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ABSTRACT: The design of more sustainable bioethanol supply chains (SCs) has recently emerged as an active area of research.
Most of the approaches presented so far have somehow a limited scope, as they focus on minimizing the emitted greenhouse
gases as unique criterion, neglecting the damage caused in other impact categories. In this work, we address the multiobjective
design of bioethanol SCs considering several life cycle assessment impacts. To overcome the numerical difficulties of dealing with
several objective functions, we investigate the application of a rigorous mixed-integer linear programming-based dimensionality
reduction method that minimizes the error of omitting objectives. The usefulness of this approach is tested through its
application to the design of a bioethanol/sugar SC in Argentina, in which five environmental objectives are simultaneously
optimized along with the net present value. The proposed method makes it possible to reduce the number of environmental
indicators, thereby facilitating the calculation and analysis of the Pareto solutions.

1. INTRODUCTION
Energy security and environmental concerns have boosted the
large-scale substitution of fossil fuels by biobased sources of
energy. Nowadays, bioethanol is the world’s leading trans-
portation biofuel, with a worldwide production in 2010 of 23
billion gallons.1 Despite this growth, there is still the open issue
of assessing whether replacing fossil fuels by biofuels like
bioethanol is indeed environmentally advantageous from a
holistic viewpoint.2

The environmental assessment of bioethanol production has
recently attracted increasing attention. Several mathematical
models have been proposed so far to optimize the economic
and environmental performance of biofuels supply chains
(SCs). These approaches have mainly focused on reducing the
greenhous gas (GHG) emissions of the bioethanol infra-
structure. Zamboni et al. (2009)3 formulated a biobjective
optimization model that minimizes the GHG emissions
associated with the future corn-based Italian bioethanol
network. Recently, Zamboni et al. (2011)4 included crop
management decisions in the aforementioned model consider-
ing two objectives: total daily GHG impact and net present
value (NPV). Giarola et al. (2011)5 extended this model by
adding second generation bioethanol production technologies.
Several studies6,7 have shown that optimizing GHG

emissions as a single environmental criterion can lead to
solutions where such emissions are reduced at the expense of
increasing other negative effects (mainly the destruction of the
native tropical eco-systems and soil erosion). To avoid this,
Mele et al. (2011)8 developed a bicriteria model that maximizes
the profit and minimizes the life cycle environmental impact of
combined sugar/bioethanol SCs. The latter criterion was
measured using two environmental indicators: the Eco-
indicator 99,9 which accounts for eleven life cycle environ-

mental impacts pertaining to several damage categories, and the
global warming potential.
The Eco-indicator 99 is an aggregated environmental metric

constructed by attaching weights and normalization values to a
set of single environmental indicators. The goal of normal-
ization is to refer the original impact values to a common basis
before being aggregated into a single metric. Weighting
schemes rank different indicators according to their importance.
They are typically defined by a panel of experts that reflect the
views of the society or a group of stakeholders. The weakness of
this aggregation procedure is that it uses fixed normalization
and weighting parameters that may not represent the decision-
makers’ interests. Moreover, when used in a multiobjective
optimization framework, aggregated metrics have the effect of
changing the dominance structure of the problem in a manner
such that some solutions may be left out of the analysis.10

The use of aggregated indicators in environmental multi-
objective optimization (MOO) problems is a common practice
in environmental engineering that was originally motivated by
the numerical difficulties associated with optimizing a large
number of objectives simultaneously.11,12 An alternative
approach to overcome this computational limitation consists
of constructing an approximated model where the key
objectives are kept and the redundant ones are omitted. So
far, the elimination of objectives in environmental MOO
problems has largely relied on the decision-makers’ preferences,
who typically select the most relevant criteria and drop the rest.
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This approach does not rely on any rigorous analysis, and for
this reason it may lead to large approximation errors.
Objective reduction techniques arose in response to this

situation. They allow transforming multiobjective problems
with a large number of objectives into a meaningful equivalent
with a reduced set of them. Ideally, the reduced representation
should preserve the characteristics of the original problem,
making it possible to identify the solutions of the original full
space model by solving its simplified counterpart. Brockhoff
and Zitzler (2006)13 formally stated the problems of computing
the smallest minimum objective subset (MOSS) that does not
exceed a given maximum allowable approximation error
(denoted as the δ-MOSS problem) and a minimum objective
subset of size k with minimum error (k-MOSS problem). They
also presented an exact and a heuristic algorithm to tackle these
problems. Alternatively, Deb and Saxena (2005)14 investigated
the use of principal component analysis (PCA) to identify
redundant objectives in MOO.
Despite recent advances in dimensionality reduction

techniques, their use in environmental problems has been
quite scarce. Sabio et al. (2011)15 applied PCA to identify
redundant life cycle assessment (LCA) metrics in the
multiobjective optimization of hydrogen infrastructures, while
Pozo et al. (2011)16 proposed an improved ε-constraint
method combined with PCA for dimensionality reduction
and applied it to the design of petrochemical supply chains. It
should be noted that despite being faster, dimensionality
reduction methods based on PCA produce solutions with larger
approximation errors than those based on the definition of δ-
error.13

This work explores the application of a mixed-integer linear
programming (MILP)-based objective reduction method in the
design of infrastructures for ethanol production. To the best of
our knowledge, this is the first contribution in the literature that
addresses the optimization of these systems considering
simultaneously several LCA metrics, some of which are omitted
from the analysis using a rigorous approach.
The article is organized as follows. The next section describes

the case study based on the design of bioethanol/sugar SCs in
Argentina, which is taken as a test bed to illustrate the
capabilities of our approach. The section that follows discusses
concepts concerning Pareto dominance and measures of
changes in the dominance structure of MOO problems
resulting from removing objectives. In section 4, we briefly
outline the ε-constraint method, and describe the proposed
MILP that seeks to identify the subset of objectives to be
omitted with minimum error. In section 5, some numerical
results are presented. Finally, in section 6, the conclusions of
the work are drawn.

2. PROBLEM STATEMENT: ARGENTINEAN SUGAR
CANE INDUSTRY

The optimal design and planning of integrated sugar/
bioethanol SCs in Argentina8 is considered herein. We aim to
determine the structure of a three-echelon SC (production−
storage−market) that includes a set of plants and a set of
storage facilities, where products are stored before being
delivered to the final customers. The production and storage
facilities can be installed in a set of subregions defined
according to the administrative division of Argentina.
We consider all possible configurations of the ethanol sugar

SC as well as all technological aspects associated with its
performance, such as production and storage technologies,

waste disposal, and transportation alternatives for raw materials
and products. Five different technologies, two for sugar
production and three types of distilleries, are studied. Sugar
mills use sugar cane juice to produce both white and raw sugar.
One type of sugar mill (T1) generates molasses as a byproduct,
whereas the other one (T2) produces a secondary honey in
addition to sugars. Anhydrous ethanol can be produced by
fermentation and subsequent dehydration of different process
streams: molasses (T3), honey (T4), and sugar cane juice (T5).
The details of each technology, including the mass balance
coefficients, are shown in Figure 1, where residuals, loses, and
discards are omitted.

Two different types of storage facilities, warehouses for liquid
products (S1) and warehouses for solid materials (S2), are
considered. It is assumed that materials can be transported by
three different types of trucks: heavy trucks with open-box bed
for sugar cane (TR1), medium trucks for sugar (TR2), and tank
trucks for liquid products (TR3). Storage and transportation
modes are shown in Figure 2.
Given cost and environmental data, technical details of each

technology and demand to be fulfilled, we aim at determining

Figure 1. Set of production technologies.

Figure 2. Set of storage and transportation technologies.
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the optimal SC configuration and associated planning decisions
that simultaneously optimize the economic and environmental
performance of the network. An MILP formulation was
introduced by the authors8 to tackle this problem in a previous
work in which the economic performance was measured via the
NPV, whereas the environmental damage was quantified using
an aggregated environmental indicator (i.e., Eco-indicator 99).
In this article, we extend this MILP by optimizing the

individual impact categories considered in the Eco-indicator 99:
damage to human health (DHH), damage to eco-system
quality (DEQ), and damage to resources (DR), along with the
global warming potential (GWP100) along with the Eco-
indicator 99 itself. A minimum demand satisfaction level is
considered for the sugar and ethanol. Note that the Eco-
indicator 99 is an aggregated metric calculated by attaching
weights to a set of environmental impacts. It is clear that this
aggregated metric is redundant when the individual impacts are
included in the optimization, since it is expressed as a linear
combination of these impacts. Despite this observation, we
have decided to include such an aggregated metric in the
analysis in order to discuss the limitations of using weighting
schemes in LCA.
The details of the original MILP can be found in our

previous publications.8 The LCA metrics are calculated here
following the same approach as in other works presented
previously by the authors that combine LCA and optimiza-
tion.17−21 The inclusion of six objectives (i.e., NPV plus five
LCA metrics) leads to a complex MOO problem, whose
solutions are difficult to generate and interpret. We focus next
on explaining how the Pareto solutions of this MILP are
obtained and analyzed, which constitutes the main novelty of
this work.

3. MATHEMATICAL BACKGROUND
We consider the following general multiobjective minimization
problem MO(X):

= =

≤ =

= ′ = ′

∈

′

F x f x f x f x f x

g x n N

h x n N

MO(X) min ( ( ) { ( ), ( ), ..., ( ),..., ( )})

subject to

( ) 0, 1, 2, ...,

( ) 0, 1, 2, ...,

x X k O

n

n

1 2

(1)

where O objective functions are optimized, N is the number of
inequality constraints, and N′ is the number of equality
constraints. X is the search space, x is a vector of decision
variables, and F(x) denotes the vector of objective functions
f k(x). The set of values taken by the objective functions f k(x) in
the feasible solutions of MO(X) constitutes the feasible
objective space Z. In the context of our problem, one of the
objectives f k represents the economic performance, whereas the
others quantify a set of environmental impacts.
Figure 3 shows an illustrative example of the feasible

objective space of a bicriterion problem. Solution A shows the
minimum value of f1, while solution D is better in terms of
objective f 2 and worse in objective f1. Two additional solutions
(B and C) are also shown in the figure. All these solutions are
Pareto-optimal or nondominated. The set of all nondominated
solutions constitutes the Pareto-optimal front (thin red line
edging the lower-left part of Z). Solution S1 weakly dominates
solution s2 (i.e., ), if the following conditions hold:

1. Solution s1 performs better than or equal to s2 in all of
the objectives:

≤ ∀f s f s k( ) ( )k k1 2 (2)

2. Solution s1 is strictly better than s2 in at least one
objective:

∃ ∈ <k M f s f s{1, ..., }: ( ) ( )k k1 2 (3)

As observed, solutions E, F, and G are worst than C
simultaneously in both objectives ( f1 and f 2). These solutions
are called dominated or nonoptimal solutions.
The aim of any objective reduction method is to identify a

subset of objectives of a MOO problem such that the error of
omitting them (known as δ-error) is minimum. The concept of
δ-error was first proposed by Brockhoff and Zitzler (2006).13

We illustrate the fundamentals behind this concept using an
example with three Pareto solutions and four objectives.
Figure 4 is a parallel coordinate plot,22,23 which allows

displaying large-dimensional data sets (i.e., Pareto solutions

with several objectives) in a straightforward manner, providing

valuable insight on their dominance structure. In the parallel

coordinates plot, the x-axis represents the set of objectives,

while the y-axis shows the normalized performance attained by

each solution in each objective. Every line in the parallel

coordinates plot represents a single solution. Note that

Figure 3. Hypothetical feasible objective space and Pareto optimal
front for a MOO problem minimizing both objectives f1 and f 2.
Solutions A, B, C, and D are Pareto-optimal, whereas solutions E, F,
and G are nonoptimal. The thin red line denotes the Pareto front.

Figure 4. (a) Dominance structure of the original problem. (b)
Dominance structure after removing f4. (c) Dominance structure of
the reduced set {f1,f 2}.
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solutions s1 (solid red line), s2 (blue dashed line), and s3 (green
dash-dotted line) are all weakly Pareto-optimal.
Further analysis of the solutions reveals that f k(s2) < f k(s1) <

f k(s3) for k = 2 and k = 4. On this basis, it is possible to remove
either objective function f 2 or f4 without changing the
dominance structure of the problem. These objectives are
regarded as redundant or nonessential, as omitting them does
not alter the problem structure. The error of omitting one of
these redundant objectives is hence zero, as the dominance
structure is preserved after removing any of them (see Figure
4a,b).
There are no more nonessential objectives in this example. In

fact, further reductions in the number of objectives change the
dominance structure. Particularly, Figure 4c shows the reduced
set of objectives F′ = {f1,f 2}. We observe that if we drop
objectives f 3 and f4, then solution s2 dominates solution s1 (i.e.,

), even though f 3(s1) < f 3(s2), that is, the dominance
structure is modified with respect to that of the original search
space. The difference between the values of f 3(s1) and f 3(s2)
can be used as a measure to quantify the change in the
dominance structure. Hence, the approximation error is defined
as the maximum amount that we have to subtract from a
solution A that dominates another solution B in the reduced
space such that A also dominates B in the original search space.
For this case, this difference is equal to 0.4. This metric
(referred to as δ-error) indicates to which extent the initial
dominance relationship is modified after removing objectives.
Two problems of interest arise at this point. The first is to

identify the minimum set of objectives that preserves the
problem structure except for an error of δ. The second is to
determine the minimum δ-value for a given number of
objectives to be omitted. These problems were formally stated
by Brockhoff and Zitzler (2006),13 who proposed an exact and
a heuristic approach to tackle them. More recently, Guilleń-
Gosaĺbez (2011)24 introduced a rigorous MILP formulation for
the efficient solution of these problems. As shown by Brockhoff
and Zitzler (2006),13 these problems are -hard, that is,
there is no known algorithm capable of solving them in
polynomial time. In the following section we explain how these
concepts and tools can be applied in the context of designing
ethanol SCs with environmental concerns.

4. SOLUTION PROCEDURE

Our solution procedure comprises two steps (see Figure 5). In
step one, a set of Pareto solutions of the original full space
problem is generated using the ε-constraint method. In step
two, a rigorous MILP-based dimensionality reduction method
is applied to identify redundant objectives thereby reducing the
problem complexity and facilitating the interpretation and
analysis of the Pareto set. These steps can be performed
iteratively until a termination criterion is satisfied (see Figure
5).
4.1. Step 1: ε-Constraint Method.MOO problems can be

solved by means of several methods whose details can be found
elsewhere.11,25 In this work, we use the ε-constraint method,26

which entails solving a set of single objective problems SOe(X)
where one objective is kept in the objective function (e.g., f1)
while the rest are transferred to auxiliary constraints in which

upper bounds are imposed on them using a set of ε-parameters
(εk,e):
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Different Pareto solutions can be obtained by solving iteratively
problem SOe(X) for different values of εk,e. In our case, we
retain the NPV (k = 1) as main objective and transfer the
environmental indicators (k ≠ 1) to the auxiliary constraints.
The lower and upper limits of each ε-parameter are obtained
from the minimization of each separate environmental
objective:

= ≠

≤ =

= ′ = ′

∈

′

s f x k

g x n N

h x n N

arg min ( ( )), 1

subject to

( ) 0, 1, 2, ...,

( ) 0, 1, 2, ...,

k
x X k

n

n (5)

which defines εk = f k(sk), k ≠ 1. Furthermore, the maximum
values of every objective f k among the solutions sk are used to
define the upper bounds imposed on the epsilon parameters.

Figure 5. Solution procedure.
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Next, the intervals [εk,εk] are subdivided into |Ek|
subintervals, and model SOe(X) is solved for each of the limits
of these subintervals, generating a different Pareto solution in
each run.
4.2. Step 2: Dimensionality Reduction. Step 2 entails the

application of a dimensionality reduction method using the
Pareto solutions generated in step 1. Two main methods for
dimensionality reduction in multiobjective optimization are
available: the PCA-based approach of Deb and Saxena
(2005),14 and the rigorous approach for objective reduction
based on the concept of error of the approximation (Brockhoff
and Zitzler (2006)13). The PCA method is faster, but it can
lead to very large approximation errors, as was shown by
Brockhoff and Zitzler (2006).13 For this reason, we follow
herein a rigorous MILP-approach based on the δ-error
definition (see Guilleń-Gosaĺbez (2011)24).
To this end, we proceed as follows. We first obtain a set of

Pareto solutions S = {s1,...,si,...,sL}, S⊂X to problem MO(X)
using any MOO solution procedure. These points will be used
in the MILP for objective reduction. This MILP comprises two
main sets of equations, those that determine whether a solution
is lost in the reduced set of objectives, and those that calculate
the δ-value. We provide next an overview of this MILP. Further
details can be found in the original article.24

We define the following notation. The binary parameter
YPi,i′,k takes the value of 1 if solution si is better than solution si′
in objective function f k (i.e., f k(si) ≤ f k(si′)) and 0 otherwise.
The binary variable ZOk is equal to 1 if objective f k is removed
from F and 0 otherwise, while binary variable ZDi,i′ takes the
value of 1 if solution si′ dominates solution si in the reduced
Pareto space and 0 otherwise. The definition of the latter
variable is enforced via the following constraints:

∑ ∑
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The δ-error is defined as the difference between the value of
objective f k in solutions si and si′:

δ = − ∀ ≠ ′′ ′ ′f s f s i i k( ( ) ( ))ZO ZD ,i i k k i k i k i i, , , (8)

The product of binaries in eq 8 can be linearized as follows:
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Two MILPs can now be constructed to solve the δ-MOSS and
k-MOSS problems.

For minimizing the maximum error of omitting objectives,
we add a constraint imposing a bound on the maximum
number of objectives removed:

∑ =ZO OB
k

k
(13)

The following MILP formulation is then used to solve the k-
MOSS problem:

δ

−
′

′(MOR1) min max{ }

subject to constraints 6 13

i i k
i i k

, ,
, ,

For minimizing the number of objectives for a given error δ ̅, we
impose an upper bound on variable δi,i′,k via the following
inequality:

δ ≤ δ̅′i i k, , (14)

We then construct an alternative model (MOR2) for solving
the δ-MOSS problem that can be expressed as follows:

∑

−

ZO(MOR2) max

subject to constraints 6 12, 14
k

k

The algorithm proposed for solving the multiobjective MILP
for the design of ethanol infrastructures, which makes use of the
rigorous MILP for dimensionality reduction, comprises the
following steps: (1) Set a number of iterations of the ε-
constraint method, and a threshold cut (TC). (2) Generate a
set of solutions of the original MILP using the ε-constraint
method. (3) Apply the MILP-based objective reduction
method to the solutions generated in all the previous (and
current) iterations. (4) Check the termination criterion. If it is
reached, then the algorithm ends, otherwise go to step 1 and
repeat steps 1 to 4 until the termination criterion is satisfied.

Remarks. (1) The MILP formulation for dimensionality
reduction slightly differs from the one presented in Guilleń-
Gosaĺbez (2011).24 Particularly, we have modified the original
formulation in order to reproduce exactly the manner in which
Zitzler (2006)13 calculated the δ-error. In the original MILP
model introduced in Guilleń-Gosaĺbez (2011),24 we omitted
the error between any pair of solutions that were not Pareto
optimal in the reduced space, while in the modified MILP, we
consider the error between any two solutions regardless of
whether they are Pareto optimal or not in the reduced space of
objectives.
(2) Different termination criteria can be used in the

algorithm. A termination criterion that works well is to stop
when further reductions in the number of objectives cannot be
obtained. Hence, a δ-error threshold is defined at the beginning
of the algorithm, which is stopped when the cardinality of the
set of objectives kept cannot be further reduced without
surpassing the δ-error. To check this condition, we employ the
MILP formulation that minimizes the minimum number of
objectives for a given δ-error (MOR2).
(3) The number of iterations of the ε-constraint method can

be dynamically changed during the execution of the algorithm.
As iterations proceed, it will be possible to increase the number
of subintervals of the ε-constraint method while still keeping
the number of iterations constant, since LCA metrics will be
omitted progressively from the pool of objectives.
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(4) The number of solutions used in the MILP for objective
reduction will increase with the number of iterations, which will
lead to larger CPU times during the phase of dimensionality
reduction using the MILP formulation.

5. NUMERICAL RESULTS
The approach proposed was applied to the case study described
in Mele et al. (2011)8 (see the original publication for further
details), but this time optimizing the following LCA metrics
simultaneously: GWP100, EI99, DHH, DEQ, and DR. We
implemented the ε-constraint method considering seven ε-
values for each environmental metric. The model was written in
GAMS27 and solved with the MILP solver CPLEX 12.0 on a
HP Compaq DC5850 desktop PC with an AMD Phenom
8600B, 2.29 GHz triple-core processor, and 2.75 Gb of RAM.
This led to 16 807 iterations, 4941 of which were feasible. Only
40 solutions were finally identified after removing the repeated
ones. The total CPU time spent was 58 669 s. Note that the ε-
constraint algorithm is rather inefficient when applied to the
original problem since several redundant metrics exist.
The structure of the maximum NPV SC (Figure 6) is quite

centralized. Three sugar mills T2, one distillery T4, and three

distilleries T5 are located in the northwest of Argentina. The
consumption of sugar cane in this solution is 98.6%. The choice
of the couple T2−T4 is due to the fact that these technologies
show higher ethanol yield than that of the couple T1−T3.
In the minimum GWP100 solution (Figure 7), the SC

includes seven sugar mills utilizing technology T1, five
distilleries T3 that convert molasses into ethanol, and four
distilleries T5. All these production facilities are established in
the five provinces that have sugar cane plantations. This
solution consumes all the sugar cane available. This
configuration decreases the CO2 emissions, since sugar cane
cultivation has a negative value of GWP100.

8 The choice of the
tandem T1−T3 is motivated by their lower GWP100 as
compared with T2−T4.
The SC structure with minimum EI99 (Figure 8) is also the

one with minimum DHH, DEQ, and DR values. The network
shows similar topology as the minimum GWP100 solution.
However, instead of T1 and T3, it operates with T2 and T4 as
occurred in the solution with maximum NPV. The choice of
T2−T4 is explained by their lower EI99, DHH, DEQ, and DR

impacts. All the production, storage, and transportation
activities considered in the model show positive values of
these four environmental metrics. Hence, minimizing these
environmental metrics produces solutions in which the
production, storage, and transportation tasks are reduced.
Note that due to the demand satisfaction constraints, the model
is forced to cover a minimum demand of sugar and ethanol.
Since the pair T2 and T4 cannot produce as much ethanol as
white sugar, the model decides to open three T5 distilleries to
produce the amount of ethanol required to attain a demand
satisfaction of 30%.
The Pareto-optimal solutions were next normalized prior to

solving the MILP for dimensionality reduction. The NPV
values were normalized as follows:

=
−

−
∀ =nf s

f f s

f f
i k( )

( )
, 1k i

k k i

k k (15)

where fk and fk denote the maximum and minimum values of

objective f k among all the Pareto solutions. The normalized

Figure 6. SC configuration for the solution with maximum NPV.

Figure 7. SC configuration for the solution with minimum GWP100.

Figure 8. SC configuration for the solution with minimum EI99, DHH,
DEQ, and DR.
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values of the environmental indicators were calculated as
follows:

=
−

−
∀ ≠nf s

f s f

f f
i k( )

( )
, 1k i

k i k

k k (16)

Figure 9 is a parallel coordinates plot that depicts the
normalized Pareto points obtained following the above

commented procedure. This plot suggests that objectives
EI99, DHH, and DEQ are redundant, since they all behave in
a similar manner in all the Pareto-optimal solutions. Impact DR
is also somehow redundant with these metrics but to a lesser
extent.
We next applied the proposed MILP-based approach

recursively. Specifically, the MILP was first ran for a given
number of objectives to be removed forcing the model to keep
the NPV, and the solution (i.e., combination of objectives)
identified in this first iteration was eliminated using an integer
cut.28

We repeated this procedure until the MILP turned out to be
infeasible. The results are presented in Tables 1−4, in which all

possible combinations of 2, 3, 4, and 5 objectives are displayed
along with the corresponding approximation errors. As seen,
four LCA metrics are required to fully preserve the dominance
structure: NPV, GWP100, DR, and then either EI99, or DEQ, or
DHH. Further reductions in the number of objectives change
the dominance structure. Note, however, that there are
combinations of 3 objectives with very small δ-values. All of
them contain NPV and GWP100, and differ only in the third
objective, which is either the EI99, DEQ, DHH, or DR. Among
the combinations of three metrics, the subset NPV, GWP100,
DR has the smallest error. The subsets with NPV, GWP100 and
objectives EI99, DEQ, or DHH show similar δ-values, since
these three last objectives are all redundant. As seen, there are

three main clusters of environmental objectives: (1) GWP, (2)
EI99, DEQ and DHH, and (3) DR. The latter two are closer
between them than with objective GWP100. Note that we could
also apply a statistical approach such as PCA to identify these
clusters. This method, however, does not provide any
information on the error of the approximation obtained after
removing redundant objectives.
Figure 10 shows the projections of the points generated

using the ε-constraint method onto the 2-D subspaces NPV vs
GWP100, NPV vs DEQ, NPV vs DHH, NPV vs DR, and NPV
vs EI99. Note that, according to the normalization performed
using eq 15, the NPV values decrease as we get close to 1. In
contrast, the environmental impacts are reduced as their
normalized values approach to zero. As seen, as the NPV grows,
the GWP100 decreases. This is because larger profits are attained
by increasing the cultivation of sugar cane, which adsorbs large
amounts of CO2, thereby decreasing the GHG emissions of the
whole bioethanol network. The remaining environmental
metrics behave in an opposite manner, that is, they increase
with the NPV value. This is because, as shown in Mele et al.
(2011),8 the production of bioethanol from sugar cane leads to
positive overall LCA impacts in these categories. As seen, the
points resulting from the minimization of those metrics
belonging to cluster (2) overlap in Figure 10, whereas the

Figure 9. Parallel coordinate plot.

Table 1. δ-Error for All Combinations of NPV and One of
the Environmental Metrics

reduced subset δ-Error × 100

{NPV, GWP100} 100.00
{NPV, EI99} 15.20
{NPV, DHH} 15.20
{NPV, DEQ} 15.20
{NPV, DR} 15.20

Table 2. δ-Error for All Combinations of NPV and Two of
the Environmental Metrics

reduced subset δ-Error × 100

{NPV, GWP100, EI99 } 7.49
{NPV, GWP100, DHH } 7.82
{NPV, GWP100, DEQ } 7.65
{NPV, GWP100, DR } 0.15
{NPV, EI99, DHH } 15.20
{NPV, EI99, DEQ } 15.20
{NPV, EI99, DR } 15.20
{NPV, DHH, DEQ } 15.20
{NPV, DHH, DR } 15.20
{NPV, DEQ, DR } 15.20

Table 3. δ-Error for All Combinations of NPV and Three of
the Environmental Metrics

reduced subset δ-Error × 100

{NPV, GWP100, EI99, DHH } 7.49
{NPV, GWP100, EI99, DEQ } 7.49
{NPV, GWP100, EI99, DR } 0
{NPV, GWP100, DHH, DEQ } 7.65
{NPV, GWP100, DHH, DR } 0
{NPV, GWP100, DEQ, DR } 0
{NPV, EI99, DHH, DEQ } 15.20
{NPV, EI99, DHH, DR } 15.20
{NPV, EI99, DEQ, DR } 15.20
{NPV, DHH, DEQ, DR } 15.20

Table 4. δ-Error for All Combinations of NPV and Four of
the Environmental Metrics

reduced subset δ-Error × 100

{NPV, GWP100, EI99, DHH, DEQ } 7.49
{NPV, GWP100, EI99, DHH, DR } 0
{NPV, GWP100,EI99, DEQ, DR } 0
{NPV, GWP100, DHH, DEQ, DR } 0
{NPV, EI99, DHH, DEQ, DR } 15.20
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points denoting DR values are quite close to them. As observed,
there is no single environmental metric capable of keeping the
problem structure. Note that for all the combinations of NPV
and an LCA metric it happens that there are points that lie
below the corresponding 2-D Pareto front. Hence, regardless of
the LCA metric of choice, it will be impossible to generate all
the Pareto points with one single LCA metric, since many
solutions will be lost after being projected onto a 2-D subspace.
Figures 11−14 show the impacts corresponding to the

cultivation of sugar cane, production of sugars and ethanol, and

transportation of products and feedstocks. As discussed
previously, in the case of GWP100, the production and
transportation tasks cause the largest impact, while sugar cane
plantations show negative impact values. In contrast, all the SC
activities lead to positive impacts in the remaining LCA
categories. Metric DR differs from EI99, DEQ, and DHH, in
that it shows larger impacts in transportation and lower impacts
in sugar cane cultivation.
After identifying the redundant metrics, we can run again the

ε-constraint method eliminating nonessential objectives from
the search. Information on how the objectives can be grouped
into clusters is rather valuable as it allows decision-makers
concentrating their efforts on measuring only a reduced

number of impacts, which leads to significant economic and
time savings regarding data collection and computational time.
We should note that in practice there might be sources of

uncertainty affecting the LCA calculations.29−32 Even in these
cases, it is still possible to use the MILP-method for
dimensionality reduction by defining the LCA metrics as
stochastic variables rather than as nominal values, and then

Figure 10. Bicriteria projections of the normalized values of the
environmental impacts and NPV.

Figure 11. GWP100 values for different SC activities. Impact of
agriculture is given per kg of sugar cane cultivated. Impact of
production is given per kg of sugar cane converted. Impact of
transportation is given per ton of material transported 1 km.

Figure 12. Impact of agriculture in terms of EI99, DHH, DEQ, and
DR.

Figure 13. Impact of the different production technologies in terms of
EI99, DHH, DEQ, and DR. Impact values are given per kg of sugar
cane converted.

Figure 14. Impact of the different transportation technologies in terms
of EI99, DHH, DEQ, and DR. Impact values are given per ton of
material transported for 1 km.
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applying the MILP to identify redundancies between these
stochastic LCA metrics.

6. CONCLUSIONS
In this work, we investigated the existence of redundant LCA
metrics in the multiobjective design of integrated bioethanol/
sugar SCs in Argentina. To this end, we applied a rigorous
MILP-based dimensionality reduction method that minimizes
the error of the approximation obtained after omitting
redundant objectives. Numerical results showed that the Eco-
indicator 99, damage to human health, and damage to eco-
system quality (and, to a lesser extent, damage to depletion of
resources) behave similarly (i.e., they are somehow redundant
in our problem). This makes it possible to perform the
optimization in a reduced domain while still obtaining high
quality results. Our approach facilitates the calculation and
analysis of the Pareto solutions, providing valuable insight on
the trade-offs between the objectives considered in the analysis
and guiding decision-makers toward the adoption of more
sustainable alternatives.
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