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SUMMARY
In this work, a vision-based control interface for commanding
a robotic wheelchair is presented. The interface estimates the
orientation angles of the user’s head and it translates these
parameters in command of maneuvers for different devices.
The performance of the proposed interface is evaluated
both in static experiments as well as when it is applied in
commanding the robotic wheelchair. The interface calculates
the orientation angles and it translates the parameters as
the reference inputs to the robotic wheelchair. Control
architecture based on the dynamic model of the wheelchair
is implemented in order to achieve safety navigation.
Experimental results of the interface performance and the
wheelchair navigation are presented.

KEYWORDS: Assistive robots; Service robots; Computer
vision; Mobile robots; Navigation.

1. Introduction
Rehabilitation robotics have evolved1–4 in the last decades
due to different factors: technological evolution, demands
by people with disabilities, and the growth in world
population of people with disabilities. This has seen changes
to medical model of rehabilitation, which now seeks to
provide autonomy, freedom, and improved quality of life
for severely disabled people. Therefore, robotic wheelchairs
are extremely important for assistance and service to people
with special needs.

People who are severely disabled, such as paraplegics,
often have very special needs and require specific and
complex devices to provide them with autonomy and
mobility. Suitably equipped robotic wheelchairs5–7 can fulfil
the need of this sector of the society. While the mechanical
aspects of these chairs have been extensively developed,
there is still work required to develop control interfaces and
mechanisms that can support the people with special needs
to use these chairs effectively.

A Number of researchers have developed and reported
different modes of control for robotic wheelchairs. In ref. [8],
an agent-based autonomous robotic wheelchair controller
is used to command an autonomous robotic wheelchair
in indoor environments. The navigation system of the
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autonomous robotic wheelchair is developed as a group
of intelligent agents, including the robotic wheelchairs
path planning and the fuzzy-logic-based motion control
and obstacle avoidance. While an excellent approach,
this paper only presents simulations results and not the
experimental results. In ref. [9], a robotic wheelchair adapted
to cognitive disabled children is presented. Three human
machine interfaces were provided: speech recognition based,
motion interpreter, and visual feedback. The results are
very promising, since the first time the children used
the wheelchair they managed to drive it. However, the
disadvantage of this work is that it does not provide an
optimized control system that would ensure the velocity
of the wheelchair. Further, such a system is not suitable
for patients with severe brain and spinal injury who do
not have recognizable speech and haptic sensing abilities.
In ref. [10], the design and implementation of a hands-
free system for intelligent wheelchair is described. A head-
gesture-based interface is developed, based on the organic
integration of the Adaboost face detection algorithm and
Camshift object tracking algorithm. The control architecture
has two control modes, namely, intelligent control and
manual control. This paper does not show a control
law that guaranties that the wheelchair would reach the
desired velocities. In the work,11 the dynamic multivariable
model of the wheelchair system is obtained. The control
structure developed combining neural network controllers
and decoupling techniques. This control structure provides
solutions to nonlinear multivariable control problems. This
work does not present real experimental results; the authors
only present system simulations. In ref. [12], it is described
the concept of the collaborative wheelchair assistant (CWA).
The CWA is to rely on the user’s motion planning skills
while the maneuvering with flexible path guidance. The user
decides where to go and controls the speed, while the system
guides the wheelchair along software defined guide paths.

In this paper, a novel assistive robotic system for people
with severely motor disabilities is presented. The proposal
includes a vision-based interface (VBI) as well as the
control algorithms in order to allow motor disable people to
command a robotic wheelchair. The VBI detects and tracks
the movements of the head of a person and traduces these
movements into reference signals for the control algorithms.
In the proposed VBI, two image processing techniques work
in parallel to estimate the position parameters. Then, a fusion
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Fig. 1. Rotation angles of the head in 3D space.

process of the outcomes of these two techniques provides the
references signals for the control laws. The fusion process is
implemented in order to improve accuracy in the estimation
of the head’s position obtaining a better performance of
the human–machine interface. It is important to note that,
different from other works found in the literature,9,10,13,14

our approach includes a control algorithm based on the
dynamic model of the wheelchair in order to regulate
its velocities, achieving a more safety navigation.15 The
proposed VBI is evaluated in static experiments obtaining
performances comparable with the best techniques reported
in the literature.16 Additionally, the performance of the
VBI is tested in a robotic wheelchair control showing the
experimental results.

In the robotic wheelchair developed earlier by the
authors,17 a machine–human interface is used allowing the
user to control the robotic wheelchair by blinking the eyes,
eye movements, and using brain signals recorded from the
surface. The navigation system of this wheelchair allows
the user (or caregiver) different driving paradigms: user
controlled point-to-point, autoguide, and a hybrid approach
based on both point-to-point and autoguide controller. In the
autoguide mode, the wheelchair tracks a predefined metal
pathway using magnetic sensors. Therefore, the proposed
interface further enhances previous work by providing the
user the ability to command the wheelchair with head
movements.

This work is organized in the following way: Section 2
describes the VBI, Section 3 describes the design the
proposed controller, the experimental results are given in
Section 4, and Section 5 gives the conclusions.

2. Vision-Based Interface
The interface reported in this paper obtains two parameters
from the video data of the user head and generates two
independent command signals to navigate the wheelchair.
The parameters used are the orientation angles of head (α and
β angles) in the space. These are with respect to axes X and
Y (see Fig. 1). The research and development report consists
of the implementation and fusion of the angle β obtained
by two image processing algorithms. Angle β is used to
generate angular velocity to the wheelchair and the angle

Fig. 2. (a) Original image. (b) Skin detection. (c) Luminance image
with ellipse.

α to determine the linear velocity. The image processing
techniques will be described next.

2.1. Detection and tracking of facial features for estimating
the pose of the head of the person
The first task in this method is the detection of the face. This
determines if the face is in the scene.18 One technique for face
detection is based on features, which extracts image features
and makes a tracking of their movements from an image
to another one. The more common the image features are
regions, skin, contours, and landmarks.19,20 In this work, the
detection of skin is chosen for detecting and tracking the face.

One general shortcoming in skin-color-based detection is
the impact of lighting conditions. In refs. [21–23], different
preprocessing methods of the images for illumination
compensation are proposed. To mitigate this shortcoming,
light compensation technique was employed. For this
purpose, histogram equalization of the input image was used.
This method is easier and faster to implement, different
from previous techniques that require high computing cost.
Furthermore, it improves the quality of the image by
increasing the dynamic range of the pixels and enhancing
the image contrast.

The second step is the detection of the skin by segmentation
in the color space YCbCr. The original image is transformed
from RGB to YCbCr space by:24

Y = 0.299R + 0.587G + 0.114B,

Cb = −0.169R − 0.332G + 0.500B,

Cr = 0.500R − 0.419G − 0.018B,

(1)

where Y, Cb, and Cr represent the value of a pixel in each
channel of the color space YCbCr and R, G, and B represent
the value of the same pixel in each channel of the color space
RGB. The YCbCr space is chosen because its components
have less variation to different skin tones.25 Therefore, this
space is more flexible and stable for the system. Segmentation
was performed by thresholding of Cr and Cb components26 in
the YCbCr color space. The threshold values were empirical
determined and were

130 < Cr < 170,

70 < Cb < 127.

The third step is to select the maximum connected zone
corresponding to the skin Fig. 2(b). The background objects
were eliminated.

The fourth step is to describe an ellipse using the image
moments described by ref. [27], which were used to identify
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the centroid, mayor axis L1, and minor axis L2. This ellipse
defines the region of interest (ROI) for extracting facial
features in the luminance image (Fig. 2c).

The fifth step is the extraction and tracking of the facial
features. Among the different facial features, the eyes and the
mouth are the most stable features to estimate the 3D pose of
the head. There are many different approaches to locate facial
features,28–30 each approach having its own limitations. One
of the shortcomings of image-based command systems is
the poor reliability. To improve the performance, integration
of two methods for facial features extraction and tracking is
proposed in this paper. This consists of (a) K-means algorithm
and (b) normalized correlation. K-means technique is used
to determine the centroid of a set of features points31 while
normalized correlation is used to identify the eyes’ region
based on the template of the eyes. The algorithm proposed
can be subdivided into three well-defined steps: Step (1)
extraction of features points and computation of the centroid
of the facial features in the image; Step (2) normalized
correlation; Step (3) the results obtained in the previous steps
are combined.

Step (1): The facial features are searched in the image
obtained after segmentation (Fig. 2c). The algorithm of the
feature points is used to detect the eyes and mouth. This
method is used to localize the eyes and mouth because these
facial features are usually brighter than the surrounding.32

The choice of the features points do not belong to any
geometric organization observed in the image of the face.
The selected features are contours or corners.

The next step is the identification of the corner points in
the contour, by using a method based on the spatial gradient
of the image.32 With this aim, let consider an image point p,
a region Q (of 5 × 5 pixels in this work) surrounding it, and
a matrix Cp defined as

Cp =
⎡
⎣

∑
Q

E2
ix

∑
Q

EixEiy∑
Q

EixEiy

∑
Q

E2
iy

⎤
⎦ , (2)

where Eix and Eiy are the components of the gradient for
each point in the region Q. As Cp is symmetric, it can be
diagonalized in the following as:

Cp =
[
λ1 0

0 λ2

]
, (3)

where λ1 and λ2 are the eigenvalues of the matrix Cp.
A corner is a result of two contours with high gradients.

Therefore, the eigenvalues of matrix Cp will both have a
high value in the neighborhood of a corner different from
the neighborhood of an edge, where matrix Cp will present
one eigenvalue with a high value and the other one with
a low value. Then, through the geometric interpretation of
the eigenvalues of Cp, the point p will represent a corner if
the minor eigenvalue is large enough. That is, if the minor
eigenvalue is higher than some defined threshold (in this
work, this threshold was selected as 100) then the image
point p represents a corner.

Fig. 3. Image with feature points.

Fig. 4. (a) Image obtained using correlation. (b) Template of the
eye.

The selection of this threshold and the size of region Q
depends on the image considered. Typical size for Q varies
between 3 × 3 and 11 × 11 pixels. On the other hand, the
threshold for the minimum eigenvalue can be adopted by
making an off-line analysis of its histogram in a typical
image.

Appling this method to each pixel of the elliptical ROI, a
set of features points that contain strong contours (eyes and
mouth) is obtained (Fig. 3).

Once the feature points are determined, the centroids of the
two regions of interest (eyes) are obtained. This is achieved
by clustering the feature points and discarding points that
were not associated with regions of the facial features using
K-mean, which is simple and efficient.

Step (2): The second step is the optimization of feature
extraction based on the correlation. For this purpose, a
subimage of size 50 × 36 pixels is used. This subimage from
a known image of the frontal face (Fig. 4a) is compared with
the eyes region on the luminance image using fast correlation
to identify the eye location (Fig. 4b).

Step (3): The average centroid values of the regions
associated to each eye obtained in the previous technique
are introduce in a Kalman filter.33 This filter considers a
kinematics model of first order, i.e., considering constant
velocity32 whose states correspond to the measurement of
the centroids and its velocities. The values of the covariance
matrix of the Kalman filter Qkalman and Rkalman are I2×2 and
5 × I2×2, respectively. These values were adjusted offline
using previous centroids data measurements in order to
obtain a good trade-off between filtering performance and
features tracking. If the feature position is not within the
uncertainty limits derived from the error covariance matrix
or feature is lost, then the predicted point features are used
instead of the measurement. In Fig. 5, the facials features
obtained are shown.

It is important to note that the user is allowed to close
his eyes and the VBI will continue detecting them since the
proposed system detects the corners of the regions of the eyes
instead of the pupils or the ocular globes.



4 Robotic wheelchair controlled through a vision-based interface

Fig. 5. Image with the centroids of facial features estimated.

2.1.1. Estimation of the orientation and position of head.
The variation of the head’s pose can be assumed to follow the
pattern of the rigid movement, and the image of the face can
be considered by different projections on the 2D image plane.
Based on this assumption, homographic transformation is
used to obtain the rotation angle of the head by using the
projection of the centroids of the eyes onto the image plane.

Homographic transformation is the relationship between
the projected coordinates on the image plane when one plane
in the space moves with rigid movement, from instant t to t′.
The eyes are assumed to be placed on the same plane in the
space.

The displacement 3D of the rigid object in Cartesian
coordinates is calculated through the following equation:

X′ = RX + T, (4)

where R is the 3 × 3 rotation matrix, T is a 3 × 1 translation
vector, X and X′ are coordinates at the times t and t ′,
respectively, with respect to the rotation center. The rotation
matrix R is expressed as a function of the angles α, β, and
γ , which are the orientation angles of the head in the space
(see Fig. 1)

R = Rγ RβRα, (5)

with

Rγ =

⎡
⎢⎣

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

⎤
⎥⎦; Rβ =

⎡
⎢⎣

cos β 0 − sin β

0 1 0

sin β 0 cos β

⎤
⎥⎦;

Rα =

⎡
⎢⎣

1 0 0

0 cos α − sin α

0 sin α cos α

⎤
⎥⎦.

Since the features points are in the same plane in the 3D
space and all of them have the z-coordinate equal to zero, the
Eq. (4) can be written as

X′ = HX, (6)

where the matrix H represents the homography
transformation, which is a function of the matrix R and the
translation vector T

H = [R | T] =

⎡
⎢⎣

h1 h2 h3 h4

h5 h6 h7 h8

h9 h10 h11 h12

⎤
⎥⎦ . (7)

This homographic matrix posses 11 unknown parameters;
therefore, six points are needed to find the rotation and
translation parameters. In this way, the rotation parameters
values correspond with the orientation angles α, βp (being
βp the β-angle obtained by the homographic transformation),
and γ of the head and the translation parameter corresponds
with the distance between the head and the camera. In this
research only, the angle β is used. Then, the homographic
matrix has only four parameters unknowns, and it can be
solved with only two point’s projections on the image plane.

The centroids of the eyes are used to show the homographic
transformation. The matrix Hβ that transforms the points
in the space on the image plane can be expressed in
homogeneous coordinates as follows:

Hβ = H1H2 =
[

Rϕ 0
0 1

] [
Rβp T

0 1

]
=

[
RϕRβp RϕT

0 1

]
,

(8)

where T is T = [0 0 d]T, Rβp is the rotation matrix when
the head has rotated respect to axis Y and Rϕ the camera
orientation matrix with respect to axis Y, which is described
in the following way:

Rϕ =
⎡
⎣cos ϕ 0 − sin ϕ

0 1 0
sin ϕ 0 cos ϕ

⎤
⎦ . (9)

Finally, the Hβ transformation matrix in homogeneous
coordinates is

Hβ =

⎡
⎢⎢⎣

cos(βp + ϕ) 0 − sin(βp + ϕ) −d sin ϕ

0 1 0 0
sin(βp + ϕ) 0 cos(βp + ϕ) d cos ϕ

0 0 0 1

⎤
⎥⎥⎦ .

(10)

To obtain the coordinates of the point relative to the
coordinate system associated to the camera, the matrix Hβ

defined in Eq. (10) is used. The coordinates of the points are

⎡
⎢⎢⎢⎣
Xcam

Ycam

Zcam

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cos(βp + ϕ) 0 − sin(βp + ϕ) −d sin ϕ

0 1 0 0

sin(βp + ϕ) 0 cos(βp + ϕ) d cos ϕ

0 0 0 1

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎦ . (11)

The model of perspective transformation (pinhole model) of
the camera is considered and the coordinates of the point on
the image plane are

x = KRϕ[Rβp | T]X. (12)
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In Eq. (12), X is the vector of coordinates of the point
in the world; x is the vector of coordinates of the point
on the image plane; Rβp and T are matrices that contain
information of the camera position and orientation respect to
the coordinate system of the real 3D space. These matrices
are denominated external parameters, and K is the matrix
that contains information of the intrinsic parameters of the
camera is expressed as

K =
⎡
⎣δx 0 x0 0

0 δy y0 0
0 0 1 0

⎤
⎦, (13)

where δx and δy represent the focal distance of the camera,
which are expressed in pixels; x0 and y0 are the coordinates
of the center of the image. Then, the lateral coordinates on
the image plane (expressed in pixels) are

⎡
⎢⎣

χ1i

χ2i

χ3i

⎤
⎥⎦ =

⎡
⎢⎣

δx 0 x0 0

0 δy y0 0

0 0 1 0

⎤
⎥⎦

⎡
⎢⎢⎢⎣

Xcam

Ycam

Zcam

1

⎤
⎥⎥⎥⎦ . (14)

Therefore, from Eqs. (11) and (14), the coordinates of the
point projected on the image plane are obtained as follows:

⎡
⎢⎣

χ1i

χ2i

χ3i

⎤
⎥⎦ =

⎡
⎢⎣

δx 0 x0 0

0 δy y0 0

0 0 1 0

⎤
⎥⎦

×

⎡
⎢⎢⎢⎣

cos (βp + ϕ) 0 − sin (βp + ϕ) − sin ϕ

0 1 0 0

sin (βp + ϕ) 0 cos (βp + ϕ) d cos ϕ

0 0 0 1

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎦ . (15)

The above Eq. (15) can be split into three equations:

χ1i = δx[X cos (βp + ϕ) − Z sin (βp + ϕ) − d sin ϕ]

+ x0[X sin (βp + ϕ) + Z cos (βp + ϕ) + d cos ϕ],

χ2i = δyY + y0[X sin (βp + ϕ) + Z cos (βp + ϕ) + d cos ϕ],

χ3i = [X sin (βp + ϕ) + Z cos (βp + ϕ) + d cos ϕ],
(16)

whereas the positive direction of the Y-axis is down, the
sign of the second equation of Eq. (16) must be changed.
Furthermore, the system equations (16) must be expressed
in homogeneous coordinates and the following system of
equation is obtained:

xi = δx[X cos (βp + ϕ) − Z sin (βp + ϕ) − d sin ϕ]

[X sin (βp + ϕ) + Z cos (βp + ϕ) + d cos ϕ]
+ x0,

(17)

yi = −δyY

[X sin (βp + ϕ) + Z cos (βp + ϕ) + d cos ϕ]
+ y0.

(18)

The coordinate Z is equal to zero since the eyes are considered
in the same plane. Therefore, the Eqs. (17) and (18) can be
arranged as follows:

X sin (βp + ϕ) (xi − x0) + d cos ϕ(xi − x0)

−δx[X cos(βp + ϕ) − d sin ϕ] = 0, (19)

X sin (βp + ϕ) (yi − y0) + d cos ϕ(yi − y0) + δyY = 0.

If two points are considered in the space (right eye and left
eye in the present work) and the projections’ points are on
the image plane, a four equations system with four unknown
variables is obtained. The unknown variables are functions
of the parameters: d (distance between the face and camera),
and the angles ϕ and βp. The system of equation obtained is

⎡
⎢⎢⎢⎣
X1(x1i − x0) −δxX1 (x1i − x0) δx

X1(y1i − y0) 0 (y1i − y0) 0

X2(x2i − x0) −δxX2 (x2i − x0) δx

X2(y2i − y0) 0 (y2i − y0) 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

sin (βp + ϕ)

cos (βp + ϕ)

d cos ϕ

d sin ϕ

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0

−δyY1

0

−δyY2

⎤
⎥⎥⎥⎦ , (20)

where (X1, Y1) are coordinates of the right eye and (X2, Y2)
are coordinates of the left eye. (x1i , y1i) and (x2i , y2i) are
the coordinates of the centroids of the right and left eyes,
respectively, in the image plane. In this work, physical
measurements (Xi, Yi) are obtained off-line as the mean
value of the eyes positions, considering a set of 20 persons.

The solution of Eq. (20) is

sin (βp + ϕ) = δy

Y2(y1i − y0) − Y1(y2i − y0)

(y1i − y0) (y2i − y0) (X1 − X2)
,

cos(βp + ϕ) =

−δy

δx

Y1(y2i − y0) (x1i − x0) − Y2(y1i − y0) (x2i − x0)

(y1i − y0) (y2i − y0) (X1 − X2)
,

d cos ϕ = δy[Y1X2(y2i − y0) − Y2X1(y1i − y0)]

(y1i − y0) (y2i − y0) (X1 − X2)
,

d sin ϕ =
δy

δx

[Y2X1(y1i −y0) (x1i −x0)−Y1X2(y2i −y0) (x1i −x0)]

(y1i −y0) (y2i −y0) (X1−X2)
.

(21)

Thus, the angle of head orientation, βp and parameters ϕ

and d were obtained. The parameter βp is used in the signal
fusion step.
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Fig. 6. Coordinate system.

2.2. Estimation of the head movement by optical flow
The projection of the 3D movement of a rigid object forms
a movement field on the image. This is the projection of
the 3D speed field onto the image plane and it is the 2D
temporal function for the relative spatial variation between
the view camera and the observed scene.32 The equations of
the movement field can be obtained by projecting the mobile
point in the 3D space to the image plane. For this projection,
the origin is located at the optical center of the camera and X-
and Y-axes are defined in such a way that they make a basis
for the image plane. The Z-axis is the same as the optical axis
of the camera. This situation is described in Fig. 6.

Let P = [X Y Z]T be a point in the 3D space. The relative
movement between the point P in the world space and the
camera can be described by

V = dP
dt

= −T − ωf × P, (22)

where T = [Tx Ty Tz]T is the translational component, and
ωf = [ωx ωy ωz]T is the rotational component. Since the
movement corresponds to a rigid object, T and ωf are the
same for any point P.

Thus, the movement field v = [uf vf ]T in the image plane
can be calculated by

uf = f

Z2
(ZVx − XVz),

vf = f

Z2
(ZVy − YVz),

(23)

where Vx, Vy, Vz being the components of V defined in
Eq. (22). Introducing Eq. (22) into Eq. (23), the following
equation, expressed in matrix form, is obtained:

[
uf (x, y)

vf (x, y)

]
= 1

Z

[−f 0 x

0 −f y

]⎡
⎢⎣

Tx

Ty

Tz

⎤
⎥⎦

+

⎡
⎢⎢⎣

xy

f
−f − x2

f
y

f + y2

f
−xy

f
−x

⎤
⎥⎥⎦

⎡
⎢⎣

ωx

ωy

ωz

⎤
⎥⎦ . (24)

In Eq. (24), two terms can be distinguished: the first one
describes the component of the movement field of the image

Fig. 7. Feature points.

Fig. 8. Estimated optical flow.

due to the translation of the object, which depends on the
depth inverse in each point. The second term is the component
of the movement field of the image due to the rotation of the
object, which is independent of the depth. Once obtained the
relation between the 3D space and its projection on the image
plane, the concept of optical flow follows.

The optical flow or image speed is the bidimensional field
of apparent speed in the image plane associated with the
variation of patterns of brightness intensity in an image.
The field can be produced due to the movement of the
observer, the movement of the objects in the scene or the
apparent movements. The values of optical flow uf and vf are
calculated through the relationship between the variation in
the brightness intensity of the image and the field movement,
assuming that it remains constant under the movement.

The optical flow is estimated in the points that belong to
strong contour in the face, which are calculated as explained
in Section 2.1. Figure 7 shows the points calculated. In this
work, the optical flow is calculated by implementing the
method of ref. [34]. This method uses the Kalman filter to
accomplish a data fusion step, obtaining a robust optical flow.
The optical flow calculated is shown in Fig. 8. The estimation
is carried out between two successive frames, It and It+1.

2.2.1. Estimation of the head movement. An estimation of the
3D movement is obtained by calculating the parameters of
the successive rotation and translation between two frames,
using the movement field in 2D. In the previous sections, the
steps for obtaining the optical flow were explained. In this
section, it will be explained how the parameters of the head
pose are obtained from the optical flow.

The projection of the movement in 3D in the movement
field 2D is given by Eq. (26). It is assumed that there is a
movement of the head in the image (and all the background
remains static), and the movement of the rigid body between
two frames is infinitesimal. Therefore, the angular velocities
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The detection of zero 
crossing of the βp, put the 

angle βf at zero 

Estimation of the angle βp by 
homography 

Estimation of angle βf  by 
optical flow 

FUSION 
Kalman filter 

β

Fig. 9. Diagram on blocks of the fusion.

can be directly replaced by the values of the angles. The
variation of the angles cannot be higher than 5◦.35 This
assumption does not represent an important restriction since
the webcam used in this work needs only 100 ms to process
two frames, which is a very short time to make big head
movements.

Equation (22) can be rewriting as follows:

Vx = −Tx − βf Z + γf Y,

Vy = −Ty − γf X + αf Z,

Vz = −Tz − αf Y + βf X,

(25)

where αf is the rotation angle respect to X-axis, βf is the
rotation angle respect to Y-axis, and γf is the rotation angle
respect to Z-axis. Subscript f refers to the variables obtained
by the optical flow technique.

If tx = Tx

Z
, ty = Ty

Z
, and tz = Tz

Z
and reorganizing Eq. (24),

the following equation system is obtained:

[
uf i

vf i

]
=

⎡
⎢⎢⎣
−f 0 xi

xiyi

f
−f 2 + x2

i

f
yi

0 −f yi

f 2 + y2
i

f
−xiyi

f
−xi

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

tx

ty

tz

αf

βf

γf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

The system of Eq. (26) is solved using the recursive least
mean square, minimizing the error

||A� − b|| = E, (27)

where

A =

⎡
⎢⎢⎣

−f 0 xi

xiyi

f
−f 2 + x2

i

f
yi

0 −f yi

f 2 + y2
i

f
−xiyi

f
−xi

⎤
⎥⎥⎦ ,

b =
[

uf i

vf i

]
,

� = [tx ty tz αf βf γf ]T.

This way, the three orientation angles of the head in the 3D
space are obtained. However, only the angles βf and αf are
used to command the robotic wheelchair.

A fusion process between the angles βf and βp will be later
carried out, and the angle αf will be used in the controller
without any fusion process. In the following section, a brief
description of the fusion between angle βf and the angle βp

is presented.

2.3. Fusion
The angular values βp and βf , obtained by both techniques,
are introduced in a Kalman Filter, in which the angles fusion
is carried out (see Fig. 9). The fusion is a technique that can
be applied when there is redundant information. The fusion
decreases the variance of the angle estimations in an optimal
way, improving the interface performance.

This fusion is performed using a decentralized Kalman
filter according to ref. [36]. With this aim, the covariance
σ 2 computation for each angle β is given by the following
recursive equation:37

σ 2(k) = σ 2(k − 1) + λ(β(k)2 − σ 2(k − 1)),

where λ = 0.01 is the damping factor.
Fusion process is performed because the detection of

βp angle depends on the centroids of the eyes are always
detected. This is not always possible due to abrupt changes
in the illumination or wide movement of the head. These
problems can produce failures in the calculus of the
homography. The advantage of this technique is that the angle
estimated is the absolute value of the orientation, which gives
the global orientation of the head respect axis Y in the 3D
space. On the other hand, the optical flow technique used
has a lower computing cost. The calculus of the parameters
with optical flow does not fail if the illumination changes or
if there is wide head movements because the calculation of
optical flow does not depend of the geometric points in the
space. However, the calculus of optical flow depends on the
speed of the turning of head. The problem in this technique
is that the angle value βf obtained is relative, thus producing
an accumulation error along the time. This problem is solved
setting βf to zero when both eyes are detected and βp is
zero.

It is important to note that if both techniques are working
well, they will provide similar values for the β angle and
the output of the Kalman filter will be an intermediate value.
On the other hand, if one technique fails, it will provide a
sequence of β angles with a large variance, and the output of
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Fig. 10. Image sequence where the image processing techniques are applied.

the Kalman filter will be closer to the β angle with minimum
variance.

The optical flow and features points on a typical sequence
of images are shown in Fig. 10.

2.4. Preliminary experiments
The performance of the developed VBI was first evaluated by
10 expert users in several indoor experiments with different
light conditions, i.e., at different times of day. In spite of
the constant artificial illumination of the laboratory, light
conditions were not always the same for the experiments
since the contribution of the natural light were variable. In
view of the fact that the developed interface only needs to
detect the sign of the α angle but it has to obtain a good
estimation of the β angle value, the performance evaluation
of the interface was focused on the estimation of the β angle
value.

In the carried out experiments, the user starts with a
head’s orientation equals to zero and then the user turns
his head until achieving ±5◦, ±10◦, ±15◦, or ±20◦. The
ground truth of the head orientation is measured using a laser

pointer fixed in the head following the recommendations in
ref. [16].

Figures 11 and 12 show some of the most representative
results obtained in the experiments carried out. It can be seen
in these figures that the accuracy of the proposed sensing
method is comparable with the bests similar techniques
reported in the literature,16 with maximum errors below
3◦. However, both eyes could be detected even when the
deviation of the head is about 30◦, but the center of the hidden
eye is detected closer to the nose. Therefore, the detecting
error is increased.

3. Model of the Robotic Wheelchair
The robotic wheelchair used in this work is the one
developed in ref. [38]. The block diagram of this
wheelchair is shown in Fig. 13. In this work, the control
architecture of the wheelchair includes the kinematics and the
dynamic.

The model of the wheelchair is presented in Fig. 14.
This figure depicts the wheelchair with the parameters and
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Fig. 11. (Colour online) Estimation β-angle negative values.

variables of interest. In the figure, u and ω are the linear
and angular velocities of the wheelchair, respectively. G is
the center of mass of the wheelchair, c is the position of
the middle point between the front wheels, E is the mass
center of the user location, h is the point of interest with
coordinate x, y in the XY plane, ψ is the robot orientation,
and a is the distance between the point of interest and
the central point of the virtual axis linking the traction
wheels.

The mathematical representation of the complete model
can be seen in the same way of mobile robots39 and is given
by the following:

Kinematic Model:⎡
⎣ ẋ

ẏ

ψ̇

⎤
⎦ =

⎡
⎣cos ψ −a sin ψ

sin ψ a cos ψ

0 1

⎤
⎦ [

u

ω

]
+

⎡
⎣ δx

δy

0

⎤
⎦ . (28)

Dynamic Model:

[
u̇

ω̇

]
=

⎡
⎢⎢⎣

θ3

θ1
ω2 −θ4

θ1
u

−θ5

θ2
uω −θ6

θ2
ω

⎤
⎥⎥⎦ +

⎡
⎢⎣

1

θ1
0

0
1

θ2

⎤
⎥⎦

[
ud

ref

ωd
ref

]
+

[
δu

δω

]
.

(29)
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Fig. 12. (Colour online) Estimation β-angle positive values.
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Fig. 13. Block diagram of the robotics wheelchair.
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Fig. 14. Model of the robotics wheelchair.

The vector of model parameters and the vector of
uncertainties parameters are, respectively,

θ = [θ1 θ2 θ3 θ4 θ5 θ6]T,

δ = [δx δy 0 δ̄u δ̄ω]T.

Fig. 16. Robotic wheelchair (LAI, Universidade Federal do Espı́rito
Santo, Brazil).

The vector θ was obtained through an identification ex-
periment asθ1 = 0.4087; θ2 = 0.1925; θ3 = 0.0047; θ4 =
1.0042; θ5 = 0.0044; θ6 = 0.8744.

For more details about the dynamic model, refer to
ref. [39].

3.1. Design of the controllers
Based on the kinematic and dynamic model of the robotic
wheelchair discussed above, a control system consisting of
two controllers is proposed. First one, based on the kinematic
model, uses the posture of the user’s head obtained by the
proposed VBI in order to calculate the linear and angular
reference velocities. Second one, based on the dynamic
model, calculates the linear and angular velocity commands
that ensure that the robotic wheelchair achieves the reference
velocities. The inclusion of these controllers allows the user
achieving a more safety navigation.16

3.1.1. Design of the kinematics controller. The orientation
angle β (obtained by the fusion process) of the head
commands the angular velocity of the kinematic control,
and the angle α (obtained by the optical flow technique)
commands the linear velocity of the kinematics control.

The nonlinear control law proposed for the angular
velocity is40

ωref = −k tanh ψ̃. (30)

This law changes the orientation of the wheelchair. The
parameter k is a positive constant, ψ is the orientation of
the wheelchair, and β is the reference angle. ψ̃ = β − ψ is

Fig. 15. Blocks Diagram of the architecture of control.
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Fig. 17. (Colour online) Variations of the β angle.

the orientation error. The function tanh(.) is used to prevent
saturation of commands due to high orientation errors.

The other control command is the linear velocity uref .
This velocity should be decreased when the wheelchair is
maneuvering (when ψ̃ is nonzero). The control law proposed
is

uref = V cos ψ̃ if α > 0,

uref = 0 if α < 0. (31)

In this way, the maximum lineal velocity command is
uref = V . Maximum velocity V must be defined taking
into account the physic limits of the wheelchair, avoiding

actuators saturations. It must be also taken into account in
the selection of the value of V the safety and comfort of the
user.

3.1.2. Design of the dynamic control. The kinematic control
receives the reference signals of the interface (β and α

angles). The dynamic controller receives the references of
linear and angular velocities, which are generated by the
kinematics controller and generates another pair of linear
and angular velocities commands to be sent to the wheelchair
motors, this shows in Fig. 15.

Then, the dynamic controller is designed based on the
robotic wheelchair’s dynamics. From Eq. (29) and without
considering the uncertainties, the inverse dynamics of the
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Fig. 18. (Colour online) Variations of the α angle.
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Fig. 19. (Colour online) Linear velocity of the wheelchair.

robotic wheelchair can be parameterized as follows:

[
ud

ref

ωd
ref

]
=

[
u̇ 0 −ω2 u 0 0

0 ω̇ 0 0 uω ω

]
θ , (32)

which can be rewritten as

[
ud

ref

ωd
ref

]
=

[
θ1 0

0 θ2

] [
u̇

ω̇

]
+

[
0 0 −ω2 u 0 0

0 0 0 0 uω ω

]
θ .

(33)

The proposed inverse dynamics control law is

νd
ref = G(u, ω, uref, ωref, u̇ref, ω̇ref)θ , (34)

where

G =
[
σ1 0 −ω2 u 0 0

0 σ2 0 0 uω ω

]
,

σ1 = u̇ref + ku(uref − u),

σ2 = ω̇ref + kω(ωref − ω).
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Fig. 20. (Colour online) Angular velocity of the wheelchair.
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4. Experimental Results
Some experiments were carried out using a robotic
wheelchair in order to evaluate the performance of the
proposed VBI when it is applied to a real assistance
device, in real work environments under normal illumination
conditions. The VBI was implemented by using a standard
webcam (resolution: 320 × 240 pixels; frame rate: 10fps),
and it controls the velocity of the wheelchair (see Fig. 16)
using a serial port.38,41 The kinematics control constants are
k = 4 and V = 0.1 m/s, while dynamics control constant
are ku = 0.9 and kω = 0.2. It is important to remark that the
selection of the controller’s constant not only depends on

the expected performance or physical limit of the actuators,
but also (and more important) the comfort and safety of
the user. Sometimes, optimal set of constants (from the
point of view of the control systems) must be relaxed in
order to achieve pleasant navigation, and it depends on each
user.

The wheelchair was programmed to move forward when
the head rotates forward (α > 0, where α being the head
rotation angle relative to X-axis), and to stop when the head
rotates backward (α < 0). The turning of the wheelchair
was commanded using β angle, where β being the head
rotation angle relative to Y-axis. If the head turned left
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Fig. 22. (Colour online) Variations of the β angle.
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Fig. 23. (Colour online) Variations of the α angle.

(β > 0), the wheelchair turned left; and if the head turned
right (β < 0), the wheelchair was programmed to turn
right.

In the first experiment, the user should drive the wheelchair
inside a laboratory avoiding obstacles. The results of the
experiment can be seen in Figs. 17–21. Figure 17 shows
the time evolution of the angle β: dash line refers to the
angle obtained by homography; dash-dot line refers to the
angle obtained by optical flow; and continuous line denotes
the angle obtained by the fusion process. In Fig. 18, the
time evolution of α angle can be seen. Linear and angular
velocities of the wheelchair are shown in Figs. 19 and
20, respectively. Finally, the trajectory described by the
wheelchair is shown in Fig. 21.

In the second experiment, the performance of the interface
is evaluated in a corridor, where illumination has larger
variations than the other experiments because of the externals
source of light. The user drives the wheelchair in a corridor
achieving the stable navigation. The results of the experiment
can be seen in Figs. 22–26. Figure 22 shows the time
evolution of the angle β: dash line refers to the angle obtained
by homography; dash-dot line refers to the angle obtained by
optical flow; and continuous line denotes the angle obtained
by the fusion process. In Fig. 23, the time evolution of
α angle can be seen. Linear and angular velocities of the
wheelchair are shown in Figs. 24 and 25, respectively.
Finally, the trajectory described by the wheelchair is shown in
Fig. 26.
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Fig. 24. (Colour online) Linear velocities of the wheelchair.
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Fig. 25. (Colour online) Angular velocities of the wheelchair.

In the last experiment, the performance of the interface
is evaluated in a more complex environment. The user has
to drive the wheelchair along four different corridors, so the
user has to turn right of left when necessary. Additionally, an
obstacle was located in one of the corridors and illumination
of the set was altered in order to have different light
conditions in the corridors (turning on or turning off some
of the lamps). The results of the experiment can be seen
in Figs. 27–30. Figure 27 shows the time evolution of
the angle β: dash line refers to the angle obtained by
homography; dash-dot line refers to the angle obtained by

optical flow; and continuous line denotes the angle obtained
by the fusion process. Linear and angular velocities of
the wheelchair are shown in Figs. 28 and 29, respectively.
Finally, the trajectory described by the wheelchair is shown in
Fig. 30.

The presented experiments show the good performance
obtained with the proposed VBI. It is worth noting that the
system’s performance has not being altered in spite of the
variable light conditions, especially in the second and third
experiments. It can be seen that both techniques estimate
correctly the angle β even with these light variations.
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Fig. 26. (Colour online) Path followed by the robotic wheelchair.
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Fig. 27. (Colour online) Variations of the β angle.

It is important to note that experiments were carried out
with a trained user, who drives the wheelchair taking care of
not deviate his head more than 20◦ or 25◦. However, if an
untrained user makes a head movement such that the VBI
loses a facial feature, the fusion process becomes important.
In this case, the variance of βp will be large and the output
value of the Kalman filter will be closer to βf . On the other
hand, the accumulative error characteristic of optical flow is
solved by setting βf = 0 when both eyes are detected and
βp = 0.

The implemented control laws allow achieving a smooth
and safety navigation, not only limiting the maximum
velocities due to the kinematic controller, but also including

a dynamical compensation for reducing the accelerations.
Additionally, since linear velocity command depends on the
angular error, the control system automatically reduces this
linear velocity when a high value of angular velocity is
required.

5. Conclusions
A novel assistive robotic system composed by a VBI,
a robotic wheelchair and a control algorithm has been
presented. This interface estimates the parameters of the
user head’s pose and translates these parameters into input
reference for the controller of a robotic wheelchair.
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Fig. 28. (Colour online) Linear velocities of the wheelchair.
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Fig. 29. (Colour online) Angular velocities of the wheelchair.

The performance of the VBI had been evaluated through
preliminary static experiments, obtaining maximum errors
below 3◦ for the β angle between −20◦ and 20◦. From
these experimental results, it is observed that the fusion
of the two techniques improves the performance of the
interface and provides better estimations of the β angle.
It also provides the redundancy in the system and this
is important for the safety of people with high level of
disability.

On the other hand, the proposed control system consists
in two different cascade subsystems: first, a kinematic-
based controller, which generates reference velocities as a
function of the head’s posture of the user; and the second
subsystem, which considers the dynamic model of the
wheelchair, calculates the control commands as a function
of the velocities reference obtained before.

The overall assistive robotic system had been evaluated.
Several indoor experiments with the robotic wheelchair have
been carried out, showing the good performance of the
proposed system. It is important to stress that experiments
were carried out without special the illumination. The ability
of the system to perform in these conditions indicates that
the system is reliable and robust.

Finally, it is important to remark that in spite of the
proposed system is developed for quadriplegic people; it
requires that the user can perform voluntary movements of
his head. Therefore, as most assistive technology devices,
the proposed system cannot be standardized for every person
with sever motor disability. The next steps will be focused
in the evaluation of the proposed system according to the
RESNA-ISO standards, and after that the robotic wheelchair
will be tested with motor disable people.

0 5 10 15 20 25 30
–2

0

2

4

6

8

10

X-axis (m)

Y
-a

x
is

 (
m

)

Start

Stop

Obstacle

 

Fig. 30. (Colour online) Path followed by the robotic wheelchair.
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