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In this work we analytically evaluate, for the first time, the exact canonical partition function for
two interacting spherical particles into a spherical pore. The interaction with the spherical substrate
and between particles is described by an attractive square-well and a square-shoulder potential. In
addition, we obtain exact expressions for both the one particle and an averaged two particle density
distribution. We develop a thermodynamic approach to few-body systems by introducing a method
based on thermodynamic measures [I. Urrutia, J. Chem. Phys. 134, 104503 (2010)] for nonhard
interaction potentials. This analysis enables us to obtain expressions for the pressure, the surface
tension, and the equivalent magnitudes for the total and Gaussian curvatures. As a by-product, we
solve systems composed of two particles outside a fixed spherical obstacle. We study the low density
limit for a many-body system confined to a spherical cavity and a many-body system surrounding a
spherical obstacle. From this analysis we derive the exact first order dependence of the surface tension
and Tolman length. Our findings show that the Tolman length goes to zero in the case of a purely hard
wall spherical substrate, but contains a zero order term in density for square-well and square-shoulder
wall-fluid potentials. This suggests that any nonhard wall-fluid potential should produce a non-null
zero order term in the Tolman length. © 2011 American Institute of Physics. [doi:10.1063/1.3544681]

I. INTRODUCTION

The properties of fluid systems in equilibrium are diffi-
cult to study in the framework of statistical mechanics theory
of ensembles. Basically, the ensemble theory shows that the
thermodynamic properties of a system composed of interact-
ing particles are expressible in terms of a partition function.
In a given ensemble some properties of the system are kept
fixed. The canonical ensemble analyzed in this work, for in-
stance, represents a system with a fixed number of particles,
N , into a volume at constant temperature, T . In this ensem-
ble the partition function Q is an integral over the coordinates
and moments of the particles. Due to the difficulties in de-
riving the analytical expression for Q, a direct approach to
the thermodynamic properties of a fluid based on the partition
function evaluation is often avoided in the literature.

The exact analytic expression for Q has been recently
presented for some few-body systems of hard spheres con-
fined to cavities with simple geometries.1, 2 From a theoreti-
cal point of view, the importance of these results is that they
constitute the unique case for which an exact solution was
found. Since its origin, the main interest of statistical mechan-
ics theory of fluids was to deal with large systems, frequently
involving the so-called thermodynamic limit. The theoretical
development, however, shows that the initial interest on large
homogeneous systems made gradually place to inhomoge-
neous ones. Most of the works in the literature devoted on
fluids pay special attention to inhomogeneous systems and
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particularly to analyze the properties of fluids under con-
finement. Indeed, a continue effort to implement the statisti-
cal mechanics recipes to increasingly smaller inhomogeneous
fluid systems has been noticeable in the last decades. Sim-
ilarly, the thermodynamic theory although developed earlier
than statistical mechanics, was initially focused on large sys-
tems and gradually dropped to the smaller ones. In summary,
these last statements highlight the importance of few-body
inhomogeneous systems and show the convenience of study-
ing them considering a statistical mechanics and a thermody-
namic framework.

Up to present, all the exactly solved few-body systems in
three dimensions concern two hard spheres (HS). The 2-HS
system confined to hard cavities of various simple geomet-
rical shapes was studied in the framework of the canonical
ensemble. The analyzed shapes include the spherical cavity,2

the spherical cavity with a hard central core,3 the cuboidal, the
cylindrical and the spheroidal, cavities.1 A remarkable char-
acteristic of HS systems is that their thermodynamics is driven
by entropy. Indeed, in such systems the temperature does not
play any interesting role and thus the energy is equal to that
of the ideal gas; for this reason HS systems are commonly
referred as athermal.

The square-well potential (SW) is a natural extension
of the HS potential, which includes an attractive well and it
is still simple enough to handle analytically. This potential
was used to model the interaction between atoms in a simple
fluid4–7 as well as to simulate the effective interaction between
colloidal particles.8 In this paper we present an exact study
of a 2-SW system composed of particles confined to a SW
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spherical cavity (SWC), the so-called 2-SW–SWC. The ana-
lytical knowledge of the statistical mechanics properties of a
system composed of two colloidal particles with short range
potential constitutes a valuable contribution to the subject. We
verify our findings by comparing them with the previously
published numerical results for a similar system.9 We also in-
clude in our study the cases of square-shoulder potentials (SS)
for both particle–particle and particle–substrate interactions.
Other interesting characteristic of our work is that it focuses
on solving exactly a spherically inhomogeneous fluid system
of interacting particles. Some works that reflect the actual in-
terest in spherically symmetric macroscopic systems are those
related to the study of fluid confined to spherical cavities, and
those in contact with a spherical particle.10, 11 As we will show
in our analysis, some properties of this macroscopic system
related to the substrate–fluid surface tension and the Tolman
length will be derived from the properties of the 2-SW-SWC
system.

This paper is organized as follows: in Sec. II we de-
scribed the analytical evaluation of the partition function for a
system of two particles confined to a spherical pore, where the
interactions are described by piecewise constant potentials.
The 2-SW–SWC, 2-SW–SSC, 2-SS–SWC, and 2-SS–SSC
systems are particular cases of the obtained solution. Addi-
tionally, we obtain analytically the one-body density distribu-
tion and an averaged two-body density distribution. In Sec. III
we discuss the implementation of a thermodynamic scheme
to evaluate the global properties of a few-body system and
study the thermodynamic properties of a 2-SW–SWC system.
The analytical correspondence between the properties of the
2-SW–SWC system and other few-body systems as well as
between 2-SW–SWC and many-body systems composed of
SW and SS particles is presented in Sec. IV. In this section
we derive the first non-null term in a series expansion of the
fluid–substrate surface tension and Tolman length in powers
of the density. A summary of our work is presented in Sec. V.

II. EVALUATION OF THE PARTITION FUNCTION

We are interested in furthering the understanding of the
thermodynamic properties of fluidlike small inhomogeneous
systems of confined particles. Let us therefore consider a sys-
tem composed of N particles confined by an external poten-
tial ϕN =∑ϕ(ri ), in which φN =∑φ(ri j ) represents the
interaction between particles. The partition function of this
system is

Q =�−N D Z =�−N D
∫

exp (−βϕN ) exp (−βφN )
N∏

i=1

dri ,

(1)

where Z is the configuration integral (CI), �

= h/(2πm kB T )1/2 is the thermal de Broglie wavelength,
β = (kB T )−1 is the inverse temperature, kB is the Boltz-
mann’s constant, T is the temperature, and D is the dimension
of the space. Such a system constitutes the general framework
for our study. Even though our main interest is in the general
system described by Eq. (1), we decided to reduce the
complexity of the analysis by focusing on the study of the

FIG. 1. A scheme of the 2-SW–SWC system showing the two square-well
particles confined to a square-well spherical cavity.

smallest nonhard and nontrivial system composed of two
interacting particles. Specifically, we consider the CI of the
2-SW–SWC system. The diameter or hard repulsion distance
between particles is σ , while the radius of the empty cavity is
R + σ/2, with R the effective radius of the pore. In Fig. 1 we
draw the main characteristics of the 2-SW–SWC system and
also indicate the lengths of the square wells σ ′ − σ and h.
Taking into account this representation for the 2-SW–SWC
system, we evaluate the canonical partition function Q for the
slightly more general case of piecewise constant interactions
in D dimensions. It is given by

Q = �−2D Z = �−2D
∫ ∫

e1 e2 e12 dr1dr2, (2)

ei ≡exp [−βϕ(ri )]=
⎧⎨
⎩

Y0, if ri ≤ R − h,

Y1, if R − h < ri ≤ R,

0, if ri > R,

(3)

e12 ≡exp [−βφ(r12)]=
⎧⎨
⎩

X0, if r12 ≤ σ,

X1, if σ < r12 ≤ σ ′,
X2, if r12 > σ ′.

(4)

Here, normal and bold numeric subindices are used to la-
bel particles and piecewise potential, respectively. The bold
subindex will be also used below to label different functions
and parameters, but this will not cause confusion because its
meaning will be clear from the context. The Eq. (4) can also
be rewritten as

e12 = X0 + (X1 − X0)� (r12 − σ ) + (X2 − X1)�(r12 − σ ′),

(5)

where � is the Heaviside function defined by: �(x) = 1 if
x ≥ 0 and �(x) = 0 otherwise. Note that at a given tempera-
ture X i = exp(−βφi) and Yi = exp(−βϕi) with φi and ϕi con-
stants, do not depend on coordinates and X i, Yi ≥ 0. The SW
particles are obtained by setting X0 = 0, X1 > 1, and X2 = 1,
while the SWC is obtained in the case Y0 = 1 and Y1 > 1. On
the other hand, the square-shoulder potentials use 0 < X1 <

1 and/or 0 < Y1 < 1. In Fig. 2 we display all the possible
combinations using a general notation in terms of X and Y
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FIG. 2. Phase space diagram in the X , Y parameters for SW and SS po-
tentials. The vertical line X = 1 corresponds to the HS system, while the
horizontal line Y = 1 corresponds to the HC. The central point with X = 1
and Y = 1 corresponds to HS particles confined to a HC. Systems with λ = 1
and λ = −1 are represented with dashed lines for reference.

instead of X1 and Y1. In this representation, the X and Y axis
correspond to the inter-particle potential properties and the
particle-substrate potential, respectively. The system can be
adequately described by a point in this square by assuming a
fixed potential and temperature. For fixed values of φ1 and ϕ1,
an increase in T produces the motion of the system point on
the curve Y = Xλ (λ = ϕ1/φ1) toward the central portion of
the square. These trajectories never cross the lines X = 1 and
Y = 1. The spherical pore exerts a simple hard potential when
Y = 1, thus, in this case we deal with a hard cavity (HC).

Now, we return to Eq. (2). Using the center of the pore
together with the relative distance between particles as the in-
tegration variables, and integrating on the coordinates of the
pore center, the Eq. (2) can be written as

Z = 
(D)
∫ 2R

0
e12(r )
[
(Y0 − Y1)2J1

+ 2Y1(Y0 − Y1)J2 + Y 2
1 J3
]

r D−1 dr, (6)

where 
(D) represents the solid angle. To write down J1, J2,
and J3 we introduce the function J (r, R1, R2) for the over-
lap volume between two spheres of radii R1 and R2 (being
R1 ≥ R2) whose centers are separated by a distance r≥ 0,

J (r, R1, R2) ≡

⎧⎪⎨
⎪⎩

Sp(R2), r ≤ R1 − R2,

I (r, R1, R2) , otherwise,

0, r > R1 + R2,

(7)

where Sp(R) is the volume of the sphere of radius R, while

I (r, R1, R2) is the overlap volume in the partially overlap-
ping configuration, which is symmetric through the permu-
tation R1 ↔ R2. We complete the definition given in Eq. (7)
by setting J (r, R1, R2) ≡ 0 for the unphysical values R2 ≤ 0.
For the special case R1 = R2, we use the shortcut expressions
J (r, R1) ≡ J (r, R1, R1) and I (r, R1) ≡ I (r, R1, R1) related to
each other by

J (r, R1) =
{

I (r, R1) , 0 < r ≤ 2R1,

0, r > 2R1,
(8)

TABLE I. Summary of all the possible order relations between the val-
ues of the length parameters that are relevant in Eq. (6). Magnitudes in-
crease from left to right.

1 h σ σ ′ 2(R − h) 2R − h 2R
2 h σ 2(R − h) σ ′ 2R − h 2R

3 h σ 2(R − h) 2R − h σ ′ 2R
4 h σ 2(R − h) 2R − h 2R σ ′

5 h 2(R − h) σ σ ′ 2R − h 2R

6 h 2(R − h) σ 2R − h σ ′ 2R
7 h 2(R − h) σ 2R − h 2R σ ′

8 h 2(R − h) 2R − h σ σ ′ 2R

9 h 2(R − h) 2R − h σ 2R σ ′

10 h 2(R − h) 2R − h 2R σ σ ′

11 2(R − h) h σ σ ′ 2R − h 2R

12 2(R − h) h σ 2R − h σ ′ 2R
13 2(R − h) h σ 2R − h 2R σ ′

14 2(R − h) h 2R − h σ σ ′ 2R

15 2(R − h) h 2R − h σ 2R σ ′

16 2(R − h) h 2R − h 2R σ σ ′

17 σ h σ ′ 2(R − h) 2R − h 2R

18 σ h 2(R − h) σ ′ 2R − h 2R
19 σ h 2(R − h) 2R − h σ ′ 2R

20 σ h 2(R − h) 2R − h 2R σ ′

21 2(R − h) σ h σ ′ 2R − h 2R
22 2(R − h) σ h 2R − h σ ′ 2R

23 2(R − h) σ h 2R − h 2R σ ′

24 σ 2(R − h) h σ ′ 2R − h 2R
25 σ 2(R − h) h 2R − h σ ′ 2R

26 σ 2(R − h) h 2R − h 2R σ ′

27 σ σ ′ h 2(R − h) 2R − h 2R
28 σ σ ′ 2(R − h) h 2R − h 2R

29 σ 2(R − h) σ ′ h 2R − h 2R

30 2(R − h) σ σ ′ h 2R − h 2R

and we set J (r, R1) ≡ 0 for R1 ≤ 0. The expressions of 
(D),

J (r, R1, R2) as well as J (r, R1) for any dimension can be find
in the literature.2, 3 From Eqs. (6) to (8) we obtain

J1 = J (r, R − h), (9)

J2 = J (r, R, R − h), (10)

J3 = J (r, R). (11)

Upon inspecting the set of equations from Eqs. (6) to (11) it
is evident the discontinuity in the integrand in Eq. (6) at r
= {σ, σ ′} and in its second derivative at r = {h, 2(R
− h), 2R − h}. The unanalycities of this integrand produce
a nonanalytical partition function that spreads in several an-
alytic branches. We find that depending on the order rela-
tion between the values of {σ, σ ′, h, 2(R − h), 2R − h, 2R}
a different analytic branch is yielded. These magnitudes
satisfy the following inequalities: 0 ≤ {h, 2(R − h)} ≤ 2R
− h ≤ 2R and 0 ≤ σ ≤ σ ′. From the combination of the two
sets of inequalities it is possible to distinguish 30 different
cases, which are summarized in Table I.

For further progress we restrict the analysis to three di-
mensions, D = 3, so 
(3) = 4π , Sp(R1) = (4π/3)R3

1 ,

I (r, R1) = π

12
(2R1 − r )2(r + 4R1) (12)
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I (r, R1, R2) = π

12 r
(R1 + R2 − r )2 (r2 − 3(R1 − R2)2

+ 2r (R1 + R2)). (13)

Functions I (r, R1) and I (r, R1, R2) for integer values of D
were published in Refs. 2 and 3. It is worthwhile to note

that for each analytic domain the integrand in Eq. (6) is
a polynomial in the variables {r, R, h, σ, σ ′}. The integrals
Li = I[Ji] ≡ 4π

∫ s
0 Ji r2dr for i = 1, 2, 3 are given by

L1(s) = I[J (r, R − h)], L3(s) = I[J (r, R)], (14)

I[J (r, R1)] =
(

4π

3

)2 {
2−5s3
(
s3 − 18 s R2

1 + 32R3
1

)
, if 0 ≤ s ≤ 2R1,

R6
1, if s > 2R1,

(15)

L2(s) =
(

4π

3

)2

⎧⎪⎪⎨
⎪⎪⎩

s3 (R − h)3 , if 0 ≤ s ≤ h,

2−5
[
s6 − s49(h2 − 2h R + 2R2) − s29h2 (2R − h)2

+s316(2R − h)(h2 − h R + R2) + h4(h2 − 6h R + 6R2)
]

, else,
(R − h)3 R3, if s > 2R − h.

(16)

Note that the functions Li(s) are also polynomials but in the
variables {s, R, h}. The same behavior is also valid for the
equivalent problem in any odd dimension.3 Finally, we obtain
the following expression for the CI

Z = (X0 − X1, X1 − X2, X2) K

⎡
⎣ L1(σ ) L2(σ ) L3(σ )

L1(σ ′) L2(σ ′) L3(σ ′)
L1(2R) L2(2R) L3(2R)

⎤
⎦

×
⎛
⎝ (Y0 − Y1)2

2Y1(Y0 − Y1)
Y 2

1

⎞
⎠ . (17)

Here K is a 3 × 3 matrix that considers all the different ways
in which the parameters {σ, σ ′, 2R} can be arranged in in-
creasing order once their values were fixed. For σ ′ ≤ 2R, K
is given by the identity matrix, while

K =
⎡
⎣1 0 0

0 0 1
0 0 1

⎤
⎦ for σ ≤ 2R < σ ′,

K =
⎡
⎣0 0 1

0 0 1
0 0 1

⎤
⎦ for 0 ≤ 2R < σ. (18)

We introduce the shortcuts: L for the matrix in Eq. (17), X
and Y2 for the row vectors related to X i and Yi values, respec-
tively. We combine them with standard vectorial notation to
obtain

Z = X · K · L · Y2, (19)

where (Y2)† is the transposed of the matrix Y2. This is an
explicit and compact expression for the CI in which the
temperature dependence is separated from the dependence
on the characteristic lengths {σ, σ ′, h, R}. From Eq. (17), it
is clear that the generalization to more complex piecewise
constant potentials is straightforward. We have checked that
our results for the special case of the 2-HS–SWC are con-
sistent with the analytical results found by McQuarrie and
Rowlinson.12 In addition, we introduce two relevant distribu-
tion functions: the one-body distribution function ρ(r) and a
kind of averaged pair distribution function ḡ(r) in which the

position of the pore center was integrated.2 Both distribution
functions can be defined in terms of the two-body density dis-
tribution ρ2(r1, r2) (for further details about this function see
for example Ref. 13),

ρ(r) = (N − 1)−1
∫

ρ2(r, r2) dr2, (20)

ḡ(r) ≡ 1

2

∫
ρ2(r + r2, r2) dr2, (21)

where ρ(r) and ḡ(r) are normalized to N and N (N − 1)/2,
respectively. Note that Eq. (21) is essentially the integrand in
Eq. (6). Explicit expressions for the two distributions associ-
ated with the system studied in the current work are given by

ρ(r ) = 2 Z−1e1(r ) X · K · J · Y†, (22)

J =
⎡
⎣ J (r, {R − h, σ }) J (r, {R, σ })

J (r, {R − h, σ ′}) J (r, {R, σ ′})
Sp(R − h) Sp(R)

⎤
⎦ , (23)

ḡ(r ) = Z−1 e12(r ) ((Y0 − Y1)2J1

+2Y1(Y0 − Y1)J2 + Y 2
1 J3), (24)

where Y = (Y0 − Y1, Y1) and J (r, {R1, R2}) ≡ J (r, Max
(R1, R2), Min(R1, R2)) is an extension of Eq. (7). It is worth-
while that for R > h + σ ′/2, a homogeneous density plateau
is developed in the central region of the cavity with 0 ≤ r
≤ R − h − σ ′/2. A peripheral density plateau is developed if
h > 2σ ′ in the region R − h + σ ′ ≤ r ≤ R − σ ′. The density
in the plateau regions is given by

ρh = 2 Z−1e1
{

X2
[
Y1Sp(R) + (Y0 − Y1) Sp(R − h)

]
+ Y0
[
(X1 − X2) Sp(σ ′) + (X0 − X1) Sp(σ )

]}
, (25)

where the dependence on the position comes from Eq. (3),
i.e., e1 = Y0 for the central plateau and e1 = Y1 for
the peripheral one. The homogeneous density in both
cases can be simplified by introducing the CI corre-
sponding to the one particle system, Z(1) = Y1Sp(R) + (Y0
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− Y1)Sp(R − h), and the first cluster integral of the ho-
mogeneous SW–particle system, 2b2 ≡ − ∫ (e12 − 1) dr12

= (X1 − X0) Sp(σ ) + (X2 − X1) Sp(σ ′) giving

ρh = 2 Z−1
(
e1 X2 Z(1) − e2

12b2
)
. (26)

Note that in our convention b2 > 0 for HS. Finally, the pres-
sure in the homogeneous regions may be evaluated using the
procedure developed in Ref. 1. We thus find

β Ph = ρh + Z−1e2
12b2 = 2Z−1

(
e1 X2 Z(1) − e2

1b2
)
. (27)

The compressibility factor in the homogeneous density region
provides a local equation of state (EOS) that describes the
local properties in the plateaus. It is given by

β Ph

ρh
= 1 + 1

2

b2

X2/e1 ρ̄−1 − b2
, (28)

where ρ̄ = 2/Z(1) is the rough density. Equation (28) for
X2/e1 = 1 has been previously obtained for both, the case
of 2-HS system confined to an arbitrary general geometry1

and for 2-HS in a hard wall spherical confinement in D
dimensions.3 We conclude that Eq. (28) can be also applied
in 2-SW in other nonspherical SW confinement and further,
to more general finite range potentials.

III. THERMODYNAMICS OF A FEW-BODY SYSTEM
UNDER CONFINEMENT

The aim of this section is to analyze the thermodynamic
behavior of few-body confined systems. Our main interest is
the macroscopic description of small systems. It means that
we are not interested in the peculiarities of the two-body sys-
tem, but our goal is to find the EOS that describes the global
properties of a few-body fluid system without any restric-
tion on the number of particles. It is important to emphasize
that a few-body system is far away from the thermodynamic
limit of N-body systems with N → ∞, therefore, the thermo-
dynamic description developed below does not involve such
limit. Also, the different ensemble representations for a few-
body system are not equivalent to each other. Of course, it
does not produce any contradiction with macroscopic ther-
modynamics where the question of equivalence between dif-
ferent ensembles in the thermodynamic limit is secured. We
assume that the system in which we are concerned, charac-
terized by some external constraints, is well described by a
certain Gibbsian ensemble and we will analyze the properties
of this ensemble representation. Therefore, for a small sys-
tem under the external constraints of constant temperature and
number of particles, the appropriate thermodynamic analysis
is one in which N and T are external parameters14 and thus,
the ensemble representation to be used is the canonical one.

The pertinence of the thermodynamic theory to small sys-
tems was previously recognized by several authors, see e.g.,
Ref. 14. Even though the thermodynamic analysis of few-
body systems may seem controversial, we assert that it is pos-
sible to apply the first law of thermodynamic provided that
all assumptions concerning the extensivity of the energy and
entropy are avoided. The study presented in Ref. 1 supports
this assertion and the overall thermodynamic approach that
we will use here. In that work it was assumed that thermo-

dynamics has the Simplicity, Universality and Size Invariance
(SUSI) attributes, which implies that a consistent thermody-
namic treatment of systems with large, many, and few number
of particles is possible using a basic small set of macroscopic
quantities. This exact thermodynamic approach allows an uni-
fied study of small (and inhomogeneous) systems constrained
in cavities with different geometries and leads to results which
are consistent with several exact relations as the wall theorem,
which is a posteriori support of the assumptions.

A. Free energy and work

We would like to draw attention to an unsolved problem
in equilibrium statistical mechanics. In effect, at first glance
may seem surprising that even when we know the exact par-
tition function of an inhomogeneous fluid system, its thermo-
dynamic properties are not revealed. Our knowledge about the
partition function comes from the exact evaluation of the inte-
gral in Eq. (1). Since the integrand and the limits of evaluation
are functions of T and of some set of mechanical parameters
X, the solution of that integral is expressed in terms of a func-
tion Q(T, X). In the present thermodynamic approach we as-
sume that the system has only one independent mechanical
coordinate denoted by R. In classical thermodynamics it is
well known that the free energy F , the energy U , the entropy
S, and the chemical potential μ are related to each other by

F = U − T S, (29)

dU = T d S − FRd R, (30)

d F = −S dT − FRd R, (31)

μN ≡ F(N ) − F(N − 1). (32)

Equations (30) and (31) involve infinitesimal variations of the
magnitudes in a reversible transformation. From Eq. (31), it
is clear that

FR = −∂R F, S = −∂T F, U = ∂ββF, (33)

where the partial derivatives are taken with respect to the vari-
ables T (or β) and R while the other parameters of the system
are kept fixed in the calculation. Since FR is the scalar force
between the substrate and the fluid, the mechanical work done
by the fluid due to an infinitesimal reversible change of the pa-
rameter R is dw = FRd R. The total work in going from state-
a to state-b through an isothermal reversible transformation is

wab =
∫ b

a
FR d R = F(Ra) − F(Rb). (34)

Herefrom we assume that the other characteristic lengths and
the energy parameters related to the interaction potentials are
kept fixed when the R-piston is moved. The adopted def-
inition for the chemical potential in Eq. (32) with N ≥ 1
and μ0 = F(0) = 0 means that μN is the free energy in-
crease which results from the addition of one particle to the
N − 1 particle system. We now establish the connection be-
tween thermodynamics and statistical mechanics via the usual
relation
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βF = −ln(Q). (35)

The scalar force and the energy may be also expressed as en-
semble averages. Assuming spherical symmetry and relating
R to the radius of a divergent substrate potential, we find

βFR ≡ −β

〈
d

dr
ϕN · r̂
〉

= −β

∫
dϕ

dr
ρ(r ) dr, (36)

βU ≡ β 〈EK + ϕN + φN 〉 = 3N/2 + β

×
[∫

ϕ(r ) ρ(r ) dr +
∫

φ(r ) ḡ(r ) dr
]

, (37)

where EK is the kinetic energy and 〈 〉 refers to the ensemble
average of the physical quantities.

Concerning the 2-SW–SWC system, the right hand side
in Eqs. (36) and (37) involves integrands which are piecewise
polynomial functions. The evaluation of these integrals pro-
vide expressions for FR and U , which are similar to those in
Eqs. (19) and (17). For instance, from Eq. (36) we obtain a
simple expression for FR ,

βFR = 4π
[
Y1 R2 ρ(R) + (Y0 − Y1) (R − h)2

×ρ(R − h) �(R − h)] . (38)

In the thermodynamic description of a system, it is custom-
ary to assume that the analytical knowledge of F permits to
evaluate all the thermodynamic properties of the system. This
statement may be ensured for extended homogeneous systems
but not for confined inhomogeneous systems. As a simple ex-
ample, in this work we evaluated F(T, R), but to derive the
thermodynamic pressure of the system it is also necessary to
add the notion of volume V of the system and establish the
dependence of F on V .

B. Thermodynamic measures

In order to complete the thermodynamic description of
few-body systems it is necessary to define a suitable set
of variables of state conforming with SUSI requirements.
We introduce a set of thermodynamics measures M that al-
lows us to obtain an exact description for few-body analyt-
ically solved systems. It is expected that a good choice of
M yields thermodynamic properties in good agreement with
well-known previously established results. Homogeneous flu-
ids are typically described using the volume as measure,
M = {V }, while M = {V, A} with A the surface area is of-
ten used for several authors in the study of inhomogeneous
systems with interfaces [e.g., see Eq. (7) in Ref. 10]. The
usual analysis of an ideal gas shows that the expected be-
havior for noninteracting particles is well described by a
set M = {V }, with P = −∂V F(M) that should be compati-
ble with the pressure of the system. A similar idea applies
for the surface area of the substrate and the wall-fluid sur-
face tension γ . We establish the relation between M and
Eqs. (29), (31), and (35) on the basis of the exact description
of the mechanical work

wab = −
∫ b

a
∇M F · dM = −

∫ b

a
m · dM, (39)

where m ≡ ∇M F and dM = ∂RM d R. For the spherical sym-
metric system we find

∂R F = m · ∂RM =
∑

j

∂R M j
∂ F

∂ M j

∣∣∣∣
T, M−M j

, (40)

where the subscript M − M j means that all the measures ex-
cept the j-component are kept constant in the partial deriva-
tive. We consider a set of measures that includes volume
and area measures M = {V, A, M3, . . .}. The selection of
M together with a rule that identifies the dependencies of
the free energy F on M [i.e., F → F(T, N , M) or Z →
Z (T, N , M)], allow us to find the so-called intensive thermo-
dynamic magnitudes

− P = ∂ F

∂V

∣∣∣∣
T,M−V

, (41)

γ = ∂ F

∂ A

∣∣∣∣
T,M−A

, (42)

CMi = ∂ F

∂ Mi

∣∣∣∣
T,M−Mi

, (43)

where i ≥ 3. Clearly, Eqs. (41)–(43) are strongly dependent
on the adopted M.

Turning to the thermodynamic analysis of the 2-SW–
SWC system and following,1 we write the CI of this system
as

Z = Z2
(1) − 2Z(1)b2(pore). (44)

The first term in the last equation reproduces the expected
behavior of an ideal gas composed of two noninteracting par-
ticles [b2(pore) = 0] suggesting that Z(1) is a good measure of
the system volume. Accordingly, we define the volume mea-
sure V ≡ Z(1) = ∫ e1(r ) dr and obtain an expression for the
pressure-for-work1

Pw = FR

(
∂V

∂ R

)−1

, (45)

which gives dw = Pw dV for the total work. The β Pw (R)
function defined in Eq. (45) is plotted, for the case of the 2-
SS–HC system (i.e., Y = 1 and 0 < X < 1), in Figs. 1 and 2
of Ref. 9. That figure shows a van der Waals loop developed
in the range 0.5 < R/σ < 2 which becomes deeper with in-
creasing φ1 and decreasing T or σ ′ − σ .

The last term in Eq. (44) may be decomposed by expand-
ing

Z(1)b2(pore) = V b2 − a2 A + c2,JJ + c2,KK. (46)

Here, we have introduced the measures for the area A
and the extensivelike mean and Gaussian curvatures J, K,
respectively. The selection of a convenient definition for
A, J, and K is in fact a nontrivial problem, which requires
that geometrical and physical aspects to be considered. We
have analyzed several possible definitions and select
A ≡ ∫ |∇e1(r)| dr, which for a spherical confine-
ment is reduced to A = 4π

∫
r2|∂r e1|dr . For this

confinement, we select J = −4π
∫

r2 j(r )∂r e1dr and
K = (1/2)4π

∫
r2k(r )|∂r e1|dr , with j(r ) = 2r−1 and

Downloaded 09 Feb 2011 to 168.96.66.177. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



064508-7 Two interacting particles in a spherical pore J. Chem. Phys. 134, 064508 (2011)

k(r ) = r−2. We then construct the set of thermodynamic
measures M = {V, A, J, K}. The definitions of J and K for
nonspherical cavities with hard wall interaction potentials
could be obtained by using the shape operator defined in the
context of differential geometry of surfaces. In order to sim-
plify the notation, we reduce the number of free parameters
by setting X0 = 0, X1 = X = exp(−βφ1), X2 = 1, Y0 = 1,
and Y1 = Y = exp(−βϕ1). Now, only two characteristic
energies are present in the calculation: the substrate–particle
and particle–particle potentials well depth energies, φ1 and
ϕ1, respectively. These systems are drawn in Fig. 2. The
measures adopted in Eq. (46) are given by

V = 4π

3

[
Y R3 − (Y − 1) (R − h)3 �(R − h)

]
, (47)

A = 4π
[|Y | R2 + |Y − 1| (R − h)2 �(R − h)

]
, (48)

J = ∂2
R V = 8π [Y R − (Y − 1) (R − h) �(R − h)] , (49)

K = 1

2
∂2

R A = 4π [|Y | + |Y − 1| �(R − h)] . (50)

which make sense for h � R. All these measures depend on
the properties of the one-particle system, i.e., on the particle–
substrate potential parameters and T . In Eqs. (48) and (50) the
dependence on |Y − 1| splits A and K in two branches, one for
the SW cavity |Y − 1| = Y − 1, and the other for the SS cav-
ity |Y − 1| = − (Y − 1). This is necessary to obtain the ap-
propriate behavior for 2-HS in a HC with a hard core.1 On the
other hand, although the dependence on |Y | is artificial, it is
needed for the discussion given in Sec. IV. For HS particles in
a HC the Eqs. (47)–(50) reduce to the simple geometrical re-
lations: V = 4π R3/3, A = 4π R2, j(R) = 2R−1 = J/A, and
k(R) = R−2 = K/A. The measures in Eqs. (47)–(50) can be
also used for studying the N -interacting particle system even
in the limit N → ∞. Taking into account the set M defined
in this work, the Eqs. (41) and (42) for P and γ are comple-
mented with Eq. (43) in the following way:

CJ = ∂ F

∂J

∣∣∣∣
T,M−J

, CK = ∂ F

∂K

∣∣∣∣
T,M−K

. (51)

Herefrom we will focus on the SW cavity (further
comments on the SS-cavity system are presented in the
Appendix). For the specific case in which σ > h and
R > h + σ ′/2 we derive analytic expressions for the coeffi-
cients {a2 , c2,J , c2,K},

a2 = π

4 |2Y − 1|
[
�(4) − 4h2Y (Y − 1)

(
�(2) − h2

6

)]
,

(52)

c2,J = π h Y (Y − 1)

2 (2Y − 1)

[
�(4) − h2

(
�(2) − h2

6

)]
, (53)

c2,K = −π

72 |2Y − 1|
[
�(6) + 2h2Y (Y − 1)

× (18�(4) + 9h2�(2) − h4
)]

, (54)

�(n) = X σ n + (1 − X ) σ ′n = σ ′n − X
(
σ ′n − σ n

)
, (55)

where b2 = −2π�(3)/3. Note that b2 is positive for HS and
SS particles, but for SW particles it becomes negative at a
certain critical value Xc. This value determines the Boyle’s
bulk temperature at which the two-body system behaves like
a nearly ideal gas [see below the pressure in Eq. (56)]. It is
interesting to mention that the b2 cluster integral in D dimen-
sion is proportional to �(D), which implies that a2 and c2,K

for the inhomogeneous 2-SW in a HC system are intrinsically
linked to the properties of the SW system in D = 4 and 6. We
may define several critical temperatures by �(n) = ςn(with
ς < σ ′ a constant value), which implies that kB Tc(n, ς )
= −φ1/ ln[

(
σ ′n − ςn

)
/(σ ′n − σ n)]. For example, we find

b2 = 0 at T = Tc(3, 0) and for a hard cavity a2 = 0 at T
= Tc(4, 0). In general, all the Tc(n, 0) temperatures are pos-
itive only for SW particles, being Tc(n, 0) < Tc(n + 1, 0),
but they are negative (and therefore unphysical) for the SS
particles.

The coefficients {a2 , c2,J , c2,K} are functions of the in-
teraction potential parameters but they do not depend on the
cavity size R, which only appears in the set M of thermo-
dynamic measures. Similar expressions to those presented
in Eqs. (52)–(54) are shown in the Appendix for the cases
σ ′ > h > σ and σ ′ < h. The coefficients {a2 , c2,J , c2,K} are
reduced to those of 2-HS by replacing X = 1 or σ ′ = σ , and
to those of HC by setting Y = 1. Once we adopted a set M
of thermodynamic measures [see Eqs. (47)–(50)] and a pro-
cedure to decompose the partition function [see Eq. (62)],
we may proceed to analyze the thermodynamic EOS of the
system.1 We find

β P = 2Z−1 (V − b2) , (56)

βγ = −2Z−1a2, (57)

βCJ = 2Z−1c2,J, (58)

βCK = 2Z−1c2,K. (59)

Here, the physical consequences of the null values in b2 or
a2 are apparent. In particular, a2 = 0 produces a quite simi-
lar thermodynamic behavior to that found in a quasihomoge-
neous system because γ = 0. We remark that in a few-body
inhomogeneous system a slightly different choice of V modi-
fies P , Pw , and also the other EOS. The intensivelike proper-
ties are balanced in a Laplace-like relation

P − Pw = γ
J∗

A∗ + CJ
K∗

A∗ , (60)

with

β Pw = 2Z−1

(
V − b2 + a2

J∗

A∗ − c2,J
K∗

A∗

)
, (61)

where A∗ = ∂R V , J∗ = ∂R A and 2K∗ = ∂RJ reduce to
the measures A, J, and K for the pure repulsive SSC
potential. For a SWC potential the magnitudes in the above
equations marked with an asterisk are different from the mea-
sures. We note that ratios such us J∗/A∗ and J/A contain
a smooth dependence on T , e.g., for large R values J∗/A∗

� 2 (2Y − 1) R−1 > 0. Another simple expression for Pw that
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FIG. 3. The coefficients related to the thermodynamic properties of the 2-
SW-SWC system. −a2, c2,J, and c2,K are plotted in dashed, dot-dashed, and
dotted lines, respectively. The dependence of −a2(R) on the radius is also
shown in this plot: the dashed line corresponds to −a2(R → ∞), while the
continuous curves correspond to −a2(R = 4) and −a2(R = 1). The straight
line represents the −a2 coefficient for a HC [by setting Y = 1 in Eq. (52)].
All the curves are also labeled for reference.

relates it to the density at the discontinuities of the sub-
strate potential may be derived from Eq. (36). In Fig. 3 we
show the typical behavior of {−a2, c2,J, and c2,K} related to
the thermodynamic magnitudes {βγ, βCJ, and βCK}. In this
representation we set Y = X and h = σ ′ − σ , which means
that substrate–particle and particle–particle potentials have a
similar behavior. The plotted curves correspond to σ = 1 and
h = 0.6. One important result shown in this plot is that the
surface tension γ depicted by −a2, changes its sign twice,
while the two curvature coefficients change their sign once.
Besides, the c2,J coefficient is zero at X = 1. It is worth
noticing that the adopted set of measures as well as the
decomposition rule strong influence the thermodynamic de-
scription of the system. Other plausible alternative could
be the set of measures M = {V, A, R} along with the
decomposition rule

Z(1)b2(pore) = V b2 − a2(R) A, (62)

being a2(R) = a2 − c2,JJ/A − c2,KK/A. This new set of

measures M = {V, A, R} is usually adopted to describe in-
homogeneous fluids with spherical symmetry. Besides, a sim-
ilar selection was adopted in Ref. 1 for the thermodynamic
analysis of 2-HS confined to different simple geometrical cav-
ities. The thermodynamic magnitudes of the system verify
Eqs. (41) and (42) and

CR = ∂ F

∂ R

∣∣∣∣
T,M−R

. (63)

The pressure P is given in Eq. (56), while the other two EOS

are

βγ (R) = −2Z−1a2(R),
= βγ + β (CJJ + CKK) /A,

(64)

βCR = −2Z−1 A ∂Ra2(R), (65)

where γ (R) is the surface tension, which explicitly depends
on the measure R. In Fig. 3 we illustrate −a2(R) for differ-
ent values of R. There, it is clear that this coefficient varies
smoothly with R. The Laplace-like balance reads

P − Pw = γ (R)
J∗

A∗ + CR
1

A∗ . (66)

This expression and that in Eq. (60) are general and should be
applicable to any fluid inside of a spherical cavity system. For
the particular case of the 2-SW system, the Eq. (66) may be
rewritten as

P − Pw = γ (R)

(
J∗

A∗ − A

A∗ βCR

)
+ A

A∗
∂γ (R)

∂ R
, (67)

where the term βCR is of order R−6 for large values of R. The
first order dependence of the fluid–substrate surface tension
on the curvature is given by the Tolman length

γ (R)

γ∞
− 1 = −c2,J

a2

J
A

− c2,K

a2

K
A

, δTol = −c2,J

a2
, (68)

where γ∞ is obtained by replacing a2(R) → a2 in the ex-
plicit term of Eq. (64) (a further discussion related to this
topic is presented in Ref. 1). In the limit where R goes to
infinity J/A ≈ 2 (2Y − 1)−1 R−1 > 0. Note that we adopted
a convention which identifies δTol with the coefficient of J/A.
From Fig. 3 it is clear that a2 is zero at a certain tempera-
ture for which does not make sense to derive δTol for the 2-
SW–SWC system. On the other side, δTol is null for the case
h = 0 or Y = 1, but not for X = 1, or σ ′ = σ . Taking into
account this result, we expect a null fluid–substrate Tolman
length, δTol = 0, for any two-particle system in a hard spheri-
cal cavity independently on the (finite-range) particle–particle
potential.

C. Adsorption and surface of tension

We extend our analysis of the confined two-body system
by studying the surface adsorption and the spherical fluid–
substrate interface. In order to make this, we define the sub-
strate adsorption � with respect to the central density ρh(0)
under the action of the substrate potential as

NA = �A ≡ 4π

∫ ∞

0
[ρ(r ) − e1(r ) ρh(0)] r2dr, (69)

where NA represents the mean number of particles adsorbed
on the surface. Equation (69) can be written as

NA

V
= ρ̄ − ρh(0). (70)

In the case of the two-body system analyzed above, using Eqs.
(26) and (64) we obtain ρh(0) = 2Z−1(Z(1) − 2b2) and

�

N
= −βγ (R), (71)

which we expect will also be valid for other few-body systems
with N � 2. By combining Eqs. (70) and (71) we find the
following interesting relation:

ρh(0)

ρ̄
− 1 = β Aγ (R). (72)
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Equations (71) and (72) trace exact relations between ad-
sorption, surface tension, and one-body density distribution
for a 2-SW–SWC system. These equations allow us to relate
Aγ (R) � 0 to the existence of an adsorbed fluid film on the
substrate surface and Aγ (R) � 0 to an excess of the amount
of fluid in the inner part of the cavity. A similar behavior in
the context of many-body (macroscopic) systems appears in
the capillary condensation phenomena.15

In addition, to study the substrate–fluid spherical inter-
face we take a point of view that is customary to adopt in the
analysis of the spherical liquid–vapor free interface. First, we
are interested in exploring a magnitude similar to the liquid–
vapor equimolar radius Re, which for a spherically confined
fluid may be defined by

N = 4π

∫ Re

0
e1(r )ρh(0) r2dr. (73)

Here V (Re) = 4π
∫ Re

0 e1(r ) r2dr ≤ V corresponds to the
equimolar volume. This definition for Re implies that
0 < Re < R and shows that the equimolar radius is not de-
fined in the range where ρ̄ > ρh(0). We can formulate an al-
ternative definition for Re that solves this problem. We as-
sume that � = Re − R is a small magnitude and define

N = V ρh(0) + �A ρh(0), (74)

that is similar to a truncated series expansion of Eq. (73). It
may be transformed to

� = V

A

(
ρ̄

ρh(0)
− 1

)
= �

ρh(0)
, (75)

where the last equality comes from Eq. (70). It is apparent
that Re < R only for positive adsorption [or negative γ (R)]
and that � may not be a small magnitude. Finally, we are in-
terested in determining the location of the surface of tension,
that is, the locus of a geometrical surface where the surface
tension is supposed to act. To make this we adopt the mea-
sures M = {V, As, R, Rs} where the subscript s indicates
the geometrical magnitudes related to the surface of tension,
i.e., As = 4π R2

s . Additionally, we adopt the decomposition
rule

Z(1)b2(pore) = V b2 − a2(R, Rs) As, (76)

with a2(R, Rs) = a2(R) A/As . For the surface As , the orig-
inal form of the Laplace equation is supposed to be valid,
therefore, we consider

P − Pw = γ (R, Rs)
Js

A∗ . (77)

The missing term in Eq. (77) with the CR + CRs contribu-
tion is identically zero. We identify CRs with the virtual work
necessary to modify the position of the surface of tension
at constant {V, As, and R}. The system EOS are given by
Eq. (56) and

γ (R, Rs) = γ (R) A/As, (78)

where γ (R, Rs) is the surface tension exerted on the surface
of tension with the following constraint

βγ (R)

[
J∗ − Js A

As

]
+ βCR = 0, (79)

which defines the locus of the surface of tension. Using
Eqs. (64) and (65), the location of the surface of tension is
given by

Rs = 2Aγ (R)
[
J∗γ (R) + CR

]−1
, (80)

Rs � 2A

J∗ + 2

(
J
J∗ − 2

AK∗

J∗2

)
c2,J

a2
, (81)

where the last expression shows the linear dependence of Rs

on the Tolman length.

IV. PROPERTIES OF OTHER SW SYSTEMS

There is a second two-body system strongly related to
the 2-SW–SWC that is also analytically tractable. This is the
2-SW particles outside a square-well spherical obstacle (2-
SW–SWO) where the obstacle behaves like a third SW parti-
cle with fixed position, hard repulsion radius R = R′ + σ/2,
and a square well extended in the range (R, R + h). The CI
of such a system can be graphically decomposed [see Eqs.
(2.a) and (2.b) in Ref. 1, related to Eq. (44) and Eqs. (44)
and (62) in the current work]. The first term in Eqs. (44) and
(46) is easily evaluated for both systems, 2-SW–SWC and 2-
SW–SWO. Besides, the term Z(1)b2(pore) − V b2 for the 2-
SW–SWC and the 2-SW–SWO systems are strongly related
to each other. This allow us to obtain an analytic expression
for the CI of 2-SW–SWO. We find that a simple mapping of
this term from one system to the other is obtained by replac-
ing the parameters Y → 1 − Y and R → R + h. The latter
replacement is purely notational and is a consequence of re-
ferring R to the minimum allowed distance between a particle
and the spherical obstacle. We may adopt the decomposition
given in Eqs. (44) and (46) for 2-SW–SWO along with the
following measures for the SW–SWO system

V = V∞ − 4π

3

[
Y R3 − (Y − 1) (R + h)3

]
, (82)

A = 4π
[|Y | R2 + |Y − 1| (R + h)2

]
, (83)

J = −8π [Y R − (Y − 1) (R + h)] , (84)

K = 4π [|Y | + |Y − 1|] , (85)

where V∞ is the infinite volume of the three dimensional
euclidean space. The comparison between Eqs. (47)–(50) and
Eqs. (82)–(85) shows an extra minus sign in J. This sign,
which in the HS limit (Y → 1) produces a negative mean
curvature J, does not have its origin in the replacements
Y → 1 − Y and R → R + h. The replacement of Y by 1 − Y
only modifies slightly the coefficients of Eqs. (52)–(54) intro-
ducing a minus sign in c2,J in comparison with the expres-
sion given in Eq. (53). However, we adopt a convention that
leaves c2,J unmodified by assigning this extra minus term to
J [note that this sign was already included in Eq. (84)]. On
the other side, A∗and K∗ change their sign, but J∗ does not
change. In this context, the thermodynamic EOSs are given by
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Eqs. (56)–(59). The Laplace-like relation is still given by
Eq. (60) and can be rewritten as

Pw − P = γ
(−J∗)

A∗ − CJ
K∗

A∗ . (86)

Here, J∗ is positive but A∗ is essentially a negative magnitude
(in the limit where R goes to infinity J∗/A∗ ∝ −2R−1 < 0).
To study the 2-SW–SWO we select the second option for the
set of measures and the decomposition rule [see Eq. (62)]. We
found Eqs. (56), (64), and (65) which leads to the following
Laplace-like relation

Pw − P = γ
(−J∗)

A∗ − CR
1

A∗

= γ

(
− J∗

A∗ + A

A∗ βCR

)
+ A

A∗
∂γ

∂ R
, (87)

where A/A∗ is essentially a negative magnitude (for large
R values A/A∗ ≈ −1). If we do not take into account the
term βCR , the Eq. (87) results very similar to Eq. (1) in
Ref. 10, which is supposed to be valid for any fluid surround-
ing a spherical shaped hard wall. In addition, from Eq. (87)
we may recover Eq. (68) and obtain the curvature dependence
of the substrate–fluid surface tension. Note that now J/A
is essentially negative (in the limit where R goes to infinity
J/A ∝ −2R−1 < 0). Therefore, keeping the same convention
for the sign of δTol as in Eq. (68) we still find

δTol = −c2,J

a2
, (88)

where c2,J is given by Eq. (53).
It is interesting to make a brief digression about the con-

sequences of the above mentioned results for the 2-SW–SWC
and 2-SW–SWO on the inhomogeneous systems of many SW
particles. As it has recently been discussed in Ref. 1, some
properties of the system of N -SW particles and the equivalent
open system of many-SW particles may be evaluated in the
low density limit. The core of the relation between the two-
body systems and the many-body systems is given in Eq. (44).
Since we analytically evaluated Z for the two-body system we
obtained an expression for b2(pore), which is a central quan-
tity in the virial expansion theory of real gases. For instance,
the Eq. (57) analyzed in the context of the N -particles system
transforms to

βγ = − N (N − 1)

V 2
a2 + O(V −3) ≈ −ρ2a2, (89)

for a large enough radius R. Since Eq. (89) does not involve
any shape dependence it also applies to any surface, indepen-
dently of its shape. Based on these ideas we can derive the
many-body version of Eq. (68),

γ

γ∞
− 1 = −c2,J

a2

J
A

− c2,K

a2

K
A

+ O(V −1),

δTol = −c2,J

a2
+ O(V −1). (90)

We thus obtained the first order analytical dependence on den-
sity of δTol (its dependence to zero order) for a system of SW
interacting particles in contact with a SW spherical substrate.
Even though the interacting potential analyzed here is a crude

FIG. 4. The Tolman length δTol = −c2,J/a2 as a function of T ∗ = kB T/φ.
From left to right in the bottom of the figure we plot for the values ϕ/φ =
0.75, 1.00, and 1.5. The HC curve coincides with the zero ordinate line.

sketch of a real particle–particle and particle–substrate po-
tentials, it retains the attractive well that is a relevant char-
acteristic of real potentials. In this sense we should expect
the behavior of δTol for the case of more realistic potentials
to be similar to that obtained for SW. In Fig. 4 we plot the
δTol function for the 2-SW–SWC (and 2-SW–SWO) system
and the first order term of δTol for the many-SW–SWC (and
many-SW–SWO) system as a function of the temperature, as-
suming σ = 1, σ ′ = 1.3, and h = 0.8. It is clear from the plot
that the root of δTol only depends on the length parameters σ ,
σ ′, and h, but not on the energy parameters ϕ and φ. In the
analysis of the N-SS and many-SS systems we also obtained
the same Eqs. (89) and (90).

The major contribution of this section is that we present
a method to relate the 2-SW–SWC system to the 2-SW–SWO
system, as well as to the many-SW–SWC and the many-SW–
SWO systems. The inclusion in our discussion of the SS
particles, the SS cavity, and the SS obstacle is straightfor-
ward and follows the treatment derived for the 2-SW–SWC
system.

V. FINAL REMARKS

The most important result presented in this work is the
analytical expression of the canonical partition function for
a two-body system of interacting or thermal particles in a
spherical cavity, which exerts a nonhard interaction poten-
tial. In our study we analyzed potentials that are piecewise
constant defined and include the square-well and the square-
shoulder potentials. We found that the CI of this inhomoge-
neous system, succinctly given in Eq. (19), is polynomial in
each analytic branch. In addition, we obtain analytical expres-
sions for other relevant magnitudes of the system such as the
one-body density distribution ρ(r) and an averaged two-body
density distribution ḡ(r). We developed a method that allows
for making a thermodynamic description of few-body inho-
mogeneous systems by extending the use of thermodynamic
measures to nonhard interactions. This method was used to
investigate the two-body system in order to obtain the EOS,
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the pressure-for-work, the inner pressure, the surface tension,
and the two curvature-work terms. We also derived a relation
between the EOS, which is similar to the Laplace equation
that states the balance in the difference of pressures in a liq-
uid droplet. However, as the obtained thermodynamic proper-
ties are strongly influenced by the adopted set of measures we
complemented our analysis by studying the same two-body
system with a second different set of thermodynamic mea-
sures. This study explicitly shows how the curvature of the
substrate surface influences the surface tension and allow us
to obtain an analytical expression for the substrate–fluid Tol-
man length. Additionally, we analyzed the adsorption in the
spherical substrate, the radius of the equimolar density as well
as the position of the surface of tension and demonstrated that
it is possible to make a full study of this spherical inhomoge-
neous system.

The CI for the confined two-body system was used to
derive the analytical expression of the CI for a system com-
posed of two particles outside a spherical cavity. We extended
this treatment to the inhomogeneous many-body system of
square-well particles inside a spherical confinement as well as
outside a spherical obstacle, in the low density limit. In such
conditions we obtained an expression for the first density and
curvature dependence of the surface tension along with an
expression for the Tolman length. Based on our analysis we
conclude that the Tolman length for systems, in a cavity and

outside a spherical object, contains the same non-null zero
order term in the density. This term has a null value for hard
spherical substrates.

The studied square-well potential may be considered
as a simplification that still retains the main characteristics
of other more realistic potentials. Therefore, it is expected
that for systems of particles with more realistic finite-range
particle–particle interaction in contact with hard spherical
substrates the Tolman length to be null to zero order in
density.
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APPENDIX: EXPLICIT FORMS OF THE a2, c2,J, AND
c2,K COEFFICIENTS FOR DIFFERENT CONDITIONS

In what follows we present expressions for the coeffi-
cients in Z(1) b2(pore) taken into account the decomposition
given in Eq. (46) for the SWC with R > 3h/2 and R > h
+ σ ′/2: (i) for the case 0 < h < σ see Eqs. (52)–(54), (ii) for
the case σ < h < σ ′,

a2 = π

4 |2Y − 1|
{
�(4) − 4Y (Y − 1)

[
h2 (1 − X )

(
σ ′2 − h2

6

)
+ 1

2
Xσ 3

(
8

3
h − σ

)]}
, (A1)

c2,J = hπ (Y − 1)Y

2 (2Y − 1)

[
�(4) − h2(X − 1)

(
σ ′2 − h2

6

)
+ 1

2
Xσ 3

(
8

3
h − σ

)]
, (A2)

c2,K = −π

72 |2Y − 1|
{
�(6) + 36h2�(4) + 2Y (Y − 1)

[−h4(X − 1)
(
h2 + 9σ ′2)+ Xσ 3

(
16h3 − 9h2σ + σ 3

)]}
, (A3)

and (iii) for the case σ ′ < h,

a2 = π

4 |2Y − 1| [�(4) − 2(Y − 1)Y

×
(

8

3
h�(3) − �(4)

)]
, (A4)

c2,J = hπY (Y − 1)

4 (2Y − 1)

(
8

3
h�(3) + �(4)

)
, (A5)

c2,K = − π

72 |2Y − 1| {�(6) + 2Y (Y − 1) [�(6)

+h2 (16h�(3) + 9�(4))
]}

. (A6)

On the other side, for the SSC with R > 3h/2 and R > h
+ σ ′/2, those coefficients are given by: (i) for the case 0 < h
< σ ,

a2 = π

4

[
�(4) + 4h2Y (1 − Y )

(
�(2) − h2

6

)]
, (A7)

c2,J = π

2
h3Y (1 − Y ) (1 − 2Y )

(
�(2) − h2

6

)
, (A8)

c2,K = − π

72

{
�(6) + 2h4(1 − Y )Y

[
−9�(2) + h2

+ 64(1 − Y )Y

(
�(2) − h2

6

)]}
, (A9)
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(ii) for σ < h < σ ′,

a2 = π

4

{
�(4) + 2Y (1 − Y )

[
2h2 (1 − X )

(
σ ′2 − h2

6

)
+ σ 3 X

(
8

3
h − σ

)]}
, (A10)

c2,J = π

4
h Y (1 − Y ) (1 − 2Y )

[
2h2 (1 − X )

(
σ ′2 − h2

6

)
+ σ 3 X

(
8

3
h − σ

)]
, (A11)

c2,K = − π

72

{
�(6) + 2h4Y (1 − Y ) (1 − X )

[
h2 − 9σ ′2 + 12Y (1 − Y )

(
6σ ′2 − h2

)]
+2σ 3Y (1 − Y ) X

[−h2 (16h − 9σ ) − σ 3 + 12h2Y (1 − Y ) (8h − 3σ )
]}

,
(A12)

and (iii) for σ ′ < h,

a2 = π

4

[
�(4) + 2Y (1 − Y )

(
8

3
h �(3) − �(4)

)]
,

(A13)

c2,J = π

4
h Y (1 − Y )(1 − 2Y )

(
8

3
h �(3) − �(4)

)
,

(A14)

c2,K = π

72

{−�(6) + 2Y (1 − Y )
[
16h3 (1 − 6Y (1 − Y ))

×�(3) − 9h2 (1 − 2Y )2 �(4) + �(6)
]}

,

(A15)

�(n) = X σ n + (1 − X ) σ ′n. (A16)

It is interesting to note that a2 and c2,J may be expressed as a
function of

a2,0 = π�(4)

4
, (A17)

and a term �a2 that depends on the order relation between σ ,
σ ′, and h. a2,0 is the a2 coefficient for a spherical HC and �a2

is a term that goes to zero if Y = 0, or h = 0, and also, change
its sign when Y = 1. For a SWC, we obtain

a2 = |2Y − 1|−1
(
a2,0 − �a2

)
, (A18)

c2,J = h(2Y − 1)−1(2Y (Y − 1)a2,0 − 1
2�a2). (A19)

For the case of a SSC we find

a2 = a2,0 − �a2, (A20)

c2,J = 1
2 h(2Y − 1)�a2. (A21)

Finally,

�a2 = πY (Y − 1) ×
⎧⎨
⎩

h2
(
�(2) − h2/6

)
, if h ≤ σ ≤ σ ′,

h2 (1 − X )
(
σ ′2 − h2/6

)+ σ 3 X (4/3h − 1/2σ ) , if σ ≤ h ≤ σ ′,
4/3h �(3) − 1/2�(4), if σ ≤ σ ′ ≤ h.

(A22)
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