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Abstract—Due to its communication efficiency and privacy-
preserving capability, federated learning (FL) has emerged as
a promising framework for machine learning in 5G-and-beyond
wireless networks. Of great interest is the design and optimization
of new wireless network structures that support stable and
fast operation of FL. Cell-free massive multiple-input multiple-
output (CFmMIMO) turns out to be a suitable candidate,
which allows each communication round in the iterative FL
process to be stably executed within a large-scale coherence time.
Aiming to reduce the total execution time of the FL process
in CFmMIMO, this paper proposes choosing only a subset of
available users to participate in FL. An optimal selection of users
with favorable link conditions would minimize the execution time
of each communication round, while limiting the total number of
communication rounds required. Toward this end, we formulate a
joint optimization problem of user selection, transmit power, and
processing frequency, subject to a predefined minimum number
of participating users to guarantee the quality of learning. We
then develop a new algorithm that is proven to converge to
the neighbourhood of the stationary points of the formulated
problem. Numerical results confirm that our proposed approach
significantly reduces the FL total execution time over baseline
schemes. The time reduction is more pronounced when the
density of access point deployments is moderately low.

Index Terms— Cell-free massive MIMO, federated learning,
execution time minimization.

I. INTRODUCTION

The numbers of mobile devices and connections have been

growing significantly in recent years. According to Cisco [1],

while the number of global mobile devices is expected to

reach 13.1 billion by 2023, more than 10% of this figure will

have 5G connections. These devices generate a vast amount of

data, which in turn enable a wide range of on-device artificial

intelligence (AI) services, such as traffic navigation, indoor

localization, image recognition, natural language processing,

and augmented reality [2]–[5]. However, it is impractical to

use conventional centralized approaches to train AI models

(especially those by deep neural networks) at mobile devices.

As such approaches store and process data at distant cloud

centers, they find it extremely challenging to support delay-

critical applications. Moreover, uploading user raw data to

distant cloud servers also raises serious concerns about user’s

data privacy [6].
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Federated learning (FL) has recently emerged as a promis-

ing solution for AI model training at wireless devices with a

certain guarantee of data privacy [7]–[12]. An FL process is

iterative and involves several communication rounds. In each

communication round, users (UEs) compute their local model

updates by using their local training data, followed by sending

these updates to a central server. The central server aggregates

the received local updates to generate a global model update,

which is then sent back to the UEs for their subsequent local

computation. The FL process terminates when a prescribed

level of learning accuracy is attained; at which point, a learning

model is established. Here, since only model updates (instead

of raw training data) is shared between UEs and a central

server, data privacy of each UE is protected. Furthermore, as

a model update is much smaller in size than raw training data,

sending a model update requires a much shorter amount of

time.

In the literature, there are two main research directions that

study FL in wireless network environments. The learning-

oriented direction aims to develop FL frameworks that improve

learning performance such as test accuracy. They do so by

mitigating the detrimental effects of wireless transmissions,

such as channel fading and estimation errors, on FL [13]–

[16]. On the other hand, the communication-oriented direction

aims to develop communication schemes that optimize certain

performance metrics for communications. Examples of these

metrics include execution time (in seconds) and energy con-

sumption (in Joule) of an FL process executed “over-the-air”

[17]–[21].

The focus of this paper is on the communication-oriented

direction. Here, [17]–[20] develop new wireless network de-

signs that use frequency-division multiple access (FDMA)

and time-division multiple access (TDMA) to support FL. In

these works, the transmission time of each FL communication

round could be significantly prolonged when the number of

UEs is large. To enable stable and fast FL over wireless

media, [21]–[23] propose to use cell-free massive multiple-

input multiple-output (CFmMIMO) to assist the process of

FL. In a CFmMIMO network, UEs are simultaneously served

by a large number of distributed access points (APs) over

the same frequency band, and hence, CFmMIMO can offer

very high macro diversity and multiplexing gains [24]. As a

result, it can uniformly provide very high data rates for all

users in the network which enables the stable and fast FL.

Paper [21] shows that the CFmMIMO network can achieve

a much shorter FL execution time than that of conventional

TDMA/FDMA networks. We note that in a wireless network,

the information transmitted is not necessarily private. How-

ever, in a wireless network with FL, user privacy is better

http://arxiv.org/abs/2009.02031v3
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Fig. 1. A CFmMIMO network model for wireless federated learning.

protected since only the model updates (instead of raw data)

are sent from devices to a central processing unit. While the

risk of privacy leakage exists in a wireless FL network, it

does not overtake the benefits of FL. We also note that more

advanced FL algorithms to secure FL in wireless networks

have been recently studied (see [25] and references therein).

Scope of Research: In this paper, we employ CFmMIMO

as the underlying wireless network structure and propose novel

resource allocation schemes to support a wireless FL pro-

cess. Here, we use a conjugate beamforming/matched filtering

scheme at the APs. Implemented locally at each AP, this

scheme has been shown to perform well when the number

of APs is large. The overarching objective is to minimize the

total FL execution time, which is a product of the number

of FL communication rounds and the execution time of each

round.

UE Selection: To achieve the above design objective, we

propose allowing only a subset of UEs with favorable links

to participate in the learning process. Doing so would reduce

the execution time of one FL communication round, albeit

at the expense of requiring more FL communication rounds

for the FL process to converge. Our aim is to devise a UE

selection policy that strikes an optimal balance between these

two conflicting outcomes, thereby offering a minimum total FL

execution time. This aim is different from that of improving the

learning performance (such as robustness, test accuracy, and

convergence rate) via UE selection, as advocated by [26]–[30].

It is worth noting that as the UE selection reduces the

number of participating UEs, the test accuracy of an FL

process is also affected [31]. On the other hand, without UE

selection, the FL execution time could potentially be prolonged

by the UEs with unfavorable link conditions. These UEs need

much more time to transmit. Over a large service area and

with a large number of UEs, it is more common to have

these vulnerable UEs. Of our particular interest is how to find

an optimal set of “sufficiently good” UEs to reduce the FL

execution time, without satisfying the test accuracy too much.

This important observation leads to two research questions:

Q1) What is the minimum number of participating UEs NQoL,

above which the test accuracy remains acceptable?

Q2) For a given NQoL, how to select UEs with favorable links

to minimize the total FL execution time?

In this paper, we focus on Q2) and leave Q1) for future

research.

New Optimization-Based Design and Results: UE se-

lection has tight relationships with the allocation of other

resources. Specifically, the decision which UE is selected

affects how to allocate transmit power and computing fre-

quency, and vice versa. Therefore, it is not clear and difficult

to see how to find manually or heuristically the favourable

links and determine the exact number of the selected UEs

for minimizing the FL execution time. Motivated by this

observation, we propose a joint optimization approach for UE

selection and resource allocation. In particular, to minimize

the execution time of one FL process, the FL execution time

is first formulated as a function of UE selection, transmit

power, and computation frequency. A mixed-integer two-stage

stochastic nonconvex problem of minimizing the FL execution

time is then formulated and subjected to the constraints that

reflex the practical relationships among all the variables, and

the practical constraints on maximum powers at the APs and

UEs, imperfect channel estimation, and a minimum number of

selected UEs. The considered problem is different from that

in [22] and [23] which aim to reduce the execution time in an

FL communication round, rather than minimizing the total FL

execution time.

To solve the formulated problem, we propose a new algo-

rithm that is proven to converge to the neighbourhood of its

stationary points. The mathematical challenges lie in the binary

nature of UE selection variables and the coupling among the

optimizing variables. Structure-wise, this optimization prob-

lem is much more complex than those considered in [21]

and [23]. The algorithm developed in this paper is able to

handle the binary constraints efficiently, whilst meeting all the
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TABLE I
FREQUENTLY USED SYMBOLS

Symbols Definition

N , N Set of UEs and its cardinality

M,M Set of APs and its cardinality

NQoL Minimum number of UEs for quality of learning

Tc (Small-scale) coherence time

T̃c Large-scale coherence time

ak Selection variable of UE k

ηmk Downlink power control coefficient of UE k at AP m

fk Processing frequency of UE k

ζk Uplink power control coefficient of UE k

Sd, Su Sizes of global and local updates

strict conditions for solving two-stage stochastic nonconvex

problems [32]. Numerical results with practical parameter

settings verify the convergence of the proposed algorithm.

They also show that our UE selection approach can cut the

total FL execution time by more than half compared to the

baseline schemes.

Notation and Paper Organization: In this paper, bold-

faced symbols are used for vectors and capitalized boldfaced

symbols for matrices. Rd is a space where its elements are

real vectors with length d. XXX∗ and XXXH are the conjugate and

conjugate transposition of a matrix XXX , respectively. CN (000,QQQ)
denotes the circularly symmetric complex Gaussian distribu-

tion with zero mean and covariance QQQ. N (0, V ) denotes the

normal distribution with zero mean and variance V . ∇g is

the gradient of a function g. E{x} denotes the expected value

of a random variable x. For ease of reference, the symbols

frequently used throughout the paper are listed in Table I.

The rest of this paper is organized as follows. Section II

introduces a CFmMIMO system model to support a standard

FL framework. Section III formulates the optimization prob-

lem of minimizing the FL execution time, whereas Section IV

proposes a new algorithm to solve this problem. Section V

verifies the performance of the developed algorithm through

numerical examples. Finally, Section VI concludes the paper.

II. CELL-FREE MASSIVE MIMO SYSTEM MODEL TO

SUPPORT WIRELESS FEDERATED LEARNING

We consider the CFmMIMO network model illustrated in

Fig. 1. Let N , {1, . . . , N} be the UE set in the network. The

UEs are served by a set of APs M = {1, ...,M} via wireless

access links with the same time-frequency resource [33], [34].

The transmission between the APs and UEs are under the

time-division duplexing operation with channel reciprocity1.

The APs and UEs are each equipped with a single antenna.

These APs are assumed to connect to a central processing

unit (CPU) via backhaul links with high-capacity. As such,

the transmission times between the CPU and all the APs are
1In general, channel reciprocity error can be a performance limiting factor in

wireless networks using the time-division duplexing operation. It is because
the hardware chains in the transmitter and receivers may not be reciprocal
between the uplink and downlink. However, according to [35], the calibration
of hardware chains for channel reciprocity is not a serious problem in massive

MIMO systems. For example, there are calibration solutions that have been
tested successfully for practical 64-antenna systems [36], [37].

considered negligible [24]. The CPU and UEs act as the central

server and the clients in an FL process, respectively. Here, the

APs relay the model updates between the CPU and the UEs.

A. UE Selection Model and Standard Federated Learning

Framework

First, we propose to select a subset of UEs out of N original

UEs to participate in an FL process. Let variable ak indicate

whether a UE k ∈ N , {1, . . . , N} is selected to partake in

an FL process, i.e.,

ak ,

{
1, if UE k is selected,

0, otherwise.
(1)

Let Ñ be the set of selected UEs. Denote by Ñ ,
∑

k∈N ak ≤
N the cardinality of Ñ or the number of selected UEs, and

by aaa , [a1, . . . , aN ]T the vector of UE selection. We insist

that ∑

k∈N

ak ≥ NQoL, (2)

where NQoL is a predefined minimum number of participating

UEs, chosen such that an acceptable quality of learning (QoL)

is achieved. As noted in Sec. I, how to determine the exact

value of NQoL is out of the scope of this paper.

Next, the above Ñ selected UEs will participate in an FL

process that adopts the standard FL framework with a syn-

chronous aggregation mode2 [29], [30], [39]–[42]. In general,

it is an iterative process consisting of multiple communication

rounds. Each communication round involves the following

basic steps (S1)-(S4):

(S1) A central server sends the global update to all the selected

UEs.

(S2) Upon receiving the global update from the central server,

the UEs solve their local learning problems (based on

their local data set), and compute their local model

updates.
2FL algorithms with the synchronous aggregation mode wait to receive

all local model updates sent from UEs before aggregation, while the FL
algorithms with an asynchronous aggregation mode do not. The FL algorithms
with synchronous aggregation normally offer better convergence rate and
accuracy than the FL algorithms operating with asynchronous aggregation.
FL algorithms with synchronous aggregation are well studied [38], while
research on improvement of learning performance of the FL algorithms with
asynchronous aggregation is still in its infancy. As such, our paper focuses
on resource allocation for supporting FL with synchronous aggregation [29],
[30], [39]–[42].
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(S3) The UEs send their local updates to the central server.

(S4) Upon receiving all the local updates from UEs, the central

server computes the global update by aggregation.

The communication rounds repeat until a certain level of test

accuracy is attained at the server. At which point, the server

terminates the whole FL process.

B. CFmMIMO System Model for Wireless Federated Learning

Now, we will describe in detail how a communication round

outlined in Sec. II-A is realized by CFmMIMO.

Assumption (A1): All selected UEs execute steps (S2) and

(S3) in a synchronized manner. Within a step (S2) or (S3), if

a UE completes its operation before other UEs, it must wait

until all other UEs complete their respective operation before

proceeding to the next step.

Remark 1. It should be noted that synchronising the opera-

tions of UEs at the Steps (S2) and (S3) would cause some

waste of radio resources because of the wait time among the

UEs. Instead, an asynchronous design may potentially reduce

the execution time by removing the wait time. However, in the

asynchronous design, some UEs may finish Step (S2) while

other UEs have not even completed Step (S1) yet. Therefore,

it is difficult for the APs to know exactly when they need

to switch to the uplink mode to receive local model updates

from the UEs. The solutions for overcoming this difficulty may

make the designs of signal processing and signalling much

more complex. Based on this observation, this work focuses

on the proposed synchronous communication design for ease

of implementation, and leaves the asynchronous design for

future work.

Assumption (A2): Each FL communication round is com-

pletely executed within a large-scale coherence time of the

wireless channel [21].3

Remark 2. Assumption 2 is realistic in many practical sce-

narios, such as outdoor systems with moderately low user

mobility (e.g., dense urban areas) and indoor systems (e.g.,

office buildings, stadiums, cinema theaters, factory). An ex-

ample is a system that supports users’ speed of v ≤ 7.5 m/s

= 27 km/h. With a conventional carrier frequency fc = 1 GHz

[34], the coherence time of the channels is Tc ≥ cℓ
4fcv

= 10

ms, where cℓ = 3 × 108 m/s is the speed of light. According

to the measurements in [43], the large-scale coefficients can

stay relatively unchanged for at least 100 times longer than

the coherence time. Therefore, the large-scale coherence time

is T̃c ≥ 100Tc ≥ 1 s. Let S = 4 KB = 32 Kb be the

size of global and local updates [42]. For a 5G system with

a user-experienced downlink rate of Rd = 100 Mbps and

uplink rate of Ru = 50 Mbps [44], the time durations for

downlink and uplink transmissions are Td = S
Rd

= 0.32 ms,

Tu = S
Ru

= 0.64 ms, respectively. Now, let Ds = 106 be

number of data samples at each UE, c = 20 cycles/sample be

the number of CPU cycles required to process one data sample,

f = 3 × 109 cycles/s be the frequency of processing CPU

cycles, and NL = 5 be the number of iterations of processing
3A large-scale coherence time is the period of time where the large-scale

fading coefficients are reasonably invariant [21].

the local data at UEs [42]. Then, the time duration needed

to compute the local update is Tc = NL
cDs

f = 33.3 ms.

Therefore, the execution time of one FL communication round

is To = Td+Tc+Tu = 34.26 ms << 1 s ≤ T̃c. Note that the

number of collected data samples at UEs in FL applications

is normally small (e.g., 103 − 104) [45]. Therefore, the time

of computing local updates should be much shorter than that

in our example. This means in practice, the executive time of

one FL communication round can even be much smaller than

the large-scale coherence time.

On the other hand, Assumption 2 does not impose any

practical challenge for deploying cell-free massive MIMO

in indoor scenarios. The issues of deployment complexity

and high front-haul capacity of cell-free massive MIMO in

indoor scenarios can be effectively resolved by using an

appropriate architecture, namely radio stripe system [46]–[48].

In this system, each antenna element is effectively an AP.

Then, a large number of small-size antennas are put in a

cable or a radio stripe. Inside the radio stripe, antennas are

connected to their associated antenna processing units (APUs).

The APUs and antennas are power-supplied via a shared

bus that is serially located in the radio stripe. Finally, each

radio stripe is connected to one or multiple central processing

units. The radio stripe system turns the long front-haul cables

into plug-and-play radio stripes, which effectively and flexibly

implement the star topology and improve the coverage of cell-

free massive MIMO. The required front-haul capacity of each

radio stripe is proportional to the sum rate of data streams for

transmitting to or receiving from the users at the maximum

network load. Since there is a large number of antennas in

the radio stripe system, the required front-haul capacity can

be reduced by reducing the number of users served per radio

stripe with a proper design of UE-radio stripe association [46].

With the above assumptions, we are ready to implement

Steps (S1)-(S4) by CFmMIMO, as illustrated in Fig. 2.

1) Step (S1): This step has the following two phases, both

executed within a coherence block.

Uplink channel estimation: Uplink pilot sequences are sent

by all the UEs to all the APs simultaneously in each small-

scale coherence time to help estimate channels. These esti-

mates will later be used to construct downlink signal beams.

Here, we assume time-division duplexing where both uplink

and downlink channel information is acquired at the APs via

uplink channel estimation [24]. Denote by τc the number

of samples of each coherence block, and by τt (samples)

the length of one pilot sequence. Let
√
τtϕϕϕk ∈ C

τt×1 be

the pilot sequence transmitted from a UE k ∈ N , where

‖ϕϕϕk ‖2 = 1, ∀k ∈ N . Denote by gmk = (βmk)
1/2g̃mk

the channel from a UE k to an AP m, where βmk and

g̃mk ∼ CN (0, 1) are the large-scale fading and small-scale

fading channel coefficients, respectively. At the AP m, gmk is

estimated by using the received pilots and the minimum mean-

square error (MMSE) estimation. The MMSE estimate ĝmk of

gmk is a random variable distributed according to CN (0, σ̂2
mk),

where σ̂2
mk = τtρt(βmk)

2

∑
ℓ∈N

τtρtβmℓ|ϕϕϕH
k ϕϕϕℓ |

2+1
[24].

Downlink transmission: Denote by Sd (bits) the data size

of the (same) global downlink model update for each selected
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(S4) at CPU
AP uplink mode

(S2) (S3)

Uplink channel estimation

One coherence time

Uplink channel estimation
(S1)

One coherence time

Local 

computation

Downlink transmission Uplink transmission

One large-scale coherence time

AP downlink mode

Fig. 2. Details of operation of one FL communication round in the considered CFmMIMO network.

UE. Since the global downlink model update can include

thousands of model weights, Sd is typically large. At the

CPU, the global model update intended for UE k is encoded

into many symbols sd,k,i ∼ CN (0, 1), ∀i ∈ {1, . . . , Lk}. The

number of symbols Lk depends on the data size of the model

update as well as the data rate. For ease of presentation,

hereafter, we drop the index i from sd,k,i and let Rd,k be

the data rate of the global update intended for a UE k ∈ Ñ .

To transmit the symbols received from the CPU, the APs

first use conjugate beamforming to precode these symbols

before broadcasting them to all the selected UEs. Specifically,

the transmitted signal at an AP m is given as xd,m =√
ρd
∑

k∈N

√
ηmk(ĝmk)

∗sd,k, where ρd is the maximum nor-

malized transmit power at each AP and ηmk, ∀m ∈ M, k ∈
N , is a power control coefficient. The transmitted power at

the AP m is required to meet the average normalized power

constraint, i.e., E{|xd,m|2} ≤ ρd, which can also be expressed

as the following per-AP power constraint:∑

k∈N

σ2
mkηmk ≤ 1, ∀m. (3)

Since no power should be allocated to the non-selected UEs,

we have

∀k ∈ N : if ak = 0, then ∀m ∈ M, ηmk = 0. (4)

The achievable downlink data rate at a UE k is given

in (5) [24, (24)] (shown at the top of next page), where

ηηη , {ηmk}m∈M,k∈N , and B is the bandwidth. The numerator

in the log function represents the power of the desired signals

normalized by noise. The three terms in the denominator

in the log function represent the normalized-by-noise power

of the pilot contamination, inter-UE interference and noise,

respectively.

The transmission time from the APs to a UE k is given by

td,k(ak, ηηη) =
akSd

Rd,k(ηηη)
, (6)

where ak 6= 0. Here, (6) captures the fact that the non-selected

UEs do not receive any intended downlink transmission, i.e.,

td,k = 0, for any k ∈ N with ak = 0.

2) Step (S2): After receiving the global update, each UE k

computes its local model update by using its local dataset.

Computation delay: Let ck (cycles/sample) be the number

of processing cycles required to process one data sample at

a UE k. Assume that ck is known a priori by an offline

measurement [49]. Denote by Dk (samples) and fk (cycles/s)

the size of the local data set and the processing frequency of

the UE k, respectively. The total computing time at the UE k

is expressed as [42]

tc,k =
akLDkck

fk
, (7)

where ak 6= 0, L is the number of local computing iterations,

and Dkck
fk

is the computing time of each iteration over the

local training data set at the UE k. Similarly, because the

non-selected UEs do not compute their local models, we have

∀k ∈ N : ak = 0, tc,k = 0. (8)

3) Step (S3): This step has the following two phases, both

executed within a coherence block.

Uplink channel estimation: This phase uses the same pilot

assignment and channel estimation techniques in the uplink

channel estimation of Step (S1). The MMSE estimate ḡmk

of gmk is thus a random variable distributed according to

CN (0, σ̄2
mk), where σ̄2

mk = τtρt(βmk)
2

∑
ℓ∈N

τtρtβmℓ|ϕϕϕH
k

ϕϕϕℓ |
2+1

.

Uplink transmission: Similar to Step (S1), for ease of pre-

sentation, a symbol su,k ∼ CN (0, 1) is encoded for the local

model update of a UE k. The symbol su,k is then allocated a

transmit amplitude value
√
ρuζk to generate a baseband signal

xu,k for wireless transmission, i.e., xu,k =
√
ρuζksu,k. The

UE k is subjected to the average transmit power constraint,

i.e., E
{
|xu,k|2

}
≤ ρu, which can also be expressed as a per-

UE constraint:

0 ≤ ζk ≤ 1, ∀k ∈ N . (9)

Because no power should be allocated to the non-selected UEs,

we have

∀k ∈ N : if ak = 0, then ζk = 0. (10)

The achievable uplink data rate Ru,k at the CPU for the UE

k is then given in (11) shown at the top of next page, where

ζζζ , {ζk}k∈N [24, Eq. (27)].

Let Su (bits) and Ru,k (bps) be the same data size of the

local model updates and the data rate of transmitting the local

model update from a UE k to the CPU, respectively. The

transmission time from the UE k to the APs is given by

tu,k(ak, ζζζ) =
akSu

Ru,k(ζζζ)
, (12)

where ak 6= 0. Since the non-selected UEs do not have any

uplink transmission, we have ∀k ∈ N : ak = 0, tu,k = 0.

4) Step (S4): The CPU computes the global update by using

all the received local updates. Since the CPU’s computational

capability is much higher than that of the UEs, the time

required to compute the global update is assumed negligible.
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Rd,k(ηηη)=
τc−τt

τc
B log2

(
1+

ρd
(∑

m∈M η
1/2
mk σ̂

2
mk

)2

ρd
∑

ℓ∈N \k

( ∑

m∈M

η
1/2
mℓ σ̂

2
mℓ

βmk

βmℓ

)2|ϕϕϕH
ℓ ϕϕϕk |2

︸ ︷︷ ︸
Pilot contamination

+ρd
∑

ℓ∈N

∑

m∈M

ηmℓσ̂
2
mℓβmk

︸ ︷︷ ︸
Inter-user interference

+1

)
(5)

Ru,k(ζζζ)=
τc−τt

τc
B log2

(
1 +

ρuζk
(∑

m∈M σ̄2
mk

)2

ρu
∑

ℓ∈N \k

ζℓ
(∑

m∈M

σ̄2
mk

βmℓ

βmk

)2|ϕϕϕH
k ϕϕϕℓ |2

︸ ︷︷ ︸
Pilot contamination

+ρu
∑

ℓ∈N

ζℓ
∑

m∈M

σ̄2
mkβmℓ

︸ ︷︷ ︸
Inter-user interference

+
∑

m∈M σ̄2
mk

)
(11)

III. JOINT UE SELECTION AND RESOURCE ALLOCATION

FOR MINIMIZING TOTAL FL EXECUTION TIME IN

CFMMIMO: OPTIMIZATION PROBLEM FORMULATION

A. Total Execution Time of an FL Process

The execution time of one FL communication round com-

prises the execution times of Steps (S1)–(S3) [as Step (S4) is

assumed not to incur any time delay]. The execution time of

each of these steps is the longest execution time within that

step. As such, the execution time of one FL communication

round is expressed as

To(aaa,ηηη,fff,ζζζ)

, max
k

td,k(ak, ηηη) + max
k

tc,k(ak, fk) + max
k

tu,k(ak, ζζζ)

, max
k

akSd

Rd,k(ηηη)
+ max

k

akLDkck

fk
+max

k

akSu

Ru,k(ζζζ)
, (13)

where k ∈ {k ∈ N | ak 6= 0}. Note that aaa (UE selection)

is determined before an FL process is executed, while ηηη,fff ,

and ζζζ are optimized in each FL communication round. The

mathematical expression of the execution time of one FL

communication round must have a two-timescale structure.

Therefore, we introduce a new metric named “effective execu-

tion time of one FL communication round” E{To(aaa,ηηη,fff,ζζζ)},

which is the average of To(aaa,ηηη,fff,ζζζ) over large-scale fading

realizations. The values of aaa in E{To(aaa,ηηη,fff,ζζζ)} remains

unchanged, while those of ηηη,fff , and ζζζ in To(aaa,ηηη,fff ,ζζζ) are

optimized in each large-scale coherence time.

Let G(aaa) be the number of communication rounds in an

FL process. By using the tightest convergence rates of FL

[30, Theorem I], we have

G(aaa) =
q∑

k∈N ak
. (14)

Here, q is a known constant which depends on the specific

characteristics of the FL learning problems. The total execu-

tion time of an FL process is then given by

Te(aaa,ηηη,fff,ζζζ) , G(aaa)E{To(aaa,ηηη,fff ,ζζζ)}. (15)

Eqs. (13)–(15) clearly shows the effects of UE selection on

the overall execution time. According to (13), if we only allow

users with favorable link conditions (i.e., strong channel gains,

weak pilot contamination and interference) to partake in the FL

process, the execution time of one FL communication round is

shorter. However, selecting only a subset of all UEs also means

increasing the required number of communication rounds as

shown in (14). Therefore, minimizing the total execution time

in (15) involves finding an optimal set of UEs to be selected,

in order to balance between the two contradicting effects.

B. Problem Formulation

We are now ready to formulate the main design problem as

the following optimization problem.

min
aaa,ηηη,fff,ζζζ

Te(aaa,ηηη,fff ,ζζζ) (16a)

s.t. (1) − (4), (9), (10)

0 ≤ ηmk, ∀m, k (16b)

0 ≤ ζk, ∀k (16c)

0 ≤ fk ≤ fk,max, ∀k. (16d)

Problem (16) has a nonconvex stochastic, mixed-integer

mixed-timescale structure, along with binary constraints and

tight coupling among the optimizing variables. Finding its

globally optimal solution is challenging.

IV. JOINT UE SELECTION AND RESOURCE ALLOCATION

FOR MINIMIZING TOTAL FL EXECUTION TIME IN

CFMMIMO: PROPOSED ALGORITHM

First, to deal with the binary constraint (1), we observe that

x ∈ {0, 1} ⇔ x ∈ [0, 1] andx− x2 ≤ 0 [50], [51]. Therefore,

(1) is equivalent to the following two constraints∑

k∈N

(ak − a2k) ≤ 0 (17)

0 ≤ ak ≤ 1, ∀k. (18)

Since the values of {ak} in (17) and (18) are now real, it is

easier to handle (17) and (18) than (1). We then use (17) and

(18) to rewrite problem (16) as

min
aaa,ηηη,fff,ζζζ

Te(aaa,ηηη,fff,ζζζ) (19)

s.t. (2) − (4), (9), (10), (16b) − (16d), (17), (18).

Next, to deal with the max functions in To(aaa,ηηη,fff ,ζζζ), we

rewrite problem (19) in a more tractable epigraph form as

min
xxx

G(aaa)E{T̃o(td, tc, tu)} (20a)

s.t. (2) − (4), (9), (10), (16b) − (16d), (17), (18)

0 ≤ rd,k, 0 ≤ ru,k, ∀k (20b)

rd,k ≤ Rd,k(ηηη), ∀k (20c)

ru,k ≤ Ru,k(ζζζ), ∀k (20d)

akSd

rd,k
≤ td, ∀k, ak 6= 0 (20e)

akLDkck

fk
≤ tc, ∀k, ak 6= 0 (20f)

akSu

ru,k
≤ tu, ∀k, ak 6= 0, (20g)
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where T̃o(td, tc, tu) = td + tc + tu, xxx , {aaa,ηηη,fff ,ζζζ,rrrd, rrru, td,
tc, tu}; rrrd , {rd,k}, rrru , {ru,k}, ∀k ∈ N , td, tc, and tu are

additional variables.

Our main problem (16) is now transformed to problem (20)

which is a stochastic nonconvex optimization problem. In (20),

the UE selection variables aaa are optimized in a long-term

timescale (before any FL process happens), while x̃xx , xxx \aaa
including transmit power and processing frequency are opti-

mized in a short-term timescale (in each FL communication

round). To solve this type of optimization problem, we adopt

the general framework of [32]. Specifically, we decompose

problem (20) into a short-term subproblem and a long-term

master problem, and solve these resulting problems in an

alternating manner. The mathematical derivations are detailed

in the following.

For a given aaa, in each large-scale coherence time, the short-

term subproblem is expressed as:

min
x̃xx

T̃o(td, tc, tu) (21)

s.t. (3), (4), (9), (10), (16b) − (16d), (20b) − (20g).

For given optimal solutions x̃xx to problems (21), we have td =
ak∗Sd

Rd,k∗
, where k∗ , argmax

k∈N

akSd

Rd,k
. Therefore, we can obtain

td = aaaT t̃ttd, where t̃ttd is the vector whose elements are 0 except

for the k∗-th element, and the value of this element is Sd

Rd,k∗
.

Similarly, we have t∗c = ai∗LDi∗ci∗
fi∗

and tu =
aj∗Su

Ru,j∗
, where

i∗ , argmax
k∈N

akLDkck
fk

and j∗ , argmax
k∈N

akSu

Ru,k
. Then, we also

have tc = aaaT t̃ttc and tu = aaaT t̃ttu. Here, t̃ttc is the vector whose

elements are 0 except for the i∗-th element, and the value of

this element is LDi∗ci∗
fi∗

. t̃ttu is the vector whose elements are

0 except for the j∗-th element, and the value of this element

is Su

wj∗Ru,j∗
. Then, the long-term master problem is expressed

as:

min
aaa

g(aaa) (22)

s.t. (2), (17), (18).

where

g(aaa) , Te(aaa) = E{T (aaa)}

T (aaa) , G(aaa)T̃o(aaa) =
q(aaaT t̃ttd + aaaT t̃ttc + aaaT t̃ttu)

aaaT 111

T̃o(aaa) = aaaT t̃ttd + aaaT t̃ttc + aaaT t̃ttu

G(aaa) =
q

aaaT 111
,

and 111 ∈ R
N is an all-one vector.

A. Solving Short-term Subproblem (21)

First, we rewrite problem (21) as

min
x̂xx

T̃o(td, tc, tu) (23a)

s.t. (16b) − (16d), (20b) − (20g)

σ2
mkηmk ≤ ṽmk, ∀m, k (23b)

ṽmk ≤ ak, ∀m, k (23c)
∑

k∈N

ṽmk ≤ 1, ∀m (23d)

ζk ≤ ak, ∀k, (23e)

where x̂xx , {x̃xx, ṽvv} and ṽvv , {ṽmk}m∈M,k∈N are additional

variables. Here, (23b)–(23d) follow from (3) and (4), while

(23e) follows from (9) and (10). Problem (23) is still chal-

lenging because of the nonconvex constraints (20c) and (20d).

To deal with these constraints, we let vvv , {vmk}m∈M,k∈N

and uuu , {uk}k∈N with

vmk , η
1/2
mk , ∀m, k, (24)

uk , ζ
1/2
k , ∀k, (25)

and rewrite (23) as

min
x̄xx

T̃o(td, tc, tu) (26a)

s.t. (16d), (20b), (20e) − (20g), (23c), (23d)

σ2
mkv

2
mk ≤ ṽmk, ∀m, k (26b)

0 ≤ vmk, ∀m, k (26c)

u2
k ≤ ak, ∀m, k (26d)

0 ≤ uk ≤ 1, ∀k (26e)

0 ≤ rd,k ≤ Rd,k(vvv), ∀k (26f)

0 ≤ ru,k ≤ Ru,k(uuu), ∀k. (26g)

where x̄xx , {x̂xx,vvv,uuu} \ {ηηη,ζζζ}. Here, (26b)-(26e) follow (16b),

(16c), (23b), (23e), (24), (25), whereas (26f) and (26g) follow

(20c) and (20d).

Regarding the nonconvex constraints (26f) and (26g), the

concave lower bound R̃d,k(vvv) of Rd,k(vvv) is given by (27)

[52] (see the top of the next page), where

Υk({vmk}m∈M) =
√
ρd
∑

m∈M

vmkσ
2
mk

Πk(vvv) = ρd
∑

ℓ∈N \k

( ∑

m∈M

vmℓσ
2
mℓ

βmk

βmℓ

)2|ϕϕϕH
ℓ ϕϕϕk |2

+ ρd
∑

ℓ∈N

∑

m∈M

v2mℓσ
2
mℓβmk + 1.

Similarly, the concave lower bound R̃u,k(uuu) of Ru,k(uuu) is

given by (28) at the top of the next page [52], where

Ψk(uk) =
√
ρuuk(

∑

m∈M

σ2
mk)

Ξk(uuu) = ρu
∑

ℓ∈N \k

u2
ℓ

( ∑

m∈M

σ2
mk

βmℓ

βmk

)2|ϕϕϕH
k ϕϕϕℓ |2

+ ρu
∑

ℓ∈N

u2
ℓ

∑

m∈M

σ2
mkβmℓ +

∑

m∈M

σ2
mk.

As such, (26f) and (26g) can be approximated by the following

convex constraints

rd,k ≤ R̃d,k(vvv), ∀k ∈ N (29)

ru,k ≤ R̃u,k(uuu), ∀k ∈ N . (30)

At iteration (κ + 1), for a given point x̄xx(κ), problem (26)

(hence (21)) can finally be approximated by the following

convex problem:

min
x̄xx∈F̃

T̃o(td, tc, tu), (31)

where F̃ , {(16d), (20b), (20e) − (20g), (23c), (23d), (26c) −
(26e), (29), (30)} is a convex feasible set. In Algorithm 1,

we outline the main steps to solve problem (21). Let F ,

{(16d), (20b), (20e)− (20g), (23c), (23d), (26b)− (26g)} be the

feasible set of (26). Starting from a random point x̄xx ∈ F ,

we solve (31) using CVX [53] to obtain its optimal solution

x̄xx∗. This solution is then used as an initial point in the next

iteration. The algorithm terminates when an accuracy level of

ε is reached.
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R̃d,k(vvv),
τc−τt

τc log 2
B

[
log

(
1+

(Υ
(κ)
k )2

Π
(κ)
k

)
− (Υ

(κ)
k )2

Π
(κ)
k

+2
Υ

(κ)
k Υk

Π
(κ)
k

− (Υ
(κ)
k )2(Υ2

k +Πk)

Π
(κ)
k ((Υ

(κ)
k )2 +Π

(κ)
k )

]
≤Rd,k(vvv), (27)

R̃u,k(uuu),
τc−τt

τc log 2
B

[
log

(
1+

(Ψ
(κ)
k )2

Ξ
(κ)
k

)
− (Ψ

(κ)
k )2

Ξ
(κ)
k

+ 2
Ψ

(κ)
k Ψk

Ξ
(κ)
k

− (Ψ
(κ)
k )2(Ψ2

k + Ξk)

Ξ
(κ)
k ((Ψ

(κ)
k )2 + Ξ

(κ)
k )

]
≤Ru,k(uuu), (28)

Algorithm 1 Successive convex approximation approach for

solving the short-term subproblem (21)

1: Initialization: Set κ = 0 and choose a random point

x̄xx(0) ∈ F .

2: repeat

3: Update κ = κ+1 Solve the approximated problem (31)

of (21) using CVX to obtain its optimal solution x̄xx∗ and

update x̄xx(κ) = x̄xx∗

4: until convergence

Proposition 1. Algorithm 1 converges to a Karush-Kuhn-

Tucker (KKT) solution of (21).

Proof. It is true that R̃d,k(vvv) and R̃u,k(uuu) satisfy the key

properties of general inner approximation functions [54, Prop-

erties (i), (ii), and (iii)]. The feasible set F̃ also satisfies the

Slater’s constraint qualification condition for convex programs.

Therefore, Algorithm 1 converges to a KKT solution of (26)

when starting from a point x̃xx
(0) ∈ F [54, Theorem 1]. By

using the variable transformations (24) and (25), it can be seen

that the KKT solutions of (26) satisfy the KKT conditions of

(23) as well as of (21).

B. Solving the Long-Term Master Problem (22)

Let V (aaa) ,
∑

k∈N (ak − a2k) = aaaT (111 − aaa), then (17)

becomes V (aaa) ≤ 0. To deal with this non-convex constraint,

we consider the problem

min
aaa

L(aaa) , g(aaa) + λV (aaa) (32)

s.t. (2), (18),

where L(aaa) is the Lagrangian of (22), λ ≥ 0 is the Lagrangian

multiplier corresponding to (17). Let H , {(2), (18)} be the

feasible set of problem (32).

Proposition 2. The following statement holds:

(i) The value Vλ of V at the solution of (32) corresponding

to λ is decreasing to 0 as λ → +∞.

(ii) Problem (32) has the following property, i.e.,

min
aaa∈H

g(aaa) = sup
λ≥0

min
aaa∈Ĥ

L(aaa, λ) (33)

and is therefore equivalent to (22) at the optimal solution

λ∗ ≥ 0 of the sup-min problem in (33).

Proof. The proof follows from [51, Proposition 1] and [50,

Proposition 1]; hence, omitted for brevity.

Theoretically, it is required to have Vλ = 0 in order to obtain

an optimal λ∗. According to Proposition 2, Vλ decreases to 0
as λ → +∞. Since there is always a numerical tolerance in

computation, it is sufficient to accept Vλ < ε for some small

ε with a sufficiently large value of λ chosen. In our numerical

experiment, for ε = 10−3, we see that λ = 1 is enough to

ensure Vλ ≤ ε. Note that this way of choosing λ has been

widely used in the literature, e.g., [50], [51], [55], [56].

Problem (32) is still challenging due to the expectation

operator in g(aaa) in its cost function L(aaa). Following the

procedure proposed in [32], we approximate L(aaa) by its

surrogate function L̃(aaa), which is given as

L̃(n+1)
(aaa) , g̃(n+1)(aaa) + λṼ (n+1)(aaa) (34)

g̃(n+1)(aaa) , (1− φ(n+1))g̃(n)(aaa) + φ(n+1)T̃ (aaa) (35)

Ṽ (n+1)(aaa) , V (n+1) + ((∇V )(n+1))T (aaa−aaa(n+1))

+ τ ||aaa−aaa(n+1) ||2 (36)

(∇V )(n+1) = 111− 2aaa(n+1),

where φ(n+1) is a weighting parameter and τ can be any

positive constant. Here, the surrogate function g̃(n+1)(aaa) at

iteration n + 1 depends on the surrogate function g̃(n)(aaa)
at iteration n and the approximate functions T̃ (aaa) of T (aaa).
g̃(n)(aaa) is approximately updated as

g̃(n)(aaa) = g(n) + (∇g)(n)(aaa−aaa(n+1)). (37)

and T̃ (aaa) is updated as

T̃ (aaa) , T (n+1) + ((∇T )(n+1))T (aaa−aaa(n+1))

+ τ ||aaa−aaa(n+1) ||2. (38)

Now, with (37) and (38), (35) becomes:

g̃(n+1)(aaa) , g(n+1) + ((∇g)(n+1))T (aaa−aaa(n+1))

+ τ ||aaa−aaa(n+1) ||2, (39)

where

g(n+1) = (1 − φ(n+1))g(n) + φ(n+1)T (n+1) (40)

(∇g)(n+1) = (1 − φ(n+1))(∇g)(n) + φ(n+1)(∇T )(n+1),

with g(0) = 0, (∇g)(0) = 000. Here,

(∇T )(n+1) =

q
(̃tttd + t̃ttc + t̃ttu)((aaa

(n+1)T111))− 111((aaa(n+1))T (̃tttd + t̃ttc + t̃ttu))

((aaa(n+1)T111))2
.

(41)
From (36) and (39), (34) can be written as

L̃(n+1)
(aaa) , L(n+1) +((∇L)(n+1))T (aaa−aaa(n+1))

+ τ ||aaa−aaa(n+1) ||2, (42)

where

L(n+1) = g(n+1) + λV (n+1) (43)

(∇L)(n+1) = (∇g)(n+1) + λ(∇V )(n+1). (44)

At the large-scale coherence time or iteration n+1, problem

(32) is approximated by the following convex problem:

min
aaa∈H

L̃(n+1)
(aaa). (45)
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Fig. 3. Overview of Algorithm 2’s operation to assist CFmMIMO-based wireless FL.

C. Solving the Overall Problem (20)

Algorithm 2 outlines the main steps to solve the overall

problem (20) (hence (16)). In the large-scale coherence time n

(i.e., iteration n), for a given random value of aaa(n+1) ∈ H, the

short-term subproblem (21) is solved by Algorithm 1 after I
(n)
S

iterations to obtain a KKT solution. This solution is then used

to construct the approximate long-term master problem (45).

After solving (45) to obtain an optimal solution (aaa∗)(n+1), we

update aaa(n+2) as

a
(n+2)
k = (1− π(n+1))a

(n+1)
k + π(n+1)(a∗k)

(n+1), ∀k, (46)

where π(n+1) is a weighting parameter, and {φ(n), π(n)} are

chosen to satisfy the following conditions [32, Assumption 5]:

(B1): φ(n) → 0, 1
φ(n) ≤ O(nς) for ς ∈ (0, 1), and∑

n(φ
(n))2 < ∞;

(B2): π(n) → 0,
∑

n π
(n) = ∞,

∑
n(π

(n))2 < ∞, and

limn→∞
π(n)

φ(n) = 0.

Fig. 3 provides a top-level illustration of the operation of

Algorithm 2 within the context of CFmMIMO-based wireless

FL. At the beginning, we run Algorithm 2 based on the

collected network information. Specifically, we solve the short-

term subproblem (21) within a short-term optimization (STO)

time block, and the long-term master problem (22) within a

long-term optimization (LTO) time block. Every two problems

(21) and (22) are solved within a large-scale coherence time.

Eventually, the converged UE selection solution aaa∗ provided

by Algorithm 2 is used within the subsequent FL process as

described in Sec. II-B. In the FL training process, one FL

communication round and one STO time block are executed

in one large-scale coherence time. Here, the values of transmit

power and processing frequency obtained in the STO time

block are not those obtained in the STO time block when

executing Algorithm 2, but rather are computed by the same

Algorithm 1. The detailed execution of one FL communication

round is discussed in Section II-B and illustrated in Figure 2.

Once the network information changes, we will re-engage

Algorithm 2 to get a new solution, ready for FL to execute

again.

Algorithm 2 Online successive convex approximation ap-

proach for solving the overall problem (20)

1: Initialization: Set n = 0, select a random aaa(n+1) ∈ H
2: repeat

3: Solve the short-term subproblem (21) to obtain its

optimal solution (ηηη∗, fff∗
, ζζζ

∗) by using Algorithm 1, and

update (ηηη(n+1), fff
(n+1)

ζζζ
(n+1)) = (ηηη∗, fff∗

, ζζζ
∗)

4: Solve the approximate long-term master problem (45)

of (22) using CVX to obtain its optimal solution

(aaa∗)(n+1)

5: Update aaa(n+2) by (46) and n = n+ 1
6: until convergence

Output: aaa∗ = aaa(n+1)

D. Convergence and Complexity Analyses of Algorithm 2

Definition 1. A solution (aaa∗,xxx∗) is called a stationary solu-

tion of problem (20) (or (16)) if xxx∗ is a KKT solution of the

short-term subproblem (21) for aaa = aaa∗, and aaa∗ is a KKT

solution of the long-term master problem (22) for xxx = xxx∗.

Proposition 3. Algorithm 2 converges to a neighbourhood of

the stationary solutions to problem (16).

Proof. See Appendix A.

Theoretically, I
(n)
S → ∞ and λ → ∞ are required for

Algorithm 2 to converge to the stationary solutions of problem

(16). When I
(n)
S and λ are finite, Algorithm 2 converges to

approximate stationary solutions of problem (16).

The computational complexities of solving (31) at each

iteration of Algorithm 1 and solving (45) at each iteration

of Algorithm 2 are polynomial in the number of variables

and constraints. In particular, (31) can be transformed into

an equivalent optimization problem that involves Nv,1 ,

(2MN + 4N + 3) real-valued scalar decision variables,

Nl,1 , (2MN +M + 4N + 3) linear constraints and Nq,1 ,

(MN + 5N) quadratic constraints. Therefore, (31) requires

a complexity of O(
√
Nl,1 +Nq,1[Nv,1 + Nl,1 + Nq,1]N

2
v,1)

[57], [58]. Problem (45) involves Nv,2 , N real-valued scalar

decision variables, Nl,2 , (N+1) linear constraints. As such,

(45) requires a complexity of O(
√
Nl,2[Nv,2 +Nl,2]N

2
v,2).
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(a) Case (C1)
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(b) Case (C2)

Fig. 4. Examples of the network setup in two cases (C1) and (C2) with 40 APs and 15 UEs. The AP, UE, and fixed locations are represented as the markers
in the shapes of triangles, circles, and dots, respectively.
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Fig. 5. The convergence process of Algorithm 2. In this example, we consider Case (C2) and set M = 40, N = 15, NQoL = 5, D = 1.5 km.

V. NUMERICAL EXAMPLES

This section provides numerical results to analyze the ef-

fectiveness of the proposed Algorithm 2 in minimizing the

execution time of the considered standard FL process [29],

[30]. As previously discussed in Sec. I, the ultimate question

is how to find an optimal set of UEs to reduce the FL execution

time without satisfying the test accuracy too much. To answer

this question, we need to answer the fundamental questions

(Q1) and (Q2). Assuming that NQoL is known in advance,

our work focuses on answering question (Q2). It is shown in

this section that the number of selected UEs in our example is

always larger than NQoL. Therefore, the test accuracy obtained

with this set of selected UEs is always acceptable. This means

with the UE selection of our approach, the test accuracy of

an FL process using real datasets is expected to be the same

as that in [29], [30], and hence, not shown in this paper. On

the other hand, if we try to make an ultimate analysis on the

test accuracy of our UE selection scheme, we first have to

set NQoL correctly, which leads us back to answering question

(Q1). However, answering question (Q1) requires extensive

efforts that are out of the scope of this work. Based on this

observation, we leave the analysis of the test accuracy of an

FL process with our UE selection scheme for future work.

A. Network Setup with Non-Uniform UE/AP Distribution

We consider a CFmMIMO network in a square of D ×D

km2 whose edges are wrapped around to avoid the boundary

effects. We examine the following two cases.

• Case (C1): The UEs are more likely to stay near some

fixed locations (e.g., coffee shops, restaurants) in the

considered area; and the APs are uniformly distributed

across the considered area.

• Case (C2): Both the APs and UEs are more likely to stay

close to some fixed locations in the considered area.

1) Modeling of Case (C1): First, a set of xp fixed locations

are uniformly distributed over the network square. To generate

UE locations, we create a grid that has xl vertical and xl

horizontal lines. Then, N UE locations are chosen as the points

on this grid that are closest to xp fixed locations. To generate

AP locations, we create a new grid that is the same as the UE

location grid, but the lines of these two grids are interleaved.

Finally, M AP locations are uniformly chosen in the points

on the latter grid. Here, we consider xl = 15, xp = 20.

2) Modeling of Case (C2): Case (C2) is modeled in the

same way for Case (C1), except that the M AP locations

are chosen from the points on the AP location grid that are

closest to xAP fixed locations. Here, we choose xAP = 3, and

the xAP fixed locations are uniformly selected out of xp fixed

locations without replacement. An example of the network
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Fig. 6. The effectiveness of the proposed approach. In these examples, we set N = 15 and NQoL = 5.

setup is shown in Fig. 4.

3) Setup for each network realization: Since each FL

communication round happens in one large-scale coherence

time (in the order of seconds), the total execution time of an FL

process is expected to be around several minutes. Therefore,

we assume that the UEs only move around their current

locations during the FL process. Here, in each communication

round of an FL process, we let each UE move within a circle of

radius 5 m around its current location, while the AP locations

remain unchanged.

B. Parameter Settings

We model large-scale fading coefficients βmk as [59]:

βmk = 10
PLdmk
10 10

Fmk
10 , (47)

where 10
PLdmk
10 represents the path loss, and 10

Fmk
10 represents

the shadowing effect with Fmk ∈ N (0, 42) (in dB). Here,

PLd
mk (in dB) is given by [59]

PLd
mk = −30.5− 36.7 log10

(
dmk

1m

)
, (48)

and the correlation among the shadowing terms from the AP

m, ∀m ∈ M to different UEs k, ℓ ∈ N is expressed as:

E{FmkFjℓ} ,

{
422−δkℓ/9 m, if j = m

0, otherwise,
, ∀j ∈ M, (49)

where δkℓ is the physical distance between UEs k and ℓ.

For channel estimation, we use a random pilot assignment

scheme. Specifically, the pilot of each user is randomly chosen

from a predefined set of τt = N orthogonal pilot sequences,

each having a length of τt samples. We set τc=200 samples,

Sd=Su=5 MB, noise power σ2
0=−92 dBm, L = 5, fmax =

3 × 109 cycles/s, Dk = D = 5 × 106 samples, ck = 20
cycles/samples [42], for all k, α = 2 × 10−29. We choose

q = 90. Let ρ̃d = 1 W, ρ̃u = 0.2 W, ρ̃t = 0.2 W be the

maximum transmit powers of the APs, UEs, and uplink pilot

sequences, respectively. Here, ρd, ρu and ρt are the normalized

values of ρ̃d, ρ̃u and ρ̃t with respect to the noise power. We

set π(n) = 1000
1000+n and φ(n) = 1

n9/10 to satisfy conditions (B1)

and (B2) in Section IV-C. Finally, we choose λ = 1.

C. Results and Discussions

1) Effectiveness of Algorithm 2: First, we evaluate the

convergence behavior of the proposed Algorithm 2. As seen

from Fig. 5, Algorithm 2 converges within 30 iterations for

an arbitrary network realization. Note that each iteration of

Algorithm 2 involves solving simple convex programs (31)

and (45). It is therefore expected that Algorithm 2 has a low

computational complexity.

Next, we compare Algorithm 2 (denoted by OPT in the

figures) with the following baseline schemes:

• Baseline 1 (BL1): Let N̂ be an integer uniformly drawn

from the interval [NQoL, N ]. Then, before an FL process

is executed, we select participating UEs for this FL

process by uniformly selecting N̂ ≤ N UEs without re-

placement. The UE selection result of this scheme is pre-

sented by a vector aaaBL1. The FL execution time by BL1

is thus Te(aaaBL1, ηηη,fff,ζζζ) = G(aaaBL1)E{To(aaaBL1, ηηη,fff,ζζζ)}.

Since aaaBL1 is known, solving the problem of minimiz-

ing Te(aaaBL1, ηηη,fff,ζζζ) only requires solving the short-term

subproblem (21) of optimizing (ηηη,fff ,ζζζ) to minimize the

execution time of one FL communication round. Here,

(21) is solved by using Algorithm 1 for a given aaaBL1.

• Baseline 2 (BL2): In this baseline, we let all N UEs

participate in an FL process but only K ≤ N UEs

participate in each FL communication round. Here, the

integer K is uniformly drawn from the interval [NQoL, N ].
Then, K UEs are uniformly chosen out of N original

UEs without replacement. The UE selection result of

this scheme in each FL communication round is rep-

resented by a vector aaaBL2. Note that BL2 is identical

to the opportunistic UE sampling scheme proposed in

[29], [30]. Since BL2 performs UE selection in each FL

communication round, the number of FL communication

rounds is G̃ = q
K + q̃

(
1−K

N

)
[30, Theorem 1], where q, q̃

depend on the specific characteristics of the FL learning

problems and are assumed known in advance. Here, since

there is no UE sampling in each FL communication round

in our proposed approach, all Ñ =
∑

k∈N ak selected

UEs participate in an FL process, i.e., K = Ñ . Therefore,

the number of FL communication rounds are q

Ñ
as in

(14). In this work, we choose q̃ = q for simplicity.

Then, the execution time of an FL process using BL2 is

measured by Te(aaaBL2, ηηη,fff,ζζζ) = G̃E{To(aaaBL2, ηηη,fff,ζζζ)}.

Since aaaBL2 is known in each FL communication round,

solving the problem of minimizing Te(aaaBL2, ηηη,fff ,ζζζ) only
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Fig. 7. Impact of the number of APs on: (a) FL execution time; (b) number of selected UEs (b). In this example, we set N = 15 and NQoL = 5.
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Fig. 8. Impact of the threshold NQoL on: (a) FL execution time; (b) number of UEs being selected. In this example, we set M = 40, N = 15.

requires solving the short-term subproblem (21) of opti-

mizing (ηηη,fff,ζζζ) to minimize the execution time of one

FL communication round. Here, (21) is solved by using

Algorithm 1 for a given aaaBL2.

Fig. 6 compares the total execution time of an FL process

by all the considered schemes. As seen, our OPT scheme is

the best performer. In particular, while BL1 and BL2 perform

quite similarly, OPT cuts the execution time by a substantial

amount, e.g., by up to 50% in Case (C1) and 66% in Case

(C2) with M = 20 and D = 1.5 km. These results show the

significant advantage of an optimal UE selection over heuristic

UE selections.

Fig. 6 also shows the importance of optimal UE selection for

reducing the FL execution time when the AP density defined

as the number of APs over a geographical area is moderately

low. Specifically, in both Cases (C1) and (C2) with a large

value of D or a low value of M , the reduction in the FL

execution time by OPT is at least 44%. This is reasonable

because in these cases, there is a high probability of having

UEs with unfavorable links. This leads to a significantly low

execution time of one FL communication time, and hence, the

whole FL execution time.

2) Impact of the number of APs on the number of selected

UEs: Fig. 7 shows that a larger number of APs corresponds

to a larger number of UEs being selected. Here, as the AP-

UE distances are smaller, there are potentially more UEs

with favorable links hence being selected. The only time the

number of UEs being selected decreases is in Case (C2)

with M = {20, 40} and D = 1.5 km. In this case, there

are a high probability of having UEs with unfavorable links,

which leads to the two largest execution times as shown

in Fig. 7(a). Therefore, the numbers of selected UEs still

need to be reduced to shorten the execution time of one FL

communication, and hence, the whole FL execution time.

3) Impact of NQoL on the execution time of an FL process:

Fig. 8(a) shows that increasing NQoL leads to a dramatic

increase in the FL execution time in a network that has a

significantly low density of APs and non-uniformly distributed

AP locations. This network is presented in Case (C2) with

D = 1.5 km, where there is a high probability of having

UEs with unfavorable links. In this case, for a larger value of

NQoL, more UEs are required to participate in an FL process

as shown in Fig. 8(b). While this reduces the number of FL

communication rounds, a stronger inter-user interference is

also resulted. In our example, such a reduction in the number

of communication round is not sufficient to compensate for

the increase in the execution time of each FL communication

round.

Fig. 8(a) also shows that CFmMIMO networks with a high

density of APs potentially provides low-latency FL services for

everyone. When there are fewer UEs with unfavorable links

as in Case (C1) with D = {0.75, 1.5} km and Case (C2) with
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D = 0.75 km, the FL execution times are nearly the same

when NQoL is increased.

VI. CONCLUSION

In this work, we have proposed a novel approach that

jointly designs UE selection, transmit power, and process-

ing frequency to minimize the execution time of an FL

process in CFmMIMO networks. We formulate a mixed-

integer mixed-timescale stochastic nonconvex problem under

practical requirements on the maximum transmit powers and

the minimum number of selected UEs to guarantee quality of

learning. Utilizing online successive convex approximation,

we have successfully developed a novel algorithm to solve

the formulated problem. The proposed algorithm has been

proved to converge to the neighbourhood of stationary points.

Numerical results have showed that our approach significantly

reduces the FL execution time over the baseline schemes.

APPENDIX A

PROOF OF PROPOSITION 3

The proof involves two steps. The first step is to prove that

the solution xxx∗ obtained from Algorithm 2 is a KKT solution

of the short-term subproblem (21). This proof has already been

provided in Proposition 1. The second step is to prove that the

solution aaa(n+1) obtained from Algorithm 2 is a KKT solution

of the long-term master problem (22). The details of this proof

are as follows.

It can be confirmed that problem (20) satisfies the condi-

tions of Assumption 1 on the main problem in the general

framework [32]. It is worth noting that we do not verify

Assumption 1-5) and Assumption 1-6) of [32] for the fol-

lowing reasons. Assumption 1-5) on Mangasarian-Fromovitz

constraint qualification is used to ensure the existence of KKT

solutions of the short-term subproblem (21). In this work,

since Proposition 1 shows that a KKT solution of (21) can

be obtained by Algorithm 1, this assumption is unnecessary.

Assumption 1-6) is used to guarantee convergence to an exact

stationary point of the short-term subproblem (21). However,

[32] confirms that Assumption 1-6) can be removed when we

allow an approximate convergence by solving the short-term

subproblem (21) with a finite number of iterations.

From the definitions of R̃d,k(vvv), and R̃u,k(uuu) in (27) and

(28), it can be verified that R̃d,k(vvv) and R̃u,k(uuu) have the

following properties:

• R̃d,k(vvv
(n)) = Rd,k(vvv

(n)), R̃u,k(uuu
(n)) = hu,k(uuu

(n)),

∇R̃d,k(vvv
(n)) = ∇Rd,k(vvv

(n)), ∇R̃u,k(uuu
(n)) =

∇Ru,k(uuu
(n));

• −R̃d,k(vvv), and −R̃u,k(uuu) are strongly convex;

• R̃d,k(vvv,vvv
(n)) and R̃u,k(uuu,uuu

(n)) are Lipschitz continuous

in both vvv,vvv(n) and both uuu,uuu(n), respectively.

Algorithm 1 thus satisfies all the conditions of Assumption 2

on the short-term algorithm within the general framework [32].

Since {φ(n), π(n)} are chosen to satisfy conditions (B1) and

(B2) in Sec. IV-C, they satisfy all the conditions of Assumption

5 in [32]. When Assumptions 1, 2 and 5 in [32] is satisfied, it

is confirmed by [32, Corollary 1] that the surrogate function

L̃(aaa) in (45) satisfies the Assumptions 3 and 4 in [32] on the

properties and asymptotic consistency of surrogate functions.

Since Assumptions 1-5 in [32] are all satisfied, it follows

from [32, Lemma 1] that:

(i) The sequence {(aaa(n+1), (aaa∗)(n+1))}∞n=1 generated over

iterations of Algorithm 2 has the following property.

lim
n→∞

||aaa(n+1) −(aaa∗)(n+1)|| = 0. (50)

(ii) Let aaa⋆ be a limit point of a subsequence {aaa(n+1)j}∞j=1

and

lim
j→∞

|L̃(aaa(n+1)j )− L̃(aaa⋆)| = 0, (51)

lim
j→∞

|∇L̃(aaa(n+1)j )−∇L(aaa⋆)| = 0. (52)

Without loss of generality, we assume that aaa(n+1) → aaa⋆ as

n → ∞. Then, (51) and (52) imply that

lim
n→∞

|L̃(aaa(n+1))− L(aaa(n+1))| = 0, (53)

lim
n→∞

|∇L̃(aaa(n+1))−∇L(aaa(n+1))| = 0. (54)

It can be seen that there always exists one interior point

in H. Therefore, the convex problem (45) satisfies the

Slater’s constraint qualification condition. Its optimal solution

(aaa∗)(n+1) is thus a KKT solution to (32), and hence, (22)

when λ → ∞ (see Proposition 2), i.e.,

∇L((aaa∗)(n+1)) +

r∑

j=1

νj∇δj((aaa
∗)(n+1)) = 0, (55a)

νjδj((aaa
∗)(n+1)) = 0, ∀j ∈ {1, ..., q}, (55b)

where δj(aaa), ∀j ∈ {1, . . . , q} represent the functions in the

constraints (2), (17) and (18). It follows from (50) and (54)

that the gap between aaa(n+1) and (aaa∗)(n+1) and that between

∇L̃(aaa(n+1)) and ∇L(aaa(n+1)) converge to zero as n → ∞.

Therefore, (55) implies

∇L(aaa(n+1)) +

r∑

j=1

νj∇δj(aaa
(n+1)) = 0, (56a)

νjδj(aaa
(n+1)) = 0, ∀j ∈ {1, ..., r}, (56b)

which means aaa(n+1) is a KKT solution of the long-term master

problem (22).

As such, the convergence of Algorithm 2 to a stationary

point of problem (20) in the sense of Definition 1 are guar-

anteed if the numbers of iterations of Algorithms 1 and 2 are

infinity, i.e., I
(n)
S → ∞, IL → ∞, and λ → ∞. In practice,

it is acceptable to choose finite {I(n)S }n∈{1,...,IL}, IL, and λ

for an approximate convergence. Therefore, Algorithm 2 is

guaranteed to converge to the neighbourhood of the stationary

solutions of problem (20), and hence, (16).
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