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1. INTRODUCTION
The theory of Reduced Stiffness Analysis (RSA) to
obtain lower bound buckling loads (or reduced energy
approach, as it has been termed in some publications)
was first proposed 35 years ago (Croll 1975) as an
attempt to account for the intriguing imperfection-
sensitive behavior of shells. The approach was based on
earlier work published by Donnell (1934) on the
coupling between modes of instability and geometric
imperfections. Croll proposed that part of the
contribution to the elastic energy of the structure was
eroded as a consequence of such coupling, with the
consequence that the effective contribution to the
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stability of the shell was less than what would be
computed in a classical analysis. Therefore, a lower
bound to the buckling load of an imperfection-sensitive
shell could be obtained by means of an eigenvalue
analysis of the perfect shell in which the at risk, initially
stabilizing, energy components have been eliminated
(see for example Croll 1995).  The identification of what
terms need to be eliminated in each specific case was
part of the development of the theory during the past 30
years. Under lateral pressure, it was found that the
membrane energy provides the at-risk stabilizing terms
and should be subsequently neglected for the reduced
stiffness eigenproblem (Batista and Croll, 1978). A
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clear advantage of this approach is that rather than
performing a geometrically nonlinear analysis for shells
with various imperfection shape and amplitudes, the
reduced stiffness methodology performs simpler
computations by means of a modified eigenvalue
analysis. Such an approach allows rapid estimates of
shell buckling loads to be found and could be important
in at least two situations: (i) to estimate elastic (or
elasto-plastic) buckling of a specific shell; and (ii) to
compute the buckling capacities of a large number of
shells, as is required in the investigation of the
consequences of a possible regional event, such as in the
development of fragility or vulnerability curves
(Khanduri & Morrow 2003; HAZUS 2003). 

During the first decade of the research program, the
investigations focused on the behavior of thin-walled
cylinders under axial load and under uniform lateral
pressure, leading to effective lower bounds with respect
to data obtained from small scale experiments. Those
applications were followed by studies on hyperboloids of
revolution, spherical shells, domes, and stiffened shells
(for a summary of progress in this research program, see
Croll 1995). In most cases, the reduced energy models
were solved analytically for simple boundary conditions,
or else using special purpose numerical methods. With
an increased number of applications, new challenges
emerged that needed to be addressed. This paper is
motivated by the need to represent the buckling of shells
with thickness changes along the meridian, which is a
common situation in the structural analysis of storage
tanks employed in the oil industry. 

Metal shells used to store liquids, such as
aboveground storage tanks, are usually designed with
step-changes in the thickness to resist fluid pressures
(which are maximum at the bottom of the tank and zero
at the top). The usual practice in this industry is to
fabricate tanks using curved plates with standard
dimensions, so that 8 ft. (2.67 m) rings are welded on
top of each other. For an effective use of the reduced
stiffness approach to the buckling of such shells, several
questions arise. Should the reduction of stiffness (or
energy) be enforced on the complete shell or on part of
it? What terms should be eliminated in any case? Notice
that this problem is not present in shells with constant
thickness under uniform states of stress. Similar
questions would arise in the buckling of shells formed
by cylinder-cone or cylinder-dome configurations.

Several approaches have been proposed to evaluate
the buckling capacity of stepwise variable wall thickness
in shells. Early work in this field was done by Trahair 
et al. (1983) in Australia, followed by Rotter and Teng
(1989), and Greiner and Yang (1996). The recent
European recommendations (Rotter and Schmidt 2008)
include a chapter on this topic because of its importance

for the design of tanks and (to a lesser extent) of silos
which become vulnerable to buckling under wind
loading when empty. The intention of the European
recommendations is to provide simple rules for designers
so that buckling calculations can be made by hand.  

In this paper we focus our attention on the cylindrical
shell under uniform external pressure (or internal
vacuum), and explore possible ways to implement a
RSA under such conditions. As such, the paper
emphasizes methodological rather than design issues.
The effects of possible plastic strains are neglected in
this study, since in general plasticity is not a dominant
effect for such thin shells.

2. CANTILEVER SHELLS WITH STEPWISE
THICKNESS CHANGES 

Figure 1 schematically shows the domain of a structure
divided in two zones with different stiffnesses, in which
zone 2 is assumed to have larger stiffness than zone 1 as
a consequence of their different thicknesses (with t2 > t1). 

Using the total stiffness as derived from classical
Love-Kirchhoff shell theory, a finite element model of
the problem leads to the linear equilibrium condition
valid for pre-critical states:

(1)

where K0 is the linear stiffness matrix of the shell, uF is
the vector of nodal displacements, λF is the load
parameter along the fundamental linear equilibrium
path, and P is the load vector. Using standard finite
element notation (Zienkiewicz and Taylor 2005), the
stiffness matrix K0 is computed in terms of matrix B0
which includes the interpolation functions and the
constitutive matrix D computed from the material
properties:

(2)K B DB0 0 0= ( )T dA

K0 u PF F+ =λ 0

t2  =  2 t1

t1

H 

D

Figure 1. Tank structure with two different thicknesses
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The stiffness matrix K0, for small deflections can be
conceptualized as formed by membrane and bending
contributions. With the resulting values of displacements
obtained from the solution of Eqn 1, it is possible to
compute the vector of stress resultants in the pre-critical
condition, denoted as NF. 

Various ways of performing stability analysis of shells
using global numerical analysis have been recently
reviewed in a European document (Rotter and Schmidt
2008). In a classical Linear Bifurcation Analysis (LBA),
the resulting eigenvalue problem may be written in the
form (Zienkiewicz and Taylor 2005, Chapter 17):

(3)

where λC is the critical load, and Φ is the eigenvector
that represents the deflected shape at the critical state.
Matrix KG includes the nonlinear components of
rotations through matrix G (the rotation-displacement
matrix) and it also includes the initial stresses computed
from the fundamental equilibrium path, NF:

(4)

A semi-analytical finite element has been used in this
work (Flores and Godoy 1991) to model the classical
and reduced stiffness models, whereas the general
purpose program ABAQUS (2002) was employed for
the geometrically nonlinear analysis of shells including
imperfections in the geometry (GNIA, as identified in
Rotter and Schmidt 2008).

In the precritical states, the largest contribution to the
stiffness in thin-walled structures is provided by the
membrane action. For tanks with height to diameter
ratio close to one (H/D (1), the thickness designed
according to API 650 recommendations (API 1988) lead
to values at the bottom which are 3.5 to 4 times the
thickness at the top of the shell. For this reason the
stiffness contributions associated with regions at 
the bottom of the shell are larger than those at the top.
Based on this kind of consideration, some authors
propose to model only the thinner part of the shell by
assuming an equivalent shell of uniform thickness
supported by the thicker part. However, this is only a
heuristic argument and the results need to be further
justified since they may not be close to the values
computed from an exact model of the shell.

2.1. Results of Classical LBA and GNIA Models

To illustrate the differences between the classical and
reduced stiffness methods, a cantilever steel shell with
two thicknesses has been initially considered under
uniform external pressure. The boundary conditions are
assumed as a free edge at the top, a condition identified

K G N GG T F dA= ( )

K K N0
G F+  =λC ( ) ΦΦ n 0

as BC3 in European Design Recommendations (Rotter
and Greiner 2008) and clamped at the bottom, or BC1r
in the European Design Recommendations. There is no
axial restraint included in the boundary conditions of the
models discussed in this paper. With reference to Figure 1,
the shell considered has D = 9 m, H/D = 0.5, with the
largest thickness t2 = 6 mm over the bottom half
corresponding with D/t2 = 1500 and the smaller
thickness t1 = 3 mm over the top half being D/t1 = 3000.
Values of elastic modulus E = 206000 MPa and
Poisson’s ratio equal to 0.3 for steel have been
considered in the studies of this paper.

The classical eigenvalue problem was solved using
the general purpose finite element program ABAQUS
(2002) and also with the semi-analytical finite element

Figure 2. First classical buckling mode for the structure of 

Figure 1: (a) in the circumferential direction; 

(b) in the longitudinal direction
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code ALREF (Flores and Godoy 1991), leading to a
value λC = 1.84 KPa. The deflected shape at λC

computed from the eigen-problem is shown in Figure 2,
where z is the coordinate measured along the meridian
of the shell, and wnorm indicates the out-of-plane
displacement normalized so that the maximum
displacement (at the top in this case) has unit value.

Next, a Geometrically Nonlinear Imperfect Analysis
(GNIA) was performed using ABAQUS, to compute the
nonlinear equilibrium path for a given initial
imperfection in the geometry. The numerical technique
used for incremental analysis is that due to Riks (1972,
1979).

The shape of the imperfection was assumed to be the
same as the eigenmode shown in Figure 2, and the
maximum amplitude was scaled by means of a
parameter ξ. The amplitude of the maximum deviations
with respect to the cylindrical geometry were adopted as
ξ/t1 = 1, ξ/t1 = 2, and ξ/t1 = 2.5. The equilibrium path
computed in each case is shown in Figure 3(a), and the
maximum load λM reached along the path is recorded in
each case. The equilibrium paths for ξ/t1 = 1 and 
ξ/t1 = 2 reach a maximum and then there is a small
decrease in the path (equilibrium is only possible for
values lower than λM). For ξ/t1 = 2.5, on the other hand,
the path exhibits an inflection point at λM. For this
reason, imperfection sensitivity has only been
investigated up to ξ/t1 = 2.5 for this case.

The deflected shapes of the shell for ξ/t1 = 1 and for
ξ/t1 = 2.5 are shown in Figure 4. Fourteen
circumferential waves (i = 14) were obtained in both
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(b)
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Figure 3. (a) Non-linear equilibrium paths, w is the out of the

plane displacement at the point of largest displacement; (b)

imperfection sensitivity curve (λC = 1.84 kPa)

Figure 4. Deflected shape at the maximum load, for the shell of Figure 1, computed using nonlinear analysis: (a)in the longitudinal

direction; (b) in the circumferential direction for ξ/t1 = 1; (c) in the circumferential direction for ξ/t1 = 2.5
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eigenvalue and nonlinear analyses, with larger
displacements towards the inside in the case of the shell
with the largest imperfection. 

It may be seen from Figure 3(a) that there is a
significant drop in the maximum load that the shell can
take from the classical value λC to the maximum value
λM and this can be highlighted by defining a knock-
down parameter η = λM/ λC, which is listed in Table 1.
The imperfection-sensitivity curve [Figure 3(b)] shows
a drop in the maximum buckling capacity of the shell. A
lower bound computed via nonlinear analysis can be
estimated using ξ/t1 = 2.5, in which case the knock-
down factor becomes η = 0.66 for this particular shell.

2.2. Energy Contributions 

In a RSA it is important to investigate the structure at
the classical critical load level and compute the strain
energy contributed by each shell component. In a
classical bifurcation analysis, the modes are identified
by the number of waves i in the circumferential
direction, as shown in Figure 2. Separate energy
contributions are here computed for each mode
obtained, and the results are plotted in Figure 5. This
type of plot has been employed in a number of works to
illustrate the modal strain energy as a function of the
circumferential wave number for a given meridional

deflection. Since it represents the mode for the lowest
critical buckling pressure a mode with one half wave in
the meridional direction (j = 1) is usually represented in
shells simply supported at both edges, whereas a
cantilever-type deflection (as indicated in Figure 4) is
used in this section for a clamped-free shell.

It may be seen that for modes with a small number of
waves (i < 8), there are large contributions derived from
membrane action, and they decrease with i, becoming
negligible for i > 20. Bending contributions, on the other
hand, are large for modes with a large number of waves
in the circumferential direction. At the lowest total
strain energy (i = 12), the membrane and bending
contributions provide the same contributions. 

The specific contributions of meridional,
circumferential, and tangential components due to
membrane and bending action are also plotted in
Figure 5. At the critical state, the meridional
membrane component (Um

ss) accounts for 92% of the
membrane energy of the shell; the second largest
component is due to the membrane shear action, Um

st,
contributing 7%; whereas the circumferential
membrane component Um

tt is very small. 
All membrane and bending components to the strain

energy of the shell have positive values, i.e. they
contribute to the stability of the shell. This trend is
similar to what has been observed in pressurized
cylinders with uniform thickness. Based on previous
experience, it seem reasonable to use the same line of
reasoning as in shells with uniform thickness and
concentrate on the effect of eliminating part or all
membrane energy contributions, based on the
hypothesis that they will be eroded by the coupling
between imperfections and modes (Croll 1995).
However, there is some uncertainty in this case
regarding what terms should be eliminated (some or all)
in the membrane strain contribution to the eigenproblem
of Eqn 3, and also about what region of the shell should
be affected by such reduction.

2.3. Homogeneous Stiffness Reduction in the

Bifurcation Analysis

The formulation of the RSA has already been discussed
in other works (Batista and Croll 1979; Yamada and
Croll 1993; and others), in which some of the
stabilizing components to the stiffness of the shell are
eliminated in the eigenvalue problem. The approach
has been implemented in this investigation in two
different ways: one through the elimination of
components in the complete shell (called Homogeneous
Stiffness Reduction), and another in which a reduction
of membrane stiffness is limited to the thinnest part of
the shell. 

0.0

0.5

1.0

1.5

2.0

2 4 6 8 10 12 14 16 18 20 22
Mode i

E
ne

rg
y 

U
 (

kN
m

)

0

1

2

3

4

5

6

λ 
(k

N
/m

2 )

Um
ss

Um
tt

Ub
ss

Ub
tt

Um
st

Ub
st

Um

Ub

U
λ

Figure 5. Modal energy components for different circumferential
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Table 1. Summary of results from the geometrical

nonlinear analysis

Imperfection Maximum load Knock-down factor

amplitude M [kN/m2] 

ξ/t1 = 1 1.437 0.78

ξ/t1 = 2 1.257 0.68

ξ/t1 = 2.5 1.228 0.66

ηηλλ
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A direct application of the RSA in the present case is
the elimination of the membrane components of the
complete shell. To better understand the behavior of
the shell with reductions in the thickness, first the
meridional membrane component (Um

ss) was
eliminated; second, the membrane shear (Um

st)
components were eliminated; and finally, all the
membrane contributions (Um) were neglected. The
reduced stiffness eigenvalues λ* associated with mode i
= 14 are shown in Table 2 together with the knock-down
factor η*= λ*/λC.

The results do not show changes if either Um
ss alone

or Um
ss and Um

st are eliminated (both cases leading to
η*= 0.64), but some differences in eigenvalues are
detected if the complete Um is neglected (η*= 0.56).
However, the main differences are found in the
eigenvectors, as shown in Figure 7(a). Elimination of
just the meridional component (or the membrane shear
components) lead to typical cantilever modes; however,
an inadequate representation of the mode is obtained by
complete elimination of the membrane strain energy in
the reduced eigen-problem.

2.4. Selective Stiffness Reduction in the

Bifurcation Analysis

An alternative analysis is to apply a selective stiffness
reduction by eliminating only the membrane components
associated with that region of the shell with small
thickness t1. For the case initially considered, the
resulting eigenvalues are denoted by λ** in Table 2, and
the knock-down factors are η** = λ**/λC. It may be seen
that the results of η* and η** are very similar, and the
same values are also obtained if the spectra of critical
loads for different modes are computed, as shown in
Figure 6. Notice that these values (η* = η** = 0.64) are
a lower bound to the load factor obtained using
geometrically nonlinear analysis, η = 0.66. 

Again, the solutions obtained using the complete
elimination of Um do not provide a good estimate of the
buckling modes. The shape of the deflected meridian is
shown in Figure 7(a) for models in which the stiffness is
reduced in the top-half of the shell, and it may be seen
that the complete elimination of the membrane
contribution leads to a deflected meridian with a shape

very different from that computed via nonlinear analysis,
Figure 5(a). A better approximation is obtained through
the use of a model in which only the meridional (or
membrane shear) components are eliminated. Although
the numerical contribution of the circumferential
stiffness is very small, its complete elimination yields a
distorted shape that does not correctly represent the
buckling mode.

In order to illustrate the type of lower bound
computed using the present methodology, the results for
the tank of Figure 1 have been compared with those of
GNIA nonlinear analysis for different forms of
imperfections and are plotted in Figure 8. Using an
asymptotic analysis (in the vicinity of a critical state)
Koiter considered an eigenmode affine imperfection
shape, and this is closely correlated with the
imperfections sensitivity of the shell at the initial
postcritical path using small imperfections. However,
there is no warranty that this would be the worst
imperfection profile, especially when large amplitude
imperfections are considered.

The forms of imperfections included in the present
analysis are the shape of the lowest eigenvector in the
classical analysis, the shape modes associated with the
second and third eigenvalues, and a localized mode (as
described in Holst et al. 2000) acting at the junction

Table 2. Reduced stiffness analysis using complete elimination of components in the complete shell

or just in the zone with the smallest thickness

Energy terms Homogeneous reduction Selective reduction

eliminated * [kN/m2] * ** [kN/m2] **

Um
ss 1.177 0.64 1.186 0.64

Um
ss, Um

st 1.177 0.64 1.177 0.64
Um 1.038 0.56 1.023 0.55
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Figure 6. Classical critical loads for: (a) Full stiffness (λ); 

(b) Homogeneous RSA (λ*), (c) Selective RSA (λ**)
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between the parts of the shell with different thicknesses.
The plots show the largest imperfection amplitude for
which a maximum is reached in the equilibrium path. The
results show that the present RSA is a lower bound to the
nonlinear equilibrium paths including imperfections. Of
course this group of imperfections employed in the
analysis does not cover all possible imperfection shapes,
but is indicative of the type of expected response for this
class of shells.

2.5. Analysis of a Real Tank

A second tank with three different thicknesses designed
using API 650 (1988), shown in Figure 9, was
investigated. This tank has been previously studied by
Sosa et al. (2006), leading to a classical critical load 
λc = 884 Pa and i = 16 circumferential waves. 

A homogeneous RSA was first used by affecting the
complete structure. With elimination of just the
meridional membrane energy component, the reduced
eigenvalue is λ* = 692 Pa, with i = 16, so that the knock-
down factor is η = 0.78. This is almost the same
eigenvalue obtained if the tangential membrane energy
is also neglected. A complete elimination of the
membrane energy, on the other hand, yields the lower
value of λ* = 621 Pa (η = 0.70), and again the mode
shape differs significantly from the classical eigenmode.
The results from GNIA model produced a knock-down
factor η = 0.78, which is almost coincident with our
reduced stiffness value.

The same tank was analyzed using selective RSA,
leading to λ** = 704 Pa (η** = 0.79) when Um

ss or Um
ss

+ Um
st were eliminated. The elimination of all Um leads

to λ** = 621 Pa, Thus, homogeneous and selective
approaches to reduce the stiffness produce virtually the
same lower bounds for this problem.

Figure 10 shows equilibrium paths obtained using
GNIA implemented in ABAQUS. Four different
imperfections were considered in this case, namely the
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shape associated to the lowest eigenvalue, and to the
two following eigenvalues, and a localized mode. From
the present results, the knock-down factor (η** = 0.79)
from selective RSA can be considered as a lower bound
for different imperfection shapes. 

3. TANKS WITH STEPWISE THICKNESS
CHANGES AND CONICAL ROOF 

The presence of a roof introduces important differences
in the value of modal energy components in the
structures of storage tanks, because there may be modes
affecting just the cylindrical part or the roof of the tank.

To illustrate the RSA, tanks with conical roof have been
investigated following Sosa et al. (2006), who
considered six configurations with stepwise variable
thicknesses, assuming the same diameter and conical
roof but with different heights (Figure 11). The designs
were made using API 650 (1988). The conical roof had
3/16 slope, thickness 7mm and was reinforced with a
frame of 32 beams. 

Under uniform external pressure, buckling modes
involve deflections mainly in the cylindrical part of the
tank. Analyses of the classical critical pressures and
associated modes are shown in Figure 12 for tanks with

λC = 2.238 kN/m2 λC = 2.161 kN/m2 λC = 2.162 kN/m2

MC2 MC4 MC6

Figure 11. Geometry of investigated shells with conical roofs

Figure 12. Buckling modes under internal vacuum for the tanks shown in Figure 11
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H/D = 0.40, 0.63, and 0.95, for which the thicknesses
are listed in Table 3. The modes are similar in each case
shown in Figure  12, in the sense that they develop out-
of-plane deflections in the top part of the shell and do
not have displacements at the bottom half in the taller
tank (H/D = 0.95). Unlike the open tanks of the previous
section the out-of-plane deflections within the
cylindrical wall are restrained at the top by the conical
roof. Further, they all have i = 21 circumferential waves.
Notice that the classical pressure is the same for the
tanks with H/D = 0.63 and 0.95 (because buckling is
here controlled by the thinner upper courses), and it is
higher for the shorter tank with H/D = 0.40 (because the
shell length is of the same order as the buckling mode in
taller tanks). Several authors have considered the
influence of changing the height of a cylindrical shell
under external pressure, notably Greiner (2004), who
considered a clamped-simply supported cylinder and
found that the same mode was present in all cases, since
the buckling problem is dominated by the thinner part of
the shell in that case. 

Using a geometrically nonlinear analysis, the results
of Sosa et al. (2006) showed that they all have the same
imperfection sensitivity. The knock-down factor

computed via GNIA using the first eigenmode is 
η = 0.73 in all six cases. 

An investigation of the modal strain energy
contributions is shown in Figure 13 for three tanks.  It is
clear that the complete strain energy does not show a
unique minimum as in the case of the cantilever shell,
but it has two local minimum values due to the
interaction between the two shell components (cylinder
and cone). With increasing values of H/D, the energy
tends to approach the distributions associated with the
individual shell components. For modes with a low
number of circumferential waves, membrane action of
the cylinder dominates, but it decays with the increasing
number of waves, until a first minimum is reached in the
strain energy.

A new increase in membrane components of the
strain energy occurs for mode 15, which is accompanied
by decay in the bending action. A second minimum in
the strain energy is exhibited at higher wave number
modes.

A comparison of results computed with the reduced
stiffness approach is shown in Table 4 for three tank
configurations, with H/D = 0.40, 0.63, and 0.95. The
reduction has been limited to the zone of smaller shell

Table 3. Thickness of tanks shown in Figure 9

Shell MC1 MC2 MC3 MC4 MC5 MC6

course t [m] t [m] t [m] t [m] t [m] t [m]

1 0.0095 0.0127 0.0175 0.0206 0.0254 0.0286
2 0.0079 0.0111 0.0159 0.0175 0.0222 0.0254
3 0.0079 0.0079 0.0127 0.0159 0.0206 0.0254
4 0.0079 0.0111 0.0127 0.0175 0.0222
5 0.0079 0.0095 0.0111 0.0159 0.0206
6 0.0079 0.0079 0.0127 0.0191
7 0.0079 0.0079 0.0111 0.0159
8 0.0079 0.0079 0.0127
9 0.0079 0.0111
10 0.0079 0.0079
11 0.0079
12 0.0079

Table 4. Results of RSA for the tanks shown in Figure 9

U–Um
ss U–Um

ss – Um
st U–Um

ss U–Um
ss – Um

st

Tank selective selective homogeneous homogeneous

MC2 λ** 1586 1583 λ* 1567 1566
η** 0.71 η* 0.70

MC4 λ** 1365 1361 λ* 1340 1340
η** 0.63 η* 0.62

MC6 λ** 1365 1361 λ* 1340 1340
η** 0.63 η* 0.62
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thickness (selective RSA), which includes the top three
courses in all cases. The approach followed was to apply
the stiffness reduction in the zone for which there are
significant displacements in the shape of the eigenvector
associated to the lowest eigenvalue. In this case, this
corresponds to the top three courses of the shell. An

elimination of the meridional membrane energy
component results in a know-down factor η** = 0.71 for
the shortest tank and η** = 0.63 for the other two. This
last value is lower than the values computed using
GNIA, for which η = 0.73 was obtained. A reduction in
the complete height of the shell (homogeneous RSA)
leads to similar results for knock-down factor (η*), as
shown in Table 4.

The buckling modes identified with this technique are
shown in Figure 14 for the short tank with H/D = 0.40.
The mode is coincident with what is expected from an
analysis without reduction. However, it may be seen that
if the complete membrane energy is eliminated, then the
associated mode computed is incorrect. 

The results computed using the present RSA
approach have been compared with those from a GNIA
model using different imperfection shapes. The results
for imperfections with the shape of the eigenmodes
associated to the lowest three eigenvalues in the
classical analysis have been considered, together with
localized imperfections introduced in two ways: at the
thickness changes and at the course changes. The most
critical imperfection shape in this case is the shape
associated to the lowest eigenvalue.

4. COMPARISON WITH FULL SCALE
TESTING 

An unusual situation in this engineering problem is that
full-scale experiments of various tanks (some of them
with stepwise variable thickness) have been reported in
the literature (Hornung and Saal 2002). The tests were
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Figure 13. Modal strain energy for tanks shown in Figure 11: 

(a) H/D = 0.24; (b) H/D = 0.4; (c) H/D = 0.63
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performed by producing internal vacuum in cylindrical
tanks with shallow spherical dome roofs. The tests were
continued until collapse occurred; however, the authors
also identified when the first signs of buckling were
observed and the number of circumferential waves in
the deflected mode at failure. Information of the
imperfections is also available for some of the tested
tanks.

4.1. Results for Tank ME1

One of the small tanks (for which data was reported) had
D = 10 m, H = 13.29 m and a constant thickness t =
0.01 m (H/D = 1.33, D/t = 1000). Values of E = 206 GPa
and Poisson’s ratio 0.3 were employed in the
computations.

According to the authors, buckling was first recorded
at 11.6 kPa with a mode approximating i = 6; whereas
collapse occurred at 11.8 kPa with i = 5. 

For such data, our computations of a classical LBA
analysis using ALREF produced a λc = 16.1 kPa with 
i = 9, which is much higher than the load attained in the
experiments. At the critical state the meridional
membrane component contributed 88% of the membrane
strain energy, with a contribution of the tangential
component of 11.3% and of the circumferential
component of 0.6%. 

A homogeneous reduction in the meridional
membrane stiffness leads to 12.66 kPa or η* = 0.78,
which is consistent with a GNIA of the same shell. This
value is close but higher than the pressure 11.6 kPa
reported from the experiments. 

No indication is given about the imperfections in the
tank tested. The boundary conditions and elastic
modulus that would best reflect those in the experiments
are again unknown to the present authors. Other effects
could be present in the real tank, such as corrosion of the
material or material aging, which could perhaps be
responsible for the 8% difference between experiments
and reduced stiffness computations.

4.2. Results for Tank ME4

A second tank was investigated with D = 11.5 m, 
H = 10 m, in which the top four courses had t1 = 5 mm and
it was increased to 6 mm and 7 mm in the two lower
courses (H/D = 0.87, D/t1 = 2300). Very large
imperfections were measured in this tank, of the order of
ξ/t1 = 6.6. The first signs of buckling were recorded at λ =
1.36 kPa with i = 7, and the deflections increased forming
column-like segments that collapsed at λ = 2.78 kPa. 

Our computations showed a classical LBA leading to
λc = 3.04 kPa with i = 13. A nonlinear analysis (GNIA)
using ABAQUS is shown in Figure 16. For large
imperfections this is a case in which deflections did not
reach an inflection point and it is not possible to identify

a maximum load. The selective RSA with elimination of
the meridional membrane component in the strain
energy affecting just t1 predicted a value λ** = 2.1 kPa,
with η** = 0.69. As shown in Figure 16 this value is a
lower bound with respect to a nonlinear analysis with
imperfections of the order of the thickness, even
considering different imperfection shapes, as indicated
in Figure 17.
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Figure 16. GNIA for tank with H/D = 0.87 and D/t1 = 2300

reported by Hornung and Saal (2002)

Figure 17. Non-Linear equilibrium paths with different

imperfection shapes for the structure identified as ME4
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5. CONCLUSIONS 
The developments and implementations reported in this
paper show that it is possible to extend the reduced
stiffness approach to shell buckling problems with
stepwise changes in the thickness. The importance of
this topic is associated with the generalized construction
of oil storage tanks with variable thickness, which
should be designed to resist external pressures. The
paper attempts to illustrate that there are several ways in
which the implementation may be conceived, depending
on the area in which the reduction takes place and on the
specific form in which the stiffness is reduced. The
results were limited to uniform external pressure, and
were validated by comparisons with imperfection-
sensitivity studies performed using geometrically
nonlinear analysis. 

In the homogeneous reduction, the stiffness reduction
is applied on the complete domain of the shell, thus
equally affecting shell segments with different
thicknesses. In the selective reduction, only the top
thinner segments are affected by the proposed
methodology. The two methodologies produced similar
results with minor differences and the conclusion is that
both could be used in a practical analysis.

The answer to the question of what membrane terms
should be neglected in order to have an adequate RSA is
not dominated by the reduced eigenvalues but by their
associated eigenvectors. All techniques provide
acceptable lower bounds in terms of reduced critical
loads, but the associated modes are not always a good
representation of the modes captured by the nonlinear
computations. In the complete elimination of membrane
energy, the modes become distorted, showing spurious
curvatures near to the top of the shell. Thus, elimination
of just the meridional membrane component seems to be
a good way to implement lower bounds using a RSA.  

Comparisons with some tanks tested up to failure in
Germany under the action of  internal vacuum have also
been modeled using RSA. Limited information was
reported in the literature concerning imperfections and
material properties, but large amplitude imperfections
were reported in some cases and corrosion could have
been present in such old tanks, thus reducing the
effective shell thickness. This may be a factor in
attempting to understand differences between collapse
loads measured in the field and the present
computational model.

Finally, it should be noted that the specific terms that
are eliminated from the reduced stiffness analysis
depend on the geometric configuration of the shell
(either cylindrical, spherical, etc.) and on the loading
considered (uniform external pressure, wind pressure,

axial load). The scope of this paper was limited to
configurations of storage tanks under external pressure. 
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