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A sudden downward movement of the geomaterial, either composed of soil, rock, or a mixture of both, along the mountain slopes
due to various natural or anthropogenic factors is known as a landslide.  e Himalayan Mountain slopes are either made up of
residual soil or rocks. Residual soil is formed from weathering of the bedrock and mainly occurs in gentle-to-moderate slope
inclinations. In contrast, steep slopes are mostly devoid of soil cover and are primarily rocky. A stability prediction system that can
analyse the slope under both the condition of the soil or rock surface is missing. In this study, arti�cial neural network technology
has been utilised to predict the stability of jointed rock and residual soil slope of the Himalayan region.  e database for the
arti�cial neural network was obtained from numerical simulation of several residual soils and rock slope models. Nonlinear
equations have been formulated by coding the arti�cial neural network algorithm. An android application has also been developed
to predict the stability of residual soil and rock slope instantly. It was observed that the developed android app provides promising
results in predicting the factor of safety and stability state of the slopes.

1. Introduction

Landslide is de�ned as the downslope movement of a large
mass of rocks, rubbles, soil, or a mixture of all, owing to
various natural and anthropogenic factors.  is downslope
movement of soil and rock through the in�uence of gravity
leads to a kind of “mass wasting” [1]. Landslide consists of
�ve various types of slope movement: falls, topples, slides,
spreads, and �ows [2].  ese types are segmented based on
their geological make (bedrock, debris, or Earth). Some of
the common landslide types are debris �ows and rockfalls.
Nearly every single landslide has numerous reasons for its
occurrence [3, 4]. Slope movement occurs once forces op-
erating down the slope under the in�uence of gravity surpass
the strength of the ground materials that hold the slope [5].
Some of the major factors increasing the landslide occur-
rence are the impact of downslope forces and the reduced

strength of the bedrock or the soil constituting the slope.
Landslides are set o� on the slopes, which are already on the
rim of movement by rainfall, snowmelt, changes in water
level, stream erosion, changes in groundwater, earthquakes,
volcanic activity, disruption by human activities, or any
permutation of these factors [6].

Landslides mostly result in property damage, injuries,
and many fatalities [7]. It also negatively alters a variety of
natural resources. Water bodies, �sheries, sewage disposal
systems, forests, dams, and roadways the whole lot have an
e�ect for a long time after a landslide occurrence [8].  ese
adverse economic e�ects of landslides incorporate the ex-
penses for the restoration of structures, loss of property,
interruption of transportation routes, and medical expenses
in the instance of injuries, and unforeseen costs in the form
of lost goods, freshwater accessibility, level, and condition
are also impacted [9]. People might decrease their risks of
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landslides by studying probable landslide hazards and un-
dertaking measures to mitigate those hazards. Due to the
isolated nature of the landslide event, they usually occur in
an instance without any public forewarning.

Landslide risk mitigation is generally categorised into
direct and indirect methods [10].,e direct method includes
geometric methods, where the geometry of the hillside is
altered (in general the slope); hydrogeological methods,
where an attempt is made to decrease the groundwater level
or to reduce the water content of the slopematerial; chemical
and mechanical methods, where efforts are made to build up
the shear strength of the unsteady mass or else to establish
dynamic external forces or passive to counter the desta-
bilising forces. ,ese methods adjust to a certain extent with
the kind of material that makes up the mountain slope
[11–13]. ,e indirect method of landslide risk mitigation
includes landslide hazard zonation maps, landslide hazard
charts, and early warning techniques, which is generally used
to avoid vulnerable areas for developmental works [14–17].

,e Himalayan Mountain slopes are either made up of
residual soil or rocks. Residual soil is formed from weath-
ering of the bedrock and mostly occurs in gentle-to-mod-
erate slope inclinations (<50°–60° slope angle). In contrast,
steep slopes (>60° slope angle) are mostly devoid of soil cover
and are primarily rocky [1]. Many times, there is a sudden
change in the slope geomaterial (soil or rock) within a few
hundred meters of distance. ,e stability analyses of both
cases of slope material are different from each other and
cannot be used uniformly. A stability prediction system that
can analyse the slope under both the condition of the soil or
rock surface is missing.

A detailed study of the residual soil and rock slopes of the
Himalayan region was carried out by Ray et al. [18] and Ray
et al. [19], respectively. In the present study, the artificial
neural network analysis was used for stability prediction of
residual soil and rock slope using the numerical simulation
data of Ray et al. [18] and Ray et al. [19]. Nonlinear equations
have been formulated by coding the artificial neural network
algorithm. An android application has also been developed
to predict the stability of residual soil and rock slope in-
stantly. ,e mobile application was rendered user friendly
with a basic GUI and is available for public use to quickly
identify the stability state of the residual soil and rock slope
of the Himalayan region.

2. Area of Study

,e study area is located in the Himalayan region in the
Indian states of Uttarakhand and Himachal Pradesh,
which lies at the convergence zone of two lithospheric
plates. One is the Indian plate in the south, and the other is
the Eurasian plate in the north. ,e prevalence of a large
number of discontinuities makes this region geologically
very fragile and susceptible to frequent landslides. A slight
imbalance in elements of shear stress and strength factors
might trigger landslides. ,e Himalayan Mountain slopes
can be classified into two distinct categories based on
stratigraphy, namely, rock slopes and soil slopes. ,e rock
slopes have highly fractured rock mass at the surface and

are devoid of any soil cover. ,e failure in rock slopes is
governed mainly by the discontinuities present within the
rock mass. ,e soil slopes, on the other hand, are formed
from the weathering of bedrock and are also referred to as
residual soil slope. Slope failure in residual soil slope is a
complex phenomenon involving various factors such as
slope topography, depth of soil cover, the grain size
distribution of the soil, inherent heterogeneity in the geo-
mechanical properties of the soil, and the presence of
water. Ray et al. [1] have carried out extensive literature
studies of the Himalayan region and concluded that up to
moderate slope (<50°–60°), the thickness of residual soil
varies from 2 to 10m, with some places exceeding 10m
before encountering the weathered bedrock. Previous
studies concerning slope stability were limited either to
residual soil slopes or rock slopes. ,e current study
focuses on the slope stability problem associated with
jointed rock slopes and residual soil slopes in the Hi-
malayan Range.

A database of 400 slope models, which were previously
analysed by Ray et al. [18] using a numerical simulation
technique, has been used for the stability analysis of the
residual soil slope. ,irteen major influencing parameters
have been considered during numerical simulation, which
include Young’s modulus of residual soil (Es), unit weight of
soil (ɣs), shear strength parameter of residual soil (cohesion
(Cs) and angle of internal friction (Φs)), Young’s modulus of
the weathered rock mass (Er), shear strength parameter of
the weathered rockmass (cohesion (Cr) and angle of internal
friction (Φr)), unit weight of weathered rock (ɣr), strength
parameter of the soil-rock joint interface (cohesion (Cj) and
angle of internal friction (Φj)), average slope angle (α), slope
height (H), and residual soil depth (D). ,e obtained results
indicate that all the parameters are affecting the FOS of the
residual soil slopes. However, the impact of all those thirteen
parameters was not uniform as can be seen from correlation
analysis (Table 1). For developing the ANNmodels, all those
parameters whose correlation coefficient is more than 0.2 are
considered.

Similarly, a database of 1200 slope models, which were
previously analysed by Ray et al. [19], using a numerical
simulation technique, has been used for the stability analysis
of the rock slope. ,irteen major influencing parameters
have been considered during numerical simulation, which
include Young’s modulus of the weathered rock mass (Er),
the tensile strength of the weathered rock mass (Tr), Pois-
son’s ratio of weathered rock mass, unit weight of weathered
rock mass (ɣr), shear strength parameter of the weathered
rockmass (cohesion (Cr) and angle of internal friction (Φr)),
shear strength parameter of the bedrock (cohesion (Cbr) and
angle of internal friction (Φbr)), slope angle (α), slope height
(H), width of weathered layer (D), main joint orientation
(Dip1), and cross joint orientation (Dip2). ,e obtained
results indicate that all the input parameters affect the FOS of
the rock slopes. However, the impact of all those thirteen
parameters was not uniform as can be seen from correlation
analysis (Table 2). For developing the ANNmodels, all those
parameters whose correlation coefficient is more than 0.2 are
considered.
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3. Methodology

Four hundred numerical simulation models were analysed
by Ray et al. [18] using various permutation combinations of
the height of the slope, the angle of the slope, and the
thickness of the layer of residual soil. ,e height of the slope
varied from 50m to 500m, with an interval of 50m. ,e
overall slope angle varied from 15° to 60°, with an interval of
15°. ,e thickness of the layer of the residual soil varied from
0.5m to 15m (0.5m, 1m, 2m, 3m, 4m, 5m, 7m, 9m, 12m,
and 15m). ,us, the height of the slope resulted in ten
variations, the thickness of residual soil resulted in ten
variations, and the angle of slope caused four variations,
leading to 400 models (i.e., 10∗10∗ 4� 400). About 1200
numerical simulationmodels were analysed by Ray et al. [19]
using various permutation combinations of slope height,
slope angle, weathered layer thickness, and variations of each
cross joint set (models were prepared with two joint sets).
,ere were five variations in slope height, three variations in
slope angle, five variations in weathered layer thickness, and
four variations of each cross joint set. Using the numerical
simulation data obtained from analysing the residual soil
slopes and the rock slopes, ANN models were prepared to
predict the FOS of the investigated slopes.

3.1. Artificial Neural Network Model. ,e natural nervous
system, such as the brain processing information, is the main
inspiration behind the information processing paradigm of an
ANN (artificial neural network). It comprises many highly
interconnected processing elements (neurons) functioning in
concurrence to resolve a particular problem [20].,e artificial
neural network is a framework instead of an algorithm for
various distinct machine learning algorithms, through which
they might work together and process complex computations
[21]. ,ese types of systems tend to “learn” in order to im-
plement tasks by ruminating the examples, mostly lacking the
need of being programmed with any task-specific instruc-
tions. An ANN primarily moves through a training phase,
where it figures out how it might perceive the patterns in data,
whether using visual, audio, or literal aid [22]. ,e disparity
between the two outputs will be corrected by utilising
backpropagation [23]. ,is further implies that the network
will work in reverse, going from the output nodes to the input
nodes in order to alter the weight of the connections amongst
the nodes up until the variation between the actual and
desired outcome yields the minimal conceivable error.
,roughout the training and testing phases, the ANN is
trained on what things to search for and what its output ought
to look like, utilising binary yes/no query types [24].

Table 1: Correlation analysis of input parameters of the residual soil slope with the FOS.

Number Parameters Correlation coefficient for FOS
1 Slope angle (deg) −0.73
2 Slope height (m) −0.32
3 Soil depth (m) −0.43
4 Soil friction angle (deg) 0.30
5 Soil cohesion (kPa) 0.21
6 Soil unit weight (kN/m3) 0.16
7 Soil Young’s modulus (kPa) 0.27
8 Weathered rock friction angle (deg) −0.04
9 Weathered rock cohesion (kPa) −0.03
10 Weathered rock unit weight (kN/m3) −0.03
11 Weathered rock Young’s modulus (MPa) −0.06
12 Soil-rock interface cohesion (kPa) 0.06
13 Soil-rock interface friction angle (deg) 0.12

Table 2: Correlation analysis of input parameters of the rock slope with the FOS.

Number Parameters Correlation coefficient for FOS
1 Slope angle (deg) −0.73
2 Slope height (m) −0.32
3 Weathered layer thickness (m) −0.43
4 Major joint orientation (deg) 0.30
5 Cross joint orientation (deg) 0.21
6 Weathered rock friction angle (deg) −0.14
7 Weathered rock cohesion (kPa) −0.08
8 Weathered rock unit weight (kN/m3) −0.13
9 Weathered rock Young’s modulus (MPa) −0.11
10 Weathered rock Poisson’s ratio −0.05
11 Weathered rock tensile strength (kPa) −0.03
12 Bedrock cohesion (kPa) 0.06
13 Bedrock friction angle (deg) 0.12
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 e activation function is imperious for an ANN to learn
and build the logic of some genuinely complex problem. e
crucial notion here is to convert an input signal of a node in
an ANN into an output signal of the node. e output signals
might be utilised as an input to the next layer in the neural
network stack.  e activation function decides if a neuron
ought to be activated by assessing the weighted sum and then
further adding up the bias [25].  is is done to get non-
linearity into the output of a node. If there is no activation
function, then the output signal will be a more straight-
forward linear function, which is limited in its complexity
and has much less learning power [26]. De�cient in a proper
activation function, the model will not learn complex data
such as images, videos, audio, and speech. Nonlinear
functions have a higher degree, that is, more than one, and
they follow a polynomial curve. Some essential types of
activation functions are threshold activation function, bi-
nary step function, sigmoid activation function, hyperbolic
tangent function, and recti�ed linear units [27].

3.2. Network Architecture.  e neural network is generally
formulated into various layers. In Figure 1, the input layer is
represented in yellow. It directly takes the input from the
external source. Each of the nodes in the input layer is then
interconnected with the nodes of the next layer. Blue and
green colours denote the hidden layers. Hidden layers are
interconnected networks of nodes that exist between the
output and the input nodes. Hidden layers remain hidden
from the outside world and are responsible for the com-
putation done by the neural network. Edges are formed by
the connection of nodes between two di�erent layers, and
each edge is allotted some weight based on the relative
signi�cance of the connection between the nodes. All the
node values are based on the inputs provided by the user.
 ese are then multiplied with the assigned weight of their
edges, and then it is all summed up to get the value of the
particular, mostly done for the hidden layers [21, 28]. Based on
this summed-up value, nodes of the hidden layer will be
“activated” or not, which is decided by prede�ned activation
functions. us, the hidden layers take the input from the input
layer and compute based on the weights and the activation
function.  en, that result is propagated to the next layer of
nodes until it reaches the �nal output node, where one can view
the outcome [28]. Various performance indices such as the
coe¥cient of determination (R2), residual error, root mean
square error (RMSE), the variance accounted for (VAF), and
the learning rate are used for assessing the e¥cacy of the
developed ANN models [21, 23, 27, 29, 30].

3.3. Mobile Application. Developing a mobile application
means developing a software application for smartphones,
tablets, and other handheld devices.  is application can be
preinstalled in mobiles or supplied on a server or client-side
as web applications to give a “mobile application-like” fa-
miliarity in a web browser portal.  is is possible with an
application-like processing experience. Mobile application
developers consider a long arrangement of screen sizes,
hardware speci�cations, and con�gurations before

proceeding with the development process.  e mobile ap-
plication developers should also consider the extensive di-
versity of screen sizes, hardware specs, and settings due to
�erce competitiveness in mobile applications and changes
across all platforms. Being a part of the mobile app devel-
opment process, mobile user interface (UI) designing will be
a vital step in the making of mobile apps.  e mobile app UI
design’s objective is primarily to make the experience of the
interface more comprehensible. Much more functionalities
will be followed by inculcating mobile enterprise application
platforms or integrated development environments (IDEs).

Utilising an arti�cial neural network (ANN) tech-
nique, a microstrip patch antenna will be constructed. In
order to design a proper mobile application, both the
investigation and creation problems for constructing
microstrip patch antennas are taken into. An analysis
problem denotes the estimate of resonant frequency, while
a synthesis problem denotes the estimate of dimensions.
Both these are reciprocal of each other.  e outcomes are
put into operation utilising a mobile application. Back-
propagation of the arti�cial neural networks is mainly
utilised for training the neural network in order to
minimise the error and computation time. So, the geo-
metric dimensions of the micro antenna patch will be
obtained with higher accuracy in lesser computation time
in comparison to the simulation software. Sometimes, the
size of the antenna might be a limitation, especially in
mobile and wireless applications.

 e work required dealing with low-level graphics, high
accuracy prediction using ANN, and the vast portion of the
app, React Native and Flutter, did not �t the use case, and it
is just too much overhead to build the app with C++.  us,
the viable option is to create separate apps for each platform
or use Kotlin Multiplatform to share most code. In order to
create separate apps, an Android app will be created using
Kotlin, and then the code will be shared with iOS, too
(Figure 2). It has low risk and high returns. erefore, Kotlin
Multiplatform (KMP) is the obvious choice. e KMP-based
app can scale well and would be bene�cial in the long run,
even if some problems with tooling and language might
occur. Kotlin Multiplatform is created by Jetbrains and uses
Kotlin as the programming language. It is more a set of
technologies than a framework. It provides common busi-
ness logic, high performance, compiles to bytecode for

input layer output layerhidden layer 1 hidden layer 2

Figure 1: Network architecture.
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Android and native for iOS, good interop with Java, and very
little to no change for Android developers.

Kotlin MultiplatformMobile or KMM is a subset of KMP
focusing on making the tech stable or used on mobile plat-
forms, namely, Android and iOS and provides improved and
better tooling for this use case. Kotlin Multiplatform provides
an advantage over other platforms in making scalable and
maintainable apps using a single codebase. Although the
code-sharing is slightly less than that with other cross-plat-
form solutions, UI cannot be shared; this gives the advantage
of creating a user experience that aligns with the platform’s
guidelines and best practices. KMP can target JVM for a faster
iteration cycle as the whole code can be run and tested on the
PC rather than a mobile device. It also provides the future
possibility of using the same code for other platforms such as
Web and Desktop with minimal changes.

4. Prediction of Stability Class and
Factor of Safety

 e sample dataset comprises information to build the pre-
dictive model. e inputs are independent variables, the targets
are the dependent variables, and the unused variables will not
be used as inputs or targets. Furthermore, some instances
might be training instances that are utilised to create themodel,
selection instances are utilised for picking the optimum order,
testing instances are utilised to validate the model’s working,
and unused instances are not contemplated at all.

4.1. Prediction of Stability Class or Risk Factor for Residual Soil
Slope.  e total number of instances is 400.  e number of
training instances is 240 (60%), the number of selection
instances is 80 (20%), the number of testing instances is 80
(20%), and the number of unused instances is 0 (0%). Table 3
lists the number of variables and their type. Table 4 lists the
minimum, maximum, mean, and standard deviation for all
of the variables in the dataset. In this model, the FOS is the
output. As a consequence, no mean and standard deviation
are shown for them.  e minimum column shows the class
of the nominal variable with the least number of appear-
ances. In contrast, the maximum column shows the class of
the nominal variable with a signi�cant number of
impressions.

Slope angle, slope height, soil cohesion, soil friction
angle, Young’s modulus of soil, and soil depth are used as
inputs in the arti�cial neural network. FOS class four, FOS
class three, FOS class two, and FOS class one are used as
target outputs.  e output class is de�ned based on the FOS
range/class for a particular slope pro�le.  is range/class is
listed in Table 5.

 e most suitable neural network architecture was de-
duced by training, testing, and validating di�erent combi-
nations of hidden layers and associated neurons. A single
hidden layer having a range of 2–15 neurons has been opted
to train the neural network model.  e number of neurons
in the rest two layers, that is, the input layer and output layer,
are constrained to the number of input variables and output
variables, respectively [31]. e normalising of the input data
was performed and the training process is initiated by
randomly varying the number of neurons and their asso-
ciated weights.  e network with 6-3-4 architecture (six
neurons in the input layer, three neurons in a single hidden
layer, and four neurons in the output layer) is selected based
on maximum training performance and minimum training
error for the developed ANN model after simulation of
various network combinations (Table 6).  e selected ANN
model has a learning rate and momentum of 0.91 and 0.014,
respectively, and its architecture is shown in Figure 3.

4.2. Prediction of Factor of Safety for Jointed Rock Slope.
 e data set includes valuable information for constructing a
predictive model.  ere is a data matrix where columns

App

iOS
Swift
code

Android
Kotlin
code

Kotlin shared code

App

Figure 2: KMP architecture.

Table 3: Variable table for residual soil.

Sr. no. Name Use
1 Slope angle (deg) Input
2 Slope height (m) Input
3 Soil cohesion (kPa) Input
4 Soil friction angle (deg) Input
5 Young’s modulus of soil (MPa) Input
6 Soil depth (m) Input
7 FOS class one Target
8 FOS class two Target
9 FOS class three Target
10 FOS class four Target
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denote variables and rows denote instances. ,e total
number of instances is 1200. ,e number of training in-
stances is 720 (60%), the number of selection instances is 240
(20%), the number of testing instances is 240 (20%), and the
number of unused instances is 0 (0%). If the data are very
irregularly distributed, the model will probably become
inferior quality. Table 7 lists the number of variables and

their type. Table 8 lists the minimum, maximum, mean, and
standard deviation of all the variables in the data set.

,e most suitable neural network architecture was de-
duced by training, testing, and validating different combi-
nations of hidden layers and associated neurons. A single
hidden layer having a range of 2–15 neurons has been opted
to train the neural network model. ,e number of neurons

Table 4: Data statistics used for prediction.

Sr. no. Parameters of slope Minimum Maximum Mean Standard deviation
1 Slope angle (deg) 15 60 37.5 16.791
2 Slope height (m) 50 500 275 143.794
3 Soil cohesion (kPa) 18 20 18.99 0.5730
4 Soil friction angle (deg) 13.05 50.84 32.15 11.0671
5 Young’s modulus of soil (MPa) 17.06 122.55 68.87 29.5496
6 Soil depth (m) 0.5 15 5.85 4.61038
7 FOS — — — —

Table 5: Classification of FOS for residual soil slope in four classes.

FOS range Risk Class
<1 High risk FOS class one
1–1.5 Medium risk FOS class two
1.5–2 Low risk FOS class three
>2 Very low risk FOS class four

Table 6: Identification of best ANN architecture during the training process of residual soil slope data.

Network
name

Training
performed

Test
performed

Validation
performed

Training
error

Test
error

Validation
error

Training
algorithm

Error
function

Hidden
activation

Output
activation

MLP 6-6-
4 0.983 0.945 0.934 0.055 0.233 0.199 BFGS 31 SOS Tanh Exponential

MLP 6-9-
4 0.976 0.949 0.913 0.076 0.215 0.226 BFGS 71 SOS Logistic Sine

MLP 6-2-
4 0.884 0.901 0.886 0.360 0.404 0.305 BFGS 18 SOS Exponential Exponential

MLP 6-8-
4 0.931 0.954 0.914 0.218 0.190 0.231 BFGS 30 SOS Logistic Identity

MLP 6-3-
4 0.977 0.966 0.915 0.073 0.145 0.223 BFGS 52 SOS Logistic Tanh

MLP 6-
14-4 0.893 0.910 0.881 0.333 0.369 0.330 BFGS 9 SOS Identity Exponential

MLP 6-8-
4 0.954 0.953 0.905 0.147 0.209 0.246 BFGS 30 SOS Logistic Identity

MLP 6-3-
4 0.965 0.938 0.902 0.112 0.260 0.170 BFGS 27 SOS Tanh Tanh

MLP 6-6-
4 0.890 0.903 0.880 0.346 0.405 0.341 BFGS 17 SOS Exponential Exponential

MLP 6-8-
4 0.967 0.940 0.895 0.106 0.257 0.275 BFGS 34 SOS Tanh Tanh

MLP 6-7-
4 0.843 0.934 0.868 0.481 0.269 0.353 BFGS 3 SOS Sine Exponential

MLP 6-7-
4 0.916 0.929 0.879 0.269 0.304 0.331 BFGS 33 SOS Sine Exponential

MLP 6-7-
4 0.914 0.876 0.849 0.021 0.165 0.380 BFGS 76 SOS Tanh Exponential

MLP 6-5-
4 0.886 0.912 0.885 0.359 0.363 0.315 BFGS 16 SOS Exponential Exponential

MLP 6-
10-4 0.947 0.946 0.919 0.171 0.233 0.214 BFGS 31 SOS Exponential Sine

,e bold values represent the best network architecture.
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in the rest two layers, that is, the input layer and output layer,
are constrained to the number of input variables and output
variables, respectively [31]. e normalising of the input data
was performed and the training process is initiated by
randomly varying the number of neurons and their asso-
ciated weights.  e network with 5-10-1 architecture (�ve
neurons in the input layer, ten neurons in a single hidden
layer, and one neuron in the output layer) is selected based
on maximum training performance and minimum training
error for the developed ANN model after simulation of
various network combinations (Table 9).  e selected ANN
model has a learning rate and momentum of 0.96 and 0.011,
respectively, and its architecture is shown in Figure 4.

4.3. E�ciency of the Developed ANN Models. Several per-
formance indices, as discussed in detail by Ray et al. [21] and
Karir et al. [28], were used to measure the e¥ciency of the
developed ANN models.  e coe¥cient of determination
(R2) between the target and predicted values indicates a good
prediction performance of the developed models.  e RMSE
and variance account for (VAF) were computed for studying
the performance and the prediction capacity of the devel-
oped predictive models. Various performance indices ob-
tained from the developed ANN1 model are presented in
Table 10 and Figure 5.

5. Android Application

 e developed app has two modules: one is residual soil
classi�cation, and the other is rock slope failure prediction
using an arti�cial neural network.  e neural network
simulation has been done using neuro software.  e sim-
ulation has been exported into code, and an equation has
been used in developing the android app. Simulation of
ANN also takes time and memory depending upon model
complexity.  erefore, the equation generated from ANN
simulation to predict classi�cation and factor of safety was
used. Smartphones have turned popular for the research for
mobile applications because of their enhanced performance.
 is mobile application will be developed to facilitate the
professionals to get a quick understanding of residual soil
and rock slope behaviour to ascertain the potentially dan-
gerous slopes.  e smart miner app predicts the risk of slope
failure for residual soil and rock, the factor of safety of rock
slope, and the classi�cation of residual soil (https://play.
google.com/store/apps/details?id�com.maheshpaliwal.
smartmineapp).

5.1. Debugging the Android Application.  e android ap-
plication o�ers dedicated tools to debug the app in Android
Studio (IDE).  ere are two ways an Android app will be

Slope Angle (deg)

fos_four

fos_three

fos_two

fos_one

Slope Height (m)

Soil Cohesion (KPa)

Soil Friction angle (Deg)

Young Modulus of soil (MPa)

Soil Depth (m)

Figure 3: Neural network architecture for input and output in the case of the residual soil slope model.

Table 7: Variable table for rock slope.

Sr. no. Name Use
1 Slope angle (deg) Input
2 Slope height (m) Input
3 Width (m) Input
4 Joint one Input
5 Joint two Input
6 FOS Target

Table 8: Data statistics for prediction of rock slope stability.

Sr. no. Rock slope parameter Minimum Maximum Mean Deviation
1 Slope angle (deg) 45 75 60 12.2526
2 Slope height (m) 100 500 300 141.48
3 Width (m) 2 10 6 2.82961
4 Joint one 1 4 2.5 1.1185
5 Joint two 1 4 2.5 1.1185
6 FOS 0.952 19.856 4.36915 3.21097
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Table 9: Identi�cation of best ANN architecture during the training process of rock slope data.

Network
name

Training
performed

Test
performed

Validation
performed

Training
error

Test
error

Validation
error

Training
algorithm

Error
function

Hidden
activation

Output
activation

MLP 5-6-
1 0.983 0.945 0.934 0.055 0.233 0.199 BFGS 31 SOS Tanh Exponential

MLP 5-9-
1 0.976 0.949 0.913 0.076 0.215 0.226 BFGS 71 SOS Logistic Sine

MLP 5-2-
1 0.884 0.901 0.886 0.360 0.404 0.305 BFGS 18 SOS Exponential Exponential

MLP 5-8-
1 0.931 0.954 0.914 0.218 0.190 0.231 BFGS 30 SOS Logistic Identity

MLP 5-
10-1 0.977 0.966 0.915 0.073 0.145 0.223 BFGS 52 SOS Logistic Tanh

MLP 5-
14-1 0.893 0.910 0.881 0.333 0.369 0.330 BFGS 9 SOS Identity Exponential

MLP 5-8-
1 0.954 0.953 0.905 0.147 0.209 0.246 BFGS 30 SOS Logistic Identity

MLP 5-3-
1 0.965 0.938 0.902 0.112 0.260 0.170 BFGS 27 SOS Tanh Tanh

MLP 5-6-
1 0.890 0.903 0.880 0.346 0.405 0.341 BFGS 17 SOS Exponential Exponential

MLP 5-8-
1 0.967 0.940 0.895 0.106 0.257 0.275 BFGS 34 SOS Tanh Tanh

MLP 5-7-
1 0.843 0.934 0.868 0.481 0.269 0.353 BFGS 3 SOS Sine Exponential

MLP 5-7-
1 0.916 0.929 0.879 0.269 0.304 0.331 BFGS 33 SOS Sine Exponential

MLP 5-7-
1 0.914 0.876 0.849 0.021 0.165 0.380 BFGS 76 SOS Tanh Exponential

MLP 5-5-
1 0.886 0.912 0.885 0.359 0.363 0.315 BFGS 16 SOS Exponential Exponential

MLP 5-
10-1 0.947 0.946 0.919 0.171 0.233 0.214 BFGS 31 SOS Exponential Sine

 e bold values represent the best network architecture.

Angle

FOS

Height

Width

Joint 1

Joint 2

Figure 4: Neural network architecture for input and output in the case of the rock slope model.
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Table 10: Performance indices of the developed ANN models.

Model Data R2 (%) RMSE VAF (%) Learning rate

ANN soil slope (MLP 6-3-4)
Training set 95.09 0.000403 98.74 0.91
Testing set 92.95 0.00143 94.52 0.89

Validating set 88.25 0.00217 93.30 0.85

ANN rock slope (MLP 5-10-1)
Training set 99.28 0.00014 99.22 0.96
Testing set 98.96 0.00116 98.47 0.93

Validating set 98.28 0.00184 97.26 0.92
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Figure 5: Leaning rate curve for the developed ANN model (a) rock slope and (b) residual soil slope.

Figure 6: Layout of android app for prediction of classi�cation and FOS.
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debugged: first is the android simulator on the IDE itself and
then the second is by testing the app on an actual Android
smartphone. In this case, debugging the apps will be done in
both ways and will them make stable and as reliable as
possible.

5.2. Overview and Design of GUI. ,e app is built user
friendly with a very basic GUI (Figure 6). ,e sample results
are compared with various situations, and a very nice accord
is achieved amongst them.,e app helps the professionals to
get a quick idea about residual soil and rock slope behaviour
in order to identify the potential hazardous slopes.

5.3. Analysis of Residual Soil Classification for Safety Class.
,e inputs are slope angle, slope height, shear strength of
residual soil, Young’s modulus, and soil depth. ,e first step
is that all parameter is scaled-down, and then y_1, y_2, and
y_3 are calculated using the equation. ,e output is the
probability of failure for all classes, that is, very low, low,
medium, and high, is determined using the below-men-
tioned equation. ,e risk was predicted using the if-else rule
and displayed in GUI using the Android application:

ScaledAngle(SA) �
AngleDegree − 37.5

16.7915
,

ScaledHeight(SH) �
2 ×(Height − 50)

(500–50) − 1
,

Scaled Soil Cohesion (SSC) �
2 ×(Soil Cohesion − 18)

(20 − 18) − 1
,

Scaled Soil FrictionAngle(SSFA) �
2 ×(Soil FrcitionAngle − 13.05)

(50.84 – 13.05) – 1
,

Scaled YoundModulus(SYM) �
2×

(122.55–17.06)–1
,

Scaled Soil Depth(SSD) �
Soil Depth
4.61038

.

(1)

,e generated parametric equations are as follows:

Y1 � SA ×(−1.347) + SH ×(−0.3856) + SSC × 0.1664 + SSFA ×(−0.6477) + SYM ×(−0.5756) + SSD ×(−14.2867) + 3.64855,

Y2 � SA ×(−11.119) + SH × 0.0007 + SSC ×(−0.0094) + SSFA × 0.03931

+ SYM × 0.03812 + SSD ×(−0.5750) − 5.29017,

Y3 � SA × 11.558 + SH × 0.1386 + SSC ×(−0.0789) + SSFA × 0.0526

+ SYM ×(−0.03475) + SSD × 3.4199 − 7.22444.

(2)

,e final output equations are as follows:

FOS one � log(−4.88647 − 13.5303 × y 1 − 3.90927 × y 2 + 9.39114 × y 3),

FOS two � log 5.09632 − 6.69187 × y1 − 21.403 × y2 − 9.24631 × y3( 􏼁,

FOS three � log(1.26147 − 5.43572 × y 1 − 3.53762 × y 2 − 15.1183 × y 3),

FOS four � log(−5.10472 + 11.9405 × y 1 + 8.98969 × y 2 − 8.36946 × y 3).

(3)
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5.4. Analysis of Stability of Rock Slope. ,e inputs are slope
angle, slope height, weathered layer thickness, joint one, and
joint two. ,e first step is that all parameter is scaled-down, and
then y_1 to y_10 are calculated using the equation generated.

,efinal dependent variable is calculated using the tanh function
and the set of generated equations. Equation 1 has been used to
calculate the factor of safety of rock slope. ,e factor of safety is
displayed in GUI using the Android application:

ScaledAngle(SA) �
2 ×(Angle − 45)

(75 − 45) − 1
,

ScaledHeight(SH) �
Height − 300

141.48
,

ScaledWidth(SW) �
Width − 6
2.82961

,

Scaled Joint 1 SJ1( 􏼁 �
Joint 1 − 2.5

1.1185
,

Scaled Joint 2 SJ2( 􏼁 �
Joint 2 − 2.5

1.1185
.

(4)

,e generated parametric equations are as follows:

y1 � SA ×(−0.0299) + SH × 0.0052 + SW × 0.7234

+ SJ1 ×(−0.0178) + SJ2 ×(−0.0613) + 1.4730,

y2 � SA × 0.7511 + SH ×(−0.0725) + SW × 0.2719

+ SJ1 × 0.1946 + SJ2 × 0.3301 − 0.0513,

y3 � SA × 1.9950 + SH × 0.0088 + SW × 0.1001

+ SJ1 × 0.0180 + SJ2 × 1.0704 + 1.8012,

y4 � SA × 0.8161 + SH ×(−0.2945) + SW × 0.0104

+ SJ1 × 0.8764 + SJ2 ×(−1.1940) + 0.5068,

y5 � SA ×(−0.6566) + SH × 0.1560 + SW × 0.2316

+ SJ1 ×(−0.2772) + SJ2 ×(−0.4959) − 0.9843,

y6 � SA × 0.6504 + SH ×(−0.3412) + SW × 1.2101

+ SJ1 × 0.5729 + SJ2 ×(−0.0108) + 0.6504,

y7 � SA ×(−0.8111) + SH × 0.2632 + SW ×(−0.2796)

+ SJ1 × 0.9308 + SJ2 ×(−0.1901) − 1.9974,

y8 � SA ×(−0.0666) + SH ×(−0.1778) + SW ×(−0.7677)

+ SJ1 × 0.4441 + SJ2 ×(−0.0806) − 0.8139,

y9 � SA × 0.6675 + SH ×(−0.8984) + SW ×(−0.8047)

+ SJ1 × 0.1252 + SJ2 ×(−0.0890) − 0.3682,

y10 � SA × 1.1990 + SH × 0.1535 + SW ×(−0.2116)

+ SJ1 ×(−1.4960) + SJ2 × 0.3974 + 1.4552.

(5)

Advances in Civil Engineering 11



,e final generated parametric equations are as follows:-

Y1 � y1 × 0.984 + y2 ×(−0.882) + y3 × 0.421 + y4 ×(−0.993) + y5 ×(−0.871) + y6 × 0.422 + y7 ×(−0.528) + y8 × 0.012

+ y9 ×(−0.116) + y10 ×(−0.004) − 0.309,

Y2 � y1 × 0.065 + y2 × 0.234 + y3 × 0.268 + y4 × 0.669 + y5 ×(−0.646) + y6 ×(−0.110) + y7 ×(−0.133) + y8 ×(−1.282)

+ y9 × 0.639 + y10 ×(−0.602) + 1.554,

Y3 � y1 × 0.040 + y2 × 0.281 + y3 × 0.231 + y4 ×(−0.076) + y5 ×(−0.065) + y6 ×(−0.027) + y7 ×(−0.137) + y8 ×(−0.126)

+ y9 × 0.141 + y10 ×(−0.311) − 0.204,

Y4 � y1 × 1.121 + y2 × 0.807 + y3 × 0.784 + y4 × 0.91 + y5 × 0.151 + y6 ×(−1.382) + y7 ×(−1.403) + y8 ×(−0.751) + y9

×(−0.897) + y10 ×(−1.482) + 1.138,

Y5 � y1 ×(−0.353) + y2 ×(−0.403) + y3 × 0.170 + y4 ×(−0.645) + y5 × 0.748 + y6 × 0.371 + y7 ×(−0.314) + y8 × 0.288

− y9 ×(−0.299) + y10 × 0.131 + 0.877.

(6)

,e final output equations are as follows:

Scaled FOS � 0.387946 × Y1 + 2.45703 × Y2 − 1.47291 × Y3 − 1.74675 × Y4

− 0.457422 × Y5 − 0.329065

FOS � (0.5 ×(scaled FOS + 1.0) ×(19.856 − 0.952) + 0.952).

(7)

Table 11: Factor of safety from modelling and Android app for residual soil classification.

Sr.
no.

Slope angle
(deg)

Slope
height (m)

Soil cohesion
(kPa)

Friction angle
(deg)

Young’s modulus of
soil (MPa)

Soil depth
(m)

Class from
modelling

Chance of failure
from app

1 60 200 18.5 35 86 2 High High
2 45 250 20.0 39 98 5 High High
3 45 300 19.5 15 62 2 Medium Medium
4 60 100 19.0 39 77 2 High High
5 30 100 20.0 15 65 9 Medium Medium
6 45 450 19.0 21 91 1 Medium Medium
7 30 150 19.0 37 97 12 Medium Medium
8 15 300 20.0 18 49 9 Very low Very low
9 15 200 19.5 49 91 15 Very low Very low
10 30 500 18.5 47 46 3 Low Low

Table 12: Factor of safety from modelling and Android app for rock slope stability.

Sr. no. Slope angle (deg) Slope height (m) Width (m) Joint one (deg) Joint two (deg) FOS from modelling FOS from app
1 45 200 8 −65 −50 2.12 2.08
2 45 300 8 −65 −50 1.81 1.87
3 45 100 2 −45 10 7.11 7.26
4 60 400 6 −65 −10 1.49 1.59
5 75 100 6 −25 −30 2.68 2.53
6 75 200 10 −65 −10 1.30 1.43
7 75 500 8 −65 10 1.27 1.23
8 60 500 8 −65 −10 1.16 1.26
9 60 200 6 −65 −10 1.568 1.73
10 60 100 2 −5 −30 8.40 8.45
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5.5. Prediction of Stability Class and Factor of Safety Using
Android Application. After verifying and debugging, the
developed app is tested on three real android mobiles;
Samsung (model: SM-N750), Asus (model: ASUS T_00J),
and Xiaomi (model: Mi Note 8 Pro); it is concluded here that
a good agreement is achieved between computed results and
their reference counterparts for all seven cases associated
with the example.,e values for a particular case are listed in
Tables 11 and 12. A particular case is presented in these
tables. ,e app results are in normalised form by default,
which can be converted before use. ,e app has two
modules: one is residual soil classification and the other is
rock slope failure prediction using an artificial neural net-
work. Table 11 lists the prediction classification of residual
soil using the ANN algorithm and android app. Table 12 lists
the prediction of FOS of rock slope using the ANN algorithm
and android app.

6. Conclusions

,ere are various problems associated with calculating the
factor of safety of the hills in the Himalayan region. Various
tests are to be performed, which are very time consuming
and expensive. As by nature, the slopes are not uniform.
,ere can be a sudden change in the geomaterial (soil to rock
and vice versa) within a few hundred meters. ,us, carrying
out conventional geotechnical investigations over a stretch
having several rocks and soil slope is very cumbersome. An
effort has been made to quickly identify the stability of both
the rock slope and residual soil slope. Numerical simulation
results from previous studies on residual soil and rock slope
were used to develop the ANNmodels. Various performance
indices were used to highlight the high efficiency of the
developed ANN models. ,e developed ANN models were
further used to develop a mobile application for slope sta-
bility assessment.

,e proposed software is user friendly and economical
(virtually no cost) and has been constructed on an arti-
ficial neural network application intended in place of
microstrip antenna applications. ,e performance via-
bility of the developed mobile application has been ver-
ified using the virtual android platform in the IDE itself
and then utilising various real-world android mobiles
possessing unique chipset configurations ranging from
higher performance to lower performance. All the mobile
devices performed quite positively, providing the same
desired results for all use cases. ,us, the proposed so-
lution delivers a roadmap for the development of an
android app utilising artificial neural networks due to
which the proposed methodology is reasonably faster and
has a lower manufacturing cost.
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