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Abstract

In this work we study the polytope associated with a 0/1 integer programming
formulation for the Equitable Coloring Problem. We find several families of valid
inequalities and derive sufficient conditions in order to be facet-defining inequali-
ties. We also present computational evidence of the effectiveness of including these
inequalities as cuts in a Branch & Cut algorithm.
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1 Introduction and preliminary results

The Equitable Coloring Problem (ECP), originally presented in [2], is a vari-
ation of the widely studied Graph Coloring Problem (GCP) with additional
constraints imposing that any pair of color classes has to differ in size by at
most one. Further references and applications can be seen in [1].
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A k-coloring of a graph G = (V, E) is a partition of V in k stable sets,
Cj, with 1 ≤ j ≤ k. The stable set Cj is the class of color j. An equitable k-
coloring (or just k-eqcol) of G is a k-coloring satisfying the equity constraints,
i.e. �n/k� ≤ |Cj| ≤ �n/k� for each 1 ≤ j ≤ k, where n = |V |.

Unlike GCP, a graph admiting a k-eqcol may not admit a (k + 1)-eqcol.
This leads us to define A (G) as the set of k ≤ n such that G does not admit
any k-eqcol. For instance, A (K3,3) = {1, 3}.

The equitable chromatic number of G, χeq(G), is the minimum k for which
G has a k-eqcol. Computing χeq(G) for arbitrary graphs is an NP -hard prob-
lem [1].

Although many integer programming formulations are known for GCP, as
far as we know, just two of these models were adapted for ECP. One case is
the model in [3], adapted in [5]. Preliminary results concerning a Branch &
Cut algorithm based on one of the models in [4] were presented in [6]. The
algorithm turns out to be competitive compared to the one presented in [5].
This encouraged us to delve into a polyhedral study with the aim of finding
strong inequalities that allow us to improve the performance of our algorithm.

2 The polytope ECP

From now on, we assume that G is a graph with n vertices such that n ≥ 5
and 2 ≤ χeq(G) ≤ n − 2. Other cases are trivial.

In [4], colorings of G are identified with binary vectors (x, w) ∈ {0, 1}n2+n

where x ∈ {0, 1}n2

and w ∈ {0, 1}n, satisfying the following constraints:
n∑

j=1

xvj = 1 ∀ v ∈ V (assign a unique color to each vertex)

xuj + xvj ≤ wj ∀ uv ∈ E, j = 1, . . . , n (adjacent vertices do not share the same color)

wj+1 ≤ wj ∀ j = 1, . . . , n − 1. (eliminate some symmetric colorings)

where xvj = 1 if color j is assigned to vertex v and wj = 1 if color j is used, i.e.
Cj 
= ∅. The coloring polytope CP is defined as the convex hull of colorings of
G. In this work, equitable colorings are identified with binary vectors defining
colorings which also satisfy

xvj ≤ wj , ∀ v isolated, j = 1, . . . , n, (1)
n∑

k=j

⌊
n

k

⌋(
wk − wk+1

)
≤

∑
v∈V

xvj ≤

n∑
k=j

⌈
n

k

⌉(
wk − wk+1

)
, ∀ j = 1, . . . , n − 1, (2)

where wn+1 is a dummy variable set to 0, constraints (1) ensure that isolated
vertices use enabled colors and (2) are the equity constraints. The Equitable
Coloring Polytope ECP is the convex hull of the equitable colorings of G.
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Next we state the main results related to the polyhedral structure of ECP.

Proposition 2.1 The dimension of ECP is n2 − (|A (G)| + 2).

In [4], clique inequalities and block inequalities are proven to be facet-
defining inequalities of CP . In our case, we have:

Proposition 2.2 (i) Let j ≤ n − 1 and Q be maximal clique of G such that
|Q| ≥ 2. Then, the clique inequality

∑
v∈Q xvj ≤ wj defines a facet of ECP.

(ii) Let v ∈ V and j ≤ n − 2. Then, the block inequality
∑n

k=j xvj ≤ wj is
valid for ECP and defines a facet of ECP if j − 1 /∈ A (G).

By lifting rank inequalities and neighborhood inequalities, also studied in
[4], we obtain new families of valid inequalities which often define facets.

Proposition 2.3 Let j ≤ n − 1, S ⊂ V with α(S) = 2 and Q = {q : q ∈
S, S ⊂ N [q]}. Then, the (S, Q)-2-rank inequality defined as

∑
v∈S\Q

xvj + 2
∑
v∈Q

xvj ≤ 2wj .

is valid for ECP. Let us assume that |Q| ≥ 2 and no connected component of
the complement graph of G[S\Q] is bipartite. The inequality defines a facet of
ECP if one of the following conditions holds:

• for all v ∈ V \S, Q ∪ {v} is not a clique,

• n is odd, j ≤ �n/2� − 1 and for all v ∈ V \S such that Q ⊂ N(v), there
exists a stable set H of size 3 such that v ∈ H and |H ∩ S| = 2, and the
complement of G − H has a perfect matching,

• n is even, j ≤ �n/2� − 1 and for all v ∈ V \S such that Q ⊂ N(v), there
exist two disjoint stable sets of size 3, H and H ′, such that v ∈ H and
|H ∩ S| = 2, and the complement of G − (H ∪ H ′) has a perfect matching.

If Q = ∅ or Q = {q}, the (S, Q)-2-rank inequality is respectively domi-
nated by the inequalities∑

v∈S

xvj +
∑
v∈V

xvn−1 ≤ 2wj + wn−1 − wn, or

∑
v∈S\{q}

xvj + 2xqj + xqn ≤ 2wj

which also usually define facets of ECP.

Proposition 2.4 Given j ≤ n − 1, u ∈ V and S ⊂ N(u) with α(S) ≥ 2, the
(u, j, S)-subneighborhood inequality defined as
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γjSxuj +
∑
v∈S

xvj +
n∑

k=j+1

(γjS − γkS)xuk ≤ γjSwj ,

where γkS = min{�n/k�, α(S)}, is a valid inequality for ECP. If S = N(u)
or α(S) ≤ �n/j�− 1, the inequality defines a facet of ECP when the following
conditions hold:

• for all k ∈ {�n
i
� − 1 : 2 ≤ i ≤ γjS − 1}, there exists a k-eqcol such that

|Cj ∩ S| = γkS,

• for all v ∈ N(u)\S, there exists an equitable coloring such that |Cj ∩ S| =
α(S) and (Cj ∩ N(u))\S = {v}.

Finally, we obtain three new families of valid inequalities for ECP, which
were not derived from any of the valid inequalities given in [4].

Proposition 2.5 Let S ⊂ {1, . . . , n}. The S-color inequality defined as

∑
j∈S

∑
v∈V

xvj ≤
n∑

k=1

bSk(wk − wk+1),

where dSk = |S ∩ {1, . . . , k}| and bSk = dSk�
n
k
� + max{dSk, n − k�n

k
�}, is a

valid inequality for ECP. In addition, if 3 ≤ |S| ≤ n − 2, S contains all the

colors greater than n − � |S|+1
2

� and the complement of G has a matching of

size � |S|+1
2

�, then the S-color inequality defines a facet of ECP.

Proposition 2.6 Given u a non universal vertex of G and j ≤ �n/2� such
that α(N(u)) ≥ �n/j�, the (u, j)-outside-neighborhood inequality defined as

(�n/j� − 1)xuj −
∑

v∈V \N [u]

xvj +
n∑

k=j+1

bjkxuk ≤
n∑

k=j+1

bjk(wk − wk+1),

where bjk = �n/j�− �n/k�, is valid for ECP and defines a facet of ECP if the
following conditions hold:

• there exists v ∈ V \N [u] such that N(u)\N(v) 
= ∅,

• if n is odd, the complement of G − u has a perfect matching,

• for all v ∈ V \N [u], there exists a �n/2�-eqcol such that Cj = {u, v},

• for all k such that j ≤ k ≤ �n/2� and �n
k
� > � n

k+1
�, there exists a k-

eqcol such that |Cj ∩ N(u)| = �n/k�, and a k-eqcol such that u ∈ Cj and
|Cj\N [u]| = �n/k� − 1,

• for all k ∈ {j, . . . , n − 3}\A (G), there exists a k-eqcol lying on the face
defined by the inequality.
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Proposition 2.7 Given u ∈ V , Q be a clique of G such that Q ∩ N [u] = ∅

and j, k such that j ≤ k ≤ n − 2 and α(N(u)) ≥ �n/k� − 1. The (u, j, k, Q)-
clique-neighborhood inequality defined as

(
�n/k�−1

)
xuj +

∑
v∈N(u)∪Q

xvj +
n∑

l=k+1

(
�n/k�−�n/l�

)
xul +

∑
v∈V

xvn−1 +
∑

v∈V \{u}

xvn

≤
k−1∑
l=j

bul(wl − wl+1) +
n−2∑
l=k

�n/k�(wl − wl+1) +
n∑

l=n−1

(�n/k� + 1)(wl − wl+1),

where bul = min{�n/l�, α(N(u)) + 1}, is a valid inequality for ECP. If there
exists v ∈ Q such that N(u)\N(v) 
= ∅, the inequality defines a facet of ECP
when the following conditions hold:

• for all l ∈ {j, . . . , n − 3}\A (G), there exists an l-eqcol lying on the face
defined by the inequality,

• for all v ∈ V \(N [u] ∪ Q), there exist two k-eqcols lying on the face defined
by the inequality, with v ∈ Cj in the first one and where the second one is
obtained from the first by only changing the color of v, i.e. v /∈ Cj,

• for all 1 ≤ i ≤ �n/k�−1, if l = max{�n
i
�−1, n−2}, there exist two l-eqcols

lying on the face defined by the inequality such that u ∈ Cj in one of them
and u ∈ Cl in the other.

Although the sufficient conditions in the previous results are strong, we
find several cases where they hold. Moreover, even when the inequalities
do not define facets, the dimension of the faces defined by them is quite
high. For example, if k ≤ �n/2� − 1, it can be proved that the dimension
of the face defined by the (u, j, k, Q)-clique-neighborhood inequality is at least
dim(ECP) −

(
3n − |A (G)| − �n/2� − |N(u)| − |Q| − 5

)
.

3 Computational performance of valid inequalities

In this section, we report on the computational performance of the families of
valid inequalities studied in the previous section, embedded as cuts in a B&C
algorithm for solving ECP.

In order to strengthen the formulation and avoid considering classes of
symmetric colorings, constraints xvj = 0, ∀ 1 ≤ v < j ≤ n are considered
within the initial relaxation, and xvj ≤

∑v−1
u=j−1 xuj−1, ∀ 2 ≤ j ≤ v ≤ n are

handled as cuts during the optimization.

The cutting process consists in looking for violated clique and (S, Q)-2-rank
inequalities with a greedy algorithm. During the separation of clique inequal-
ities, it attempts to find violated (u, j, k, Q)-clique-neighborhood inequalities
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by scanning vertices u not adjacent to a given clique Q. Whenever not enough
cuts were generated, it tries to add block, (u, j, N(u))-subneighborhood and
(u, j)-outside-neighborhood inequalities, handled by enumeration, and S-color
inequalities with a greedy algorithm. Separation routines for clique and block
inequalities are exposed in [4]. The B&C algorithm also includes an initial
heuristic, a primal heuristic and a custom branching rule.

Experiments were carried out over random instances of 70 vertices with
different density percentages and 2 hours time limit. We compare our B&C
algorithm with (BC+) and without (BC) our new inequalities against the
general purpose IP-solver CPLEX 12.1 and results reported in [5].

% % solved inst. Nodes (average) Time in sec. (average)
dens. BC+ BC CPX [5] BC+ BC CPX [5] BC+ BC CPX [5]
10 100 100 100 100 3.4 4 13.3 57 0.3 0.3 4 109
30 90 90 0 0 2135 3949 − − 276 224 − −
50 70 70 0 0 7932 21595 − − 1354 2145 − −
70 80 80 10 100 525 2970 214 678 128 446 4380 273
90 100 100 100 100 5.1 14.5 30 9.4 2.6 2.8 29 11

As one may appreciate from the table, the addition of our cutting planes
has shown to be particularly useful in substantially decreasing the number
of Branch-and-Bound nodes and the CPU time was significantly reduced on
medium and high density instances.
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