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On the application of the SCD semismooth* Newton method
to variational inequalities of the second kind

Helmut Gfrerer* Jiřı́ V. Outrata† Jan Valdman‡

Abstract. The paper starts with a description of the SCD (subspace containing derivative) mappings and the SCD

semismooth∗ Newton method for the solution of general inclusions. This method is then applied to a class of variational

inequalities of the second kind. As a result, one obtains an implementable algorithm exhibiting a locally superlinear conver-

gence. Thereafter we suggest several globally convergent hybrid algorithms in which one combines the SCD semismooth∗

Newton method with selected splitting algorithms for the solution of monotone variational inequalities. Finally we demon-

strate the efficiency of one of these methods via a Cournot-Nash equilibrium, modeled as a variational inequalities of the

second kind, where one admits really large numbers of players (firms) and produced commodities.

Key words. Newton method, semismoothness∗, superlinear convergence, global convergence, generalized equation, coderiva-

tives.

AMS Subject classification. 65K10, 65K15, 90C33.

1 Introduction

In [3] the authors proposed the so-called semismooth* Newton method for the numerical solution of
a general inclusion

0 ∈ H(x),

where H : Rn ⇒ Rn is a closed-graph multifunction. This method has been further developed in [4],
where it has coined the name SCD (subspace containing derivative) semismooth* Newton method.
When compared with the original method from [4], the new variant requires a slightly stronger ap-
proximation of the limiting coderivative of H, but exhibits locally superlinear convergence under sub-
stantially less restrictive assumptions. The aim of this paper is to work out this Newton-type method
for the numerical solution of the generalized equation (GE)

0 ∈ H(x) := f (x)+∂q(x), (1.1)

where f :Rn→Rn is continuously differentiable, q :Rn→R is proper convex and lower-semicontinuous
(lsc) and ∂ stands for the classical Moreau-Rockafellar subdifferential. It is easy to see that GE (1.1)
is equivalent to the variational inequality (VI):
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Find x̄ ∈ Rn such that

〈 f (x̄),x− x̄〉+q(x)−q(x̄)≥ 0 for all x ∈ Rn. (1.2)

The model (1.2) has been introduced in [6] and one speaks about the variational inequality (VI)
of the second kind. It is widely used in the literature dealing with equilibrium models in continuum
mechanics cf., e.g., [8] and the references therein. For the numerical solution of GE (1.1), a number
of methods can be used ranging from nonsmooth optimization methods (applicable when ∇ f is sym-
metric) up to a broad family of splitting methods (usable when H is monotone), cf. [1, Chapter 12].
If GE (1.1) amounts to stationarity condition for a Nash game, then also a simple coordinate-wise
optimization technique can be used, cf. [11] and [14]. Concerning the Newton type methods, let us
mention, for instance, the possibility to write down GE (1.1) as an equation on a monotone graph,
which enables us to apply the Newton procedure from [16]. Note, however, that the subproblems to
be solved in this approach are typically rather difficult. In other papers the authors reformulate the
problem as a (standard) nonsmooth equation which is then solved by the classical semismooth Newton
method, see, e.g., [9, 20].

As mentioned above, in this paper we will investigate the numerical solution of GE (1.1) via the
SCD semismooth* Newton method developed in [4]. In contrast to the Newton methods by Josephy,
in this method (as well as in its original variant from [3]) the multi-valued part of (1.1) is also ap-
proximated and, differently to some other Newton-type methods, this approximation is provided by
means of a linear subspace belonging to the graph of the limiting coderivative of ∂q. In this way the
computation of the Newton direction reduces to the solution of a linear system of equations. To en-
sure locally superlinear convergence, two properties have to be fulfilled. The first one is a weakening
of the semismooth∗ property from [3] and pertains the subdifferential mapping ∂q. The second one,
called SCD regularity, concerns the mapping H and amounts, roughly speaking, to the strong metric
subregularity of the considered GE around the solution.

The plan of the paper is as follows. After the preliminary Section 2, where we provide the needed
background from modern variational analysis, Section 3 is devoted to the broad class of SCD map-
pings, which is the basic framework for the application of the used method. In particular, the subd-
ifferential of a proper convex lsc function is an SCD mapping. In Section 4 the SCD semismooth*
Newton method is described and its convergence is analyzed. Thereafter, in Section 5 we develop
an implementable version of the method for the solution of GE (1.1) and show its locally superlinear
convergence under mild assumptions. Section 6 deals with the issue of global convergence. First we
suggest a heuristic modification of the method from the preceding section which exhibits very good
convergence properties in the numerical experiments. Thereafter we show global convergence for a
family of hybrid algorithms, where one combines the semismooth* Newton method with various fre-
quently used splitting methods. Finally, in Section 7 we demonstrate the efficiency of the developed
methods via a Cournot-Nash equilibrium problem taken over from [13] which can be modeled in the
form of GE (1.1). In contrast to the numerical approach in [13], we may work here with ”arbitrarily”
large numbers of player (firms) and commodities,

The following notation is employed. Given a matrix A, rge A and ker A denote the range space
and the kernel of A, respectively, and ‖A‖ stands for its spectral norm. For a set Ω, dist(x,Ω) :=
infa∈Ω ‖x− a‖ signifies the distance from x to Ω and riΩ is the relative interior of Ω. Further, L⊥

denotes the anihilator of a linear subspace L and diag(A,B) means a block diagonal matrix with
matrices A,B as diagonal blocks.
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2 Preliminaries

Throughout the whole paper, we will frequently use the following basic notions of modern variational
analysis.

Definition 2.1. Let A be a set in Rs, x̄ ∈ A and A be locally closed around x̄. Then

(i) The tangent (contingent, Bouligand) cone to A at x̄ is given by

TA(x̄) := Limsup
t↓0

A− x̄
t

.

(ii) The set
N̂A(x̄) := (TA(x̄))◦

is the regular (Fréchet) normal cone to A at x̄, and

NA(x̄) := Limsup
A

x→x̄

N̂A(x)

is the limiting (Mordukhovich) normal cone to A at x̄.

In this definition ”Limsup” stands for the Painlevé-Kuratowski outer (upper) set limit, see, e.g.,
[18]. The above listed cones enable us to describe the local behavior of set-valued maps via various
generalized derivatives. Let F : Rn ⇒ Rm be a (set-valued) mapping with the domain and the graph

domF := {x ∈ Rn | F(x) 6= /0}, gphF := {(x,y) ∈ Rn×Rm | y ∈ F(x)}.

Definition 2.2. Consider a (set-valued) mapping F : Rn ⇒Rm and let gphF be locally closed around
some (x̄, ȳ) ∈ gphF.

(i) The multifunction DF(x̄, ȳ) : Rn ⇒Rm, given by gphDF(x̄, ȳ) = TgphF(x̄, ȳ), is called the graph-
ical derivative of F at (x̄, ȳ).

(ii) The multifunction D∗F(x̄, ȳ) : Rm ⇒ Rn, defined by

gphD∗F(x̄, ȳ) = {(y∗,x∗) | (x∗,−y∗) ∈ NgphF(x̄, ȳ)}

is called the limiting (Mordukhovich) coderivative of F at (x̄, ȳ).

Let us now recall the following regularity notions.

Definition 2.3. Let F : Rn ⇒ Rm be a a (set-valued) mapping and let (x̄, ȳ) ∈ gphF.

1. F is said to be metrically subregular at (x̄, ȳ) if there exists κ ≥ 0 along with some neighborhood
X of x̄ such that

dist(x,F−1(ȳ))≤ κ dist(ȳ,F(x)) ∀x ∈ X .

2. F is said to be strongly metrically subregular at (x̄, ȳ) if it is metrically subregular at (x̄, ȳ) and
there exists a neighborhood X ′ of x̄ such that F−1(ȳ)∩X ′ = {x̄}.

3. F is said to be metrically regular around (x̄, ȳ) if there is κ ≥ 0 together with neighborhoods X
of x̄ and Y of ȳ such that

dist(x,F−1(y))≤ κ dist(y,F(x)) ∀(x,y) ∈ X×Y.
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4. F is said to be strongly metrically regular around (x̄, ȳ) if it is metrically regular around (x̄, ȳ)
and F−1 has a single-valued localization around (ȳ, ȳ), i.e., there are open neighborhoods Y ′ of
ȳ, X ′ of x̄ and a mapping h : Y ′→ Rn with h(ȳ) = x̄ such that gphF ∩ (X ′×Y ′) = {(h(y),y) |
y ∈ Y ′}.

It is easy to see that the strong metric regularity around (x̄, ȳ) implies the strong metric subregular-
ity at (x̄, ȳ) and the metric regularity around (x̄, ȳ) implies the metric subregularity at (x̄, ȳ). To check
the metric regularity one often employs the so-called Mordukhovich criterion, according to which this
property around (x̄, ȳ) is equivalent with the condition

0 ∈ D∗F(x̄, ȳ)(y∗) ⇒ y∗ = 0. (2.3)

For pointwise characterizations of the other stability properties from Definition 2.3 the reader is re-
ferred to [4, Theorem 2.7].

We end up this preparatory section with a definition of the semismooth∗ property which paved the
way both to semismooth∗ Newton method in [3] as well as to the SCD semismooth∗ Newton method
in [4].

Definition 2.4. We say that F : Rn ⇒ Rn is semismooth∗ at (x̄, ȳ) ∈ gphF if for every ε > 0 there is
some δ > 0 such that the inequality

|〈x∗,x− x̄〉−〈y∗,y− ȳ〉| ≤ ε‖(x,y)− (x̄, ȳ)‖‖(x∗,y∗)‖

holds for all (x,y) ∈ gphF ∩Bδ (x̄, ȳ) and all (y∗,x∗) belonging to gphD∗F(x̄, ȳ).

3 On SCD mappings

3.1 Basic properties

In this section we want to recall the basic definitions and features of the SCD property introduced in
the recent paper [4].

In what follows we denote by Zn the metric space of all n-dimensional subspaces of R2n equipped
with the metric

dZ (L1,L2) := ‖PL1−PL2‖

where PLi is the symmetric 2n×2n matrix representing the orthogonal projection on Li, i = 1,2.
Sometimes we will also work with bases for the subspaces L ∈Zn. Let Mn denote the collection

of all 2n×n matrices with full column rank n and for L ∈Zn we define

M (L) := {Z ∈Mn | rge Z = L},

i.e., the columns of Z ∈M (L) are a basis for L.
We treat every element of R2n as a column vector. In order to keep notation simple we write (u,v)

instead of
(

u
v

)
∈R2n when this does not lead to confusion. In order to refer to the components of the

vector z =
(

u
v

)
we set π1(z) := u, π2(z) = v.

Let L ∈ Zn and consider Z ∈M (L). Then we can partition Z into two n× n matrices A and B

and we will write Z = (A,B) instead of Z =

(
A
B

)
. It follows that rge (A,B) := {(Au,Bu) | u ∈Rn} .

=
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{
(

Au
Bu

)
| u ∈ Rn} = L. Similarly as before, we will also use π1(Z) := A, π2(Z) := B for referring to

the two n×n parts of Z.
Further, for every L ∈Zn we can define

L∗ := {(−v∗,u∗) | (u∗,v∗) ∈ L⊥},

where L⊥ denotes as usual the orthogonal complement of L. Then it can be shown that (L∗)∗ = L and
dZ (L1,L2) = dZ (L∗1,L

∗
2). Thus the mapping L→ L∗ defines an isometry on Zn.

We denote by Sn the 2n×2n orthogonal matrix

Sn :=
(

0 −I
I 0

)
so that L∗ = SnL⊥.

Definition 3.1. Consider a mapping F : Rn ⇒ Rn.

1. We call F graphically smooth of dimension n at (x,y) ∈ gphF, if TgphF(x,y) = gphDF(x,y) ∈
Zn. Further we denote by OF the set of all points where F is graphically smooth of dimension
n.

2. We associate with F the four mappings Ŝ F : gphF ⇒ Zn, Ŝ ∗F : gphF ⇒ Zn, S F : gphF ⇒
Zn, S ∗F : gphF ⇒ Zn, given by

Ŝ F(x,y) :=

{
{gphDF(x,y)} if (x,y) ∈ OF ,
/0 else,

Ŝ ∗F(x,y) :=

{
{gphDF(x,y)∗} if (x,y) ∈ OF ,
/0 else,

S F(x,y) := Limsup
(u,v)

gphF−→(x,y)

Ŝ F(u,v)

= {L ∈Zn | ∃(xk,yk)
OF−→(x,y) : lim

k→∞

dZ (L,gphDF(xk,yk)) = 0},

S ∗F(x,y) := Limsup
(u,v)

gphF−→(x,y)

Ŝ ∗F(u,v)

= {L ∈Zn | ∃(xk,yk)
OF−→(x,y) : lim

k→∞

dZ (L,gphDF(xk,yk)
∗) = 0}.

3. We say that F has the SCD (subspace containing derivative) property at (x,y) ∈ gphF, if
S ∗F(x,y) 6= /0. We say that F has the SCD property around (x,y) ∈ gphF, if there is a neigh-
borhood W of (x,y) such that F has the SCD property at every (x′,y′) ∈ gphF ∩W. Finally, we
call F an SCD mapping if F has the SCD property at every point of its graph.

Since L→ L∗ is an isometry on Zn and (L∗)∗ = L, the mappings S ∗F and S F are related via

S ∗F(x,y) = {L∗ | L ∈S F(x,y)}, S F(x,y) = {L∗ | L ∈S ∗F(x,y)}.

The name SCD property is motivated by the following statement.

5



Lemma 3.2 (cf.[4, Lemma 3.7]). Let F : Rn ⇒ Rn and let (x,y) ∈ gphF. Then L ⊆ gphD∗F(x,y)
∀L ∈S ∗F(x,y).

Next we turn to the notion of SCD regularity.

Definition 3.3. 1. We denote by Z reg
n the collection of all subspaces L ∈Zn such that

(y∗,0) ∈ L ⇒ y∗ = 0.

2. A mapping F : Rn ⇒Rn is called SCD regular around (x,y) ∈ gphF, if F has the SCD property
around (x,y) and

(y∗,0) ∈ L⇒ y∗ = 0 ∀L ∈S ∗F(x,y), (3.4)

i.e., L ∈Z reg
n for all L ∈S ∗F(x,y). Further, we will denote by

scdreg F(x,y) := sup{‖y∗‖ | (y∗,x∗) ∈ L,L ∈S ∗F(x,y),‖x∗‖ ≤ 1}

the modulus of SCD regularity of F around (x,y).

Since the elements of S ∗F(x,y) are contained in gphD∗F(x,y), it follows from the Mordukhovich
criterion (2.3) that SCD regularity is weaker than metric regularity.

In the following propostion we state some basic properties of subspaces L ∈Z reg
n .

Proposition 3.4 (cf.[4, Proposition 4.2]). Given a 2n× n matrix Z, there holds rge Z ∈ Z reg
n if and

only if the n×n matrix π2(Z) is nonsingular. Thus, for every L ∈Z reg
n there is a unique n×n matrix

CL such that L = rge (CL, I). Further, L∗ = rge (CT
L , I) ∈Z reg

n ,

〈x∗,CT
L v〉= 〈y∗,v〉 ∀(y∗,x∗) ∈ L∀v ∈ Rn.

and
‖y∗‖ ≤ ‖CL‖‖x∗‖ ∀(y∗,x∗) ∈ L.

Note that for every L∈Z reg
n and every (A,B)∈M (L) the matrix B is nonsingular and CL =AB−1.

Combining [4, Equation (34), Lemma 4.7, Proposition 4.8] we obtain the following lemma

Lemma 3.5. Assume that F : Rn ⇒ Rn is SCD regular around (x̄, ȳ) ∈ gphF. Then

scdreg F(x̄, ȳ) = sup{‖CL‖ | L ∈S ∗F(x̄, ȳ)}< ∞

Moreover, F is SCD regular around every (x,y) ∈ gphF sufficiently close to (x̄, ȳ) and

limsup
(x,y)

gphF−→(x̄,ȳ)

scdreg F(x,y)≤ scdreg F(x̄, ȳ).

3.2 On the SCD property of the subdifferential of convex functions

Theorem 3.6 (cf.[4, Corollary 3.28]). For every proper lsc convex function q :Rn→ R̄ the subdifferen-
tial mapping ∂q is an SCD mapping and for every (x,x∗) ∈ gph∂q and for every L ∈S ∗∂q(x,x∗) =
S ∂q(x,x∗) there is a symmetric positive semidefinite n× n matrix B with ‖B‖ ≤ 1 such that L =
rge (B, I−B) = L∗.
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The representation of L via the matrix B is only one possibility. E.g., if q is twice continuously
differentiable then rge (I,∇2q(x)) = gphD∗∂q(x,∇q(x)) and the relation between B and ∇2q(x) is
given by B = (I +∇2q(x))−1, I−B = (I +∇2q(x))−1∇2q(x) and ∇2q(x) = B−1(I−B).

Example 3.7. Assume that q(x) = ‖x‖ so that

∂q(x) =

{
B for x = 0

x
‖x‖ otherwise.

By virtue of Theorem 3.6, ∂q is an SCD mapping. When considering a pair (x̄, x̄∗)∈ gph∂q with x̄ = 0
and ‖x̄∗‖ < 1, then it is easy to see that ∂q is graphically smooth of dimension n at (x̄, x̄∗) and, by
Definition 3.1,

S ∂q(x̄, x̄∗) = S ∗
∂q(x̄, x̄∗) =

{
{0}×Rn}.

In this case we have the representation {0}×Rn = rge (B, I−B) with B = 0. If x 6= 0 then q is even
twice continuously differentiable near x and, as pointed out below Theorem 3.6, with x̄∗ = x

‖x‖ one has

S ∂q(x̄, x̄∗) = S ∗
∂q(x̄, x̄∗) = rge (Bx, I−Bx) = rge (I,∇2q(x))

with

Bx =
(
I +∇

2q(x)
)−1

=

(
I +

1
‖x‖

(
I− xxT

‖x‖2

))−1

=

(
‖x‖+1
‖x‖

(
I− xxT

‖x‖2(1+‖x‖)

))−1

.

We claim that

Bx =
‖x‖
‖x‖+1

(
I +

xxT

‖x‖3

)
. (3.5)

Indeed,(
I− xxT

‖x‖2(1+‖x‖)

)(
I +

xxT

‖x‖3

)
= I + xxT

( 1
‖x‖3 −

1
‖x‖2(1+‖x‖)

− ‖x‖2

‖x5‖(1+‖x‖)

)
= I + xxT

(1+‖x‖−‖x‖−1
‖x‖3(1+‖x‖)

)
= I,

and so formula (3.5) holds true.
Finally consider the point (x̄, x̄∗) with x̄ = 0 and ‖x̄∗‖= 1. By Definition 3.1 and Theorem 3.6 one

has that
S ∂q(x̄, x̄∗) = S ∗

∂q(x̄, x̄∗) =
{
{0}×Rn} ∪ Limsup

x→0,x 6=0
x
‖x‖→x̄∗

rge (Bx, I−Bx).

Since the matrices Bx are bounded, the above Limsup amounts to rge (B, I−B) where, taking into
account (3.5),

B = lim
x→0,x 6=0

x
‖x‖→x̄∗

Bx = x̄∗x̄∗T

However, note that
lim

x→0,x 6=0
x
‖x‖→x̄∗

∇
2q(x)

7



does not exist. Finally note that, at points (x̄, x̄∗) with x̄ = 0 and ‖x̄∗‖= 1, one has

gphD∗∂q(x̄, x̄∗) = S ∗
∂q(x̄, x̄∗)∪{(s,s∗) | s ∈ R−{x̄∗},〈s∗, x̄∗〉 ≤ 0},

where the last term is generated by sequences (0,x∗)→ (0, x̄∗) with ‖x∗‖= 1. Thus, in this situation
the mapping S ∗∂q(x̄, x̄∗) has a simpler structure than the limiting coderivative D∗∂q(x̄, x̄∗) (similarly
as in [4, Example 3.29].)

In our numerical experiments we will use convex functions with some separable structure, which
carries over to S ∗∂q.

Lemma 3.8. If q(x1,x2) = q(x1)+q2(x2) for lsc convex functions qi : Rni → R̄, i = 1,2, then for every
((x̄1, x̄2),(x̄∗1, x̄

∗
2)) ∈ gph∂q there holds

S ∂q((x̄1, x̄2),(x̄∗1, x̄
∗
2)) =

{
{((u1,u2),(u∗1,u

∗
2)) | (ui,u∗i ) ∈ Li, i = 1,2} | Li ∈S ∂qi(x̄i, x̄∗i ), i = 1,2

}
.

Proof. We claim that O∂q = {((x1,x2),(x∗1,x
∗
2)) | (xi,x∗i ) ∈ O∂qi , i = 1,2} and that

Tgph∂q((x1,x2),(x∗1,x
∗
2)) = {((u1,u2),(u∗1,u

∗
2)) | (ui,u∗i ) ∈ Tgph∂qi(xi,x∗i ), i = 1,2} (3.6)

holds for all ((x1,x2),(x∗1,x
∗
2)) ∈O∂q. Indeed, if ((x1,x2),(x∗1,x

∗
2)) ∈O∂q then (x1,x∗1) ∈O∂q1 because

of {((u1,0),(u∗1,0)) | (u1,u∗1) ∈ ∂q1(x1,x∗1)} ⊆ Tgph∂q((x1,x2),(x∗1,x
∗
2)) and, analogously, (x2,x∗2) ∈

O∂q1 . This proves O∂q ⊆ {((x1,x2),(x∗1,x
∗
2)) | (xi,x∗i )∈O∂qi , i = 1,2}. To show the reverse inclusion,

consider (xi,x∗i )∈Oqi , i = 1,2. Taking into account [4, Corollary 3.28, Remark 3.18], the sets gph∂qi

are geometrically derivable at points (xi,x∗i ) ∈ O∂qi , i = 1,2 and therefore

Tgph∂q1×gph∂q2((x1,x∗1),(x2,x∗2)) = Tgph∂q1(x1,x∗1)×Tgph∂q2(x2,x∗2) (3.7)

by [5, Proposition 1]. Thus, Tgph∂q1×gph∂q2((x1,x∗1),(x2,x∗2)) is an n1 +n2 dimensional subspace and,
since the tangent cones in (3.6) and (3.7) coincide up to a reordering of the elements, ((x1,x2),(x∗1,x

∗
2))∈

O∂q together with the validity of (3.6) follows. Hence our claim holds true and the assertion of the
lemma follows from the definition.

Clearly, the assertion of Lemma 2.10 can be extended to the general case when the sum defining
q has an arbitrary finite number of terms.

4 On semismooth∗ Newton methods for SCD mappings

In this section we recall the general framework for the semismooth∗ Newton method introduced in [3]
and adapted to SCD mappings in [4]. Consider the inclusion

0 ∈ F(x), (4.8)

where F : Rn ⇒ Rn is a mapping having the SCD property around some point (x̄,0) ∈ gphF .

Definition 4.1. We say that F : Rn ⇒ Rn is SCD semismooth∗ at (x̄, ȳ) ∈ gphF if F has the SCD
property around (x̄, ȳ) and for every ε > 0 there is some δ > 0 such that the inequality

|〈x∗,x− x̄〉−〈y∗,y− ȳ〉| ≤ ε‖(x,y)− (x̄, ȳ)‖‖(x∗,y∗)‖

holds for all (x,y) ∈ gphF ∩Bδ (x̄, ȳ) and all (y∗,x∗) belonging to any L ∈S ∗F(x,y).
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Clearly, every mapping with the SCD property around (x̄, ȳ) ∈ gphF which is semismooth∗ at
(x̄, ȳ) is automatically SCD semismooth∗ at (x̄, ȳ). Therefore, the class of SCD semismooth∗ mappings
is even richer than the class of semismooth∗ maps. In particular, it follows from [10, Theorem 2] that
every mapping whose graph is a closed subanalytic set is SCD semismooth∗ , cf. [4].

The following proposition provides the key estimate for the semismooth∗ Newton method for SCD
mappings.

Proposition 4.2 (cf. [4, Proposition 5.3]). Assume that F : Rn ⇒ Rn is SCD semismooth∗ at (x̄, ȳ) ∈
gphF. Then for every ε > 0 there is some δ > 0 such that the estimate

‖x−CT
L (y− ȳ)− x̄‖ ≤ ε

√
n(1+‖CL‖2)‖(x,y)− (x̄, ȳ)‖

holds for every (x,y) ∈ gphF ∩Bδ (x̄, ȳ) and every L ∈S ∗F(x,y)∩Z reg
n .

We now describe the SCD variant of the semismooth∗ Newton method. Given a solution x̄ ∈
F−1(0) of (4.8) and some positive scalar, we define the mappings Aη ,x̄ : Rn ⇒ Rn×Rn and Nη ,x̄ :
Rn ⇒ Rn by

Aη ,x̄(x) := {(x̂, ŷ) ∈ gphF | ‖(x̂, ŷ)− (x̄,0)‖ ≤ η‖x− x̄‖},
Nη ,x̄(x) := {x̂−CT

L ŷ | (x̂, ŷ) ∈Aη ,x̄(x),L ∈S ∗F(x̂, ŷ)∩Z reg
n }.

Proposition 4.3. Assume that F is SCD semismooth∗ at (x̄,0) ∈ gphF and SCD regular around (x̄,0)
and let η > 0. Then there is some δ̄ > 0 such that for every x ∈B

δ̄
(x̄) the mapping F is SCD regular

around every point (x̂, ŷ) ∈Aη ,x̄(x). Moreover, for every ε > 0 there is some δ ∈ (0, δ̄ ] such that

‖z− x̄‖ ≤ ε‖x− x̄‖ ∀x ∈Bδ (x̄),∀z ∈Nη ,x̄(x).

Proof. Let κ := scdreg F(x̄,0). Then, by Lemma 3.5 there is some δ ′ > 0 such that F is SCD regular
with scdreg F(x,y)≤ κ +1 around any (x̂, ŷ) ∈ gphF ∩Bδ ′(x̄,0) and the first assertion follows with
δ̄ := δ ′/η . Now consider ε > 0 and set ε̃ := ε/(η

√
n(1+(1+κ)2)). By Proposition 4.2 there is

some δ̃ ∈ (0,δ ′] such that the inequality

‖x̂−CT
L ŷ‖ ≤ ε̃

√
n(1+‖CL‖2)‖(x̂, ŷ)− (x̄,0)‖

holds for every (x̂, ŷ) ∈ gphF ∩B
δ̃

and every L ∈ S ∗F(x̂, ŷ)∩Z reg
n . Set δ := δ̃/η and consider

x∈Bδ (x̄). For every (x̂, ŷ)∈Aη ,x̄(x) we have ‖(x̂, ŷ)−(x̄,0)‖ ≤ η‖x− x̄‖ ≤ δ̃ ≤ δ ′ and consequently

‖CL‖ ≤ scdreg F(x̂, ŷ)≤ κ +1 ∀L ∈S ∗F(x̂, ŷ)

Thus
‖x̂−CT

L ŷ‖ ≤ ε̃

√
n(1+(1+κ)2)‖(x̂, ŷ)− (x̄,0)‖ ≤ ε‖x− x̄‖

and the second assertion follows.

Assuming we are given some iterate x(k), the next iterate is formally given by x(k+1) ∈Nη ,x̄(x(k)).
Let us have a closer look at this rule. Since we cannot expect in general that F(x(k)) 6= /0 or that
0 is close to F(x(k)), even if x(k) is close to a solution x̄, we first perform some step which yields
(x̂(k), ŷ(k)) ∈ gphF as an approximate projection of (x(k),0) onto gphF . We require that

‖(x̂(k), ŷ(k))− (x̄,0)‖ ≤ η‖x(k)− x̄‖ (4.9)
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for some constant η > 0, i.e. (x̂(k), ŷ(k)) ∈Aη ,x̄(x(k)). For instance, if

‖(x̂(k), ŷ(k))− (x(k),0)‖ ≤ βdist((x(k),0),gphF)

holds with some β ≥ 1, then

‖(x̂(k), ŷ(k))− (x̄,0)‖ ≤ ‖(x̂(k), ŷ(k))− (x(k),0)‖+‖(x(k),0)− (x̄,0)‖
≤ βdist((x(k),0),gphF)+‖(x(k),0)− (x̄,0)‖ ≤ (β +1)‖(x(k),0)− (x̄,0)‖

and thus (4.9) holds with η = β +1 and we can fulfill (4.9) without knowing the solution x̄. Further
we require that S ∗F(x̂(k), ŷ(k))∩Z reg

n 6= /0 and compute the new iterate as x(k+1) = x̂(k)−CT
L ŷ(k) for

some L ∈S ∗F(x̂(k), ŷ(k))∩Z reg
n . In fact, in our numerical implementation we will not compute the

matrix CL, but two n× n matrices A,B such that L = rge (BT ,AT ). The next iterate x(k+1) is then
obtained by x(k+1) = x̂(k)+∆x(k) where ∆x(k) is a solution of the system A∆x =−Bŷ(k). This leads to
the following conceptual algorithm.

Algorithm 1 (SCD semismooth∗ Newton-type method for inclusions).
1. Choose a starting point x(0), set the iteration counter k := 0.
2. If 0 ∈ F(x(k)), stop the algorithm.
3. Approximation step: Compute

(x̂(k), ŷ(k)) ∈ gphF

satisfying (4.9) and such that S ∗F(x̂(k), ŷ(k))∩Z reg
n 6= /0.

4. Newton step: Select n×n matrices A(k),B(k) with

L(k) := rge
(
B(k)T

,A(k)T
) ∈S ∗F(x̂(k), ŷ(k))∩Z reg

n ,

calculate the Newton direction ∆x(k) as a solution of the linear system

A(k)
∆x =−B(k)ŷ(k)

and obtain the new iterate via x(k+1) = x̂(k)+∆x(k).
5. Set k := k+1 and go to 2.

For this algorithm, locally superlinear convergence follows from Proposition 4.3, see also [4,
Corollary 5.6].

Theorem 4.4. Assume that F is SCD semismooth∗ at (x̄,0) ∈ gphF and SCD regular around (x̄,0).
Then for every η > 0 there is a neighborhood U of x̄ such that for every starting point x(0) ∈ U
Algorithm 1 is well-defined and either stops after finitely many iterations at a solution of (4.8) or
produces a sequence x(k) converging superlinearly to x̄ for any choice of (x̂(k), ŷ(k)) satisfying (4.9)
and any L(k) ∈S ∗F(x̂(k), ŷ(k)).

As shown in [4, Corollary 6.4], if F happens to be SCD semismooth∗ around (x̄,0), then the
assumptions of the above statement are fulfilled whenever F is strongly metrically subregular at all
points from a neighborhood of (x̄,0). Hence, in particular, these assumptions are satisfied provided F
is strongly metrically regular around (x̄,0), which is used in the test problem discussed in Section 7.

There is an alternative for the computation of the Newton direction ∆x(k) based on the subspaces
from S F(x̂(k), ŷ(k)), cf. [4]:
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4. Newton step: Select n×n matrices A(k),B(k) with

L(k) := rge
(
A(k),B(k)) ∈S F(x̂(k), ŷ(k))∩Z reg

n ,

compute a solution p of the linear system

B(k)p =−ŷ(k)

and obtain the new iterate x(k+1) = x̂(k)+∆x(k) with Newton direction ∆x(k) = A(k)p.

For the choice between the two approaches for calculating the Newton direction it is important to
consider whether elements from S ∗F(x̂(k), ŷ(k)) or from S F(x̂(k), ŷ(k)) are easier to compute.

Note that for an implementation of the Newton step we need not to know the whole derivative
S ∗F(x̂(k), ŷ(k)) (or S F(x̂(k), ŷ(k))) but only one element L(k) ∈S ∗F(x̂(k), ŷ(k)).

5 Implementation of the semismooth∗ Newton method

There is a lot of possibilities how to implement the semismooth∗ Newton method. Apart from
the Newton step, which is not uniquely determined by different choices of subspaces contained in
S ∗F(x̂(k), ŷ(k)), there is a multitude of possibilities how to perform the approximation step. In this
section we will construct an implementable version of the semismooth∗ Newton method for the nu-
merical solution of GE (1.1) under the assumption that the proximal mapping Pλ q, defined by

Pλ q(y) := argmin
x
{ 1

2λ
‖x− y‖2 +q(x)}, y ∈ Rn,

can be efficiently evaluated for every y ∈ Rn and parameter λ > 0. Since q is convex, it is well
known that for every λ > 0 the proximal mapping Pλ q is single-valued and nonexpansive and Pλ q =
(I +λ∂q)−1, see, e.g. [18, Proposition 12.19].

Given some scaling parameter γ > 0, we will denote

uγ(x) := P1
γ

q(x− 1
γ

f (x))− x.

From the definition of the proximal mapping we obtain that uγ(x) is the unique solution of the uni-
formly convex optimization problem

min
u

γ

2
‖u‖2 + 〈 f (x),u〉+q(x+u).

The first-order (necessary and sufficient) optimality condition reads as

0 ∈ γuγ(x)+ f (x)+∂q(x+uγ(x)). (5.10)

Since Pλ q is nonexpansive, we obtain the bounds

‖(x+uγ(x))− (x′+uγ(x′)‖ ≤ ‖(x− x′)− 1
γ
( f (x)− f (x′))‖ ≤ ‖x− x′‖+ 1

γ
‖ f (x)− f (x′)‖,

‖uγ(x)−uγ(x′)‖ ≤ 2‖x− x′‖+ 1
γ
‖ f (x)− f (x′)‖. (5.11)
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Our approach is based on an equivalent reformulation of (1.1) in form of the GE

0 ∈F (x,d) :=
(

f (x)+∂q(d)
x−d

)
(5.12)

in variables (x,d)∈Rn×Rn. Clearly, x̄ is a solution of (1.1) if and only if (x̄, x̄) is a solution of (5.12).

Proposition 5.1. (i) Let x ∈ Rn, (d,d∗) ∈ gph∂q. Then

S ∗F ((x,d),( f (x)+d∗,x−d))

=

{
rge

((
Y ∗ 0
0 −I

)
,

(
∇ f (x)TY ∗ −I

X∗ I

))
| rge (Y ∗,X∗) ∈S ∗

∂q(d,d∗)
}
. (5.13)

(ii) Let x̄ be a solution to (1.1). Then the following statements are equivalent:

(a) H is SCD regular around (x̄,0).

(b) For every L ∈S ∗∂q(x̄,− f (x̄)) and every (Y ∗,X∗) ∈M (L) the matrix ∇ f (x)TY ∗+X∗ is
nonsingular.

(c) The mapping F is SCD regular around ((x̄, x̄),(0,0)).

(iii) Let x̄ be a solution to (1.1). If ∂q is SCD semismooth∗ at (x̄,− f (x̄)) then F is SCD semismooth∗

at ((x̄, x̄),(0,0)).

Proof. (i) GE (5.12) can be written down in the form

0 ∈F (x,d) = h(x,d)+F(x,d)

where h(x,d) := ( f (x),x−d) and F(x,d) := ∂q(d)×∂g(x) with g : Rn→R given by g(x) = 0 for all
x. By virtue of [4, Proposition 3.15] we obtain that, at the point

(
(x,d),( f (x)+d∗,x−d)

)
∈ gphF ⊆

R2n×R2n one has

S ∗F
(
(x,d),( f (x)+d∗,x−d)

)
=

(
I 0

∇h(x,d)T I

)
S ∗F

(
(x,d),(d∗,0)

)
.

Next consider the mapping G : R2n ⇒ R2n given by G(x,d) = ∂
(
g(x)+q(d)

)
. Since

gphF = {
(
(x,d),(d∗,x∗)) | (d,d∗) ∈ gph∂q,(x,x∗) ∈ gph∂g},

gphG = {
(
(x,d),(x∗,d∗)) | (d,d∗) ∈ gph∂q,(x,x∗) ∈ gph∂g},

we can employ [4, Proposition 3.14] with Φ(x,d,d∗,x∗) := (x,d,x∗,d∗) to obtain that

S ∗F
(
(x,d),(d∗,0)) = S2n∇Φ(x,d,d∗,0)T ST

2nS
∗G(
(
(x,d),(0,d∗)

)
.

It remains to compute S ∗G(
(
(x,d),(0,d∗)

)
. By virtue of Theorem 3.6 and Lemma 3.8 we have

S ∗G
(
(x,d),(0,d∗)

)
=

{
rge

((
I 0
0 Y ∗

)
,

(
0 0
0 X∗

))
| rge (Y ∗,X∗) ∈S ∗

∂q(d,d∗)
}
.
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Putting these ingredients together we may conclude that

S ∗F
(
(x,d),( f (x)+d∗,x−d)

)
=

(
I 0

∇h(x,d)T I

)
S2n∇Φ(x,d,d∗,0)T ST

2nS
∗G(
(
(x,d),(0,d∗)

)

=


0 I 0 0
I 0 0 0
I ∇ f (x)T I 0
−I 0 0 I

S ∗G
(
(x,d),(0,d∗)

)

=

rge




0 I 0 0
I 0 0 0
I ∇ f (x)T I 0
−I 0 0 I




I 0
0 Y ∗

0 0
0 X∗


 | rge (Y ∗,X∗) ∈S ∗

∂q(d,d∗)


=

{
rge

((
0 Y ∗

I 0

)
,

(
I ∇ f (x)TY ∗

−I X∗

))
| rge (Y ∗,X∗) ∈S ∗

∂q(d,d∗)
}

=

{
rge

((
0 Y ∗

I 0

)
Sn,

(
I ∇ f (x)TY ∗

−I X∗

)
Sn

)
| rge (Y ∗,X∗) ∈S ∗

∂q(d,d∗)
}

leading to formula (5.13).
(ii) By [4, Proposition 3.15] we have

S ∗H(x̄,0) =
(

I 0
∇ f (x̄)T I

)
S ∗

∂q(x̄,− f (x̄))

=
{

rge (Y ∗,∇ f (x̄)TY ∗+X∗) | rge (Y ∗,X∗) ∈S ∗
∂q(x̄,− f (x̄))

}
and the equivalence between (a) and (b) is implied by Proposition 3.4. By (5.13), the mapping
F is SCD regular around ((x̄, x̄),(0,0)) if and only if for every pair Y ∗,X∗ with rge (Y ∗,X∗) ∈
S ∗∂q(x̄,− f (x̄)) the matrix(

∇ f (x)TY ∗ −I
X∗ I

)
=

(
∇ f (x)TY ∗+X∗ −I

0 I

)(
I 0

X∗ I

)
is nonsingular and, by the representation above, this holds if and only if ∇ f (x)TY ∗+X∗ is nonsingular.
Hence, (b) is equivalent to (c).

(iii) Let f be Lipschitz continuous with constant l in some ball Br(x̄) around x̄. Consider ε > 0,
choose δq > 0 such that

|〈e∗,d− x̄〉−〈e,d∗+ f (x̄)〉| ≤ ε

2
√

2(l +1)
‖(e,e∗)‖‖(d− x̄,d∗+ f (x̄))‖

for all (d,d∗) ∈ gph∂q∩Bδq(x̄,− f (x̄)) and all (e,e∗) ∈ L ∈S ∗
∂q(d,d∗)

and then choose δ ≤min{ δq
1+l ,r} such that

‖ f (x)− f (x̄)−∇ f (x)(x− x̄)‖ ≤ ε

2
√

2(l +1)
‖x− x̄‖, x ∈Bδ (x̄).

Consider ((x,d),(y1,y2)) ∈ gphF ∩Bδ ((x̄, x̄),(0,0)), ((z1,z2),(z∗1,z
∗
2)) ∈ L̄ ∈S ∗F ((x,d),(y1,y2)).

Then y1 = f (x)+d∗ with d∗ ∈ ∂q(d), y2 = x−d and by (5.13) there are (e,e∗) ∈ L ∈S ∗∂q(d,d∗),
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c ∈ Rn with ((z1,z2),(z∗1,z
∗
2)) = ((e,−c),(∇ f (x)T e− c,e∗+ c)). Then ‖x− x̄‖ ≤ δ and

‖(d− x̄,d∗+ f (x̄))‖ ≤ ‖(d− x̄,y1)‖+‖ f (x)− f (x̄)‖
≤ ‖((x,d),(y1,y2))− ((x̄, x̄),(0,0))‖+‖ f (x)− f (x̄)‖ ≤ δ + lδ ≤ δq.

It follows that

|〈(z1,z2),(y1,y2)〉−〈(z∗1,z∗2),(x,d)− (x̄, x̄)〉|
= |〈e, f (x)+d∗〉−〈c,x−d〉−〈∇ f (x)T e− c,x− x̄〉−〈e∗+ c,d− x̄〉|
≤ |〈e, f (x)− f (x̄)−∇ f (x)(x− x̄)〉|+ |〈e,d∗+ f (x̄)〉+ 〈e∗,d− x̄〉|

≤ ε

2
√

2(l +1)
‖e‖‖x− x̄‖+ ε

2
√

2(l +1)
‖(e,e∗)‖‖(d− x̄,d∗+ f (x̄))‖

≤ ε√
2(l +1)

‖(e,e∗)‖‖(x− x̄,d− x̄,d∗+ f (x̄))‖

≤ ε√
2(l +1)

‖(e,e∗)‖
(
‖(x− x̄,d− x̄,d∗+ f (x))‖+‖ f (x)− f (x̄)‖

)
≤ ε√

2
‖(e,e∗)‖‖(x− x̄,d− x̄,d∗+ f (x),x−d)‖= ε√

2
‖(e,e∗)‖‖((x,d),(y1,y2))− ((x̄, x̄),(0,0))‖.

Since minc ‖c‖2+‖e∗−c‖2 = 1
2‖e
∗‖2, we obtain ‖((z1,z2),(z∗1,z

∗
2))‖2 ≥ ‖e‖2+ 1

2‖e
∗‖2 ≥ 1

2‖(e,e
∗)‖2

and

|〈(z1,z2),(y1,y2)〉−〈(z∗1,z∗2),(x,d)−(x̄, x̄)〉|≤ ε‖((z1,z2),(z∗1,z
∗
2))‖‖((x,d),(y1,y2))−((x̄, x̄),(0,0))‖.

Thus F is SCD semismooth∗ at ((x̄, x̄),(0,0)).

We proceed now with the description of the approximation step. Given (x(k),d(k)) and a scaling
parameter γ(k), we compute u(k) := u

γ(k)(x
(k)) and set

x̂(k) = x(k), d̂(k) = x(k)+u(k) and ŷ(k) = (ŷ(k)1 , ŷ(k)2 ) =−(γ(k)u(k),u(k)). (5.14)

We observe that
((x̂(k), d̂(k)),(ŷ(k)1 , ŷ(k)2 )) ∈ gphF ,

which follows immediately from the first-order optimality condition (5.10). Note that the outcome of
the approximation step does not depend on the auxiliary variable d(k). In order to apply Theorem 4.4,
we have to show the existence of a real η > 0 such that the estimate

‖((x̂(k)− x̄, d̂(k)− x̄), ŷ(k)‖ ≤ η‖(x(k)− x̄,d(k)− x̄)‖, (5.15)

corresponding to (4.9), holds for all (x(k),d(k)) with x(k) close to x̄. By virtue of (5.14) the left-hand
side of (5.15) amounts to

‖((x̂(k)− x̄, x̂(k)+u(k)− x̄),(−γ
(k)u(k),−u(k))‖ ≤ ‖(x̂(k)− x̄, x̂(k)− x̄,0,0)‖+‖(0,u(k),−γ

(k)u(k),−u(k))‖
≤ 2‖x̂(k)− x̄‖+(2+ γ

(k))‖u(k)‖. (5.16)

Since u
γ(k)(x̄) = 0, we obtain from (5.11) the bounds

‖d̂(k)− x̄‖ ≤ ‖x(k)− x̄‖+ 1
γ(k)
‖ f (x(k))− f (x̄)‖

‖u(k)‖ ≤ 2‖x(k)− x̄‖+ 1
γ(k)
‖ f (x(k))− f (x̄)‖.
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The latter estimate, together with (5.16), imply

‖((x̂(k)− x̄, d̂(k)− x̄), ŷ(k)‖ ≤
(

2+(2+ γ
(k))
(
2+

l
γ(k)

))
‖x(k)− x̄‖

≤
(

2+(2+ γ
(k))
(
2+

l
γ(k)

))
‖(x(k)− x̄,d(k)− x̄)‖, (5.17)

where l is the Lipschitz constant of f on a neighborhood of x̄. Thus the desired inequality (5.15)
holds, as long as γ(k) remains bounded and bounded away from zero.

Next we describe the Newton step. According to Algorithm 1 and (5.13), we have to compute a
pair Y ∗(k),X∗(k) with rge (Y ∗(k),X∗(k)) ∈S ∗∂q(d̂(k), d̂∗(k)) and then to solve the linear system(

Y ∗(k)
T

∇ f (x(k)) X∗(k)
T

−I I

)(
∆x(k)

∆d(k)

)
=−

(
Y ∗(k)

T
0

0 −I

)(
ŷ(k)1

ŷ(k)2

)

Simple algebraic transformations yield

(Y ∗(k)
T

∇ f (x(k))+X∗(k)
T
)∆x(k) =−(Y ∗(k)

T
ŷ(k)1 +X∗(k)

T
ŷ(k)2 ) (5.18)

and ∆d(k) = ŷ(k)2 +∆x(k). Using (5.14) the system (5.18) amounts to

(Y ∗(k)
T

∇ f (x)+X∗(k)
T
)∆x(k) = (γ(k)Y ∗(k)

T
+X∗(k)

T
)u(k). (5.19)

Having computed the Newton direction, the new iterate is given by x(k+1) = x(k)+∆x(k) = d(k+1). We
summarize our considerations in the following algorithm, where the auxiliary variable d(k) is omitted.

Algorithm 2 (semismooth∗ Newton Method for VI of the second kind (1.1)).
1. Choose starting point x(0) and set the iteration counter k := 0.
2. If 0 ∈ H(x(k)) stop the algorithm.
3. Select a parameter γ(k) > 0, compute u(k) := u

γ(k)(x
(k)) and set d̂(k) := x(k) + u(k), d̂∗(k) :=

−γ(k)u(k)− f (x(k)).
4. Select (X∗(k),Y ∗(k)) with rge (Y ∗(k),X∗(k)) ∈ S ∗∂q((d̂(k), d̂∗(k)), compute the Newton direction

∆x(k) from (5.19) and set x(k+1) = x(k)+∆x(k).
5. Increase the iteration counter k := k+1 and go to Step 2.

Combining Theorem 4.4 with Proposition 5.1 we obtain the following convergence result.

Theorem 5.2. Let x̄ ∈ H−1(0) be a solution of (1.1) and assume that ∂q is SCD semismooth∗ at
(x̄,− f (x̄). Further suppose that H is SCD regular around (x̄,0). Then for every pair γ, γ̄ with 0 < γ ≤
γ̄ there exists a neighborhood U of x̄ such that for every starting point x(0) ∈U Algorithm 2 produces
a sequence x(k) converging superlinearly to x̄, provided we choose in every iteration step γ(k) ∈ [γ, γ̄].

6 Globalization

In the preceding section we showed locally superlinear convergence of our implementation of the
semismooth* Newton method. However, we do not only want fast local convergence but also conver-
gence from arbitrary starting points. To this end we consider a non-monotone line-search heuristic as
well as hybrid approaches which combine this heuristic with some globally convergent method.

15



To perform the line search we need some merit function. Similar to the damped Newton method
for solving smooth equations, we use some kind of residual. Here we define the residual by means of
the approximation step, i.e., given x and γ > 0, we use

rγ(x) := ‖(ŷ(k)1 , ŷ(k)2 )‖= ‖(γuγ(x),uγ(x))‖=
√

1+ γ2‖uγ(x)‖ (6.20)

as motivated by (5.14). Note that every evaluation of the residual function rγ(x) requires the compu-
tation of uγ(x).

Our globalization approaches are intended mainly for the case when the variational inequality
(1.1) does not correspond to the solution of some nonsmooth optimization problem. For the solution
of optimization problems, namely, there exist more efficient globalization strategies based on merit
functions derived from the objective and this case will be treated in a forthcoming paper.

6.1 A non-monotone line-search heuristic

In general, we replace the full Newton step 4. in Algorithm 2 by a damped step of the form

x(k+1) = x̂(k)+α
(k)4x(k),

where α(k) ∈ (0,1] is chosen such that the line search condition

r
γ(k)(x̂

(k)+α
(k)s(k))≤ (1+δ

(k)−µα
(k))r

γ(k)(x̂
(k)) (6.21)

is fulfilled, where µ ∈ (0,1) and δ (k) is a given sequence of positive numbers converging to 0.
Obviously, the step size α(k) exists since the residual function rγ(x) is continuous. However, it is

not guaranteed that the residual is decreasing, i.e., that r
γ(k)(x

(k+1))< r
γ(k)(x̂

(k)).
The computation of α(k) can be done in the usual way. For instance, we can choose the first

element of a sequence (β j), which fulfills β0 = 1 and converges monotonically to zero, such that the
line search condition (6.21) is fulfilled.

For γ(k) we suggest a choice with γ(k) ≈ ‖∇ f (x(k)‖. Since the spectral norm ‖∇ f (x(k)‖ is difficult
to compute, we use an easy computable norm instead, e.g., the maximum absolute column sum norm
‖∇ f (x(k))‖1.

Although we are not able to show convergence properties for this heuristic, it showed good con-
vergence properties in practice.

6.2 Globally convergent hybrid approaches

In this subsection we suggest a combination of the semismooth∗ Newton method with some exist-
ing globally convergent method which exhibits both global convergence and local superlinear con-
vergence. Assume that the used globally convergent method is formally given by some mapping
T : Rn→ Rn, which computes from some iterate x(k) the next iterate by

x(k+1) = T (x(k)).

Of course, T must depend on the problem (1.1) which we want to solve and will presumably depend
also on some additional parameters which control the behavior of the method. In our notation we
neglect to a large extent these dependencies.

Consider the following well-known examples for such a mapping T .
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1. For the forward-backward splitting method, the mapping T is given by

T FB
λ

(x) = (I +λ∂q)−1(I−λ f )(x),

where λ > 0 is a suitable prarameter. Note that T FB
λ

(x) = x+u1/λ (x).

2. For the Douglas-Rachford splitting method we have

T DR
λ

(x) = (I +λ f )−1
(
(I +λ∂q)−1(I−λ f )+λ f

)
(x) = (I +λ f )−1(T FB

λ
+λ f )(x),

where λ > 0 is again some parameter.

3. A third method is given by the hybrid projection-proximal point algorithm due to Solodov and
Svaiter [19]. Let x and γ > 0 be given and consider x̂ = T FB

1/γ
(x), i.e. x̂− x = uγ(x). Then

0 ∈ γ(x̂− x)+ f (x)+∂q(x̂) and consequently

0 ∈ v+ γ(x̂− x)+( f (x)− f (x̂)),

where v := −γ(x̂− x) + f (x̂)− f (x) ∈ H(x̂). Then, in the hybrid projection-proximal point
algorithm the mapping T is given by the projection of x on the hyperplane {z | 〈v,z− x̂〉= 0},
i.e.,

T PM
γ (x) = x− 〈v, x̂− x〉

‖v‖2 v.

Note that in principle we could also use other methods which depend not only on the last iterate like
the golden ratio algorithm [12], but for ease of presentation these methods are omitted.

Algorithm 3 (Globally convergent hybrid semismooth∗ Newton method for VI of the second kind).
Input: A method for solving (1.1) given by the iteration operator T : Rn→ Rn, a starting point x(0),
line search parameter 0 < ν < 1, a sequence δ (k) ∈ (0,1), a sequence β j ↓ 0 with β0 = 1 and a stop-
ping tolerance εtol > 0.
1. Choose γ(0), set r(0)N := r

γ(0)(x
(0)) and set the counters k := 0, l := 0.

2. If r
γ(k)(x

(k))≤ εtol stop the algorithm.
3. Perform the approximation step as in Algorithm 2 and compute the Newton direction ∆x(k) by solv-

ing (5.19). Try to determine the step size α(k) as the first element from the sequence β j satisfying
β j > δ (l) and

r
γ(k)(x

(k)+β j∆x(k))≤ (1−νβ j)r
(l)
N .

4. If both ∆x(k) and α(k) exist, set x(k+1) = x(k)+α(k)∆x(k), r(l+1)
N = r

γ(k)(x
(k+1)) and increase l := l+1.

5. Otherwise, if the Newton direction ∆x(k) or the step length α(k) does not exist, compute x(k+1) =
T (x(k)).
6. Update γ(k+1) and increase the iteration counter k := k+1 and go to Step 2.

In what follows we denote by kl the subsequence of iterations where the new iterate xk+1 is com-
puted by the damped Newton Step 4, i.e.,

x(kl) = x(kl−1)+α
(kl−1)

∆x(kl−1), r(l)N = r
γ
(kl−1)(x(kl)).
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Theorem 6.1. Assume that the GE (1.1) has at least one solution and assume that the solution method
given by the iteration mapping T :Rn→Rn has the property that for every starting point y(0) ∈Rn the
sequence y(k), given by the recursion y(k+1) = T (y(k)), has at least one accumulation point which is
a solution to the GE (1.1). Then for every starting point x(0) the sequence x(k) produced by Algorithm
3 with εtol = 0 and ∑

∞
k=0 δ (k) = ∞ has the following properties.

(i) If the Newton step is accepted only finitely many times in step 4, then the sequence x(k) has at
least one accumulation point which solves (1.1).

(ii) If the Newton step is accepted infinitely many times in step 4, then every accumulation point of
the subsequence x(kl) is a solution to (1.1).

(iii) If there exists an accumulation point x̄ of the sequence x(k) which solves (1.1), the mapping H
is SCD regular around (x̄,0) and ∂q is SCD semismooth∗ at (x̄,− f (x̄)), then the sequence x(k)

converges superlinearly to x̄ and the Newton step in step 3 is accepted with step length α(k) = 1
for all k sufficiently large, provided the sequence γ(k) satisfies

0 < γ ≤ γ
(k) ≤ γ̄ ∀k

for some positive reals γ, γ̄ .

Proof. The first statement is an immediate consequence of our assumption on T . In order to show
the second statement, observe that the sequence r(l)N satisfies r(l+1)

N ≤ (1−νδ (l))r(l)N implying

lim
l→∞

ln(r(l+1)
N )− ln(r(0)N )≤ lim

l→∞

l

∑
i=0

ln(1−νδ
(i))≤− lim

l→∞

l

∑
i=0

νδ
(i) =−∞.

Thus liml→∞ r(l)N = liml→∞

√
1+ γ(kl−1)2‖u

γ
(kl−1)(x(kl))‖= 0 and we can conclude that

lim
l→∞

‖u
γ
(kl−1)(x(kl))‖= lim

l→∞

γ
(kl−1)‖u

γ
(kl−1)(x(kl))‖= 0.

Together with the inclusion

0 ∈ γ
(kl−1)u

γ
(kl−1)(x(kl))+ f (x(kl))+∂q(x(kl)+u

γ
(kl−1)(x(kl))),

the continuity of f and the closedness of gph∂q, it follows that 0 ∈ f (x̄) + ∂q(x̄) holds for every
accumulation point x̄ of the subsequence x(kl). This proves our second assertion.

Finally we want to show (iii). Assume that x̄ is an accumulation point of the sequence x(k) such
that the mapping H is SCD regular around (x̄,0) and ∂q is SCD semismooth∗ at (x̄,− f (x̄)). By
Proposition 5.1 the mapping F is SCD regular and SCD semismooth∗ at ((x̄, x̄),(0,0)). By invoking
[4, Theorem 6.2], the mapping F is strongly metrically subregular at ((x̄, x̄),(0,0)) and, moreover,
there is some κ > 0 and some neighborhoods U of (x̄, x̄) and V of (0,0) such that

‖(x,d)− (x̄, x̄)‖ ≤ κdist((0,0),F (x,d)) ∀(x,d) ∈U, (6.22)

L ∈Z reg
2n and ‖CL‖ ≤ κ ∀L ∈S ∗F ((x,d),(y1,y2)) ∀((x,d),(y1,y2)) ∈U×V. (6.23)

Thus, whenever ((x̂(k), d̂(k)), ŷ(k)) ∈ U ×V , the Newton direction (∆x(k),∆d(k)) exists and satisfies
‖(∆x(k),∆d(k)‖ ≤ κ‖ŷ(k)‖.
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By Proposition 4.2 and (6.23), for every ε > 0 there is some δ > 0 such that

‖x̂(k)+∆x(k)− x̄‖ ≤ ‖
(

x̂(k)+∆x(k)− x̄
d̂(k)+∆d(k)− x̄

)
‖ ≤ ε

√
2n(1+κ2)‖((x̂(k)− x̄, d̂(k)− x̄), ŷ(k))‖

whenever ((x̂(k), d̂(k)), ŷ(k))∈Bδ ((x̄, x̄),(0,0)). Thus we can find some δ ′ ∈ (0,1] such that Bδ ′((x̄, x̄),(0,0))⊂
U×V and

‖x̂(k)+∆x(k)− x̄‖ ≤min
{ 1−ν

c1c2κ
√

1+ γ̄2
,

1
2c2

}
‖((x̂(k)− x̄, d̂(k)− x̄), ŷ(k))‖

for ((x̂(k), d̂(k)), ŷ(k))∈Bδ ′((x̄, x̄),(0,0), where c1 := 2+ l
γ
, c2 := 2+(2+ γ̄)c1 and l is some Lipschitz

constant of f in B1(x̄). From (5.17) we deduce ‖((x̂(k)− x̄, d̂(k)− x̄), ŷ(k))‖ ≤ c2‖x(k)− x̄‖ yielding

‖x̂(k)+∆x(k)− x̄‖ ≤min
{ 1−ν

c1κ
√

1+ γ̄2
,
1
2

}
‖x̂(k)− x̄‖ (6.24)

for x(k) ∈B
δ̄
(x̄) with δ̄ := δ ′/c2. We now claim that for every iterate x(k) ∈B

δ̄
(x̄) the Newton step

with step size α(k) = 1 is accepted. If x(k) ∈B
δ̄
(x̄) then ((x̂(k), d̂(k)), ŷ(k))∈Bδ ′((x̄, x̄),(0,0))⊂U×V

and from (6.22) we obtain

‖x(k)− x̄‖ ≤ ‖(x̂(k), d̂(k))− (x̄, x̄)‖ ≤ κdist((0,0),F (x̂(k), d̂(k)))≤ κ‖ŷ(k)‖ ≤ κ

√
1+ γ̄2‖u(k)‖.

Since u
γ(k)(x̄) = 0, we obtain from (5.11) and (6.24) that

‖u
γ(k)(x

(k)+∆x(k))‖ ≤ c1‖x(k)+∆x(k)− x̄‖ ≤ 1−ν

κ
√

1+ γ̄2)
‖x(k)− x̄‖ ≤ (1−ν)‖u(k)‖

= (1−ν)‖u
γ(k)(x

(k))‖

showing

r
γ(k)(x

(k)+∆x(k))=
√

1+ γ(k)
2‖u

γ(k)(x
(k)+∆x(k))‖≤ (1−ν)

√
1+ γ(k)

2‖u
γ(k)(x

(k))‖=(1−ν)r
γ(k)(x

(k)).

From this we conclude that the step size α(k) = 1 is accepted. Now let k̄ denote the first index such
that x(k̄) enters the ball B

δ̄
. Then for all k ≥ k̄ we have

x(k+1) = x(k)+∆x(k), ‖x(k+1)− x̄‖ ≤ 1
2
‖x(k)− x̄‖

and superlinear convergence follows from Theorem 5.2.

7 Numerical Experiments

Based on the general results from [2], the authors in [14] considered an evolutionary Cournot-Nash
equilibrium, where in the course of time the players (producers) adjust their productions to respond
adequately to changing external parameters. Following [2], however, each change of production is
generally associated with some expenses, called costs of change. In this way one obtains a generalized
equation (1.1) which has to be solved repeatedly in each selected time step.
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In this paper we make the model from [14] more involved by admitting multiple commodities and
more realistic production constraints. As the solver of the respective generalized equation (1.1), the
SCD semismooth∗ Newton method (Algorithm 2) will be employed. The new model is described as
follows: Let n,m be the number of players and the number of produced commodities, respectively.
Further, let x = (x1, . . . ,xn) ∈ (Rm)n be the cumulative vector of productions, where

xi = (xi
1,x

i
2, . . . ,x

i
m) ∈ Rm

+, i = 1,2, . . . ,n

stands for the production portfolio of the i-th player. With each player we associate

• the mapping ci : Rm
+→ R which assigns xi the respective production cost;

• the linear system of inequalities Ξixi ≤ ζ i with a pi×m matrix Ξi and a vector ζ i ∈ Rpi
which

specifies the set of feasible productions Ωi = {xi ∈ Rm | Ξixi ≤ ζ i} ⊆ Rm
+, and

• the cost of change zi : Rm→R which assigns each change of the production portfolio4xi ∈Rm

the corresponding cost.

Clearly, the vector t = (t1, t2, . . . , tm) with t j = ∑
n
i=1 xi

j, j = 1, . . . ,m, provides the overall amounts of
single commodities which are available on the market in the considered time period. The price of
the j-th commodity is given via the respective inverse demand function π j : R+→R+ assigning each
value t j the corresponding price, at which the consumers are willing to buy.

Putting everything together, one arrives at the GE (1.1), where

f (x) =

 f 1(x)
...

f n(x)

 with f i(x) = ∇ci(xi)−

π1(t1)
...

πm(tm)

−
 xi

1∇π1(t1)
...

xi
m∇πm(tm)


and q(x) = ∑

n
i=1
(
zi(xi)+ δΩi(xi)

)
, i = 1,2, . . . ,n. Concerning functions ci, i = 1, . . . ,n, and π j, j =

1, . . . ,m, we use functions of the same type as in [13], i.e.,

ci(xi) =
m

∑
j=1

(
bi

jx
i
j +

δ i
j

δ i
j +1

Ki
j

− 1
δ i

j |xi
j|

δ i
j+1

δ i
j

)
, i = 1, . . . ,n (7.25)

with positive parameters bi
j, δ i

j and Ki
j, and

π j(t j) = (1000n)
1
γ j t
− 1

γ j
j , j = 1, . . . ,m (7.26)

with positive parameters γ j.
The functions zi are modeled in the form

zi(4xi) = zi(xi−ai) =
m

∑
j=1

β
i
j|xi

j−ai
j|, i = 1, . . . ,n, (7.27)

where ai ∈ Ωi signifies the ”previous” production portfolio of the i-th player and and the weights β i
j

are positive reals indicating the costs of a ”unit” change of production of the j-th commodity by the
i-th player.

On the basis of [14] and [13] it can be shown that for each fixed choice of the parameters in
(7.25),(7.26) and (7.27) the mapping H(x) = f (x)+∂q(x) is strictly monotone and the respective GE
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(1.1) has a unique solution x̄ such that H is strongly metrically regular around (x̄,0). From Theorem
3.6 and [4, Proposition 3.15] it follows that H is an SCD mapping whenever f is continuously differ-
entiable near x̄. Consequently, since gph∂q is a polyhedral mapping, we infer from [3, Propositions
3.5, 3.6, 3.7] that in such a situation H is SCD semismooth∗ and so the conceptual Algorithm 1 may
be used. However, when implementing Algorithm 2, one has to be careful because the mapping f
does not meet the requirement of continuous differentiability on Rn. Therefore we replace π j by the
twice continuously differentiable functions

π̂ j(t j) :=

{
π j(t j) if t j > ε1

π j(ε1)+π ′j(ε1)(t j− ε1)+
1
2 π ′′j (ε1)(t j− ε1)

2 if t j ≤ ε1

and, in the definition of ci(xi), we replace the term |xi
j| by

√
(xi

j)
2 + ε2

2 whenever δ i
j < 1 (in our imple-

mentation we used ε1 := 10−1,ε2 := 10−10). Since the functions ci are convex, one could alternatively
incorporate them in q without smoothing instead of treating them as part of f .

Next we describe the approximation step of Algorithm 2, where x(k) =
(
(x1)(k), . . . ,(xn)(k)

)
stands

for the k-th iterate. For a given scaling parameter γ(k) > 0 and i= 1,2, . . . ,n we compute consecutively
the (unique) solutions (ui)(k) , i = 1, . . . ,n of the strictly convex optimization problems

min
ui∈Rm

γ(k)

2
‖ui‖2 + 〈 f i(x(k)),ui〉+qi((xi)(k)+ui), (7.28)

obtaining thus the vector u(k) =
(
(u1)(k), . . . ,(un)(k)

)
∈ (Rm)n. Due to the specific structure of the

functions qi, problem (7.28) can be replaced by the standard quadratic program

min
(ui,vi)∈Rm×Rm

γ(k)

2
‖ui‖2 + 〈 f i(x(k)),ui〉+

m

∑
j=1

β
i
jv

i
j

subject to Ξ
i((xi)(k)+ui)≤ ζ

i

vi
j ≥ (xi

j)
(k)+ui

j−ai
j

vi
j ≥−

(
(xi

j)
(k)+ui

j−ai
j
) } j = 1, . . . ,m.

Clearly, the u-component of the solution amounts exactly to the (unique) solution of (7.28). The
outcome of the projection step is then given by the update (5.14), i.e.,

x̂(k) = x(k), d̂(k) = x(k)+u(k) =
(
(d̂1)(k), . . . ,(d̂n)(k)

)
and ŷ(k) =−(γ(k)u(k),u(k)).

In the Newton step we make use of the following theorem.

Theorem 7.1. Let g : Rm → R̄ be given by g(x) = ∑
m
j=1 β j|x j− a j|+ δΩ(x), where β j ≥ 0, a j ∈ R,

j = 1, . . . ,m and Ω = {x ∈ Rn | 〈ξl,x〉 ≤ ζl, l = 1, . . . , p} is a convex polyhedral set given by the
vectors ξl ∈ Rm and scalars ζl ∈ R, l = 1, . . . , p. Then for every (x,x∗) ∈ gph∂g there holds

W (x)×W (x)⊥ ∈S ∂g(x,x∗) = S ∗
∂g(x,x∗),

where W (x) := {w ∈Rm | wi = 0, i ∈ J0(x),〈ξl,w〉= 0, l ∈ L(x)} with J0(x) := { j | β j > 0, x j = a j}
and L(x) = {l | 〈ξl,x〉= ζl}.
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Proof. By standard calculus rules of convex analysis, for every x ∈Ω we have

∂g(x) = NΩ(x)+ ∑
j:β j>0

β j∂ |x j−a j|

= { ∑
l∈L(x)

ξlµl + ∑
j∈J+(x)

β je j− ∑
j∈J−(x)

β je j +
m

∑
j∈J0(x)1

β jτ je j | µl ≥ 0, l ∈ L(x),τ j ∈ [−1,1], j ∈ J0(x)},

where J+(x) := { j | β j > 0, x j > a j}, J−(x) := { j | β j > 0, x j < a j} and e j denotes the j-th unit
vector. For every partition J0,J+,J− of { j ∈ {1, . . . ,m} | β j > 0} and every index set L ⊆ {1, . . . , p}
let

DJ0,J+,J−,L :=
{

x
∣∣∣ x j = a j, j ∈ J0, x j ≥ a j, j ∈ J+, x j ≤ a j, j ∈ J−
〈ξl,x〉= ζl, l ∈ L, 〈ξl,x〉 ≤ ζl, l 6∈ L

}
,

D̃J0,J+,J−,L =
{

∑
j∈J0

β jτ je j + ∑
j∈J+

β je j− ∑
j∈J−

β je j +∑
l∈L

ξlµl | τ j ∈ [−1,+1], j ∈ J0, µl ≥ 0, l ∈ L
}
,

EJ0,J+,J−,L := DJ0,J+,J−,L× D̃J0,J+,J−,L.

Further we denote by I the collection of all those index sets (J0,J+,J−,L) such that

riDJ0,J+,J−,L =
{

x | x j = a j, j ∈ J0, x j > a j, j ∈ J+, x j < a j, j ∈ J−
〈ξl,x〉= ζl, l ∈ L, 〈ξl,x〉< ζl, l 6∈ L

}
6= /0.

It follows that for every (J0,J+,J−,L) ∈I and every x ∈ DJ0,J+,J−,L we have x ∈ Ω and D̃J0,J+,J−,L ⊆
∂g(x). Further, for every x ∈Ω there holds (J0(x),J+(x),J−(x),L(x)) ∈I and D̃J0(x),J+(x),J−(x),L(x) =
∂g(x) implying

gph∂g =
⋃

(J0,J+,J−,L)∈I
EJ0,J+,J−,L.

We now claim that for any two elements (J0,J+,J−,L) 6= (J′0,J
′
+,J

′
−,L

′) ∈ I we have EJ′0,J
′
+,J′−,L′ ∩

riEJ0,J+,J−,L = /0. Note that riEJ0,J+,J−,L = riDJ0,J+,J−,L× ri D̃J0,J+,J−,L and that

ri D̃J0,J+,J−,L =
{

∑
j∈J0

β jτ je j + ∑
j∈J+

β je j− ∑
j∈J−

β je j +∑
l∈L

ξlµl | τ j ∈ (−1,+1), j ∈ J0, µl > 0, l ∈ L
}

by [17, Theorem 6.6.]. Assuming that this claim does not hold for some (J0,J+,J−,L) 6=(J′0,J
′
+,J

′
−,L

′)∈
I , there are reals µl > 0, l ∈ L, µ ′l ≥ 0, l ∈ L′, τ j ∈ (−1,1), j ∈ J0, τ ′j ∈ [−1,1], j ∈ J′0 such that

∑
j∈J0

β jτ je j + ∑
j∈J+

β je j− ∑
j∈J−

β je j +∑
l∈L

ξlµl = ∑
j∈J′0

β jτ
′
je j + ∑

j∈J′+

β je j− ∑
j∈J′−

β je j + ∑
l∈L′

ξlµ
′
l (7.29)

and some x ∈ DJ′0,J
′
+,J′−,L′ ∩ riDJ0,J+,J−,L implying J′0 ⊆ J0 and L′ ⊆ L, where equality can not simulta-

neously hold in both inclusions. Choosing x′ ∈ riDJ′0,J
′
+,J′−,L′ and setting u = x′− x, we obtain

u j = 0, j∈ J′0, u j > 0, j∈ (J0\J′0)∩J′+, u j < 0, j∈ (J0\J′0)∩J′−, 〈ξl,u〉= 0, l ∈L′,〈ξl,u〉< 0, l ∈L\L′.

Rearranging (7.29) yields

∑
j∈(J0\J′0)∩J′+

β j(τ j−1)e j + ∑
j∈(J0\J′0)∩J′−

β j(ξ j +1)e j + ∑
l∈L\L′

µlξl = ∑
j∈J′0

β j(τ
′
j− τ j)e j + ∑

l∈L′
(µ ′l −µl)ξl
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and by multiplying this equation with u we obtain the contradiction

0 > ∑
j∈(J0\J′0)∩J′+

β j(τ j−1)u j + ∑
j∈(J0\J′0)∩J′−

β j(τ j +1)u j + ∑
l∈L\L′

µl〈ξl,u〉

= ∑
j∈J′0

β j(τ
′
j− τ j)u j + ∑

l∈L′
(µ ′l −µl)〈ξl,u〉= 0.

Hence, our claim holds true and we may conclude that for every (J0,J+,J−,L)∈I and every (z,z∗)∈
riEJ0,J+,J−,L we have

Tgph∂g(z,z
∗) = TEJ0 ,J+,J−,L

(z,z∗) = TDJ0 ,J+,J−,L
(z)×TD̃J0 ,J+,J−,L

(z∗)

= {w | w j = 0, j ∈ J0,〈ξl,w〉= 0, l ∈ L}×{∑
j∈J0

β jσ je j +∑
l∈L

ξlνl | σ j ∈ R, j ∈ J0, νl ∈ R, l ∈ L}

=W (z)×W (z)⊥,

where the last equality follows from J0 = J0(z) and L = L(z). Now consider (x,x∗) ∈ gph∂g. Then
(J0(x),J+(x),J−(x),L(x)) ∈I and x ∈ riDI0(x),I+(x),I−(x),J(x). Selecting z∗ ∈ ri D̃J0(x),J+(x),J−(x),L(x), for
all α ∈ (0,1] we have x∗α := (1−α)x∗+αz∗)∈ ri D̃J0(x),J+(x),J−(x),L(x) implying Tgph∂g(x,x∗α) =W (x)×
W (x)⊥. Now the assertion follows from the definition of S ∂g(x,x∗) together with Theorem 3.6.

Let d̂∗(k) :=−γ(k)u(k)− f (x(k)). By Lemma 3.8 and consecutive application of Theorem 7.1 with
g = qi we obtain

n

∏
i=1

(W i)(k)×
n

∏
i=1

(W i)(k)
⊥ ∈S ∗

∂q(d̂(k), d̂∗(k)),

where for each i = 1, . . . ,n the subspace (W i)(k) ⊂ Rm is given by

(W i)(k) := {w | 〈ξ i
l ,w〉= 0, l ∈ (Li)(k), w j = 0, j ∈ (Ji

0)
(k)}

with (Ji
0)

(k) := { j ∈ {1, . . . ,m} | (d̂i
j)
(k) = ai

j}, (Li)(k) := {l ∈ {1, . . . , pi} | 〈ξ i
l ,(d̂

i)(k)〉= ζ i
l }, and the

vectors ξ i
l , l = 1, . . . , pi, given by the l-th row of the matrix Ξi.

The required matrices Y (k) = diag
(
(Y 1)(k), . . . ,(Y n)(k)

)
and X (k) = diag

(
(X1)(k), . . . ,(Xn)(k)

)
are

block diagonal matrices, where the diagonal m×m blocks can be computed as

(Y i)(k) = Qi
2×Qi

2
T
, (X i)(k) = Qi

1×Qi
1

T

and the columns of Qi
2 and Qi

1 are orthonormal bases for the subspaces (W i)(k) and (W i)(k)
⊥

, respec-
tively. The matrices Qi

1 and Qi
2 can be computed, e.g., via a QR-factorization with column pivoting

for the matrix with columns ξ i
l /‖ξ i

l ‖, l ∈ (Li)(k), and e j, j ∈ (Ji
0)

(k), see, e.g., [7, Section 2.2.5.3].
Concerning the numerical tests1, we consider first an academic example with n = 5 and m = 3.

The parameters bi
j,δ

i
j,K

i
j of production cost functions together with the market elasticities γ j arising in

the inverse demand functions are displayed in Table 1. In the constraints Ξixi ≤ ζ i, defining the sets of
feasible productions, we assume that matrices Ξi have only one row (i.e., pi = 1). The respective data
are listed in Table 2 together with the weights β i

j specifying the costs of change and the ”previous”
productions ai

j. Finally, Table 3 presents the starting values of xi
j (initial iteration) and the obtained

results, including both the equilibrium productions as well as the corresponding costs of change.

1All codes can be found on https://www.numa.uni-linz.ac.at/~gfrerer/Software/Cournot_Nash/
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i = 1 i = 2 i = 3 i = 4 i = 5
bi

j δ i
j Ki

j bi
j δ i

j Ki
j bi

j δ i
j Ki

j bi
j δ i

j Ki
j bi

j δ i
j Ki

j γ j

j=1 9.0 1.2 5.0 7.0 1.1 5.0 3.0 1.0 5.0 4.0 0.9 5.0 2.0 0.8 5.0 1.0
j=2 9.0 1.2 5.0 7.0 1.1 5.0 3.0 1.0 5.0 4.0 0.9 5.0 2.0 0.8 5.0 0.9
j=3 9.0 1.2 5.0 7.0 1.1 5.0 3.0 1.0 5.0 4.0 0.9 5.0 2.0 0.8 5.0 0.8

Table 1: Input parameters bi
j,δ

i
j,K

i
j of production costs and market elasticities γ j.

i = 1 i = 2 i = 3 i = 4 i = 5
Ξi

j β i
j ai

j Ξi
j β i

j ai
j Ξi

j β i
j ai

j Ξi
j β i

j ai
j Ξi

j β i
j ai

j
j=1 1.0 0.5 47.8 1.0 1.0 51.1 1.0 2.0 51.3 1.0 0.0 48.5 1.0 0.0 43.5
j=2 1.0 0.5 47.8 1.0 1.0 51.1 1.0 2.0 51.3 1.0 0.0 48.5 1.0 0.0 43.5
j=3 1.0 20.0 47.8 1.0 1.0 51.1 1.0 2.0 51.3 1.0 0.0 48.5 1.0 0.0 43.5
ζ i 200 250 100 200 200

Table 2: Input parameters Ξi
j,ζ

i defining feasible productions, parameters β i
j of costs of change and

previous productions ai
j.

i = 1 i = 2 i = 3 i = 4 i = 5
(xi

j)
(0) xi

j zi
j (xi

j)
(0) xi

j zi
j (xi

j)
(0) xi

j zi
j (xi

j)
(0) xi

j zi
j (xi

j)
(0) xi

j zi
j

j=1 45.0 54.4 3.3 45.0 54.6 3.5 45.0 20.6 61.4 45.0 50.8 0.0 45.0 45.3 0.0
j=2 45.0 67.9 10.0 45.0 66.2 15.0 45.0 30.6 41.5 45.0 58.2 0.0 45.0 50.6 0.0
j=3 45.0 47.8 0.0 45.0 85.0 33.8 45.0 48.8 5.0 45.0 70.7 0.0 45.0 60.0 0.0

Table 3: Initial productions (xi
j)
(0), the computed equilibrium productions xi

j and the corresponding
costs of change denoted by zi

j.

The results displayed in Table 3 have been achieved in 6 iterations of Algorithm 2 and the final
residual amounts to 2.7× 10−12. Note that the third firm exhausts its maximum production capacity
whereas the other firms do not. We also observe the prohibitive influence of the high value of β 1

3 ,
thanks to which, expectantly, x1

3 = a1
3 = 47.8.

Next, to demonstrate the computational efficiency of the SCD semismooth∗ Newton method, we
increase substantially the values of n and m. In dependence of n and m, we generated test problems
by drawing the data independently from the uniform distributions with the following parameters:

bi
j ∼U (2,20), δ i

j ∼U (0.5,2), Ki
j ∼U (0.1,10)

Ξi
l j ∼U (0,1), β i

j ∼U (1,10), ai
j ∼U (20,50),

γ j ∼U (1,2)

 , i = 1, . . . ,n, j = 1, . . . ,m, l = 1, . . . , pi

Here the numbers pi, i = 1, . . . ,n are obtained by rounding numbers drawn independently from
U (1,1.5m+ 1). Further we set ζ i := Ξizi, where for each i = 1, . . . ,n the elements zi

j, j = 1, . . . ,m
are drawn from U (1,15). For each pair (n,m) belonging to the set {(5,200),(25,40),(200,5)} we
generated 50 test problems and solved them as well with the heuristic from Subsection 6.1 as with
the globalized semismooth∗ Newton method of Algorithm 3 with T = T PM

γ . As a stopping criterion
we used r

γ(k)(x
(k)) ≤ 10−12r

γ(0)(x
(0)) and as the starting point we chose the vector (5,5, . . . ,5). Both
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Figure 1: Comparison of Algorithm 3 with heuristic

methods succeeded in all of the 150 test problems. In Table 4 we report for each scenario the mean
value of the iterations needed, the standard deviation and the maximum iteration number.

Hybrid method Heuristic
(n,m) mean value std. dev. max. iteration # mean value std. dev. max. iteration #

(5,200) 20.2 9.6 46 20.4 4.7 39
(25,40) 28.9 10.3 52 28.2 7.6 50
(200,5) 32.4 13.8 76 27.9 9.3 75

Table 4: Statistics of iteration numbers for 50 test problems per scenario

For each of the 3 scenarios we have a problem with nm = 1000 unknowns. The time consuming
parts of the semismooth∗ Newton method are approximation step and the Newton step: In the approx-
imation step we have to solve n quadratic problems with 2m variables, whereas in the Newton step we
must solve a linear system in nm variables. Thus, in case when (n,m) = (5,200) the approximation
step is more time consuming than the Newton step, whereas in case when (n,m) = (200,5) the ap-
proximation step is much cheaper than the Newton step. We can see that the iteration numbers needed
are fairly small. Note that the given iteration numbers essentially reflect the global convergence be-
haviour: The majority of the iterations is needed to come sufficiently close to the solution and then, by
superlinear convergence of the semismooth∗ Newton method, only 3–6 iterations more are required
to approximate the solution with the desired accuracy. In Figure 1 we depict the residuals r

γ(k)(x
(k))

given by (6.20) for one test problem with (n,m) = (5,200) for both Algorithm 3 and the heuristic of
Subsection 6.1. Algorithm 3 needed 16 iterations to reduce the initial residual of 840.7 to 6.0 and the
method stopped after 6 additional iterations with a residual of 4× 10−12. Similarly, for the heuristic
we obtained at the 15-th iterate a residual of 8.5 and the method stopped after 21 iterations with a final
residual of 5.7×10−12.

We now compare the semismooth∗ Newton method with several first-order splitting method,
namely the Forward-Backward splitting method FB, the golden ratio algorithm aGRAAL [12], the
Douglas-Rachford splitting algorithm DR and the hybrid projection-proximal point algorithm PM
[19]. We performed this comparison only for the scenario with (n,m) = (200,5), where one evalua-
tion of the proximal mapping is relatively cheap, i.e., we have to solve 200 quadratic programs with
10 variables. We generated 3 test problems and computed with the semismooth∗ Newton method a
fairly accurate approximation x̃ of the exact solution: For each of the 3 test problems the final residual
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Figure 2: Comparison of the semismooth∗ Newton method with several first-order methods

was less than 2.4× 10−12. Using this approximate solution x̃, we computed for the aforementioned

methods the relative error of the iterates x(k) defined as max{ |x
(k)
i −x̃i|

max{1,|x̃i|} | i = 1, . . . ,nm}. In Figure 2

we plot this relative error against the CPU-time needed for calculating x(k). We set for the first-order
methods as a time limit five times the time needed for the semismooth∗ Newton method to converge.
We can see that only for the first test problem the FB method was able to produce an approximate
solution with high accuracy within the time limit. For the FB method, the final relative error was less
than 10−5, the other methods terminated with a relative error in the range between 4% and 7%. For
the second test problem, the relative accuracy of the final iterate for the FB-method was about 8%,
whereas we could not get even one significant digit with the other methods. For the third test problem,
the relative error was for all first-order methods about 100%.

8 Conclusion

The semismooth∗ Newton method from [3] and its SCD variant from [4] provide us with a powerful
tool for numerical solution of a broad class of problems governed by GEs. When facing a concrete
problem of this sort, one has to employ appropriate results of variational analysis in order to imple-
ment the AS and the NS in an efficient way. In this paper we suggest an implementation of the SCD
semismooth∗ Newton method for the case of variational inequalities of the 2nd kind, which is a useful
modelling framework for a number of practical problems. In particular, in this way one can model
Nash games with convex, possibly nonsmooth costs, frequently arising, e.g., in economics and biol-
ogy. Without substantial changes this implementation can be adopted also to the case of the so-called
hemivariational inequalities, cf. [15], which are frequently used in various models in nonsmooth
mechanics. This could be a topic for a future research.
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