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Abstract
In this paper, we consider a broad class of nonsmooth and nonconvex fractional programs, where the nu-

merator can be written as the sum of a continuously differentiable convex function whose gradient is Lipschitz
continuous and a proper lower semicontinuous (possibly nonconvex) function, and the denominator is weakly
convex over the constraint set. This model problem includes the composite optimization problems studied ex-
tensively lately, and encompasses many important modern fractional optimization problems arising from diverse
areas such as the recently proposed scale invariant sparse signal reconstruction problem in signal processing. We
propose a proximal subgradient algorithm with extrapolations for solving this optimization model and show that
the iterated sequence generated by the algorithm is bounded and any of its limit points is a stationary point of
the model problem. The choice of our extrapolation parameter is flexible and includes the popular extrapola-
tion parameter adopted in the restarted Fast Iterative Shrinking-Threshold Algorithm (FISTA). By providing
a unified analysis framework of descent methods, we establish the convergence of the full sequence under the
assumption that a suitable merit function satisfies the Kurdyka–Łojasiewicz (KL) property. In particular, our al-
gorithm exhibits linear convergence for the scale invariant sparse signal reconstruction problem and the Rayleigh
quotient problem over spherical constraint. In the case where the denominator is the maximum of finitely many
continuously differentiable weakly convex functions, we also propose an enhanced extrapolated proximal sub-
gradient algorithm with guaranteed convergence to a stronger notion of stationary points of the model problem.
Finally, we illustrate the proposed methods by both analytical and simulated numerical examples.

1. Introduction

In this paper, we consider the following class of nonsmooth and nonconvex fractional program which takes the form

min
x∈S

f(x)
g(x) , (P)

where H is a finite-dimensional real Hilbert space, S is a nonempty closed convex subset of H, and f, g : H →
(−∞,+∞] are proper lower semicontinuous functions which are not necessarily convex. Throughout this paper,
we assume that the numerator f can be written as the sum of fs and fn, where fs is a continuously differentiable
convex function whose gradient is Lipschitz continuous and fn is a nonconvex function, and the denominator g is
finite, positive, and weakly convex over the constraint set S. We note that weakly convex functions form a broad
class of functions which covers convex functions, nonconvex quadratic functions and continuously differentiable
functions whose gradient are Lipschitz continuous.

This class of nonsmooth and nonconvex fractional program is a broad optimization model which encompasses
many important modern optimization problems arising from diverse areas. This includes, for example, the recently
proposed scale invariant sparse signal reconstruction problem in signal processing [27] and the robust Sharpe ratio
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optimization problems in finance [10]. Moreover, in the special case where the denominator g(x) ≡ 1 and S = H,
problem (P) reduces to the well-studied nonsmooth composite optimization with the form

min
x∈H

f(x) = fs(x) + fn(x),

which covers a lot of modern optimization problems in machine learning (for example, the Lasso problem in computer
science). Below we provide a few motivating examples illustrating the model problem (P).

(i) Scale invariant sparse signal recovery problem: In signal processing, to reconstruct a sparse signal from
its observation, one considers the following scale invariant minimization problem [27]

min
x∈RN

‖x‖1

‖x‖2
s.t. Ax ≤ b, Cx = d,

where ‖ · ‖1 and ‖ · ‖2 are the `1-norm and Euclidean norm respectively, A ∈ RM×N , b ∈ RM , C ∈ RP×N ,
d ∈ RP , and S = {x ∈ RN : Ax ≤ b, Cx = d} is bounded and does not contain the origin. Here, the objective
function relates to the restricted isometry constant and serves as a surrogate of the cardinality of x. It was
shown in [27] that this model can outperform the celebrated Lasso model in recovering a sparse solution. This
model problem is indeed a special case of problem (P) with f(x) = ‖x‖1, g(x) = ‖x‖2 and S being a polytope
with the form that S = {x ∈ RN : Ax ≤ b, Cx = d}.

(ii) Rayleigh quotient optimization with spherical constraint: The Rayleigh quotient optimization prob-
lem with spherical constraint can be formulated as

min
x∈RN

x>Ax

x>Bx
s.t. ‖x‖2 = 1,

where A and B are symmetric positive definite matrices. This is a special case of problem (P) with S = RN ,
f(x) = x>Ax+ ιC(x) where C is the unit sphere {x ∈ RN : ‖x‖2 = 1} and ιC is the indicator function of the
set C (see (4) later for the definition of indicator function), and g(x) = x>Bx.

(iii) Robust Sharpe ratio minimization problem: The standard Sharpe ratio optimization problem (see, e.g.,
[10]) can be formulated as

max
x∈RN

a>x− r√
x>Ax

s.t. e>x = 1, x ≥ 0,

where the numerator is the expected return and the denominator measures the risk. In practice, the data
associated with the model is often uncertain due to prediction or estimation errors. Following robust optimiza-
tion approach, we assume that the data (A, a, r) are uncertain and belong to the polyhedral uncertainty set
U = U1×U2, where U1 = conv{(a1, r1), . . . , (am1 , rm1)} and U2 = conv{A1, . . . , Am2}. Here, (ai, ri) ∈ RN×R,
i = 1, . . . ,m1, are such that a>i x − ri ≤ 0 for all x ∈ S, and Aj are symmetric positive definite matrix,
j = 1, . . . ,m2. The robust Sharpe ratio optimization problem can be written as

max
x∈RN

min(a,r)∈U2{a>x− r}
maxA∈U2

√
x>Ax

s.t. e>x = 1, x ≥ 0,

which can be further simplified as

min
x∈RN

−min1≤i≤m1{a>i x− ri}
max1≤i≤m2

√
x>Aix

s.t. e>x = 1, x ≥ 0.

This is a special case of problem (P) with f(x) = −min1≤i≤m1{a>i x − ri} = max1≤i≤m1{ri − a>i x}, g(x) =
max1≤i≤m2

√
x>Aix and S = {x ∈ RN : e>x = 1, x ≥ 0}.

The fractional programming problem has a long history, and a classical and popular approach for solving the
fractional programming problem is the Dinkelbach’s method (see, for example, [11, 12]) which relates it to the
following optimization problem

min
x∈S

f(x)− θg(x). (1)
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In particular, (P) has an optimal solution x ∈ S if and only if x is an optimal solution to (1) and the optimal
objective value of (1) is equal to zero with θ = f(x)

g(x) . However, one drawback of this procedure is that this can only
be done in the very restrictive case when the optimal objective value of (P) is known. To overcome this drawback,
in the literature (see [11, 12, 14, 15, 29]) an iterative scheme was proposed which requires solving in each iteration
n of the optimization problem

min
x∈S
{f(x)− θng(x)} (2)

while θn is updated by θn+1 := f(xn+1)
g(xn+1) , where xn+1 is an optimal solution of (2). However, solving in each

iteration an optimization problem of type (2) can be as expensive and difficult as solving the fractional programming
problem (P) in general.

Recently, in view of the success of the proximal algorithms in solving composite optimization problems (that
is, when the denominator g(x) ≡ 1), [9] proposed proximal gradient type algorithms for fractional programming
problems, where the numerator f is a proper, convex and lower semicontinuous function and the denominator g
is a smooth function, either concave or convex. The approach of [9] is appealing because the proposed iterative
methods there perform a gradient step with respect to g and a proximal step with respect to f . In this way, the
functions f and g are processed separately in each iteration.

Although the approach in [9] is very inspiring, still many research questions need to be answered. For example,

• firstly, how to extend the approach in [9] to the case where the numerator and denominator are both nonconvex
and nonsmooth? Such an extension would allow us to cover, for example, robust Sharpe ratio optimization
problems where both the numerator f and the denominator g are nonsmooth, and the Rayleigh quotient
optimization problem with spherical constraints where the numerator f is a nonconvex function.

• secondly, it is known that the performance of the proximal gradient method can be largely improved (see
[22]) if one can incorporate extrapolation steps in solving composite optimization problems (that is, when the
denominator g(x) ≡ 1 in (P)), as for example for the restarted Fast Iterative Shrinking-Threshold Algorithm
(FISTA) [5, Chapter 10]. Therefore, it is of great interest to develop proximal algorithms with extrapolations
for solving fractional programs.

• thirdly, in the case where f and g are convex, and g is continuously differentiable, it was shown in [9]
that the proximal gradient method generates a sequence of iterates which converges to a stationary point
of problem (P). Recently, algorithms were proposed for computing a stronger version of stationary points
called d(irectional)-stationary points for a class of difference-of-convex optimization problems (for example
see [1, 26]). Taking this into account, developing algorithms which converge to sharper notions of stationary
points of problem (P) is also highly desirable.

The purpose of this paper is to provide answers to the above questions. Specifically, the contributions of this
paper are as follows.

(1) In Section 4, we propose a proximal subgradient algorithm with extrapolations for solving the model prob-
lem (P). We then establish that the sequence of iterates generated by the algorithm is bounded and any of
its limit points is a stationary point of the model problem (P). Interestingly, the convergence of our algo-
rithm does not require the numerator and denominator to be convex or smooth. Moreover, our extrapolation
parameter is broad enough to accommodate the popular extrapolation parameter used for restarted FISTA.

(2) In Section 5, we establish a general framework for analyzing descent methods which is amenable for opti-
mization methods with multi-steps and inexact subproblems. Our conditions are weaker than those in the
literature and complement the existing results. With the help of this framework, we establish the convergence
of the full sequence under the assumption that a suitable merit function satisfies the KL property. In partic-
ular, by identifying the explicit KL exponent, we establish linear convergence of the proposed algorithm for
scale invariant sparse signal recovery problem and Rayleigh quotient optimization with spherical constraint.

(3) In the case where the denominator is the maximum of finitely many continuously differentiable weakly convex
functions, in Section 6, we also propose an enhanced proximal subgradient algorithm with extrapolations, and
show that this enhanced algorithm converges to a stronger notion of stationary points of the model problem.

(4) Finally, we illustrate the proposed methods via analytical and simulated numerical examples in Section 7.
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2. Preliminaries

Throughout this work, we assume that H is a finite-dimensional real Hilbert space with inner product 〈·, ·〉 and
the induced norm ‖ · ‖. The set of nonnegative integers is denoted by N, the set of real numbers by R, the set of
nonnegative real numbers by R+ := {x ∈ R : x ≥ 0}, and the set of the positive real numbers by R++ := {x ∈ R :
x > 0}.

Let h : H → [−∞,+∞] be an extended real-valued function. The domain of h is dom h := {x ∈ H : h(x) < +∞}.
We say that h is proper if dom h 6= ∅ and it never take the value −∞. The function h is lower semicontinuous if,
for all x ∈ dom h, h(x) ≤ lim infz→x h(z). We use the symbol z h→ x to indicate z → x and h(z) → h(x). Given
x ∈ H with |h(x)| < +∞, the Fréchet subdifferential of h at x is defined by

∂̂h(x) :=
{
u ∈ H : lim inf

z→x

h(z)− h(x)− 〈u, z − x〉
‖z − x‖

≥ 0
}

and the limiting subdifferential of h at x is defined by

∂Lh(x) :=
{
u ∈ H : ∃xn

h→ x, un → u with un ∈ ∂̂h(xn)
}
.

We set ∂̂h(x) = ∂Lh(x) := ∅ when |h(x)| = +∞ and define dom ∂Lh := {x ∈ H : ∂Lh(x) 6= ∅}. It follows from the
definition that the limiting subdifferential has the robustness property

∂Lh(x) =
{
u ∈ H : ∃xn

h→ x, un → u with un ∈ ∂Lh(xn)
}
. (3)

For a convex function h, both Fréchet and limiting subdifferentials reduce to the classical subdifferential in convex
analysis (see, for example, [20, Theorem 1.93])

∂h(x) := {u ∈ H : ∀z ∈ H, 〈u, z − x〉 ≤ h(z)− h(x)} .

Moreover, for a strictly differentiable1 function h, both Fréchet and limiting subdifferentials reduce to the derivative
of h denoted by ∇h.

Let S be a nonempty subset of H. Its convex hull is denoted by convS. The indicator function of S is given by

ιS(x) :=
{

0 if x ∈ S,
+∞ if x /∈ S.

(4)

Given x ∈ H, the Fréchet normal cone of S at x is given by N̂S(x) := ∂̂ιS(x) and the limiting normal cone of S at
x is NS(x) := ∂LιS(x). The set S is regular at x ∈ S if NS(x) = N̂S(x). We say that S is regular if it is regular at
all of its points. It is known, e.g., from [20, Proposition 1.5] that S is regular at x ∈ S if it is locally convex around
x, i.e., if there exists a neighborhood U of x such that S ∩ U is convex.

For a function h : H → [−∞,+∞] finite at x, we say that h is regular2 at x if ∂̂h(x) = ∂Lh(x). For a proper
lower semicontinuous function h, it is clear that if h is convex around x or strictly differentiable at x, then it is
regular at x. In the case where h is an indicator function of a closed set or is a Lipschitz continuous function around
x, according to [20, Proposition 1.92], h is regular at x if and only if epih := {(x, r) ∈ H×R : r ≥ h(x)} is regular
at (x, h(x)).

In general, the limiting subdifferential set can be nonconvex (e.g., for h(x) = −|x| at 0 ∈ R) while ∂Lh enjoys
comprehensive calculus rules based on variational/extremal principles of variational analysis [20, 28]. In particular,
the following sum rule and quotient rule and for limiting subdifferential will be useful for us later.

Lemma 2.1 (Sum and quotient rules). Let f, g : H → (−∞,+∞] be proper lower semicontinuous functions,
and let x ∈ H. Then the following hold:

(i) Suppose that f is finite at x and g is locally Lipschitz around x. Then ∂L(f +g)(x) ⊆ ∂Lf(x) +∂Lg(x), where
the equality holds if both f and g are regular at x, in which case f + g is also regular at x. Moreover, if g is
strictly differentiable at x, then ∂L(f + g)(x) = ∂Lf(x) +∇g(x).

1A function h is strictly differentiable at x if there exists u ∈ H such that lim
y,z→x

h(y)−h(z)−〈u,y−z〉
‖y−z‖ = 0. Clearly, if h is continuously

differentiable at x, then it is strictly differentiable at x.
2In some literature, this is also referred as lower regular in [20, 21].
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(ii) Suppose that f and g are Lipschitz continuous around x, and g(x) 6= 0. Then, if ∂̂g is nonempty-valued around
x, one has

∂L

(
f

g

)
(x) ⊆ ∂L(g(x)f)(x)− f(x)∂Lg(x)

g(x)2 . (5)

If g is strictly differentiable at x, one has

∂L

(
f

g

)
(x) = ∂L(g(x)f)(x)− f(x)∇g(x)

g(x)2 , (6)

and consequently f/g is regular at x if and only if the function x 7→ g(x)f(x) is regular at x.

Proof. (i): We first derive from [20, Theorem 3.36] and its following remark that ∂L(f + g)(x) ⊆ ∂Lf(x) + ∂Lg(x)
and that if both f and g are regular at x, then so is f + g and ∂L(f + g)(x) = ∂Lf(x) + ∂Lg(x). By [20,
Proposition 1.107(ii)], this equality also holds if g is strictly differentiable at x.

(ii): As f and g are Lipschitz continuous around x and g(x) 6= 0, [20, Proposition 1.111(ii)] implies that

∂L

(
f

g

)
(x) = ∂L(g(x)f − f(x)g)(x)

g(x)2 . (7)

Thus, to see (5), it suffices to show that ∂L(g(x)f − f(x)g)(x) ⊆ ∂L(g(x)f)(x) − f(x)∂Lg(x). This is obvious if
f(x) = 0. If f(x) < 0, then −f(x) > 0 and, by (i),

∂L(g(x)f − f(x)g)(x) ⊆ ∂L(g(x)f)(x) + ∂L(−f(x)g)(x) = ∂L(g(x)f)(x)− f(x)∂Lg(x).

If f(x) > 0, then ∂̂(f(x)g) = f(x)∂̂g is nonempty-valued around x and, by [21, Corollary 3.4],

∂L(g(x)f − f(x)g)(x) ⊆ ∂L(g(x)f)(x)− ∂L(f(x)g)(x) = ∂L(g(x)f)(x)− f(x)∂Lg(x),

from which we get the claimed inclusion. The equality (6) then follows from (7) and (i). Finally, the conclusion for
the regularity of f/g follows from (6) and [16, Corollaries 1.12.2 and 1.14.2]. �

We say that a function h is weakly convex (on H) if there exists ρ ≥ 0 such that h + ρ
2‖ · ‖

2 is a convex
function. Moreover, the smallest constant ρ such that h+ ρ

2‖ · ‖
2 is convex is called the modulus for a weakly convex

function h. More generally, a function h is said to be weakly convex on S ⊆ H with modulus ρ if h + ιS is weakly
convex with modulus ρ. Weakly convex functions form a broad class of functions which covers quadratic functions,
convex functions and continuously differentiable functions whose gradient is Lipschitz continuous. Recall that the
(one-sided) directional derivative of h in the direction d is defined by

h′(x; d) = lim
t→0+

h(x+ td)− h(x)
t

,

provided the limit exists. We end this section with the following lemma.

Lemma 2.2. Let S be a nonempty closed convex subset of H, let x ∈ S, and let h : H → (−∞,+∞] be a proper
lower semicontinuous function which is weakly convex on S. Then the following hold:

(i) For all x ∈ H, ∂L(h+ ιS)(x) is a (possibly empty) closed convex set.

(ii) If x ∈ intS and h is continuous at x, then ∂Lh(x) = ∂L(h + ιS)(x) 6= ∅ and, for all x ∈ S, h′(x;x − x) =
max{〈v, x− x〉 : v ∈ ∂L(h+ ιS)(x)}. In particular, if h is a weakly convex function on H which is continuous
at x, then, for all d ∈ H, h′(x; d) = max{〈v, d〉 : v ∈ ∂Lh(x)}.

(iii) 0 ∈ ∂L(h+ ιS)(x) if and only if, for all x ∈ S, h′(x;x− x) ≥ 0.

Proof. By assumption, there exists ρ ≥ 0 such that H := h+ ιS + ρ
2‖ · ‖

2 is a convex function. Using Lemma 2.1(i),
we have that, for all x ∈ H, ∂H(x) = ∂LH(x) = ∂L(h+ ιS)(x) + ρx, and so ∂L(h+ ιS)(x) = ∂H(x)− ρx. Since S
is convex, it follows from the definition of directional derivative that, for all x ∈ H,

h′(x;x− x) ≤ (h+ ιS)′(x;x− x) = H ′(x;x− x)− 〈ρx, x− x〉 , (8)

where the first inequality is an equality if x ∈ S.
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(i): Since ∂H(x) is a closed convex set, so is ∂L(h+ ιS)(x).
(ii): Assume that x ∈ intS and h is continuous at x, then h(x) = (h + ιS)(x) for x near x and H is a

convex function which is continuous at x ∈ intS and h is continuous at x, and hence ∂Lh(x) = ∂L(h + ιS)(x) =
∂LH(x)− ρx 6= ∅.

Now, let x ∈ S. By [4, Theorem 17.18], H ′(x;x − x) = max{〈u, x− x〉 : u ∈ ∂H(x)} = max{〈v + ρx, x− x〉 :
v ∈ ∂(h+ ιS)(x)}, which combined with (8) implies the desired claim.

(iii): Set H1 := h + ιS + ρ
2‖ · −x‖

2. Then H1 is also a convex function. We derive from Lemma 2.1(i) that
∂L(h + ιS)(x) = ∂H1(x) and from (8) that h′(x;x − x) ≥ 0 for all x ∈ S if and only if (h + ιS)′(x;x − x) =
H ′1(x;x− x) ≥ 0 for all x ∈ H. The conclusion then follows from [4, Theorem 16.3 and Proposition 17.3]. �

Kurdyka–Łojasiewicz property

Next, we recall the celebrated Kurdyka–Łojasiewicz (KL) property [17, 18] which plays an important role in our
convergence analysis later on. For each η ∈ (0,+∞], we denote by Φη the class of all continuous concave functions
ϕ : [0, η)→ R+ such that ϕ(0) = 0 and ϕ is continuously differentiable on (0, η) with ϕ′ > 0.

Let h : H → (−∞,+∞] be a proper lower semicontinuous function. We say that h satisfies the KL property
[17, 18] at x ∈ dom ∂Lh if there exist a neighborhood U of x, η ∈ (0,+∞], and a function ϕ ∈ Φη such that, for all
x ∈ U with h(x) < h(x) < h(x) + η, one has

ϕ′(h(x)− h(x)) dist(0, ∂Lh(x)) ≥ 1.

If h satisfies the KL property at each point in dom ∂Lh, then h is called a KL function. For a function h satisfying
the KL property at x ∈ dom ∂Lh, if the corresponding function ϕ can be chosen as ϕ(s) = γs1−α for some γ ∈ R++
and α ∈ [0, 1), then we say that h has the KL property at x with an exponent of α. If h is a KL function and has
the same exponent α at any x ∈ dom ∂Lh, then h is called a KL function with an exponent of α.

This definition encompasses broad classes of functions that arise in practical optimization problems. For example,
it is known that if h is a proper lower semicontinuous semi-algebraic function, then h is a KL function with a
suitable exponent of α ∈ [0, 1). The semi-algebraic function covers many common nonsmooth functions that appear
in modern optimization problems such as functions which can be written as maximum or minimum of finitely many
polynomials, Euclidean norms and the eigenvalues and rank of a matrix. Also, sums, products, and quotients of
semi-algebraic functions are still semi-algebraic. For some recent development of KL property, see [2, 19].

Lemma 2.3. Let (xn)n∈N be a bounded sequence in H, let Ω be the set of cluster points of (xn)n∈N, and let
h : H → (−∞,+∞] be a proper lower semicontinuous function that is constant on Ω and satisfies the KL property
at each point of Ω. Set Ω0 := {x ∈ Ω : h(xn) → h(x) as n → +∞} and suppose that Ω0 6= ∅. Then there exist
η ∈ (0,+∞], ϕ ∈ Φη, and n0 ∈ N such that, for all x ∈ Ω0,

ϕ′(h(xn)− h(x)) dist(0, ∂Lh(xn)) ≥ 1 (9)

whenever n ≥ n0 and h(xn) > h(x). Moreover, if h satisfies the KL property at every point of Ω with an exponent
of α, then the function ϕ can be chosen as ϕ(s) = γs1−α for some γ ∈ R++.

Proof. Since (xn)n∈N is bounded, Ω is nonempty and compact. According to [8, Lemma 6], there exists ε > 0,
η > 0, and ϕ ∈ Φη such that

ϕ(h(x)− h(x)) dist(0, ∂Lh(x)) ≥ 1 (10)
whenever dist(x,Ω) < ε and h(x) < h(x) < h(x) + η. From the proof of [8, Lemma 6], we also see that, if h satisfies
the KL property at every point of Ω with an exponent of α, then the function ϕ can be chosen as ϕ(s) = γs1−α for
some γ ∈ R++.

We note that dist(xn,Ω)→ 0 as n→ +∞. Indeed, suppose otherwise. Then there exist ε > 0 and a subsequence
(xkn)n∈N of (xn)n∈N such that, for all n ∈ N, dist(xkn ,Ω) ≥ ε. Since (xkn)n∈N is also bounded, there exists a
subsequence (xlkn )n∈N such that xlkn → x∗. We have that x∗ ∈ Ω and that, for all n ∈ N, dist(xlkn ,Ω) ≥ ε. By the
continuity of the distance function (see, e.g., [4, Example 1.48]), dist(x∗,Ω) ≥ ε, which contradicts the fact that
x∗ ∈ Ω.

Now, let x ∈ Ω0. Since dist(xn,Ω) → 0 and h(xn) → h(x) as n → +∞, one can find n0 ∈ N such that, for all
n ≥ n0,

dist(xn,Ω) < ε and h(xn) < h(x) + η.
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Here, we note that n0 does not depend on x because h(x) is independent of x ∈ Ω0 ⊆ Ω. The conclusion follows
from (10) and its following remark. �

3. Stationary points of fractional programs

In this section, we introduce various versions of stationary points for fractional programs and examine their rela-
tionships.

Definition 3.1 (Stationary points, lifted stationary points & strong lifted stationary points). For
problem (P), we say that x ∈ S is

(i) a (limiting) stationary point if 0 ∈ ∂L( fg + ιS)(x);

(ii) a (limiting) lifted stationary point if 0 ∈ g(x)∂L(f + ιS)(x)− f(x)∂Lg(x);

(iii) a (limiting) strong lifted stationary point if f(x)∂Lg(x) ⊆ g(x)∂L(f + ιS)(x).

It is well known that a necessary condition for x ∈ S to be a local minimizer of f
g on S is 0 ∈ ∂L( fg + ιS)(x).

Thus, any local minimizer must be a stationary point. Next, we examine the relationships between the above three
versions of stationary points.

Lemma 3.2 (Stationary points vs. lifted stationary points). Consider problem (P) in which f, g : H →
(−∞,+∞] are proper lower semicontinuous functions and S is a nonempty closed subset of H. Let C be a nonempty
closed subset of H such that C ∩ S 6= ∅ and let x ∈ C ∩ S. Suppose that g(x) > 0 and that f = f1 + ιC , where one
of the following is satisfied:

(a) f1 is Lipschitz continuous around x and x ∈ int(C ∩ S);

(b) f1 is Lipschitz continuous around x, f1 and C ∩ S are regular at x, and g is positive around x;

(c) f1 is strictly differentiable at x and g is positive around x.

Then the following statements hold:

(i) If g is Lipschitz continuous around x and ∂̂g is nonempty-valued around x, then

∂L

(
f

g
+ ιS

)
(x) ⊆ g(x)∂L(f + ιS)(x)− f(x)∂Lg(x)

g(x)2 , (11)

in which case, if x is a stationary point of (P), then it is a lifted stationary point of (P).

(ii) If g is strictly differentiable at x, then

∂L

(
f

g
+ ιS

)
(x) = g(x)∂L(f + ιS)(x)− f(x)∇g(x)

g(x)2 , (12)

in which case, x is a stationary point of (P) if and only if it is a lifted stationary point of (P).

Proof. (i): If (a) holds, then ∂L( fg + ιS)(x) = ∂L( f+ιS
g )(x) and f + ιS = f1 + ιC∩S is Lipschitz continuous around

x, hence (11) holds due to Lemma 2.1(ii) and the fact that g(x) > 0.
In both cases (b) and (c), f1 is Lipschitz continuous at x, and so is f1/g. Using the fact that g is positive around

x and applying Lemma 2.1(i) and then Lemma 2.1(ii), we have

∂L

(
f

g
+ ιS

)
(x) = ∂L

(
f1

g
+ ιC∩S

)
(x) ⊆ ∂L

(
f1

g

)
(x) + ∂LιC∩S(x) ⊆ g(x)∂Lf1(x)− f1(x)∂Lg(x)

g(x)2 + ∂LιC∩S(x).

As f1 and C∩S are regular at x (if (b) holds) or f1 is strictly differentiable at x (if (c) holds), also by Lemma 2.1(i),
∂Lf1(x) + ∂LιC∩S(x) = ∂L(f1 + ιC∩S)(x) = ∂L(f + ιS)(x). Noting that f1(x) = f(x) and that ∂LιC∩S(x) =

1
g(x)∂LιC∩S(x) since g(x) > 0, we also obtain (11).
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(ii): As g is strictly differentiable at x with g(x) 6= 0, we note that f1/g is regular at x if f1 is regular at x
(by Lemma 2.1(ii)), and that f1/g is strictly differentiable at x if f1 is strictly differentiable at x. Now, (12) is
obtained by using the same argument as in (i) and noting that the inclusions become equalities due to the strict
differentiability of g (in all of three cases), the regularity of f1/g and C ∩ S (in the case of (b)), or the strict
differentiability of f1/g (in the case of (c)). �

From the definition, any strong lifted stationary point x with ∂Lg(x) 6= ∅ is also a lifted stationary point.
Moreover, if g is strictly differentiable, then strong lifted stationary points and lifted stationary points are the same.
However, if g is not strictly differentiable, then a lifted stationary point need not to be a strong lifted stationary
point in general, as in the following example.
Example 3.3. Consider the following one-dimensional fractional program

min
x∈[−1,1]

x2 + 1
|x|+ 1 . (13)

Let x = 0, f(x) = x2 + 1, g(x) = |x|+ 1 and S = [−1, 1]. Clearly, ∂L(f + ιS)(x) = {0} and ∂Lg(x) = [−1, 1]. Then,
x is a lifted stationary point because 0 ∈ g(x)∂L(f + ιS)(x)− f(x)∂Lg(x) = [−1, 1]. On the other hand, x is not a
strong lifted stationary point as

[−1, 1] = f(x)∂Lg(x) * g(x)∂L(f + ιS)(x) = {0}.

Indeed, a direct verification shows that the lifted stationary points of (13) are −
√

2 + 1, 0, and
√

2 − 1; while the
set of strong lifted stationary points of (13) is {−

√
2 + 1,

√
2 − 1}, which coincides with the set of local/global

minimizers of problem (13).

Finally, we establish the relationship between the strong lifted stationary points and the recently studied
d(irectional)-stationary points in the difference-of-convex (DC) optimization literature [26, 6]. Recall that x ∈ S is
a d-stationary point of a function h on S if, for all x ∈ S, h′(x;x− x) ≥ 0.
Lemma 3.4 (Strong lifted stationary point vs. d-stationary points). Consider problem (P) in which S
is a nonempty closed convex subset of H and both f + ιS and g are proper lower semicontinuous weakly convex
functions. Let x ∈ S. Suppose that g is continuous on an open set containing S and that g(x) > 0. Then x is a
strong lifted stationary point of (P) if and only if it is a d-stationary point of f − f(x)

g(x) g on S.

Proof. Set θ := f(x)/g(x). First, x is a strong lifted stationary point of (P) if and only if, for all v ∈ ∂Lg(x),
0 ∈ ∂L(f + ιS)(x) − θv = ∂L(f − θ 〈v, ·〉 + ιS)(x), which is equivalent to, for all v ∈ ∂Lg(x) and all x ∈ S,
f ′(x;x − x) − θ 〈v, x− x〉 = (f −

〈
θv, ·

〉
)′(x;x − x) ≥ 0 due to Lemma 2.2(iii). Now, as g is weakly convex

on H and continuous at x, applying the last conclusion of Lemma 2.2(ii) with h = g, we have, for all x ∈ H,
g′(x;x− x) = max{〈v, x− x〉 : v ∈ ∂Lg(x)}, which completes the proof. �

4. Extrapolated proximal subgradient (e-PSG) algorithm

In this section, we consider problem (P) under the following assumptions.
Assumption 1. f = fs + fn, where fs is a continuously differentiable convex function whose gradient ∇fs is
Lipschitz continuous with modulus ` on H, and fn is a proper lower semicontinuous function, S ∩ dom f 6= ∅ and,
for all x ∈ S ∩ dom f , f(x) ≥ 0.
Assumption 2. g is a proper lower semicontinuous function which is finite and positive on S, continuous on an
open set containing S, and either weakly convex with modulus β on an open convex set containing S, or regular
and weakly convex with modulus β on S.

We note that the nonnegative assumption of the numerator f and the positivity assumption of the denominator
g are standard in the literature of fractional programs [9, 11, 12]. Also, these assumptions are easily satisfied for
many practical optimization models in diverse areas, in particular, for all the motivating examples we mentioned in
the introduction. We now propose the following proximal subgradient algorithm with extrapolation for solving the
nonsmooth and nonconvex fractional programming problem (P). To do this, we define the following boundedness
condition (BC): There exist m,M ∈ R++ such that, for all x ∈ S ∩ dom f ,

m ≤ g(x) ≤M. (BC)

8



Algorithm 1 (Extrapolated proximal subgradient (e-PSG) algorithm).
. Step 1. Choose x−1 = x0 ∈ S ∩ dom f and set n = 0. Let δ ∈ R++, let ζ ∈ R++ be such that 1−

√
βζ > 0, and

let

µ ∈

[
0, δ(1−

√
βζ)
√
mM

2M

)
and κ ∈

0,

√
mδ(1−

√
βζ)

`M
− 2mµ
`
√
mM

 ,

where ` is defined in Assumption 1, β is defined in Assumption 2, while m and M are given in (BC). In the
absence of (BC), we let µ = 0 and κ = 0.
. Step 2. Set θn = f(xn)

g(xn) , let gn ∈ ∂Lg(xn), choose τn ∈ R such that 0 < τn ≤ 1/max{
√
βθn/ζ, δ}. Let

un = xn + κn(xn − xn−1) with κn ∈ [0, κ], vn = xn + µn(xn − xn−1) with µn ∈ [0, µτn], and find

xn+1 ∈ argmin
x∈S

(
fn(x) + fs(un) + 〈∇fs(un), x− un〉+ 1

2τn
‖x− vn − τnθngn‖2 + `

2‖x− un‖
2
)
.

. Step 3. If a termination criterion is not met, let n = n+ 1 and go to Step 2.

Before proceeding, we first make a few observations. Firstly, in the special case where fs ≡ 0, fn is convex,
κn = 0, µn = 0, ` = 0 and g is continuously differentiable (and so, gn = ∇g(xn)), Algorithm 1 reduces to the
proximal gradient algorithm proposed in [9]. Secondly, in Step 2, the part “fs(un) + 〈∇fs(un), x− un〉” serves as
the linear approximation of fs at un. Although the term “fs(un)” can be removed as it does not contribute to the
minimization problem, we prefer to leave it here for understanding the algorithm intuitively. Finally, it is worth
noting that when µ < δ(1−

√
βζ)
√
mM

2M , then mδ(1−
√
βζ)

`M > 2mµ
`
√
mM

, and so, the choice of κ in Step 1 makes sense.

Remark 4.1 (Discussions on computing the subproblems). In the above algorithm, the major computational
cost lies in solving the subproblem in Step 2. In Step 2, finding xn+1 is indeed equivalent to computing the
proximal operator3 of τn

1+`τn (fn + ιS) at the point vn+τnθngn+`τnun−τn∇fs(un)
1+`τn , where fn is the nonsmooth part of

the numerator. This can be done efficiently for functions f and sets S with specific structures. For example,
(i) In the case where S is a polyhedral and fn is the maximum of finitely may affine functions, the optimization

problem in Step 2 can be reformulated as a convex quadratic optimization problem with linear constraints,
and so, can be solved by calling a QP solver. This, in particular, covers the motivating examples (i) and (iii)
in the introduction.

(ii) In the case of S = RN , fs is a convex quadratic function, fn = ιC with C being the unit sphere (as in the
motivating example (ii) in the introduction), the optimization problem in Step 2 reduces to computing the
projection onto the unit sphere C which has a closed form solution.

(iii) In the case of fn is the minimum of finitely many (nonconvex) quadratic function, that is, fn(x) =
min1≤i≤m{x>Aix+ a>i x+ αi} and S = {x : ‖x‖2 ≤ ρ}, the optimization problem in Step 2 can be computed
by solving m many (nonconvex) quadratic optimization problem with a ball constraint. As each quadratic
optimization problem with a ball constraint is a trust-region problem, and can be equivalently reformulated as
either a semi-definite program (SDP) or an eigenvalue problem. So, the subproblem can be solved by calling
an SDP solver or an eigenvalue problem solver.

(iv) In the case of S = {x : qi(x) ≤ 0, i = 1, . . . ,m1} where qi are convex quadratic functions, and fn(x) =
max1≤i≤m2 hi(x) where each hi is a convex quadratic function, the optimization problem in Step 2 can be
reformulated as a convex quadratic optimization problem with convex quadratic constraints, and so, can be
further rewritten as a semidefinite programming problem (SDP) and solved by calling an SDP solver.

Remark 4.2 (Discussions of the extrapolation parameter). We first note that our choice of the extrapolation
parameter covers the popular extrapolation parameter used for restarted FISTA in the case where g is convex (see,
for example, [5, Chapter 10] and [22]). To see this, as g is convex, one has β = 0. Choose µ = 0, δ = `M

m , and
κ ∈ (0, 1). Let κn = κνn−1−1

νn
, where

ν−1 = ν0 = 1, and νn+1 = 1 +
√

1 + 4ν2
n

2 ,

3The proximal operator of a function h is denoted by Proxh and is defined as Proxh(x) = argminy{h(y) + 1
2‖y − x‖2}.
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and reset νn−1 = νn = 1 when n = n0, 2n0, 3n0, . . . for some integer n0. In this case, it can be directly verified
that 0 ≤ κn ≤ κ < 1, and so, the requirement of our extrapolation parameter is satisfied. Also, it is worth noting
that our proposed algorithm (Algorithm 1) allows one to perform extrapolation even when the smooth part of the
numerator fs ≡ 0 (as in the the motivating examples (i) and (iii) in the introduction).

Next, we establish the subsequential convergence of Algorithm 1. To do this, we will need the following lemmas
which will be used later on. The first lemma shows that our Assumption 2 on weak convexity implies an important
subgradient inequality. The second lemma is known as the decent lemma for differentiable function whose gradient
is Lipschitz continuous.

Lemma 4.3 (Subgradient inequality for weakly convex functions). Let S be a nonempty closed convex
subset of H. Suppose that either g is regular and weakly convex with modulus β on S, or g is weakly convex with
modulus β on an open convex set O containing S. Then, for all x, y ∈ S and u ∈ ∂Lg(x),

〈u, y − x〉 ≤ g(y)− g(x) + β

2 ‖y − x‖
2.

Proof. Let x, y ∈ S. By assumption, G := g + ιC + β
2 ‖ · ‖

2 is a convex function for C = S or C = O. This implies
that ∂G(x) = ∂LG(x) = ∂L(g + ιC)(x) + βx, where the second equality is from Lemma 2.1(i). If C = O is an open
set containing S, then ∂L(g + ιC)(x) = ∂Lg(x). In the case where C = S, since S is convex and g is regular on S,
Lemma 2.1(i) also implies that ∂L(g + ιC)(x) = ∂Lg(x) + ∂LιS(x). Noting that 0 ∈ ∂LιS(x), we deduce that, in
both cases, ∂Lg(x) + βx ⊆ ∂L(g + ιC)(x) + βx = ∂G(x).

Now, let any u ∈ ∂Lg(x). Then u+ βx ∈ ∂G(x), and so

〈u, y − x〉 = 〈u+ βx, y − x〉+ 〈−βx, y − x〉 ≤ G(y)−G(x)− β 〈x, y − x〉

=
(
g(y) + ιC(y) + β

2 ‖y‖
2
)
−
(
g(x) + ιC(x) + β

2 ‖x‖
2
)
− β 〈x, y − x〉

= g(y)− g(x) + β

2 ‖y − x‖
2,

which completes the proof. �

Lemma 4.4 (Descent lemma). Let h : H → R be a differentiable function whose gradient is Lipschitz continuous
with modulus `. Then, for all x, y ∈ H,

h(y) ≤ h(x) + 〈∇h(x), y − x〉+ `

2‖y − x‖
2.

Proof. This follows from [22, Lemma 1.2.3], see also [4, Lemma 2.64(i)]. �

We are now ready to state the subsequential convergence of Algorithm 1.

Theorem 4.5 (Subsequential convergence). Let (xn)n∈N be the sequence generated by Algorithm 1. Suppose
that Assumptions 1 and 2 hold, and that the set S0 := {x ∈ S : f(x)

g(x) ≤
f(x0)
g(x0)} is bounded. Then the following hold:

(i) For all n ∈ N, xn ∈ S ∩ dom f and(
f(xn+1)
g(xn+1) + c‖xn+1 − xn‖2

)
+ α‖xn+1 − xn‖2 ≤ f(xn)

g(xn) + c‖xn − xn−1‖2,

where c := `κ2

2m + µ

2
√
mM

, α := δ(1−
√
βζ)

2M − µ√
mM
− `κ2

2m if (BC) holds,

c := 0, α := δ(1−
√
βζ)

2M ′ with M ′ := supx∈S0 g(x) otherwise.
(14)

Consequently, the sequence
(
f(xn)
g(xn)

)
n∈N

is convergent.

(ii) The sequence (xn)n∈N is bounded, asymptotically regular4, and satisfies
∑+∞
n=0 ‖xn+1 − xn‖2 < +∞.

4A sequence (xn) is said to be asymptotically regular if ‖xn+1 − xn‖ → 0 as n→ +∞.
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(iii) If lim infn→+∞ τn = τ > 0, then, for every cluster point x of (xn)n∈N, it holds that x ∈ S ∩ dom f ,
limn→+∞

f(xn)
g(xn) = f(x)

g(x) , and x is a lifted stationary point of (P).

Proof. (i)&(ii): First, it is clear that, for all n ∈ N, xn ∈ S ∩ dom f , and so

g(xn) > 0 and θn = f(xn)
g(xn) ≥ 0. (15)

We see that, for all n ∈ N and x ∈ S,

f(x) + 1
2τn
‖x− vn − τnθngn‖2 + `

2‖x− un‖
2

= fn(x) + fs(x) + 1
2τn
‖x− vn − τnθngn‖2 + `

2‖x− un‖
2

≥ fn(x) + fs(un) + 〈∇fs(un), x− un〉+ 1
2τn
‖x− vn − τnθngn‖2 + `

2‖x− un‖
2

≥ fn(xn+1) + fs(un) + 〈∇fs(un), xn+1 − un〉+ 1
2τn
‖xn+1 − vn − τnθngn‖2 + `

2‖xn+1 − un‖2

≥ fn(xn+1) + fs(xn+1)− `

2‖xn+1 − un‖2 + 1
2τn
‖xn+1 − vn − τnθngn‖2 + `

2‖xn+1 − un‖2

= f(xn+1) + 1
2τn
‖xn+1 − vn − τnθngn‖2,

where the first inequality follows from the convexity of fs, the second inequality is from the definition of xn+1 in
Step 2 of the algorithm, and the last inequality follows from the fact that fs is a differentiable function whose
gradient is Lipschitz continuous with modulus ` (Lemma 4.4 with h = fs, y = xn+1 and x = un). Therefore, for all
n ∈ N and x ∈ S,

f(x) ≥ f(xn+1) + 1
2τn

(‖xn+1 − vn‖2 − ‖x− vn‖2)− θn 〈gn, xn+1 − x〉 −
`

2‖x− un‖
2. (16)

Letting x = xn and noting that xn+1 − vn = (xn+1 − xn) − µn(xn − xn−1), xn − vn = −µn(xn − xn−1), and
xn − un = −κn(xn − xn−1), we have

f(xn) ≥ f(xn+1) + 1
2τn

(
‖xn+1 − xn‖2 − 2µn 〈xn+1 − xn, xn − xn−1〉

)
− θn 〈gn, xn+1 − xn〉 −

`κ2
n

2 ‖xn − xn−1‖2.

Next, let ω ∈ R++. By Young’s inequality,

〈xn+1 − xn, xn − xn−1〉 ≤
1

2ω ‖xn+1 − xn‖2 + ω

2 ‖xn − xn−1‖2.

Since xn, xn+1 ∈ S and gn ∈ ∂Lg(xn), Lemma 4.3 implies that

〈gn, xn+1 − xn〉 ≤ g(xn+1)− g(xn) + β

2 ‖xn+1 − xn‖2.

Combining the three above inequalities yields

f(xn) ≥ f(xn+1) + 1
2

(
1
τn
− βθn −

µn
ωτn

)
‖xn+1 − xn‖2 + θn(g(xn)− g(xn+1))− 1

2

(
`κ2
n + ωµn

τn

)
‖xn − xn−1‖2.

Since 1/τn ≥ max{
√
βθn/ζ, δ} ≥

√
βθn/ζ (and so, 1

τn
−βθn ≥

1−
√
βζ

τn
) and θn = f(xn)/g(xn), dividing g(xn+1) > 0

on both sides, it follows that

f(xn)
g(xn) + 1

2g(xn+1)

(
`κ2
n + ωµn

τn

)
‖xn − xn−1‖2 ≥ f(xn+1)

g(xn+1) + 1
2g(xn+1)

(
1−
√
βζ

τn
− µn
ωτn

)
‖xn+1 − xn‖2. (17)

We now distinguish two following cases.
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Case 1: (BC) holds. Combining with κn ≤ κ, µn ≤ µτn, 1/τn ≥ δ, and choosing ω :=
√
m/M , we derive from

(17) that
f(xn)
g(xn) + `κ2 + ωµ

2m ‖xn − xn−1‖2 ≥ f(xn+1)
g(xn+1) +

(
δ(1−

√
βζ)

2M − µ

2Mω

)
‖xn+1 − xn‖2,

which means

f(xn)
g(xn) +

(
`κ2

2m + µ

2
√
mM

)
‖xn − xn−1‖2 ≥ f(xn+1)

g(xn+1) +
(
δ(1−

√
βζ)

2M − µ

2
√
mM

)
‖xn+1 − xn‖2.

Setting Fn := f(xn)
g(xn) + c‖xn − xn−1‖2, we deduce that

Fn+1 + α‖xn+1 − xn‖2 ≤ Fn. (18)

From the choice of κ, we have `κ2

2m <
δ(1−
√
βζ)

2M − µ√
mM

. Thus, α > 0 and the sequence (Fn)n∈N is nonincreasing.
As Fn is nonnegative, (Fn)n∈N is a convergent sequence, say Fn → F . Furthermore, one also has from (18) that,
for any positive integer m,

m∑
n=0

α‖xn+1 − xn‖2 ≤
m∑
n=0

(Fn − Fn+1) = F0 − Fm+1 ≤ F0.

It follows that
+∞∑
n=0
‖xn+1 − xn‖2 < +∞.

In particular, xn+1 − xn → 0 as n→ +∞, and so

f(xn)
g(xn) = Fn − c‖xn − xn−1‖2 → F as n→ +∞.

Next, to see the boundedness of (xn)n∈N, observe that

f(xn)
g(xn) ≤ Fn ≤ F0 = f(x0)

g(x0) + c‖x0 − x−1‖2 = f(x0)
g(x0) .

So, xn ∈ S0 = {x ∈ S : f(x)
g(x) ≤

f(x0)
g(x0)}, and hence (xn)n∈N is bounded by the assumption that S0 is bounded.

Case 2 : (BC) does not hold. Then, by the construction of the algorithm, µ = κ = 0, so µn = κn = 0 for all
n ∈ N and (17) becomes

f(xn)
g(xn) ≥

f(xn+1)
g(xn+1) + 1−

√
βζ

2τng(xn+1)‖xn+1 − xn‖2,

which implies that (θn)n∈N = ( f(xn)
g(xn) )n∈N is nonincreasing. As (θn)n∈N is bounded below, it is convergent. Therefore,

for all n ∈ N, xn ∈ S0 = {x ∈ S : f(x)
g(x) ≤

f(x0)
g(x0)}, and the sequence (xn)n∈N is thus bounded. Combining with the

continuity of g on S and the boundedness of S0, one has supn∈N g(xn) ≤M ′ = supx∈S0 g(x) < +∞. Since 1/τn ≥ δ,
it follows that

f(xn+1)
g(xn+1) + δ(1−

√
βζ)

2M ′ ‖xn+1 − xn‖2 ≤ f(xn)
g(xn) . (19)

The asymptotic regularity of (xn)n∈N follows from the convergence of (θn)n∈N and (19). Also, telescoping (19)
yields

+∞∑
n=0
‖xn+1 − xn‖2 < +∞.

(iii): Let x be any cluster point of (xn)n∈N and let (xkn)n∈N be a subsequence of (xn)n∈N such that xkn → x.
Then x ∈ S and, by the asymptotic regularity, xkn−1 → x and also ukn−1 → x and vkn−1 → x. We have from (16)
that, for all n ∈ N and x ∈ S,

f(x) ≥ f(xkn)− 1
2τkn−1

‖x− vkn−1‖2 − θkn−1 〈gkn−1, xkn − x〉 −
`

2‖x− ukn−1‖2. (20)
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Since g is continuous on an open set containing S, we have g(xkn) → g(x) > 0 and, by (3) and passing to a
subsequence if necessary, we may assume that gkn−1 → g ∈ ∂Lg(x). Letting x = x and n→ +∞ in (20) and noting
that lim infn→+∞ τn = τ > 0, we get lim supn→+∞ f(xkn) ≤ f(x). This together with the lower semicontinuity of
f implies that limn→+∞ f(xkn) = f(x). It then follows that

lim
n→+∞

f(xn)
g(xn) = lim

n→+∞

f(xkn)
g(xkn) = f(x)

g(x) .

Now, letting n→ +∞ in (20), one has, for all x ∈ S,

f(x)− f(x) ≥ − 1
2τ ‖x− x‖

2 − f(x)
g(x) 〈g, x− x〉 −

`

2‖x− x‖
2,

or equivalently, for all x ∈ S,

ϕ(x) ≥ ϕ(x), where ϕ(x) := f(x) +
(

1
2τ + `

2

)
‖x− x‖2 − f(x)

g(x) 〈g, x〉 .

We must have 0 ∈ ∂L(ϕ+ ιS)(x), and so f(x)
g(x) g ∈ ∂L(f + ιS)(x). In particular, x ∈ S ∩ dom f . Since g ∈ ∂Lg(x), we

obtain that
0 ∈ g(x)∂L(f + ιS)(x)− f(x)∂Lg(x),

and the proof is complete. �

Next, we consider the following assumption.

Assumption 3. fn = f l + ιC , where C is a nonempty closed subset of H such that C ∩ S 6= ∅ and one of the
following is satisfied:

(a) f l is locally Lipschitz continuous on H and C = S = H;

(b) f l is locally Lipschitz continuous on an open set containing S ∩ dom f , both f l and C ∩ S are regular on
S ∩ dom f , and g is positive on an open set containing S ∩ dom f ;

(c) f l is strictly differentiable on an open set containing S ∩ dom f and g is positive on an open set containing
S ∩ dom f .

All of our motivating examples in the introduction satisfy this assumption. Indeed, we note that convex sets
and the unit sphere C = {x ∈ RN : ‖x‖ = 1} are regular, a continuous convex function on RN is regular at any
x ∈ RN , and ιC is regular at any x ∈ C. It follows that examples (i) and (iii) both satisfy Assumption 3(a)&(b),
while example (ii) satisfies Assumption 3(b)&(c).

Corollary 4.6. Under the hypotheses of Theorem 4.5, suppose further that lim infn→+∞ τn = τ > 0, Assumption 3
holds, and g is strictly differentiable on an open set containing S ∩ dom f . Then every cluster point x of (xn)n∈N
is a stationary point of (P).

Proof. This follows from Theorem 4.5(iii) and Lemma 3.2(ii). �

5. A unified analysis framework and global convergence of e-PSG

In this section, we will prove that the global convergence of the whole sequence of (xn)n∈N generated by Algorithm 1,
under the assumption that a suitable merit function satisfies the KL property. To do this, we first establish a general
framework for analyzing descent methods which is amenable for optimization method with multi-steps and inexact
subproblems. As we will see later on, the proximal subgradient method with extrapolation which we proposed fits
to this framework, and so, our desired global convergence result follows consequently.

Firstly, we fix some notation which will be used later on. Let H,K be two finite-dimensional real Hilbert
spaces. Let h : K → (−∞,+∞] be a proper lower semicontinuous function, let (xn)n∈N and (zn)n∈N be respectively
sequences in H and K, (αn)n∈N and (βn)n∈N sequences in R++, (∆n)n∈N and (εn)n∈N sequences in R+, and let ı ≤ ı
be two (not necessarily positive) integers and λi ∈ R+, i ∈ I := {ı, ı+ 1, . . . , ı}, with

∑
i∈I λi = 1. We set ∆k = 0

for k < 0 and consider the following conditions:
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H1 (Sufficient decrease condition). For each n ∈ N,

h(zn+1) + αn∆2
n ≤ h(zn);

H2 (Relative error condition). For each n ∈ N,

βn dist(0, ∂Lh(zn)) ≤
∑
i∈I

λi∆n−i + εn;

H3 (Continuity condition). There exist a subsequence (zkn)n∈N and z̃ such that

zkn → z̃ and h(zkn)→ h(z̃) as n→ +∞;

H4 (Parameter condition). It holds that

α := inf
n∈N

αn > 0, γ := inf
n∈N

αnβn > 0, and
+∞∑
n=1

εn < +∞;

H5 (Distance condition). There exist j ∈ Z and c ∈ R such that, for all n ∈ N,

‖xn+1 − xn‖ ≤ c∆n+j .

Next, we present a lemma which serves as a preparation for our abstract convergence result later on.

Lemma 5.1. Suppose that (H1) and (H3) hold. Let Ω be the set of cluster points of (zn)n∈N and set Ω0 := {z ∈
Ω : h(zn)→ h(z) as n→ +∞}. Then the following hold:

(i) Ω0 = {z ∈ K : ∃zkn → z with h(zkn)→ h(z) as n→ +∞} 6= ∅ and, for all z ∈ Ω0,

h(zn) ↓ h(z) as n→ +∞.

(ii) If α := infn∈N αn > 0, then, for all z ∈ Ω0,

+∞∑
n=0

∆2
n ≤

h(z0)− h(z)
α

< +∞

and, consequently, ∆n → 0 as n→ +∞.

(iii) If (H2) holds and δ := infn∈N,i∈I αn−iβ2
n > 0, then, for all n ≥ max{0, ı},

dist(0, ∂Lh(zn)) ≤

√
h(zn−ı)− h(zn+1−ı)

δ
+ εn
βn
.

If additionally limn→+∞ εn/βn = 0, then, for all z ∈ Ω0,

0 ∈ ∂Lh(z).

Proof. (i): We first have from (H1) that (h(zn))n∈N is nondecreasing. Therefore, (h(zn))n∈N is convergent if and
only if it has a converging subsequence. It follows that

Ω0 = {z ∈ K : ∃zkn → z with h(zkn)→ h(z) as n→ +∞}

and by (H3), Ω0 6= ∅. The remaining statement follows from the definition of Ω0 and the monotonicity of (h(zn))n∈N.
(ii): Let z ∈ Ω0. By (H1) and (i),

+∞∑
n=0

αn∆2
n ≤

+∞∑
n=0

(h(zn)− h(zn+1)) = h(z0)− h(z).
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Since α = infn∈N αn > 0, it follows that
+∞∑
n=0

∆2
n ≤

h(z0)− h(z)
α

< +∞,

and hence, ∆n → 0 as n→ +∞.
(iii): Assume that (H2) holds and δ := infn∈N,i∈I αn−iβ2

n > 0. Let n ≥ max{0, ı}. Applying Cauchy–Schwarz
inequality and using the fact that

∑
i∈I λ

2
i ≤

∑
i∈I λi = 1, we have(∑

i∈I
λi∆n−i

)2

≤

(∑
i∈I

λ2
i

)(∑
i∈I

∆2
n−i

)
≤
∑
i∈I

∆2
n−i.

Combining with (H2) and then with (H1) yields

βn dist(0, ∂Lh(zn)) ≤
√∑

i∈I
∆2
n−i + εn ≤

√∑
i∈I

h(zn−i)− h(zn+1−i)
αn−i

+ εn.

Since δ = infn∈N,i∈I αn−iβ2
n > 0, we derive that

dist(0, ∂Lh(zn)) ≤
√∑

i∈I

h(zn−i)− h(zn+1−i)
αn−iβ2

n

+ εn
βn

≤
√∑

i∈I

h(zn−i)− h(zn+1−i)
δ

+ εn
βn

=

√
h(zn−ı)− h(zn+1−ı)

δ
+ εn
βn
.

Finally, if limn→+∞ εn/βn = 0, then, noting from (i) that (h(zn))n∈N is convergent, we get limn→+∞ dist(0, ∂Lh(zn)) =
0. This shows that 0 ∈ ∂Lh(z) for all z ∈ Ω0, which completes the proof. �

Theorem 5.2 (Abstract convergence). Suppose that (H1), (H2), (H3), and (H4) hold and that the sequence
(zn)n∈N is bounded. Let Ω be the set of cluster points of (zn)n∈N and suppose that h is constant on Ω and satisfies
the KL property at each point of Ω. Set Ω0 := {z ∈ Ω : h(zn)→ h(z) as n→ +∞} and h := h(z) for z ∈ Ω0. Then
the following hold:

(i) The sequence (∆n)n∈N satisfies
+∞∑
n=0

∆n < +∞.

(ii) If (H5) holds, then
∑+∞
n=0 ‖xn+1 − xn‖ < +∞, and the sequence (xn)n∈N is convergent.

(iii) If infn∈N βn > 0, then, for all z ∈ Ω0,
0 ∈ ∂Lh(z).

(iv) Suppose further that h satisfies the KL property at every point of Ω with an exponent of α ≤ 1/2, that ı ≤ 1,
and that

δ := inf
n∈N,i∈I

αn−iβ
2
n > 0 and εn

βn
= O

(√
h(zn−ı)− h(zn+1−ı)

)
as n→ +∞. (21)

Then there exist γ1 ∈ R++ and ρ ∈ (0, 1) such that, for all n ∈ N,

h(zn)− h ≤ γ1ρ
n.

Moreover, if additionally (H5) holds and
∑+∞
k=n εk = O

(√
h(zn−ı)− h

)
as n→ +∞, then there exist x ∈ H

and γ2 ∈ R++ such that, for all n ∈ N,
‖xn − x‖ ≤ γ2ρ

n
2 .
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Proof. First, Ω0 6= ∅ due to Lemma 5.1(i). Let z ∈ Ω0. Again by Lemma 5.1(i),

h(zn) ↓ h = h(z) as n→ +∞.

(i): Noting that, for all n ∈ N, h(zn) ≥ h(z), we distinguish the following two cases.
Case 1: There exists n1 ∈ N such that h(zn1) = h(z). Then, since (h(zn))n∈N is nondecreasing, h(zn) = h(z)

for all n ≥ n1. It follows from (H1) that ∆n = 0 for all n ≥ n1, so
∑+∞
n=0 ∆n < +∞.

Case 2: For all n ∈ N, h(zn) > h(z). We derive from Lemma 2.3 that there exist η ∈ (0,+∞], ϕ ∈ Φη, and
n0 ∈ N such that, for all n ≥ n0,

ϕ′(h(zn)− h(z)) dist(0, ∂Lh(zn)) ≥ 1. (22)
Setting rn := h(zn)− h(z) ↓ 0, by combining with (H1), (H2), (H4), and the concavity of ϕ, it follows that, for all
n ≥ n0,

∆2
n ≤

1
αn

(h(zn)− h(zn+1))ϕ′(h(zn)− h(z)) dist(0, ∂Lh(zn))

≤ 1
αnβn

(
ϕ(rn)− ϕ(rn+1)

)(∑
i∈I

λi∆n−i + εn

)
≤ 1
γ

(
ϕ(rn)− ϕ(rn+1)

)(∑
i∈I

λi∆n−i + εn

)
.

Using the inequality of arithmetic and geometric means (AM-GM) gives us that, for all n ≥ n0,

2∆n ≤
1
γ

(
ϕ(rn)− ϕ(rn+1)

)
+
(∑
i∈I

λi∆n−i + εn

)
.

Since this inequality holds for all n ≥ n0, we derive that, for all m ≥ n ≥ max{n0, ı},

2
m∑
k=n

∆k ≤
1
γ

(
ϕ(rn)− ϕ(rm+1)

)
+

m∑
k=n

∑
i∈I

λi∆k−i +
m∑
k=n

εk. (23)

We have that
m∑
k=n

∑
i∈I

λi∆k−i =
∑
i∈I

λi

m∑
k=n

∆k−i =
∑
i∈I

λi

m−i∑
k=n−i

∆k ≤
∑
i∈I

λi

m−ı∑
k=n−ı

∆k =
m−ı∑
k=n−ı

∆k,

using the fact that ∆k ≥ 0 for all k ∈ Z and that
∑
i∈I λi = 1. Now, by adopting the convention that a summation

is zero when the starting index is larger than the ending index,
m−ı∑
k=n−ı

∆k ≤
m∑
k=n

∆k +
n−1∑
k=n−ı

∆k +
m−ı∑

k=m+1
∆k =

m∑
k=n

∆k +
ı∑
i=1

∆n−i +
−1∑
i=ı

∆m−i.

We continue (23) as
m∑
k=n

∆k ≤
1
γ

(
ϕ(rn)− ϕ(rm+1)

)
+

ı∑
i=1

∆n−i +
−1∑
i=ı

∆m−i +
m∑
k=n

εk.

Letting m→ +∞ and noting from Lemma 5.1(ii) that ∆m → 0, we obtain

+∞∑
k=n

∆k ≤
1
γ
ϕ(rn) +

ı∑
i=1

∆n−i +
+∞∑
k=n

εk < +∞, (24)

which yields
∑+∞
n=0 ∆n < +∞.

(ii): This follows from (i) and (H5).
(iii): As infn∈N βn > 0, noting that infn∈N αn > 0 and limn→+∞ εn = 0, we have infn∈N,i∈I αn−iβ2

n > 0 and
limn→+∞ εn/βn = 0. Therefore, the conclusion of this part follows from Lemma 5.1(iii).
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(iv): Using Lemma 5.1(iii) and (21), and by increasing n0 if necessary, we find c1 ∈ R++ such that, for all
n ≥ n0,

dist(0, ∂Lh(zn)) ≤
√
h(zn−ı)− h(zn+1−ı)

δ
+ εn
βn
≤ c1

√
h(zn−ı)− h(zn+1−ı).

Combining with (22) yields
1 ≤ c1ϕ

′(h(zn)− h(z))
√
h(zn−ı)− h(zn+1−ı).

Since rn = h(zn)− h(z), it follows that

1 ≤ c2
1 [ϕ′(rn)]2 (rn−ı − rn+1−ı).

As ϕ can be chosen as ϕ(s) = γs1−α for some γ ∈ R++, there exists c2 ∈ R++ such that, for all n ≥ n0,

c2r
2α
n ≤ rn−ı − rn+1−ı.

Since rn ↓ 0, 2α ≤ 1, and 1− ı ≥ 0, by increasing n0 if necessary, it holds that, for all n ≥ n0, r2α
n ≥ rn ≥ rn+1−ı.

We deduce that, for all n ≥ n0,
rn+1−ı ≤

1
c2 + 1rn−ı,

and hence, there exist γ1 ∈ R++ and ρ ∈ (0, 1) such that, for all n ∈ N, 0 ≤ rn = h(zn)− h(z) ≤ γ1ρ
n.

Now, it follows from Cauchy–Schwarz inequality, (H1), and (H4) that(
ı∑
i=1

∆n−i

)2

≤ ı
ı∑
i=1

∆2
n−i ≤ ı

ı∑
i=1

h(zn−i)− h(zn+1−i)
α

≤ ı

α
max{0, h(zn−ı)− h(zn)}

≤ ı

α
rn−ı.

Combining with (24) gives, for all n ≥ n0,
+∞∑
k=n

∆k ≤
1
γ
ϕ(rn) +

√
ı

α
rn−ı +

+∞∑
k=n

εk.

As
∑+∞
k=n εk = O

(√
h(zn−ı)− h(z)

)
= O(√rn−ı) as n → +∞ and ϕ(rn) = γr1−α

n ≤ γr1−α
n−ı ≤ γ

√
rn−ı for all n

large enough, by increasing n0 if necessary, there exists c3 ∈ R++ such that, for all n ≥ n0,
+∞∑
k=n

∆k ≤ c3
√
rn−ı ≤ c3

√
γ1ρ

n−ı
2 .

Since (H5) holds, (ii) implies that (xn)n∈N is convergent to some x ∈ H. Then, for all n ∈ N,

‖xn − x‖ ≤
+∞∑
k=n
‖xk+1 − xk‖ ≤ c

+∞∑
k=n

∆k

and the conclusion follows. �

Remark 5.3 (Parameter conditions). In view of (H4) and as shown in the proof of Theorem 5.2(iii), if
infn∈N βn > 0, then the conditions infn∈N,i∈I αn−iβ2

n > 0 and limn→+∞ εn/βn = 0 in Lemma 5.1(iii) are guar-
anteed. If additionally εn = O(h(zn−ı)− h(zn+1−ı)) as n→ +∞, then the parameter conditions

εn
βn

= O
(√

h(zn−ı)− h(zn+1−ı)
)

and
+∞∑
k=n

εk = O
(√

h(zn−ı)− h(z)
)

as n→ +∞.

in Theorem 5.2(iv) are also satisfied. Indeed, since h(zn) ↓ h(z), we have h(zn−ı) − h(zn+1−ı) → 0 as
n → +∞, and so, for all n large enough, h(zn−ı) − h(zn+1−ı) ≤

√
h(zn−ı)− h(zn+1−ı). It follows that
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εn = O(
√
h(zn−ı)− h(zn+1−ı)) and, since infn∈N βn > 0, εn/βn = O(

√
h(zn−ı)− h(zn+1−ı)) as n → +∞. Now,

we note that
+∞∑
k=n

(h(zk−ı)− h(zk+1−ı)) =
ı∑
i=ı

(h(zn−i)− h(z)) ≤ (ı− ı+ 1)(h(zn−ı)− h(z)),

which implies that
∑+∞
k=n εk = O(h(zn−ı)− h(z)), and so

∑+∞
k=n εk = O

(√
h(zn−ı)− h(z)

)
as n→ +∞.

Remark 5.4 (Comparison to the existing literature). The general framework (H1)–(H5) extends various
convergence conditions for exact and inexact descent methods in the literature. Specifically, in [3, 8], the authors
proposed conditions that satisfied (H1)–(H5) with K = H = RN , zn = xn, ∆n = ‖xn+1 − xn‖2, αn ≡ a, βn ≡ 1/b,
εn ≡ 0, I = {1}, and λ1 = 1. These conditions were then generalized in [13] to flexible parameters and real
Hilbert spaces. In the finite-dimensional setting, the conditions in [13] fulfill (H1)–(H5) with K = H, zn = xn,
∆n = ‖xn+1 − xn‖2, I = {1}, and λ1 = 1.

The framework (H1)–(H5) also holds in the case of [7, Proposition 4] with K = H = RN , zn = xn, ∆n =
‖xn+2 − xn+1‖2, αn ≡ a, βn ≡ 1/b, εn ≡ 0, I = {1}, and λ1 = 1. Here, ∆n is shifted one step forward comparing
to the two aforementioned studies. This difference makes the relative error condition explicit; see [23, Section 2.4]
for a discussion.

In [25], the authors provided a framework for convergence analysis of iPiano, a proximal gradient algorithm with
extrapolation. In turn, their conditions satisfied (H1)–(H5) with K = H2, zn = (xn, xn−1), ∆n = ‖xn − xn−1‖2,
αn ≡ a, βn ≡ 1/b, εn ≡ 0, I = {0, 1}, and λ0 = λ1 = 1/2. Recently, these conditions have been extended in [24]
with H = RN , K = RN+P and zn = (xn, un). It is worth noting that the finite index set I of integers in [24] can
always be written as I = {ı, ı+ 1, . . . , ı} for ı ≤ ı. To get the global convergence of (xn)n∈N, [24, Theorem 10] not
only needs (H5) as our Theorem 5.2 but also requires that h is bounded from below and that, for any converging
subsequence (zkn)n∈N of (zn)n∈N,

zkn → z̃ and h(zkn)→ h(z̃) as n→ +∞,

which implies that h is constant on Ω. We also note that linear convergence of (xn)n∈N has been not investigated
in the framework of [24, 25].

Next, we show that the full sequence generated by Algorithm 1 is globally convergent by further assuming that
a suitable merit function is a KL function. We note that, as we will see later in Remark 5.6, this assumption is
automatically fulfilled if f and g are both semi-algebraic functions and S is a semi-algebraic set, which, in particular,
holds for all the motivating examples mentioned before.

Theorem 5.5 (Global convergence). Let lim infn→∞ τn = τ > 0 and let (xn)n∈N be the sequence generated
by Algorithm 1. Suppose that Assumptions 1, 2, and 3 hold, that g is continuously differentiable on an open set
containing S ∩ dom f , that, for c given in (14),

h(x, y) := f(x)
g(x) + ιS(x) + c‖x− y‖2

satisfies the KL property at (x, x) for all x ∈ S∩dom f , and that the set {x ∈ S : f(x)
g(x) ≤

f(x0)
g(x0)} is bounded. Suppose

that there exist ε, `g ∈ R++ satisfying

∀x, y ∈ S ∩ dom f, ‖x− y‖ ≤ ε =⇒ ‖∇g(x)−∇g(y))‖ ≤ `g‖x− y‖.

Then
∑+∞
n=0 ‖xn+1 − xn‖ < +∞, and the sequence (xn)n∈N converges to a stationary point of (P). Moreover, if h

satisfies the KL property with an exponent of α ≤ 1/2 at (x, x) for all x ∈ S ∩ dom f , then the convergence rate of
(xn)n∈N and (h(xn+1, xn))n∈N is linear in the sense that there exist γ1, γ2 ∈ R++ and ρ ∈ (0, 1) such that, for all
n ∈ N,

|h(xn+1, xn)− h(x∞, x∞)| ≤ γ1ρ
n and ‖xn − x∞‖ ≤ γ2ρ

n
2 .

Proof. Let zn = (xn+1, xn). Let Ω be the set of cluster points of (zn)n∈N. Theorem 4.5 asserts that the sequence
(zn)n∈N is in (S ∩ dom f)× (S ∩ dom f), bounded, and asymptotically regular. Moreover, for all n ∈ N,

h(zn+1) + α‖xn+1 − xn‖2 ≤ h(zn) with α > 0 given in (14). (25)
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By combining with Corollary 4.6, for every z ∈ Ω, one has z = (x, x) with x ∈ S ∩ dom f a stationary point of (P)
and

θn = f(xn)
g(xn) →

f(x)
g(x) as n→ +∞.

In particular, h(zn) = h(xn+1, xn) = f(xn+1)
g(xn+1) + c ‖xn+1 − xn‖2 → f(x)

g(x) as n→ +∞.

From Step 2 of Algorithm 1 and noting that gn = ∇g(xn), we have for all n ∈ N,

0 ∈ ∂L(fn + ιS)(xn+1) +∇fs(un) + 1
τn

(xn+1 − vn − τnθn∇g(xn)) + `(xn+1 − un),

which combined with ∂L(f + ιS) = ∇fs + ∂L(fn + ιS) yields

x̂n+1 := ∇fs(xn+1)−∇fs(un)− `(xn+1 − un)− 1
τn

(xn+1 − vn) + θn∇g(xn)

∈ ∂L(f + ιS)(xn+1).

Since f and S are regular at xn, g is continuously differentiable at xn, and g(xn) > 0, it holds that

∂Lh(zn) =
{
∂L

(
f

g
+ ιS

)
(xn+1) + 2c(xn+1 − xn)

}
× {2c(xn − xn+1)}

=
{
g(xn+1)∂L(f + ιS)(xn+1)− f(xn+1)∇g(xn+1)

g(xn+1)2 + 2c(xn+1 − xn)
}
× {2c(xn − xn+1)}

=
{
∂L(f + ιS)(xn+1)− θn+1∇g(xn+1)

g(xn+1) + 2c(xn+1 − xn)
}
× {2c(xn − xn+1)},

where the second equality follows from Lemma 3.2(ii). Therefore, we have {x∗n+2c(xn+1−xn)}×{2c(xn−xn+1)} ∈
∂Lh(zn) with

x∗n := x̂n+1 − θn+1∇g(xn+1)
g(xn+1) .

Note that τn ≤ 1/max{
√
βθn/ζ, δ} ≤ 1

δ , so µn ≤ µτn ≤
µ
δ . Next, we see that, for all n ∈ N,

‖xn+1 − vn‖ ≤ ‖xn+1 − xn‖+ µn‖xn − xn−1‖ ≤ ‖xn+1 − xn‖+ µ

δ
‖xn − xn−1‖,

‖xn+1 − un‖ ≤ ‖xn+1 − xn‖+ κn‖xn − xn−1‖ ≤ ‖xn+1 − xn‖+ κ‖xn − xn−1‖,

and by the Lipschitz continuity of ∇fs,

‖∇fs(xn+1)−∇fs(un)‖ ≤ `‖xn+1 − un‖ ≤ `‖xn+1 − xn‖+ `κ‖xn − xn−1‖.

Since (xn)n∈N is bounded, the continuity of ∇g implies that (∇g(xn))n∈N is also bounded. There thus exists
µ ∈ R++ such that, for all n ∈ N, ‖∇g(xn)‖ ≤ µ. Since lim infn→+∞ τn = τ > 0 and limn→+∞ ‖xn+1 − xn‖ = 0,
there exists n0 ∈ N such that, for all n ≥ n0,

τn ≥ τ/2 and ‖xn+1 − xn‖ ≤ ε.

Now, from the definition of h(zn), we see that

θn∇g(xn)− θn+1∇g(xn+1) = θn(∇g(xn)−∇g(xn+1))− c‖xn − xn−1‖2∇g(xn+1)
+ c‖xn+1 − xn‖2∇g(xn+1) + (h(zn−1)− h(zn))∇g(xn+1)

and by the Lipschitz-type continuity of ∇g and the boundedness of (∇g(xn)), for all n ≥ n0,

‖θn∇g(xn)− θn+1∇g(xn+1)‖ ≤ `gθn‖xn+1 − xn‖+ cεµ‖xn − xn−1‖
+ cεµ‖xn+1 − xn‖+ µ(h(zn−1)− h(zn)).

Altogether, it follows from the definition of x∗n that, for all n ≥ n0,

‖x̂n+1 − θn+1∇g(xn+1)‖ ≤ ‖∇fs(xn+1)−∇fs(un)‖+ `‖xn+1 − un‖+ 1
τn
‖xn+1 − vn‖
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+ ‖θn∇g(xn)− θn+1∇g(xn+1)‖

≤ 2`‖xn+1 − xn‖+ 2`κ‖xn − xn−1‖+ 2
τ

(‖xn+1 − xn‖+ µ

δ
‖xn − xn−1‖)

+ (`gθn + cεµ)‖xn+1 − xn‖+ cεµ‖xn − xn−1‖+ µ(h(zn−1)− h(zn)).

Noting that (θn)n∈N is convergent and hence bounded and recalling that g(x) ≥ m > 0 for all x ∈ S ∩ dom f , we
find K ∈ R++ such that, for all n ≥ n0,

‖x∗n‖ = ‖x̂n+1 − θn+1∇g(xn+1)‖
|g(xn+1)|

≤ K (‖xn+1 − xn‖+ ‖xn − xn−1‖+ (h(zn−1)− h(zn))) .

We deduce that there exists K1 ∈ R++ such that, for all n ≥ n0,

dist(0, ∂Lh(zn)) ≤
√
‖x∗n + 2c(xn+1 − xn)‖2 + 4c2‖xn − xn+1‖2

≤
√

2‖x∗n‖2 + 8c2‖xn+1 − xn‖2 + 4c2‖xn − xn+1‖2

≤ K1 (‖xn+1 − xn‖+ ‖xn − xn−1‖+ h(zn−1)− h(zn)) ,

where the second inequality is from the elementary inequality that ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2. Now, by applying
Theorem 5.2 and Remark 5.3 with I = {0, 1}, λ0 = λ1 = 1/2, ∆n = 2K1‖xn+1 − xn‖, αn ≡ α

4K2
1
> 0, βn ≡ 1, and

εn = K1(h(zn−1)− h(zn)) ≤ K1(h(zn−1)− h(zn+1)), we get the conclusion. �

Remark 5.6. In Theorem 5.5, we impose the assumption that the merit function h(x, y) = f(x)
g(x) + ιS(x)+c‖x−y‖2

is a KL function with c given in (14). Note that sum or quotient of two semi-algebraic functions is a semi-algebraic
function, and indicator function of a semi-algebraic set (sets described as union or intersections of finitely many
sets which can be expressed as lower level sets of polynomials) is also a semi-algebraic function. We note that this
assumption is automatically satisfied when f and g are semi-algebraic functions, and S is a semi-algebraic set. This,
in particular, covers all the motivating examples we mentioned in the introduction.

Next, we see that Algorithm 1 converges in a linear rate when applied to the scale invariant sparse signal recovery
problem and Rayleigh quotient optimization with spherical constraint, if the parameters τn satisfy lim infn→∞ τn =
τ > 0.

Proposition 5.7 (KL exponent 1/2 & linear convergence). Suppose that H = RN and one of the following
holds:

(i) f(x) = x>Ax + ιC(x), g(x) = x>Bx, and S = RN , where A and B are symmetric positive definite matrices
and C := {x ∈ RN : ‖x‖ = 1}.

(ii) f(x) = ‖x‖1, g(x) = ‖x‖2, and S = {x ∈ RN : Ax ≤ b, Cx = d}, where A ∈ RM×N , b ∈ RM , C ∈ RP×N , and
d ∈ RP .

Then, for all c ∈ R+, h(x, y) = f(x)
g(x) + ιS(x) + c‖x− y‖2 satisfies the KL property with an exponent of 1/2 at (x, x)

for all x ∈ dom f . Consequently, if lim infn→∞ τn = τ > 0, then Algorithm 1 exhibits linear convergence when
applied to the above cases.

Proof. In view of [19, Theorem 3.6] and Theorem 5.5, it suffices to show that F := f/g + ιS is a KL function with
an exponent of 1/2.

(i): We see that F (x) = x>Ax
x>Bx

+ ιC(x). For all x /∈ C, ∂LF (x) = ∅. For all x ∈ C, since ∂LιC(x) = NC(x) =
{ξx : ξ ∈ R}, it holds that

∂LF (x) =
{

2(x>Bx)Ax− 2(x>Ax)Bx
(x>Bx)2 + ξx : ξ ∈ R

}
. (26)

Let x ∈ dom ∂LF . We must have x ∈ C. Let ε, η ∈ (0, 1) and let x be such that ‖x − x‖ ≤ ε and F (x) < F (x) <
F (x) + η. Then F (x) < +∞, and so x ∈ C. It follows from (26) that

dist(0, ∂LF (x)) = inf
ξ∈R

∥∥∥∥2(x>Bx)Ax− 2(x>Ax)Bx
(x>Bx)2 + ξx

∥∥∥∥
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= inf
ξ∈R

(∥∥∥∥2(x>Bx)Ax− 2(x>Ax)Bx
(x>Bx)2

∥∥∥∥2

+ ξ2

)1/2

=
∥∥∥∥2(x>Bx)Ax− 2(x>Ax)Bx

(x>Bx)2

∥∥∥∥
= 2
x>Bx

‖(A− F (x)B)x− (F (x)− F (x))Bx‖ ,

where the second equality follows from the fact that x>(2(x>Bx)Ax− 2(x>Ax)Bx) = 0 and ‖x‖ = 1. Now, since
A− F (x)B is a symmetric matrix, there exists c > 0 such that, for all z ∈ RN ,

‖(A− F (x)B)z‖2 ≥ c(z>(A− F (x)B)z) = c(z>Bz)(F (z)− F (x)).

Therefore,
dist(0, ∂LF (x)) ≥ 2(F (x)− F (x))1/2

( √
c√

x>Bx
− (F (x)− F (x))1/2 ‖Bx‖

x>Bx

)
.

Let λmax and λmin are the maximum and minimum eigenvalues of B, respectively. Then λmin ≤ x>Bx ≤ λmax
since ‖x‖ = 1. By shrinking η if necessary, we have

(F (x)− F (x))1/2 ‖Bx‖
x>Bx

≤ η1/2 ‖Bx‖
λmin

≤
√
c

2
√
λmax

.

We deduce that dist(0, ∂LF (x)) ≥
√
c√

λmax
(F (x)− F (x))1/2, and F is thus a KL function with an exponent of 1/2.

(ii): By a similar argument as in [30, Theorem 4.4], F is a KL function with an exponent of 1/2. �

6. Convergence to strong stationary points

In this section, we propose another algorithm which converges to a strong lifted stationary points of the fractional
programming problem (P). To do this, we now consider the case where Assumption 2 is replaced by the following
stronger assumption.

Assumption 2’. g(x) = max{gi(x) : 1 ≤ i ≤ p}, where each gi is continuously differentiable on an open set
containing S and weakly convex on S with modulus β ∈ R+, and (BC) holds.

Recall that the ε-active set for g(x) = max{gi(x) : 1 ≤ i ≤ p} is defined by

Iε(x) = {i ∈ {1, . . . , p} : gi(x) ≥ g(x)− ε}.

We then propose an enhanced extrapolated proximal subgradient algorithm as follows.

Algorithm 2 (Enhanced extrapolated proximal subgradient algorithm).
. Step 1. Choose x−1 = x0 ∈ S ∩ dom f and set n = 0. Let δ, ω ∈ R++, let ζ ∈ R++ be such that 1−

√
βζ > 0,

and let

µ ∈

[
0, δ(1−

√
βζ)
√
mM

2M

)
and κ ∈

0,

√
mδ(1−

√
βζ)

`M
− 2mµ
`
√
mM

 ,

where ` is defined in Assumption 1, β is defined in Assumption 2’, while m and M are given in (BC).
. Step 2. Set θn = f(xn)

g(xn) and choose τn ∈ R such that 0 < τn ≤ 1/max{βθn/(1− ζ), δ}. Let un = xn + κn(xn −
xn−1) with κn ∈ [0, κ] and vn = xn + µn(xn − xn−1) with µn ∈ [0, µτn]. For each in ∈ Iε(xn), find

winn ∈ argmin
x∈S

(
fn(x) + fs(un) + 〈∇fs(un), x− un〉+ 1

2τn
‖x− vn − τnθn∇gin(xn)‖2 + `

2‖x− un‖
2
)
.
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. Step 3. Set xn+1 := wînn , where

în ∈ argmin
in∈Iε(xn)

(
f(winn )− θng(winn ) + 1

2

(
1−
√
βζ

τn
− Mµn√

mMτn

)
‖winn − xn‖2

)
.

. Step 4. If a termination criterion is not met, let n = n+ 1 and go to Step 2.

Before we proceed, we note that Step 3 in Algorithm 2 is motivated by the recent work of Pang et al. [26] which
proposes an enhanced version of the DC algorithm for solving DC programs that converges to a stronger notion of
stationary points, namely, to d-stationary points. Similar to the work of Pang et al., in Step 2, we need to compute
the proximal mapping of fn + ιS for |Iε(xn)| times (which is at most p). Although comparing to Algorithm 1,
the computation cost in solving each subproblem may be higher, as we will see later, the algorithm converges to a
strong lifted stationary point of (P).

Theorem 6.1. Let (xn)n∈N be the sequence generated by Algorithm 2. Suppose that Assumptions 1 and 2’ hold,
and that the set {x ∈ S : f(x)

g(x) ≤
f(x0)
g(x0)} is bounded. Then the following hold:

(i) For all n ∈ N, xn ∈ S ∩ dom f and

Fn := f(xn)
g(xn) +

(
`κ2

2m + µ

2
√
mM

)
‖xn − xn−1‖2 (27)

is nonincreasing and convergent. Consequently, the sequence
(
f(xn)
g(xn)

)
n∈N

is convergent.

(ii) The sequence (xn)n∈N is bounded and asymptotically regular. In particular,

+∞∑
n=0
‖xn+1 − xn‖2 < +∞.

(iii) If lim infn→+∞ τn = τ > 0, then, for every cluster point x of (xn)n∈N, it holds that x ∈ S ∩ dom f ,
limn→+∞

f(xn)
g(xn) = f(x)

g(x) , and
f(x)
g(x)

⋃
i∈I0(x)

∇gi(x) ⊆ ∂L(f + ιS)(x). (28)

In addition, if f is weakly convex on S, then x is a strong lifted stationary point of (P).

Proof. (i)&(ii): We first see that, for all n ∈ N, xn ∈ S ∩ dom f , and so g(xn) > 0 and θn = f(xn)
g(xn) ≥ 0.

Next, for all n ∈ N, in ∈ Iε(xn), and x ∈ S,

f(winn ) = fn(winn ) + fs(winn )

≤ fn(winn ) + fs(un) +
〈
∇fs(un), winn − un

〉
+ `

2‖w
in
n − un‖2

≤ fn(x) + fs(un) + 〈∇fs(un), x− un〉+ 1
2τn
‖x− vn − τnθn∇gin(xn)‖2 + `

2‖x− un‖
2

− 1
2τn
‖winn − vn − τnθn∇gin(xn)‖2

≤ fn(x) + fs(x) + 1
2τn
‖x− vn − τnθn∇gin(xn)‖2 + `

2‖x− un‖
2

− 1
2τn
‖winn − vn − τnθn∇gin(xn)‖2

= f(x) + 1
2τn
‖x− vn‖2 − 1

2τn
‖winn − vn‖2 + θn

〈
∇gin(xn), winn − x

〉
+ `

2‖x− un‖
2

= f(x) + 1
2τn
‖x− vn‖2 − 1

2τn
‖xn − vn‖2 − 1

2τn
‖winn − xn‖2 + µn

τn

〈
winn − xn, xn − xn−1

〉
+ θn

〈
∇gin(xn), winn − xn

〉
− θn 〈∇gin(xn), x− xn〉+ `

2‖x− un‖
2, (29)
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where the first inequality is from the fact that ∇fs is Lipschitz continuous with modulus ` (Lemma 4.4), the second
inequality is from Step 2 of Algorithm 2, the third inequality follows from the convexity of fs, and the last equality
uses the fact that xn − vn = −µn(xn − xn−1). For ω =

√
m/M > 0, one has from Young’s inequality that〈

winn − xn, xn − xn−1
〉
≤ 1

2ω ‖w
in
n − xn‖2 + ω

2 ‖xn − xn−1‖2

= M

2
√
mM

‖winn − xn‖2 + m

2
√
mM

‖xn − xn−1‖2. (30)

It follows from Assumption 2’ that g is regular and weakly convex with modulus β on S. By Lemma 4.3,〈
∇gin(xn), winn − xn

〉
≤ gin(winn )− gin(xn) + β

2 ‖w
in
n − xn‖2. (31)

Combining inequalities (29), (30) and (31), and noting that gin(winn ) ≤ g(winn ) by the definition of g and that
βθn ≤

√
βζ/τn by the choice of τn, one has

f(winn ) ≤ f(x) + 1
2τn
‖x− vn‖2 − 1

2τn
‖xn − vn‖2 − 1

2

(
1−
√
βζ

τn
− Mµn√

mMτn

)
‖winn − xn‖2

+ θn(g(winn )− gin(xn))− θn 〈∇gin(xn), x− xn〉+ `

2‖x− un‖
2 + mµn

2
√
mMτn

‖xn − xn−1‖2.

Now, using the definition of xn+1, we derive that, for all n ∈ N, in ∈ Iε(xn), and x ∈ S,

f(xn+1)− θng(xn+1) + 1
2

(
1−
√
βζ

τn
− Mµn√

mMτn

)
‖xn+1 − xn‖2

≤ f(winn )− θng(winn ) + 1
2

(
1−
√
βζ

τn
− Mµn√

mMτn

)
‖winn − xn‖2

≤ f(x)− θngin(xn) + 1
2τn
‖x− vn‖2 − 1

2τn
‖xn − vn‖2

− θn 〈∇gin(xn), x− xn〉+ `

2‖x− un‖
2 + mµn

2
√
mMτn

‖xn − xn−1‖2. (32)

Let in ∈ I0(xn) ⊆ Iε(xn). Then gin(xn) = g(xn). Since f(xn) = θng(xn) and xn − un = −κn(xn − xn−1), letting
x = xn in (32) yields

f(xn+1)− θng(xn+1) + 1
2

(
1−
√
βζ

τn
− Mµn√

mMτn

)
‖xn+1 − xn‖2 ≤ 1

2

(
`κ2
n + mµn√

mMτn

)
‖xn − xn−1‖2.

Dividing g(xn+1) > 0 on both sides and recalling that m ≤ g(xn+1) ≤M , µn ≤ µτn, and 1/τn ≥ δ, we have that

f(xn+1)
g(xn+1) +

(
δ(1−

√
βζ)

2M − µ

2
√
mM

)
‖xn+1 − xn‖2 ≤ f(xn)

g(xn) +
(
`κ2

n

2m + µ

2
√
mM

)
‖xn − xn−1‖2.

Proceeding as in the proof of Theorem 4.5(i)&(ii), we obtain conclusions (i) and (ii) of this theorem.
(iii): In view of (i), we set

θ := lim
n→+∞

θn = lim
n→+∞

f(xn)
g(xn) .

Let x be a cluster point of (xn)n∈N and let (xkn)n∈N be a subsequence convergent to x. Then x ∈ S as well as
xkn+1 → x, ukn → x, and vkn → x due to the asymptotic regularity of (xn)n∈N. By the continuity of each gi, there
exists n0 ∈ N such that, for all i ∈ {1, . . . , p} and all n ≥ n0, gi(xkn) ≥ gi(x) − ε/2 and g(x) ≥ g(xkn) − ε/2. It
follows that, for all n ≥ n0, I0(x) ⊆ Iε(xkn).

Let n ≥ n0 and let i ∈ I0(x) ⊆ Iε(xkn). We have from (32) that, for all x ∈ S,

f(xkn+1)− θkng(xkn+1) + 1
2

(
1−
√
βζ

τkn
− Mµkn√

mMτkn

)
‖xkn+1 − xkn‖2

≤ f(x)− θkngi(xkn) + 1
2τkn

‖x− vkn‖2 − 1
2τkn

‖xkn − vkn‖2
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− θkn 〈∇gi(xkn), x− xkn〉+ `

2‖x− ukn‖
2 + mµkn

2
√
mMτkn

‖xkn − xkn−1‖2. (33)

It follows from the continuity of g, gi, and ∇gi that g(xkn+1) → g(x), gi(xkn) → gi(x) = g(x) (as i ∈ I0(x)),
and ∇gi(xkn) → ∇gi(x). Letting x = x and n → +∞ in (33) and noting that τ = lim infk→∞ τn > 0, we have
lim supn→+∞ f(xkn+1) ≤ f(x). Combining with the lower semicontinuity of f gives f(xkn+1)→ f(x) as n→ +∞.
Thus, θkn → θ = f(x)

g(x) as n→ +∞.
Now, letting n→ +∞ in (33), we obtain that, for all x ∈ S,

f(x) ≤ f(x) +
(

1
2τ + `

2

)
‖x− x‖2 + f(x)

g(x) 〈∇gi(x), x− x〉 .

This shows that x minimizes the function ϕ over S, where

ϕ(x) := f(x) +
(

1
2τ + `

2

)
‖x− x‖2 − f(x)

g(x) 〈∇gi(x), x〉

In particular, one sees that, for all i ∈ I0(x), f(x)
g(x) ∇gi(x) ∈ ∂L(f + ιS)(x). So, x ∈ S ∩ dom f and

⋃
i∈I0(x)

f(x)
g(x) ∇gi(x) ⊆ ∂L(f + ιS)(x). (34)

By taking convex hull on both sides, we see that

f(x)
g(x) ∂Lg(x) = conv

⋃
i∈I0(x)

f(x)
g(x) ∇gi(x) ⊆ conv∂L(f + ιS)(x).

As f is weakly convex on S, Lemma 2.2(i) implies that ∂(f + ιS)(x) is convex. Thus, the conclusion follows. �

Remark 6.2 (Absence of the boundedness condition). As with Algorithm 1 and Theorem 4.5, in the case
where (BC) fails, if we set µ = κ = 0 in Step 1 and let

în ∈ argmin
in∈Iε(xn)

(
f(winn )− θng(winn ) + 1−

√
βζ

2τn
‖winn − xn‖2

)
in Step 3 of Algorithm 2, then Theorem 6.1 still holds with Fn = f(xn)

g(xn) .

Remark 6.3 (Discussion of the results). (i) Firstly, a close inspection of the proof and noting that, for all
η < ε, one has for all large n, Iη(x) ⊆ Iε(xkn). So, (28) in the conclusion of Theorem 6.1(iii) indeed can be
strengthened as: for all η < ε,

f(x)
g(x)

⋃
i∈Iη(x)

∇gi(x) ⊆ ∂L(f + ιS)(x).

(ii) Secondly, following the same method of proof used in Theorem 5.5, one can establish the global convergence of
Algorithm 2 under the KL assumptions in Theorem 5.5 and also the additional assumption that I0(x) = {i ∈
{1, . . . , p} : gi(x) = g(x)} is a singleton for all x ∈ Ω, where Ω is the set of cluster points of (xn)n∈N. Another
sufficient condition ensuring the global convergence would be any point x ∈ Ω is isolated. For brevity purpose,
we omit the proof here. Unfortunately, these conditions are rather restrictive for the setting of Algorithm 2.
It would be interesting to see how one can obtain further weaker conditions ensuring the global convergence
of Algorithm 2. This would be an interesting open question and will be examined later.

7. Numerical examples

In the section, we illustrate our proposed algorithms via numerical examples. We first start with an explicit
analytic example and use it to demonstrate the different behavior of Algorithm 1 and Algorithm 2 as well as the
effect of the extrapolations. Then, we examine the performance of the algorithm for the scale invariant sparse signal
reconstruction model. All the numerical tests were conducted on a computer with a 2.8 GHz Intel Core i7 and 8
GB RAM, equipped with MATLAB R2015a.
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7.1. An analytical example

Consider the analytical example discussed in Example 13

min
x∈[−1,1]

x2 + 1
|x|+ 1 . (EP1)

In this case, g(x) = |x| + 1 is convex, and so, β = 0. Also, for all x ∈ [−1, 1], m ≤ g(x) ≤ M , where m = 1 and
M = 2. The numerator f(x) = fs(x) = x2 + 1 is a convex and continuously differentiable function whose gradient
is Lipschitz continuous with modulus ` = 2.

Algorithm 1 vs. Algorithm 2. Let δ = `M
m = 4 and τn = 1

δ = 1
4 for all n. Set µ = 0 and let κ ∈ (0, 1) and

κn ∈ [0, κ]. We now compare the behavior of Algorithm 1 and Algorithm 2 for (EP1):
Firstly, it can be directly verified that gn = sign(xn) ∈ ∂g(xn) and that fs(un)+〈∇fs(un), x−un〉+ `

2‖x−un‖
2 =

x2 + 1. In this case, Algorithm 1 reduces to

xn+1 = P[−1,1]

(
2
3

[
xn + 1

4
x2
n + 1
|xn|+ 1sign(xn)

])
.

If one chooses as initial point x0 = 0, then xn = 0 for all n, and so, (xn)n∈N converges to a lifted stationary point
(but not a strong lifted stationary point).

If one chooses as initial point x0 > 0, then, by induction, it is easy to see that xn > 0 and so, xn ∈ (0, 1]. This
implies that

xn+1 = P[−1,1]

(
2
3

[
xn + x2

n + 1
4(xn + 1)

])
= 2

3

[
xn + x2

n + 1
4(xn + 1)

]
,

where the last equality is from the fact that xn + x2
n+1

4(xn+1) ∈ [0, 3
2 ] for all xn ∈ (0, 1]. Here, P[−1,1] denotes the

Euclidean projection onto the set [−1, 1]. Thus, xn →
√

2− 1 which is a lifted stationary point.
Similarly, if one chooses as initial point x0 < 0, then, xn → 1−

√
2 which is also a lifted stationary point.

Next, we analyze the behavior of Algorithm 2. Recall that δ = `M
m = 4, τn = 1

δ = 1
4 , µ = 0, κn ∈ [0, κ] with

κ ∈ (0, 1). Let ε = 2. Note that g(x) = max{x+ 1,−x+ 1}. Then Iε(xn) = {1, 2}, and so,

w1
n = P[−1,1]

(
2
3

[
xn + 1

4
x2
n + 1
|xn|+ 1

])
and w2

n = P[−1,1]

(
2
3

[
xn −

1
4
x2
n + 1
|xn|+ 1

])
.

In Algorithm 2, we set xn+1 := wînn , where

în ∈ argmin
i∈{1,2}

(
(win)2 + 1− x2

n + 1
|xn|+ 1(|win|+ 1) + 2(win − xn)2

)
.

For the proceeding step for updating xn+1, if the values happens to be the same in the above argmin operations,
we choose în to be the smallest index. By randomly generated the initial guess x0, we observe that Algorithm 2
generates a sequence (xn)n∈N such that xn →

√
2 − 1 if x0 ≥ 0 and xn → 1 −

√
2 if x0 < 0. Figure 1 depicts the

trajectory xn of Algorithm 2 with three initial points: x0 = 0,−1, 1. Interestingly, we note that, in the case where
x0 = 0, Algorithm 2 converges to a strong lifted stationary point

√
2 − 1 while Algorithm 1 converges to a lifted

stationary point 0, which is not a strong lifted stationary point.
Effect of the extrapolation parameter. We now illustrate the behavior of Algorithm 1 by varying the

extrapolation parameters. To do this, let β = 0, δ = `M
m = 4, τn = 1

δ = 1
4 for all n. Fix any κ ∈ (0, 1) and

κn ∈ [0, κ]. Let α ∈ [0, 1). Set gn = sign(xn) ∈ ∂Lg(xn), µ = αδ
√
mM

2M =
√

2α, and µn =
√

2
4 α

νn−1−1
νn

, where

ν−1 = ν0 = 1, and νn+1 = 1 +
√

1 + 4ν2
n

2 ,

and reset νn−1 = νn = 1 when n = n0, 2n0, 3n0, . . . for the integer n0 = 50. In this case, direct verification shows
that supn νn ≤ 1, and hence µn ≤

√
2

4 α = µτn. Starting with the initialization x0 = 1, we then run Algorithm 1
with different α ∈ [0, 1). Figure 2 depicts the distance, in the log scale, between the iterates xn and the solution
x∗ =

√
2 − 1 for α ∈ {0, 0.5, 0.7, 0.99}, where the case α = 0 indeed corresponds to the un-extrapolated cases. As

one can see from Figure 2, as α increases and approaches 1, the algorithm tends to converge faster.

25



Figure 1: Trajectory of Algorithm 2 with different initial guess x0 for (EP1)

Figure 2: Distance to the solution vs iterations in solving (EP1)
7.2. Scale invariant sparse signal recovery problem

As another illustration, we examine the following scale invariant sparse signal recovery problem discussed in the
motivating example

min
x∈RN

‖x‖1

‖x‖2
s.t. Ax = b, lbi ≤ xi ≤ ubi, i = 1, . . . , N, (EP2)

where lbi and ubi are the lower bound and upper bound for the variables xi, i = 1, . . . , N . We follow [27] and generate
the matrix A via the so-called oversampled discrete cosine transform (DCT), that is, A = [a1, a2, . . . , aN ] ∈ RP×N
where

aj = 1√
P

cos
(

2πw j
F

)
, j = 1, . . . , N.

where w is a random vector uniformly distributed in [0, 1]P and F is a positive number which gives a measure on
how coherent the matrix is. The ground truth xg ∈ RN is simulated as an s-sparse signal where s is the total
number of nonzero entries. The support of xg is a random index set, and the values of nonzero elements follow a
Gaussian normal distribution. Then the ground-truth is normalized to have maximum magnitude as 1 so that we
can examine the performance within the [−1, 1]N box constraint. Then, we generate b = Axg, and set lbi = −1 and
ubi = 1. Specifically, in our experiment, following [27], we consider the above matrix A of size (P,N) = (64, 1024),
F = 10 and the ground-truth sparse vector has 12 nonzero elements.

We use two methods for solving this scale invariant sparse signal recovery problem: our proposed extrapolated
proximal subgradient method (e-PSG) and the alternating direction of method of multipliers (ADMM) proposed
in [27]. It was shown in [27] that the ADMM method works very efficiently although the theoretical justification of
the convergence of this method is still lacking.
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• ADMM method: We first solve the L1-optimization problem which results when replacing the objective of
(EP2) by ‖x‖1 :=

∑N
i=1 |xi|. This is done by using the commercial software Gurobi and produces a solution

x0 for the L1-optimization problem. Following [27], we use x0 as an initialization and use the ADMM method
proposed therein. We terminate the algorithm when the relative error ‖xn+1−xn‖

max{‖xn‖,1} is smaller than 10−9.

• Algorithm 1 (e-PSG method): Similar to the ADMM method, we also use the solution of the L1-optimization
problem as the initial point. We choose fs ≡ 0 (and so, ` = 0), κn = 0. As g(x) = ‖x‖2 is convex, β = 0.
Moreover, for all x feasible for (EP2), m ≤ g(x) ≤M where M =

√
N and m is a positive number computed

as the Euclidean norm of the least norm solution of Ax = b via the Matlab code m = norm(pinv(A)*b). Let
α = 0.99 and set µn = α

√
m
M

2
νn−1−1
νn

, where

ν−1 = ν0 = 1, and νn+1 = 1 +
√

1 + 4ν2
n

2 ,

and reset νn−1 = νn = 1 when n = n0, 2n0, 3n0, . . . for the integer n0 = 50. For any δ > 0, let τn = 1
δ and

µ = αδ
√

m
M

2 <
δ
√

m
M

2 . It can be verified that µn ≤
α
√

m
M

2 = µτn, and so, the requirements of the parameters
in Algorithm 1 are satisfied. We use the same termination criterion as for the ADMM method. For the
subproblem arising in Step 2 of Algorithm 1, we reformulate the problem as an equivalent quadratic program
with linear constraints, and solve it using the software Gurobi.

We run the ADMM and the e-PSG method (Algorithm 1) for 50 trials. The following table summarizes the
output of the two methods by listing the average number of

• sparsity level of the initial guess: the number of entries of the initialization (the solution for L1-optimization
problem) with value larger than 10−6;

• sparsity level of the solution: the number of entries of the computed solution with value larger than 10−6;

• error with respect to the ground truth: the Euclidean norm of the difference of the computed solution and
the ground truth xg;

• the objective value of the computed solution;

• CPU time measured in seconds.

From Table 1, one can see that e-PSG method is competitive with the ADMM method in terms of sparsity level and
the CPU time used, and produces a solution with slightly better quality in terms of the final objective value and the
error with respect to the ground truth. As plotted in Figure 3, one can see that ADMM uses around 2000 iterations
to reach the desired relative error tolerance, and has sharp oscillating phenomenon in terms of the objective value
(this has also been observed in [27], and the authors of [27] believed that this is one of the major obstacles in
establishing the convergence of the ADMM method); while the proposed e-PSG method quickly approaches the
desired error tolerance. On the other hand, it should be noted that the subproblems in the ADMM method have
closed form solutions while the subproblems in the e-PSG method are reformulated as quadratic programming
problems with linear constraints and solved via the software Gurobi5.

sparsity level error w.r.t objective value of CPU timeinitial guess computed solution the ground truth the computed solution
ADMM 64 12 6.948329e-06 2.724348 1.970365
e-PSG 64 12 4.539185e-10 2.724326 2.375557

Table 1: Computation results for (EP2)

5One possible way to improve the CPU time in using e-PSG is to solve the subproblem via alternating direction method of multiplier
method directly. We leave this as a future study.

27



Figure 3: Objective values vs. iterations in solving (EP2)
8. Conclusions

We have proposed proximal subgradient algorithms with extrapolations for solving fractional optimization model
where both the numerator and denominator can be nonsmooth and nonconvex. We have shown that the sequence
of iterates generated by the algorithm is bounded and any of its limit points is a stationary point of the model
problem. We have also established the global convergence of the sequence by further assuming the KL property for
a suitable merit function by providing a unified analysis framework of descent methods. Finally, in the case where
the denominator is the maximum of finitely many continuously differentiable weakly convex functions, we have
also proposed an enhanced proximal subgradient algorithm with extrapolations, and showed that this enhanced
algorithm converges to a stronger notion of stationary points of the model problem.

Our results in this paper point out the following interesting open questions and future work: (1) For the
enhanced proximal subgradient algorithm with extrapolations (Algorithm 2), is it possible to extend the case from
g(x) = max1≤i≤p{gi(x)} to g(x) = maxt∈T {gt(x)} where T is a (possibly) infinite set? (2) In Algorithm 2, as
one needs to solve the subproblem |Iε(xn)| times, this can be time consuming when the dimension is high. Is
it possible to incorporate randomize techniques to save the computational cost and establish the convergence in
probability sense? (3) How to obtain the global convergence of the full sequence of Algorithm 2 under weaker and
reasonable assumptions is also an important topic to be examined. Finally, further numerical implementations of
our algorithms and comparisons with other competitive methods are left as future research.
Acknowledgement: The authors would like to thank Dr. Yifei Lou for kindly sharing the MATLAB code for the
ADMM method used in [27].
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