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The chemically ordered glass: the limiting composition for chemical order in amorphous
packings of hard-sphere mixtures
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8250, Capital Federal, Buenos Aires, Argentina; cAir Force Research Laboratory, Materials and Manufacturing Directorate,
Wright-Patterson AFB, 2230 Tenth St, Dayton, OH 45433, USA

(Received 18 September 2010; final version received 13 December 2010)

We consider the limits of chemical order (i.e. avoidance of solute–solute contact) in amorphous close-packed mixtures of
hard spheres of two different sizes. The upper bound on the solute concentration, beyond which solute–solute contact cannot
be avoided, is determined for a range of particle size ratios. Scaling the composition by this limiting value is found to
collapse plots of the solute coordination and mixture energies as a function of composition for different values of size ratios
onto a single master curve. A number of features of the behaviour of amorphous alloys in the vicinity of this limiting
concentration are discussed.
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1. Introduction

In this paper, we shall consider the consequences of

chemical order imposed on a dense amorphous mixture of

hard spheres of two different sizes. Chemical order refers

here to the tendency of the solute (here defined as the

minority species) to avoid contact with other solute particles.

Chemical ordering of this kind characterises some important

classes of glass-forming liquids. The network glass former,

silica, represents a near-perfect example of chemical order in

which the silicon atoms scrupulously avoid bonding directly

with other silicon atoms. The first well-studied examples

of amorphous alloys comprise metal and metalloid

components in which the metalloid–metalloid contacts are

avoided [1]. Although the hard-sphere model we shall

employ in this study is inadequate for quantitative modelling

of these specific systems, it is useful for clarifying the

fundamental consequences of coupling compositional

fluctuations to the structural variations in the problem of

dense packing. The efficient cluster packing (ECP) model

was developed [2–4] from such a perspective. In the ECP

model, one considers the packing, not of the individual

spherical particles, but of the (overlapping) solute

coordination clusters. The solute coordination clusters are

regarded as identifiable elementary structural units due,

explicitly, to the solute–solute avoidance imposed by the

chemical ordering condition.

Previously, we have examined the ECP model from the

point of view of its packing efficiency [5]. In this paper, we

address the more general aspects of the constraints that

chemical order imposes on the structure of amorphous

packings of binary mixtures of spheres. Our results are as

follows. We begin by identifying, in amorphous packings,

a limiting value of the solute composition (expressed as the

solute mole fraction xB ¼ NB=ðNA þ NBÞÞ above which

solute–solute contacts are unavoidable. We determine the

dependence of this limiting composition, x*B, on the ratio

R ¼ rB=rA of sphere radii. We demonstrate that x*B
provides a general scaling for the composition dependence

of nearest-neighbour contacts and properties such as

potential energy that depends on these local correlations.

We establish the topological constraints of the coordination

shell overlap arising from chemical order and, finally, we

consider the implications of these results with regard to

glass-forming ability of chemically ordered alloys.

2. Method

To construct high-density amorphous packings of binary

hard-sphere mixtures, we have used the algorithm

described by Clarke and Wiley [6] with some modifi-

cations relating to the imposition of chemical order. The

packing fraction h of a system of hard spheres with no

overlap and m components is defined as follows:

h ¼
4p

3

Pm
i¼1Nir

3
i

V
; ð1Þ

where Ni and ri are the number and radius of component i,

andV is the volume of the simulation cell. Periodic boundary
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conditions are applied. The overlap S between a pair of

neighbouring particles is defined as the sum of their radii

minus the distance between the centres (Figure 1). For a

given configuration, the overlap can be reduced by moving

the i sphere along a vector ti, the sum of the individual

pairwise overlap vectors whose individual magnitudes are

equal to the appropriate value of S, as shown in Figure 1.We

can identify, for a specific configuration, themaximumvalue

of the pairwise overlaps as Smax. Particles are moved one at a

time in a sequence determined by the randomconstruction of

the initial configuration. Each move is accepted if no value

of S in the new configuration exceeds Smax of the old

configuration. For each accepted configuration, Smax is re-

determined. If S . Smax; ti is reduced by half every attempt

until the movement is accepted. This process continues until

themaximumoverlap Smax is less than 10
25rA. At this point,

the simulation box lengths are reduced by a factor f 1 , 1 to

generate new overlaps; then, the whole previous process is

repeated. If, after several attempts, Smax cannot be reduced

by moving the spheres according to ti or at random, the box

lengths are increased by a factor f 2 . 1, such that f 1 f 2 , 1.

We impose chemical order through the construction of

the initial configuration and through the use of a two-step

process for maximising density. In the spirit of the ECP

model [2], we begin our construction of the initial

configuration by first generating a random closed-packed

configuration of the solute particles, labelled B, on their

own. This initial configuration is then isotopically expanded

to allow for space to add the majority solvent species,

labelled A. This procedure is designed to provide the highest

density disordered arrangement of solutes in which all

solute–solute contact is explicitly forbidden. The empty

space between B spheres is filled up with A spheres allowing

an overlap S not larger than a maximum value Smax.

The random generation of A spheres is repeated a large

number of times (,106). The total number of A spheres,NA,

can be controlled through the volume of the simulation cell.

If all spheres are allowed to move directly from

this initial configuration, some solute–solute contacts will

occur as a consequence of the relaxation. To further

minimise the number of these contacts, we adopted a two-

stage relaxation process. In the first stage, only the

A solvent spheres are moved, using the Clarke–Wiley

algorithm, in a sequential fashion, whereas the solute

spheres are kept at their initial positions. This will

accommodate the A spheres around the solutes so as to

eliminate or reduce the gaps between spheres as much as

possible. In the second stage, and once the system has

achieved a certain value of h or after several relaxation

steps, all spheres are moved regardless of their type.

We have also generated random alloys in which A and

B particles are added randomly to the simulation cell, and

both species are moved to maximise density without any

species–specific constraints being applied.

3. Results: the critical solute concentration x*B

The ‘loss’ of chemical order can be measured by the

increase in the average number of solute–solute contacts

per solute, a number that is zero in the absence of BB

contacts (i.e. perfect chemical order) and increases as

contacts appear. Let ZBB be the mean number of BB

contacts per B particle and ZBA be the mean number of A

neighbours per B particle. Similarly, ZAA and ZAB
correspond to the mean number of A and B neighbours,

respectively, per A particle. In Figure 2, we plot ZBB as a

function of xB for a range of radius ratios using the

protocol described in the previous section. The constraint

that BB contacts are avoided is manifest in the persistence

of ZBB , 0 for small xB. (A random arrangement without

this constraint would see ZBB increase linearly for small

xB.) There clearly is a limit to how large xB can be before

BB contacts become unavoidable. To understand the

ti

Figure 1. Sketch of the movement of sphere i along the vector
sum of overlaps ti.
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Figure 2. The average number ZBB of B neighbours per B
particle as a function of the solute mole fraction xB for five
different radius ratios, Rð¼ rB=rAÞ ¼ 0:62, 0.8, 0.9, 1.12 and
1.25.
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geometrical nature of this compositional limit, we consider

the following. Starting with the identity,

NBZBA ¼ NAZAB; ð2Þ

we note that, in the absence of any BB contacts, ZBA is a

constant (let us call it zoB), equal to the coordination

number of a B particle with only A neighbours. We can

then rewrite Equation (2) as

xB

12 xB
¼

ZAB

zoB
: ð3Þ

The maximum value of xB is, from Equation (3),

determined by the critical value of ZAB, i.e. how many

B’s can you fit into the coordination polyhedron around an

A particle before BB contacts become unavoidable. This

upper bound on a chemically ordered ZAB is typically well

below half of the particles coordinating the solute. An

icosahedron (12 vertices), for example can only accom-

modate three separated B particles so the critical value of

ZAB for an icosahedral coordination shell is 3.

We shall define the critical solute fraction x*B as the

composition at which ZAB reaches its critical value, i.e.

Z*
AB. Now all that remains is to determine Z*

AB. How many

non-contacting B particles one can accommodate around

an A particle is a well-posed geometrical problem that

deserves attention. We shall not attempt a detailed

treatment of this problem but, rather, employ the following

simple heuristic based on the average total coordination

number zA about an A particle. As we make the radius ratio

R ¼ rB=rA smaller or larger than 0.9022, zA increases or

decreases from the value of 12. The calculated values of zA
as a function of xB, illustrating this point, have been plotted

in Figure 3 for fivevalues ofR. Our strategy for determining

Z*
BA is to assign a representative topology for each integer

value of zA, neglecting the topological consequences of

particles of different size in the coordination shell. Our

question, then, is what cluster topologies do we choose?

There is a considerable body of literature arguing that

liquids of spherical particles are dominated by polyte-

trahedral arrangements [7–10]. In terms of coordination

polyhedra, this means focusing on polyhedra with all faces

triangular. In Table 1, we present a list of triangulated

polyhedra with coordination numbers ranging from 10 to

16, the range we observe in our packing calculations

(Figure 3). For each cluster topology, we have determined

Z*
AB as the maximum number of sites that can be coloured

so that no two coloured sites are neighbours.

Table 1 provides the basis for a relationship between

the coordination number and the critical solute number

Z*
AB. In the analysis that follows, we have used a linear

interpolation for the value of Z*
AB when the average

coordination number lies between 12 and 14.

This estimate of Z*
AB, while capturing the essential

aspect that the quantity increases from three with

increasing coordination number, clearly neglects a number

of details. One feature is worth pointing out for future

study. One ‘strategy’ for increasing Z*
AB is to introduce

quadrilateral faces in the coordination polyhedra because

the associated reduction of bonds makes the ‘no-solute-

neighbours’ constraint easier to meet. For example, the

densest packed cluster with 14 (equivalent) spheres in the

coordination shell is not the triangulated Frank–Kasper

cluster cited above but one with eight triangular faces and

eight quadrilateral ones [11]. For this cluster, Z*
AB ¼ 6.

The significance of being the densest packed cluster aside,

this observation suggests that any influence that favours

maximising the number of AB interactions may have the

effect of destabilising polytetrahedral structures in favour

of those with a significant number of fourfold rings.

In Figure 3, we plot the calculated value of the average

total coordination number zA about theA particles vs. xB for

sphere mixtures with different radius ratios R. Horizontal

lines at zA ¼ 12 and 14mark the concentrations over which

the A coordination transitions from being able to

accommodate a maximum of three B particles to four B

particles (as estimated by the scheme described above). We

now have an implicit expression for the critical value of ZAB
as a function of xB for a number of choices of R. For

R ¼ 1:12 and 1.25, zA never exceeds 12 and so Z*
AB ¼ 3 for

all values of xB. ForR ¼ 0:9 and 0.8, zA lies between 12 and
14 over the studied composition range and so, invoking the

Table 1. The maximum number Z*
AB of isolated B particles

accommodated by triangulated coordination polyhedra over a
range of coordination numbers.

Coordination number Polyhedron Z*
AB

10 Bicapped square antiprism 3
12 Icosahedron 3
14 Frank–Kasper cluster [14] 4
15 Frank–Kasper cluster [14] 4
16 Frank–Kasper cluster [14] 4
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Figure 3. The average total coordination number zA per A
particle plotted against xB for five different radius ratios,
Rð¼ rB=rAÞ ¼ 0:62, 0.8, 0.9, 1.12 and 1.25.
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linear interpolation of Z*
AB from 3 to 4 over this range of zA,

we have Z*
AB ¼ 3þ 1:2xB (for R ¼ 0:9) and Z*

AB ¼

3þ 2:18xB (for R ¼ 0:8). Finally, for R ¼ 0:62, zA ¼ 14

at xB < 0:285. For xB greater than this value, Z*
AB ¼ 4,

whereas below this composition, we have Z*
AB ¼ 3þ

3:51xB. In Figure 4, we have plotted each of these estimates

of the limiting value Z*
AB alongside the calculated value of

ZAB. The point at which, for each value of R, the two lines,

Z*
AB and ZAB, intersect corresponds to the value of the

critical composition x*B, the composition above which

solute–solute becomes unavoidable. In Table 2, we list the

values of R and x*B along with the values of zA at the critical

composition and Z*
AB.

In Figure 5, we plot the different ZBB curves against the

composition reduced by the critical value x*B. The curves

are found to collapse onto a single master curve. This

remarkable result implies that it is possible to capture the

role of the size difference in determining the number of

solute–solute contacts simply through the introduction of a

reference concentration. The dependence of the critical

concentration x*B on the radius ratio R reflects the fact that,

as the solute size increases, the mixture can accommodate

fewer solutes before the solvating A particles have been

exhausted and solute–solute contact becomes unavoid-

able. Before leaving Figure 5, we note that BB contacts

appear (i.e. ZBB begins to increase from 0) at compositions

less than x*B. The critical composition establishes the

composition at which BB contacts are unavoidable but it

does not establish the composition at which the contacts

begin to appear because the latter quantity depends on the

details of how the chemical order is stabilised or selected

for. The argument presented here simply precludes the

possibility of ZBB ¼ 0 for xB . x*B.

Does the critical composition x*B provide a useful

scaling of quantities associated with quantities other than

ZBB? A simple model of the energetics of a binary mixture

can be expressed in an energy function of the form:

E

N
¼ 2

eAA

2
ð12 xBÞZAA 2 eABxBZBA 2

eBB

2
xBZBB: ð5Þ

To pick parameters consistent with chemical ordering, we

select eAA ¼ 1:0, eAB ¼ 1:5 and eBB ¼ 0. In Figure 6, we

plot E/N for a range of compositions and size ratios, using

the values of ZAA and ZBA obtained from the hard-sphere

simulations. We note the presence of a minimum value in

each curve. Although the position and depth of this

minimum depends on the specific choice of the interaction

strengths eAA, eAB and eBB, the existence of the minimum

value is a generic consequence of interactions that favour

chemical order. The energy decreases as xB increases from

zero due to the increasing number of AB contacts. Once

the composition has increased to the point that BB contacts

are being formed, the energy begins to increase again due

to the associated decrease in the number of both AA and

AB contacts. In Figure 7, we replot E/N against the

0

1

2

3

4

5

6

0.1 0.15 0.2 0.25 0.3 0.35 0.4

1.25
1.12
0.9
0.8
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Z
A

B

Figure 4. The calculated ZAB (solid curve and points) is plotted
against xB along with the value of limiting value Z*

AB (dashed
curves) using the interpolation (described in text) of the data in
Table 1. The intersection of the two curves – ZAB and Z*

AB – for
each value of R determines the value of the limiting composition
x*B, indicated by an arrow for each value of R.

Table 2. The values presented are of the critical solute
concentration x*B above which solute–solute contact becomes
unavoidable in the binary hard-sphere glass for a number of
different values of the radius ratio rB=rA ¼ R. Also presented are
the values of zA and Z*

AB at x*B.

R x*B zA Z*
AB

0.62 0.345 14.5 4
0.8 0.28 13.15 3.6
0.9 0.24 12.6 3.3
1.12 0.18 11.85 3
1.25 0.16 11.6 3
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Figure 5. The average number ZBB of B neighbours per B
particle as a function of the reduced solute mole fraction xB=x

*
B

for five different radius ratios, Rð¼ rB=rAÞ ¼ 0:62, 0.8, 0.9, 1.12
and 1.25.
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reduced mole fraction xB=x
*
B. Again, we obtain a

remarkable collapse of the data onto a single master

curve with a minimum at xB=x
*
B , 1:1. It is reasonable,

based on the type of analysis presented here, to propose

that the critical concentration is likely to lie close to the

eutectic point.

4. On the consequences of chemical order

In a chemically ordered alloy, the solute particles (B) have

only solvent (A) in their coordination shell. An overlap of

two solute coordination shells, therefore, corresponds to

one or more A particles that have both solutes as

neighbours. At the limiting concentration, x*B the number

of B neighbours per A particle, ZAB (listed in Table 1) are

maximal which means that considerable constraints are

imposed on the geometrical arrangement of these particles’

solutes so as to avoid one another. A brief play with

polyhedra models is enough to convince one that solutes

are organised either in a roughly trigonal planar ðZ*
AB ¼ 3Þ

or in a tetrahedral or square planar ðZ*
AB ¼ 4Þ arrangement

about the A particle so as to avoid solute–solute contact.

Chemical order, in other words, generates geometric order

when pushed towards the limiting composition. Let us

consider the crystal structure at the limiting concentration

for R ¼ 1 in the fcc crystal, the AuCu3 structure. The

structure consists of staggered hexagonal packed planes of

A3B composition as sketched in Figure 8. When the layers

above and below are included, each white (A) particle is

coordinated by four Bs, arranged about the A as a planar.

That Z*
AB ¼ 4 rather than the 3 we used for random

packings with R . 0:8 is because the coordination

polyhedra of the fcc crystal is a cube octahedron which

has square faces as well as triangular ones, whereas in the

disordered packing, we assumed that the coordination

polyhedra were fully triangulated.

Crystallisation increases, often substantially, the

critical composition over its value in the amorphous

state. This increase is largely due to the topology of crystal

lattices which often include four- and/or six-sided rings,

instead of the three-sided rings of the triangulated

coordination shells we have used to model the amorphous

topology. At a radius ratio of 1, for example, the stable

crystal will be a chemically ordered fcc structure. Such

substituted fcc structures can be formed up to a

composition of xB ¼ 0:25, corresponding to the AuCu3

structure, before solute–solute contact becomes inevitable.

This is an increase over the value of x*B , 0:20 for the

amorphous packing at rB=rA ¼ 1. At rB=rA , 0:6, the

value below which crystal packing fractions in excess of

the fcc value is the norm, there are chemically ordered

crystals with compositions A3B (i.e. Fe3C), A2B (i.e. CdI2)

and even up to AB (i.e. CrB). It is not obvious why many of

the optimally packed crystals of two different spheres

satisfy the constraint of chemical order. In contrast, we find

x*B ¼ 0:35 for R ¼ 0:62 in the amorphous packing of the

two hard spheres.
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Figure 6. The average potential energy per particle E/N as a
function of xB for the five values of R. E/N was calculated using
Equation (5) and the following values: eAA ¼ 1:0, eAB ¼ 1:5 and
eBB ¼ 0:0.

Figure 8. The maximal packing of solute particles without
solute–solute contact in a 2D triangular crystal.
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Figure 7. The average potential energy per particle E/N plotted
as a function of the reduced composition xB=x*B for the five values
of R. The details of the calculation of E/N are the same as in
Figure 6.
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Inoue et al. [12,13] have identified negative heats of

mixing among the elemental constituents (along with

significant differences in radii) as a key characteristic of

bulk glass-forming alloys. This condition is also just what

is required to stabilise chemical order as we have

described it here. It is tempting to associate the critical

composition with good glass-forming ability on the

grounds that we would expect this composition to be

associated with a minimum in the enthalpy of the

amorphous state. This suggestion, however, falls short of

explaining why the maximum crystallisation rate should

be decreased at the critical composition. If composition

fluctuations in the amorphous state were minimised around

the critical composition x*B, then we might have the basis

of an explanation of high glass-forming ability. Crystal-

lisation from a mixture will always involve composition

fluctuations – except when either (i) the mixture

composition just happens to coincide with that of the

crystal (a special case) or (ii) the particle size differences

are small enough to allow random substitution in the

crystal (a situation we explicitly exclude in glass-forming

alloys). The indications from this study that the critical

composition lies near the minimum potential energy with

respect to composition are consistent with the proposal

that composition fluctuations might exhibit a minima

around x*B. This proposal, that glass-forming ability in

alloys depends on the amplitude of compositional

fluctuations in the liquid and that the critical composition,

identified for the first time in this paper, corresponds to a

minimum in these fluctuations, is the one that is worth

further study.

5. Conclusions

Chemical order, referring here to the avoidance of contacts

between members of at least one chemical species in an

atomic mixture, provides a generic form of organisation,

even in amorphous materials. In this paper, we have

argued that the limiting composition x*B, the composition

above which chemical order must be violated, represents

an important characteristic of amorphous mixtures. We

have demonstrated that the composition-dependent,

species-dependent coordination numbers for different

radius ratios collapse onto a single master curve when

the composition is scaled by the limiting composition.

Other properties such as potential energy that depend on

these coordination numbers show a similar scaling

behaviour with regard to x*B. These observations lead us

to a rather surprising conclusion that most of the important

geometrical consequences of packing spheres of different

sizes can be captured by a single quantity, the limiting

composition.
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