are not the root of atoms in G and T

22 CG(
−→
X), α(

−→
Y) →

23 (G : T) ∈ H ∨
24 ∃(β(

−→
Z) −→ T ′) ∈ P such that

25 α/|
−→
Y | = β/|

−→
Z | ∧

26 helper (R,G, T ′−−−−→〈Yi/Zi〉
i

, {G : T } ∪H)

27 β(
−→
X), α(

−→
Y) →

28 (G : T) ∈ H ∨
29 ∀(r with β/|

−→
X | on LHS ∈ P).

30 helper (R,G decomposed β(
−→
X) with r, T , H)

31 otherwise → false

32 helper (R,G, α(
−→
X,R),∅)

Figure 4.14: Graph type checker

5
Conclusions and Further Work

5.1 Conclusions

In this study, we proposed a new functional language λGT that handles graphs as a first-

class data structure with declarative operations based on graph transformation.

First, we investigated the property of a simple term language, HyperLMNtal, to de-

note labelled hypergraphs with ports with a finite set of axioms to denote the congruence

of terms. We defined a mapping from HyperLMNtal terms to hypergraphs; t2gs and

proved that the structural congruent terms are mapped to graph isomorphic graphs using

t2gs ; i.e., the mapping satisfies soundness. In other words, we have precisely discussed

the relationship between the syntax for introducing (hyper)graphs into a programming

language and mathematically defined hypergraphs. Since very few languages have incor-

porated hypergraphs, this is an important study for the foundation of its (denotational)

semantics.

Second, we formalized the formal syntax and semantics of λGT in a syntax-directed

manner, incorporating HyperLMNtal into a call-by-value λ-calculus. We have also imple-

mented a reference interpreter.

Third, we developed a new type system FGT that employs HyperLMNtal rules as pro-

duction rules to deal with data structures more complex than trees. We firstly introduced

the basic type system and then extended the type system to support more powerful veri-

fication such as concatenation of difference lists. We have also developed an algorithm to

automatically verify programs with the extended type system using structural induction.

Finally, we address future work that is not mentioned in previous subsections.

5.2 Further Work

Our goal is to construct a solid theoretical foundation for the new generation of language

that comes after Rust. Our current results so far are not sufficient to fulfil the purpose.

First, we need more investigation into HyperLMNtal. We have already proved the

soundness of the denoted hypergraphs. However, we have left the completeness, which we

believe is necessary to examine the completeness of the matching in the implementation.

Furthermore, the λGT language does not just test that the given two graphs are congruent,

it tries to find a substitution to make them congruent. Thus, we need to investigate the

83

84 5.2. Further Work

property with substitutions.

Second, we need to extend the type system more. The type system currently relies

on dynamic type checking to ensure type safety in pattern matchings. This forces run-

time costs depending on the size of graphs, which is unacceptable since we would lose

one of the main advantages, runtime efficiency, to use rich data structures. Also, we

need to investigate the way to warn against non-exhaustive matchings and redundant

matchings.

Third, we construct a compiler to enable a more efficient execution with the same level

of efficiency as the corresponding imperative code. The implementation of a reference

interpreter in this study is only a Proof of Concept: execution efficiency is not considered.

To improve execution performance to the same level as the corresponding imperative

code, it is necessary to develop static analysis more. We are planning to extend the type

system to check the direction (polarity) of links [Ued14], and then perform ownership

checking [DM05]. Then, we develop a method to transpile to a lower-level code using

reference types in functional languages such as OCaml or an imperative code with pointers.

Bibliography

[Ant+14] Timos Antonopoulos et al. “Foundations for Decision Problems in Separation

Logic with General Inductive Predicates”. In: Proc. FoSSaCS 2014. Vol. 8412.

Lecture Notes in Computer Science. Springer, 2014, pp. 411–425. doi: 10.

1007/978-3-642-54830-7_27 (cit. on p. 80).

[Bak+15] Christopher Bak et al. “A Reference Interpreter for the Graph Programming

Language GP 2”. In: Proceedings Graphs as Models, GaM@ETAPS 2015,

London, UK, 11-12 April 2015. Ed. by Arend Rensink and Eduardo Zam-

bon. Vol. 181. EPTCS. 2015, pp. 48–64. doi: 10.4204/EPTCS.181.4. url:

https://doi.org/10.4204/EPTCS.181.4 (cit. on pp. 48, 55).

[Bak15] Christopher Bak. “GP 2: efficient implementation of a graph programming

language”. PhD thesis. Department of Computer Science, The University of

York, 2015. url: https://etheses.whiterose.ac.uk/12586/ (cit. on

pp. 48, 54).

[Bas94] David A. Basin. “A term equality problem equivalent to graph isomorphism”.

In: Information Processing Letters 51.2 (1994), pp. 61–66. issn: 0020-0190.

doi: https://doi.org/10.1016/0020-0190(94)00084-0. url: https:

//www.sciencedirect.com/science/article/pii/0020019094000840

(cit. on p. 26).

[BFS00] Peter Buneman, Mary Fernandez, and Dan Suciu. “UnQL: A Query Language

and Algebra for Semistructured Data Based on Structural Recursion”. In: The

VLDB Journal 9.1 (Mar. 2000), pp. 76–110. issn: 1066-8888. doi: 10.1007/

s007780050084. url: https://doi.org/10.1007/s007780050084 (cit. on

p. 26).

[BGP12] James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. “A

Generic Cyclic Theorem Prover”. In: Proc. APLAS 2012. Vol. 7705. Lecture

Notes in Computer Science. Springer, 2012, pp. 350–367 (cit. on p. 80).

[BL93] Jean-Pierre Banâtre and Daniel Le Métayer. “Programming by Multiset Trans-

formation”. In: Commun. ACM 36.1 (Jan. 1993), pp. 98–111. issn: 0001-0782.

doi: 10.1145/151233.151242. url: https://doi.org/10.1145/151233.

151242 (cit. on p. 54).

[DM05] Werner Dietl and Peter Müller. “Universes: Lightweight Ownership for JML.”

In: Journal of Object Technology 4 (Oct. 2005), pp. 5–32. doi: 10.5381/jot.

2005.4.8.a1 (cit. on pp. 54, 84).

85

https://doi.org/10.1007/978-3-642-54830-7_27
https://doi.org/10.1007/978-3-642-54830-7_27
https://doi.org/10.4204/EPTCS.181.4
https://doi.org/10.4204/EPTCS.181.4
https://etheses.whiterose.ac.uk/12586/
https://doi.org/https://doi.org/10.1016/0020-0190(94)00084-0
https://www.sciencedirect.com/science/article/pii/0020019094000840
https://www.sciencedirect.com/science/article/pii/0020019094000840
https://doi.org/10.1007/s007780050084
https://doi.org/10.1007/s007780050084
https://doi.org/10.1007/s007780050084
https://doi.org/10.1145/151233.151242
https://doi.org/10.1145/151233.151242
https://doi.org/10.1145/151233.151242
https://doi.org/10.5381/jot.2005.4.8.a1
https://doi.org/10.5381/jot.2005.4.8.a1

86 Bibliography

[DP20] Christian Doczkal and Damien Pous. “Completeness of an Axiomatization of

Graph Isomorphism via Graph Rewriting in Coq”. In: Proceedings of the 9th

ACM SIGPLAN International Conference on Certified Programs and Proofs.

CPP 2020. New Orleans, LA, USA: Association for Computing Machinery,

2020, pp. 325–337. isbn: 9781450370974. doi: 10.1145/3372885.3373831.

url: https://doi.org/10.1145/3372885.3373831 (cit. on pp. 5, 25, 27).

[Ehr+06] Hartmut Ehrig et al. Fundamentals of Algebraic Graph Transformation. Mono-

graphs in Theoretical Computer Science. An EATCS Series. Springer, 2006.

isbn: 978-3-540-31187-4. doi: 10.1007/3-540-31188-2 (cit. on pp. 2, 5, 13,

14, 29).

[Fer+14] Maribel Fernández et al. “Visual Modelling of Complex Systems: Towards an

Abstract Machine for PORGY”. In: Language, Life, Limits. Ed. by Arnold

Beckmann, Erzsébet Csuhaj-Varjú, and Klaus Meer. Cham: Springer Interna-

tional Publishing, 2014, pp. 183–193. isbn: 978-3-319-08019-2 (cit. on p. 54).

[FM97] Pascal Fradet and Daniel Le Métayer. “Shape types”. In: Proc. POPL’97.

ACM. 1997, pp. 27–39. doi: 10.1145/263699.263706 (cit. on pp. 32, 78).

[FM98] Pascal Fradet and Daniel Le Métayer. “Structured Gamma”. In: Science of

Computer Programming 31.2 (1998), pp. 263–289. issn: 0167-6423. doi: 10.

1016/S0167-6423(97)00023-3 (cit. on pp. 2, 32, 54, 63, 78).

[FP18] Maribel Fernández and Bruno Pinaud. “Labelled Port Graph ‒ A Formal

Structure for Models and Computations”. In: Electronic Notes in Theoretical

Computer Science 338 (Oct. 2018), pp. 3–21. doi: 10.1016/j.entcs.2018.

10.002 (cit. on pp. 6, 8, 13).

[Gha+12] A.H. Ghamarian et al. “Modelling and analysis using GROOVE”. In: STTT

14.1 (2012), pp. 15–40. doi: 10.1007/s10009-011-0186-x (cit. on p. 54).

[GHU11] Masato Gocho, Taisuke Hori, and Kazunori Ueda. “Evolution of the LMNtal

Runtime to a Parallel Model Checker”. In: Computer Software 28.4 (2011),

4 137–4 157. doi: 10.11309/jssst.28.4_137 (cit. on pp. 6, 54).

[Ham10] Makoto Hamana. “Initial Algebra Semantics for Cyclic Sharing Tree Struc-

tures”. In: Log. Methods Comput. Sci. 6.3 (2010). url: http://arxiv.org/

abs/1007.4266 (cit. on p. 78).

[HMA18] Makoto Hamana, Kazutaka Matsuda, and Kazuyuki Asada. “The algebra

of recursive graph transformation language UnCAL: complete axiomatisation

and iteration categorical semantics”. In: Mathematical Structures in Computer

Science 28.2 (2018), pp. 287–337. doi: 10.1017/S096012951600027X (cit. on

p. 26).

https://doi.org/10.1145/3372885.3373831
https://doi.org/10.1145/3372885.3373831
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1145/263699.263706
https://doi.org/10.1016/S0167-6423(97)00023-3
https://doi.org/10.1016/S0167-6423(97)00023-3
https://doi.org/10.1016/j.entcs.2018.10.002
https://doi.org/10.1016/j.entcs.2018.10.002
https://doi.org/10.1007/s10009-011-0186-x
https://doi.org/10.11309/jssst.28.4_137
http://arxiv.org/abs/1007.4266
http://arxiv.org/abs/1007.4266
https://doi.org/10.1017/S096012951600027X

Bibliography 87

[IRS13] Radu Iosif, Adam Rogalewicz, and Jiri Simacek. “The Tree Width of Separa-

tion Logic with Recursive Definitions”. In: Automated Deduction – CADE-24.

2013, pp. 21–38. isbn: 978-3-642-38574-2 (cit. on p. 80).

[JBK10] Edgar Jakumeit, Sebastian Buchwald, and Moritz Kroll. “GrGen.NET: The

expressive, convenient and fast graph rewrite system”. In: International Jour-

nal on Software Tools for Technology Transfer 12.3 (2010), pp. 263–271. issn:

1433-2779. doi: 10.1007/s10009-010-0148-8 (cit. on p. 54).

[KM09] Victor Khomenko and Roland Meyer. “Checking pi-Calculus Structural Con-

gruence is Graph Isomorphism Complete”. In: July 2009, pp. 70–79. doi:

10.1109/ACSD.2009.8 (cit. on p. 26).

[KS93] Nils Klarlund and Michael I. Schwartzbach. “Graph Types”. In: Proc. POPL’93.

ACM. Charleston, South Carolina, USA, 1993, pp. 196–205. isbn: 0-89791-

560-7. doi: 10.1145/158511.158628 (cit. on p. 79).

[Ler+22] Xavier Leroy et al. “The OCaml system release 41̇4”. In: INRIA 3 (2022)

(cit. on pp. 3, 30).

[LMN] LMNtal. https://github.com/lmntal/lmntal-compiler. (Visited on 08/10/2022)

(cit. on p. 54).

[LP17] Enric Cosme Llópez and Damien Pous. “K4-free Graphs as a Free Algebra”.

In: 42nd International Symposium on Mathematical Foundations of Computer

Science (MFCS 2017). Ed. by Kim G. Larsen, Hans L. Bodlaender, and Jean-

Francois Raskin. Vol. 83. Leibniz International Proceedings in Informatics

(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrumfuer Infor-

matik, 2017, 76:1–76:14. isbn: 978-3-95977-046-0. doi: 10.4230/LIPIcs.

MFCS.2017.76. url: http://drops.dagstuhl.de/opus/volltexte/2017/

8088 (cit. on pp. 5, 25).

[MA17] Kazutaka Matsuda and Kazuyuki Asada. “A Functional Reformulation of

UnCAL Graph-Transformations: Or, Graph Transformation as Graph Re-

duction”. In: Proc. POPL’97. Paris, France: ACM, 2017, pp. 71–82. isbn:

9781450347211. doi: 10.1145/3018882.3018883. url: https://doi.org/

10.1145/3018882.3018883 (cit. on p. 78).

[Mac04] Ian Mackie. “Efficient λ-Evaluation with Interaction Nets”. In: Proc. RTA

2004. Springer, 2004, pp. 155–169. isbn: 978-3-540-25979-4 (cit. on p. 37).

[Mac06] Ian Mackie. “Encoding Strategies in the Lambda Calculus with Interaction

Nets”. In: Proc. IFL 2005. Springer, 2006, pp. 19–36. isbn: 978-3-540-69175-4

(cit. on p. 37).

[MP08] G. Manning and D. Plump. “The GP programming system”. In: Proc. Graph

Transformation and Visual Modelling Techniques (GT-VMT 2008), volume

10 of Electronic Communications of the EASST. 2008 (cit. on p. 54).

https://doi.org/10.1007/s10009-010-0148-8
https://doi.org/10.1109/ACSD.2009.8
https://doi.org/10.1145/158511.158628
https://doi.org/10.4230/LIPIcs.MFCS.2017.76
https://doi.org/10.4230/LIPIcs.MFCS.2017.76
http://drops.dagstuhl.de/opus/volltexte/2017/8088
http://drops.dagstuhl.de/opus/volltexte/2017/8088
https://doi.org/10.1145/3018882.3018883
https://doi.org/10.1145/3018882.3018883
https://doi.org/10.1145/3018882.3018883

88 Bibliography

[OC12] Bruno C.d.S. Oliveira and William R. Cook. “Functional Programming with

Structured Graphs”. In: SIGPLAN Not. 47.9 (2012), pp. 77–88. issn: 0362-

1340. doi: 10.1145/2398856.2364541. url: https://doi.org/10.1145/

2398856.2364541 (cit. on p. 78).

[Plo04] Gordon Plotkin. “A Structural Approach to Operational Semantics”. In: J.

Log. Algebr. Program. 60-61 (2004), pp. 17–139. doi: 10.1016/j.jlap.2004.

05.001 (cit. on pp. 6, 7).

[Pug90] William Pugh. “Skip lists: A probabilistic alternative to balanced trees”. In:

Commun. ACM 33.6 (1990), pp. 668–676. doi: 10.1145/78973.78977 (cit.

on pp. 1, 29).

[RET12] Olga Runge, Claudia Ermel, and Gabriele Taentzer. “AGG 2.0 – New Features

for Specifying and Analyzing Algebraic Graph Transformations”. In: Appli-

cations of Graph Transformations with Industrial Relevance. Ed. by Andy

Schürr, Dániel Varró, and Gergely Varró. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 81–88. isbn: 978-3-642-34176-2 (cit. on p. 54).

[Rey02] J.C. Reynolds. “Separation logic: a logic for shared mutable data structures”.

In: Proc. LICS 2002. IEEE. 2002, pp. 55–74. doi: 10.1109/LICS.2002.

1029817 (cit. on pp. 2, 26, 57, 79).

[Roz97] Grzegorz Rozenberg. Handbook of Graph Grammars and Computing by Graph

Transformation. World Scientific, 1997. doi: 10.1142/3303 (cit. on pp. 1, 2,

5–7, 29).

[San21] Jin Sano. “Implementing G-Machine in HyperLMNtal”. https://arxiv.org/abs/2103.14698.

Bachelor’s Thesis. Waseda University, 2021. arXiv: 2103.14698. url: https:

//arxiv.org/abs/2103.14698 (cit. on pp. 3, 5, 6, 10, 11).

[SLI] SLIM. https://github.com/lmntal/slim. (Visited on 08/10/2022) (cit. on p. 54).

[SU21] Jin Sano and Kazunori Ueda. “Syntax-driven and compositional syntax and

semantics of Hypergraph Transformation System”. In: Proc. 38th JSSST An-

nual Conference (JSSST 2021). 2021 (cit. on pp. 3, 5, 6, 29, 40, 54, 91).

[SU22] Jin Sano and Kazunori Ueda. “A functional language with graphs as first-class

data”. In: Proc. 39th JSSST Annual Conference (JSSST 2022). 2022 (cit. on

p. 91).

[SU23] Jin Sano and Kazunori Ueda. “Axiomatizing Hypergraph Isomorphism”. In:

Special Interest Group on Programming and Programming Language. 2023

(cit. on p. 91).

[SW01] Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile

Processes. USA: Cambridge University Press, 2001. isbn: 0521781779 (cit. on

pp. 6, 7, 29).

https://doi.org/10.1145/2398856.2364541
https://doi.org/10.1145/2398856.2364541
https://doi.org/10.1145/2398856.2364541
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1145/78973.78977
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1142/3303
https://arxiv.org/abs/2103.14698
https://arxiv.org/abs/2103.14698
https://arxiv.org/abs/2103.14698

Bibliography 89

[SWZ97] Andy Schürr, Andreas J. Winter, and Albert Zündorf. “The PROGRES Ap-

proach: Language and Environment”. In: Handbook of Graph Grammars and

Computing by Graph Transformation: Volume I. Foundations. World Scien-

tific, 1997. Chap. 13, pp. 487–550. isbn: 9810228848. doi: 10.1142/9789812384720\

_0002 (cit. on p. 54).

[SYU23] Jin Sano, Naoki Yamamoto, and Kazunori Ueda. “Type Checking Data Struc-

tures More Complex Than Trees”. In: Journal of Information Processing 31.1

(Jan. 2023). issn: 1882-7802. url: http://id.nii.ac.jp/1001/00223349/

(cit. on pp. 6, 91).

[TNK19] Makoto Tatsuta, Koji Nakazawa, and Daisuke Kimura. “Completeness of

Cyclic Proofs for Symbolic Heaps with Inductive Definitions”. In: APLAS

2019. Vol. 11893. Lecture Notes in Computer Science. Springer, 2019, pp. 367–

387. doi: 10.1007/978-3-030-34175-6_19. url: https://doi.org/10.

1007/978-3-030-34175-6%5C_19 (cit. on p. 80).

[Ued09] Kazunori Ueda. “LMNtal as a hierarchical logic programming language”. In:

Theoretical Computer Science 410.46 (2009), pp. 4784–4800. issn: 0304-3975.

doi: 10.1016/j.tcs.2009.07.043 (cit. on pp. 5, 7, 54).

[Ued14] Kazunori Ueda. “Towards a Substrate Framework of Computation”. In: Con-

current Objects and Beyond. Vol. 8665. LNCS. Springer, 2014, pp. 341–366.

isbn: 978-3-662-44471-9. doi: 10.1007/978-3-662-44471-9_15 (cit. on

pp. 54, 84).

[UO12] Kazunori Ueda and Seiji Ogawa. “HyperLMNtal: An Extension of a Hierar-

chical Graph Rewriting Model”. In: KI - Künstliche Intelligenz 26.1 (2012),

pp. 27–36. issn: 1610-1987. doi: 10.1007/s13218-011-0162-3 (cit. on pp. 2,

3, 5, 7, 29, 54).

[WSR00] Reinhard Wilhelm, Shmuel Sagiv, and Thomas W. Reps. “Shape Analysis”.

In: Compiler Construction, 9th International Conference, CC 2000. Vol. 1781.

Lecture Notes in Computer Science. Springer, 2000, pp. 1–17. doi: 10.1007/

3-540-46423-9_1. url: https://doi.org/10.1007/3-540-46423-9%5C_1

(cit. on p. 79).

[YU16] Alimujiang Yasen and Kazunori Ueda. “Hypergraph Representation of Lambda-

Terms”. In: Proc. 10th Int. Symp. on Theoretical Aspects of Software Engi-

neering (TASE 2016). 2016, pp. 113–116. doi: 10.1109/TASE.2016.25 (cit.

on p. 37).

[YU21] Naoki Yamamoto and Kazunori Ueda. “Engineering Grammar-based Type

Checking for Graph Rewriting Languages”. In: Proc. Twelfth International

Workshop on Graph Computation Models (GCM 2021). June 2021, pp. 93–

114 (cit. on pp. 32, 63).

https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1142/9789812384720_0002
http://id.nii.ac.jp/1001/00223349/
https://doi.org/10.1007/978-3-030-34175-6_19
https://doi.org/10.1007/978-3-030-34175-6%5C_19
https://doi.org/10.1007/978-3-030-34175-6%5C_19
https://doi.org/10.1016/j.tcs.2009.07.043
https://doi.org/10.1007/978-3-662-44471-9_15
https://doi.org/10.1007/s13218-011-0162-3
https://doi.org/10.1007/3-540-46423-9_1
https://doi.org/10.1007/3-540-46423-9_1
https://doi.org/10.1007/3-540-46423-9%5C_1
https://doi.org/10.1109/TASE.2016.25

Publications

1. 佐野仁, 上田和紀. HyperLMNtal を用いた G-Machine の実装. 第 23 回プログラミ
ングおよびプログラミング言語ワークショップ (ポスター発表). 2021.

2. Jin Sano and Kazunori Ueda. “Syntax-driven and compositional syntax and se-

mantics of Hypergraph Transformation System”. In: Proc. 38th JSSST Annual

Conference (JSSST 2021). 2021. Student encouragement award.

3. 佐野仁, 上田和紀, 参照を用いたデータ構造の形状のユーザ定義の型に基づく型検査,

第 24 回プログラミングおよびプログラミング言語ワークショップ (ポスター発表),

2022.

4. Jin Sano and Kazunori Ueda. “A functional language with graphs as first-class

data”. In: Proc. 39th JSSST Annual Conference (JSSST 2022). 2022. Presentation

award.

5. Jin Sano, Naoki Yamamoto, and Kazunori Ueda. “Type Checking Data Structures

More Complex Than Trees”. In: Journal of Information Processing 31.1 (Jan.

2023). issn: 1882-7802. url: http://id.nii.ac.jp/1001/00223349/.

6. Jin Sano and Kazunori Ueda. “Axiomatizing Hypergraph Isomorphism”. In: Special

Interest Group on Programming and Programming Language. 2023

91

http://id.nii.ac.jp/1001/00223349/

A
Proof of properties of HyperLMNtal

Lemma A.0.1 (Elimination of ν which bounds no link name).

νX.G ≡ G where X /∈ fn(G)

Proof.

νX.G

≡E5 νX.(0, G) ∵ G ≡E1 (0, G)

≡E10 (νX.0, G) ∵ X /∈ fn(G)

≡E4 (0, G) ∵ νX.0 ≡E8 0

≡E1 G

Lemma A.0.2 (Elimination of a futile link substitution).

G〈X/X〉 = G

This is not as obvious as it may seem. The reason is that it cannot be näıvely ruled

out that a α-conversion may be performed during the hyperlink assignment, resulting in

a congruent but syntactically different graphs.

Proof. We prove by induction on graphs. It is trivial for 0, p(X1, . . . , Xm), (G,Q), (G −→
Q).

Case νY.G:

(νY.G)〈X/X〉 def=


νY.G if Y = X

νY.G〈X/X〉 if Y 6= X

= νY.G ∵ induction hypothesis

Since Y 6= X∧Y = X can never happen, there is no possibility of α-conversion

of links (which could have resulted in loss of syntactic equality) to avoid vari-

able capture.

93

94

Proof of Theorem 2.2.2. We are using Lemma A.0.1 and Lemma A.0.2. We consider the

case where the free hyperlink to be substituted appears and the case where it does not.

The latter case seems obvious, but it is not because of the possibility of α-conversion due

to hyperlink substitution. We prove the former first, and then transform the latter into a

form that allows us to use the former.

Case X ∈ fn(G):

νX.νY.(Y ./ X, (X ./ Y,G))

≡E5, E3 νX.νY.((Y ./ X,X ./ Y), G)

≡E5, E10 νX.(νY.(Y ./ X,X ./ Y), G)

∵ Y /∈ fn(G)

≡E5, E6 νX.(νY.X ./ X,G)

∵ (X ./ Y)〈X/Y 〉 = X ./ X

≡E5, E10 νX.νY.(X ./ X,G)

∵ Y /∈ fn(G)

≡E9 νY.νX.(X ./ X,G)

≡E6, Lemma A.0.2 νY.νX.G

∵ G〈X/X〉 = G

≡Lemma A.0.1 νX.G

∵ Y /∈ fn(G)

and

νX.νY.(Y ./ X, (X ./ Y,G))

≡E2, E3, E5, E9 νY.νX.(X ./ Y, (Y ./ X,G))

≡E5, E6 νY.νX.(Y ./ Y,G〈Y/X〉)
≡E5, Lemma A.0.1 νY.(Y ./ Y,G〈Y/X〉)
∵ X /∈ fn((Y ./ Y,G〈Y/X〉))

≡E6 νY.G〈Y/X〉
∵ by Lemma A.0.2(G〈Y/X〉)〈Y/Y 〉 = G〈Y/X〉

Thus, νX.G ≡ νY.G〈Y/X〉

Case X /∈ fn(G) :

In this case, we use the previous proof by first adding a free hyperlink X using

(E7).

Appendix A. Proof of properties of HyperLMNtal 95

νX.G

≡Lemma A.0.1 G

≡E1 (0, G)

≡E4, E7 (νX.νX.X ./ X,G)

≡E4, Lemma A.0.1 (νX.X ./ X,G)

∵ X /∈ fn(νX.X ./ X)

≡E10 νX.(X ./ X,G)

∵ X /∈ fn(G)

≡The formar proof νY.(X ./ X,G)〈Y/X〉
∵ X ∈ fn((X ./ X,G))

= νY.(Y ./ Y,G〈Y/X〉)
≡E10 (νY.Y ./ Y,G〈Y/X〉)
∵ X /∈ fn(G), thus Y /∈ fn(G〈Y/X〉)

≡E4, Lemma A.0.1 (νY.νY.Y ./ Y,G〈Y/X〉)
≡E7 (0, G〈Y/X〉)
≡E1 G〈Y/X〉
≡Lemma A.0.1 νY.G〈Y/X〉

Proof of Theorem 2.2.1.

νZ.(Z ./ X,Z ./ Y)

≡E6 νZ.(X ./ Y)

∵ (Z ./ Y)〈X/Z〉 = X ./ Y

≡Lemma A.0.1 X ./ Y

and

νZ.(Z ./ X,Z ./ Y)

≡E2, E5 νZ.(Z ./ Y, Z ./ X)

≡E6 νZ.(Y ./ X)

∵ (Z ./ X)〈Y/Z〉 = Y ./ X

≡Lemma A.0.1 Y ./ X

Therefore, X ./ Y ≡ Y ./ X.

B
Proof of properties of FGT

Theorem 4.1 (Soundness of FGT) can be derived in the same way as in the ordinary type

systems for functional languages, so we omit the precise proof. Theorem 4.2 and Theorem

5.2 have a proof specific to FGT , which is supplemented in this appendix.

B.1 Theorem 4.2 (FGT and HyperLMNtal reduction)

Lemma B.1.1. If G1 ⇝∗
P G2 then G1〈Y/X〉⇝∗

P G2〈Y/X〉

Proof. By (R1), (R2), (R3) and G1 ⇝P G2, we can show νX.(X ./ Y,G1)⇝P νX.(X ./

Y,G2). Thus G1〈Y/X〉 ⇝P G2〈Y/X〉 by (R3). Then we can obtain G1〈Y/X〉 ⇝∗
P

G2〈Y/X〉 by induction on the length of the reduction ⇝∗
P

Proof of Theorem 4.2.2. We denote
−−−−−−−−−→
[τi(
−→
Yi)/xi[

−→
Xi]]

i

as θx and [
−−−−−−−−−−−−−→
τi(
−→
Zi)/(λ . . .)i(

−→
Wi)]

i

as θλ.

We firstly prove ⇒. We split the cases by the last applied FGT rules.

Case Ty-Ctx:

T = x[
−→
X] and x[

−→
X] : τ (

−→
X) ∈ Γ. Thus T [τ (

−→
X)/x[

−→
X], . . .]θλ = τ (

−→
X) ⇝∗

P

τ (
−→
X).

Case Ty-Arrow:

T = (λ . . .)(
−→
X) where (Γ, P) ` (λ . . .)(

−→
X) : τ (

−→
X). Thus Tθx[τ (

−→
X)/(λ . . .)(

−→
X)] =

τ (
−→
X)⇝∗

P τ (
−→
X).

Case Ty-Cong:

Suppose the antecedent of Ty-Cong was (Γ, P) ` T ′ : τ (
−→
X) where T ≡ T ′.

By induction hypothesis, τ (
−→
X) ⇝∗

P T ′θxθλ. Since Tθxθλ ≡ T ′θxθλ, we can

show τ (
−→
X)⇝∗

P Tθxθλ using (R3).

Case Ty-Alpha:

Suppose the antecedent of Ty-Alpha was (Γ, P) ` T ′ : τ (
−→
X ′) where T =

T ′〈Y/X〉 and τ (
−→
X) = τ (

−→
X ′)〈Y/X〉. By induction hypothesis, τ (

−→
X ′) ⇝∗

P

T ′θxθλ. Here, we can show that Tθxθλ = T ′θxθλ〈Y/X〉. Therefore, by Lemma B.1.1,

τ (
−→
X ′)〈Y/X〉⇝∗

P Tθxθλ〈Y/X〉.

97

98 B.1. Theorem 4.2 (FGT and HyperLMNtal reduction)

Case Ty-Prod:

Suppose the antecedents of Ty-Prod was
−−−−−−−−−−−−−→
(Γ, P) ` Ti : τi(

−→
Xi)

i

where T = T [
−−−−−−→
Ti/τi(

−→
Xi)

i

]

By induction hypothesis, τi(
−→
Xi)⇝∗

P Tiθxθλi. Therefore, using (R1), (R2), and

(R3), we can show T ′ ⇝∗
P T ′[Tiθxθλi/τi(

−→
Xi)] for any T ′. Thus, we can have

τi(
−→
Xi) ⇝∗

P T0 ⇝∗
P · · · ⇝∗

P Tn where Ti is inductively defined as T0 = T and

Ti+1 = Ti[Tiθxθλi/τi(
−→
Xi)], in which Tn = Tθxθλ.

Then, we prove ⇐. by induction on the length of the reduction ⇝∗
P . We denote

−−−−−−−−−→
[xi[
−→
Xi]/τi(

−→
Yi)]

i

as θ−1
x and [

−−−−−−−−→
(λ . . .)i(

−→
Wi)/τi(

−→
Zi)]

i

as θ−1
λ . Then, the proposition can be

rewritten as

τ (
−→
X)⇝∗

P T ⇒ (Γ, P) ` T θ−1
x θ−1

λ : τ (
−→
X).

Case τ (
−→
X) = T (The length of ⇝∗

P is zero):

Follows by Ty-Ctx or Ty-Arrow depending on whether the τ (
−→
X) is replaced

with the graph context in θ−1
x or the λ-abstraction atom in θ−1

λ .

Case τ (
−→
X)⇝∗

P T ′ ⇝P T (The length of ⇝∗
P is n > 0):

Suppose the production rule applied to reduce from T ′ to T was α (
−→
Y) −→ T ′′.

Using (R1), (R2), and (R3), we can obtain (new) τ (
−→
X) ⇝∗

P T ′ ⇝P T which

satisfies T = T ′[T ′′/α (
−→
Y)]. By induction hypothesis, we can obtain the

derivation tree of

(Γ, P) ` T ′θ−1
x θ−1

λ : τ (
−→
X). (B.1)

Since T ′ contains α (
−→
X), there exists a derivation of

(Γ′, P) ` αθ−1
x θ−1

λ : α (
−→
X). (B.2)

in the tree. Since

(Γ′, P) ` T ′′θ−1
x θ−1

λ : α (
−→
X). (B.3)

holds immediately by Ty-Prod, we can replace the derivation tree of (B.2)

with that of (B.3) in that of (B.1), which will result in the derivation tree of

the desired typing relation.

Appendix B. Proof of properties of FGT 99

B.2 Theorem 5.2 (decomposing graph with the last applied pro-

duction rule)

We omit (∅, P) ` for brevity.

Proof of Theorem 4.3.2. We prove by induction on the derivation of G : α(
−→
Y) after the

last application of Ty-Prod.

By Lemma 4.3.1, there exists the last Ty-Prod and only Ty-Cong and Ty-Alpha are

used later on the derivation of G : α(
−→
Y).

Case Ty-Prod:

Trivial from the definition of Ty-Prod.

Case Ty-Cong:

The theorem holds on G : α(
−→
Y) by induction hypothesis. Therefore, it holds

on G′ ≡ G.

Case Ty-Alpha:

By induction hypothesis, we can assume for G : α(
−→
Y), there exists

−→
Gj

j
such

that G ≡ T ′[
−−−−−−−→
Gj/τj (

−→
Xj)

j

] where

• T ′ = T
−−−−→
〈Yi/Xi〉

i

,

• τj (
−→
Xj) are all the type atoms appearing in T ′, and

•
−−−−−−−→
Gj : τj (

−→
Xj)

j

.

For G〈Z/Y 〉 : α(
−→
Y)〈Z/Y 〉, we can obtain

• T ′′ = T
−−−−−→
〈Zi/Xi〉

i

, where Zi = Yi〈Z/Y 〉.

The type atom τj (
−→
Zj) appearing in T ′′, corresponding to the atom τj (

−→
Xj) in

T ′, may have substituted its links. Thus, we need to denote it as τj(
−→
Xj)θj

where θj is a hyperlink substitution which satisfies τj(
−→
Xj)θj = τj (

−→
Zj). Since

−−−−−−−→
Gj : τj (

−→
Xj)

j

holds by the induction hypothesis, we can show that
−−−−−−−−−−→
Gjθj : τj (

−→
Xj)θj

j

holds using Ty-Alpha. Therefore, we can obtain
−−→
Gjθj

j
that satisfies the con-

ditions.

	Introduction
	HyperLMNtal: Hypergraph Transformation Formalism
	The GT Language and the Type System FGT
	Contributions
	Thesis Roadmap
	Syntactic Conventions

	HyperLMNtal: A Hypergraph Transformation Formalism
	Introduction
	HyperLMNtal
	Syntax of Graphs and Rewriting Rules
	Structural Congruence
	Reduction Relation

	The Denoted Hypergraphs
	Hypergraph Operations and a Translator From Terms to Graphs
	Graph Operations
	Term to Graphs Translator

	Soundness of the Translation From Terms to Graphs
	Related Work
	Further Work

	GT: A Functional Language with Hypergraphs as First-Class Data
	Introduction
	Informal Introduction to GT
	Syntax and Semantics of GT
	Syntax of GT
	Operational Semantics of GT

	Program Examples in Detail
	Reference Interpreter
	Motivation
	Implementation
	Discusson
	Related Work

	FGT: A Type System for GT
	Introduction
	Type System
	Syntax and Rules for FGT
	Examples
	Properties of FGT
	Type Checking Case Expressions

	Extending the Type System
	Motivation
	Extension on FGT
	Proving the Antecedent of the Rule

	Automatic Verification on the Extended Type System
	Constraints on Production Rules
	Fusion Elimination
	The Algorithm

	Related Work
	Functional Language with Graphs
	Typing Frameworks for Graphs
	Separation Logic

	Further Work
	Extend the Type System to Handle Untyped Graph Contexts
	Extension on the Type System: Polymorphism and Type Inference

	Conclusions and Further Work
	Conclusions
	Further Work

	Proof of properties of HyperLMNtal
	Proof of properties of FGT
	Theorem 4.2 (FGT and HyperLMNtal reduction)
	Theorem 5.2 (decomposing graph with the last applied production rule)

