Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

Abdullah Kargın
Azize Dayan
Necmiye Merve Şahin

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

Kargın, Abdullah; Azize Dayan; and Necmiye Merve Şahin. "Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences." Neutrosophic Sets and Systems 40, 1 (2021). https://digitalrepository.unm.edu/nss_journal/vol40/iss1/4

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact disc@unm.edu.

Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

Abdullah Kargın ${ }^{1, *}$, Azize Dayan ${ }^{2}$ and Necmiye Merve Şahin ${ }^{3}$
1,"*Department of Mathematics, Gaziantep University, Gaziantep 27310, Turkey. abdullahkargin27@gmail.com ${ }^{2}$ Department of Mathematics, Gaziantep University, Gaziantep 27310, Turkey. azizedayan853@gmail.com ${ }^{3}$ Faculty of Law, Hasan Kalyoncu University, Gaziantep 27410, Turkey. necmiyemerve.sahin@gmail.com *Correspondence: abdullahkargin27@gmail.com; Tel..+9005542706621

Abstract

Neutrosophic quadruple numbers are the newest field studied in neutrosophy. Neutrosophic quadruple numbers, using the certain extent known data of an object or an idea, help us uncover their known part and moreover they allow us to evaluate the unknown part by the trueness, indeterminacy and falsity values. In this study, we generalized Hamming similarity measures for the generalized set-valued neutrosophic quadruple sets and numbers. We showed that generalized Hamming measure satisfies the similarity measure condition. Also, we generalized an algorithm for the generalized set-valued neutrosophic quadruple sets and numbers, we gave a multi-criteria decision making application for using the this generalized algorithm. In this application, we examined which of the laws established in different situations were more efficient. Furthermore, we obtained different result compared to previous algorithm and previous similarity measure based on singlevalued neutrosophic numbers. Therefore, we have shown that generalized set-valued neutrosophic quadruplet sets and numbers, a new field of neutrosophic theory, are more useful for decision-making problems in law science and more precise results are obtained. The application in this study can be developed and used in decision-making applications for law science and other sciences.

Keywords: Neutrosophic quadruple sets, generalized set valued neutrosophic quadruple sets and numbers, Hamming similarity measure, decision-making applications, law applications

1 Introduction

Smarandache proposed the neutrosophic logic and the neutrosophic set [3] in 1998. Neutrosophic logic and neutrosophic sets have a degree of membership T, a degree of indeterminacy I and a degree of nonmembership F. These degrees are defined independently. Thus, neutrosophic theory is generalized of fuzzy theory [4] and intuitionistic fuzzy theory [5]. Also, many researchers have studied neutrosophic A. Kargin, A. Dayan and N. M. Sahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences
theory [6-19]. Recently, Smarandache extended the neutrosophic set to refined (n-valued) neutrosophic set, and to refined neutrosophic logic, and to refined neutrosophic probability, i.e. the truth value T is refinedlsplit into types of sub-truths such as $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots$, similarly indeterminacy I is refined 1 split into types of sub-indeterminacies I_{1}, I_{2}, \ldots, and the falsehood F is refinedlsplit into sub-falsehoods F_{1}, F_{2}, ... [20]; Peng et al. obtained multi-parametric similarity measure for neutrosophic set [21]; Ye et al. introduced similarity measures of single-valued neutrosophic sets [22]; Uluçay et al. studied MCDMproblems with neutrosophic multi-sets [23]; Kandasamy et al. studied refined neutrosophic sets [24]; Hashmi et al. obtained m-Polar neutrosophic topology [25]; Aslan et al. studied Neutrosophic Modeling of Talcott Parsons's Action [2].

Decision-making applications and similarity measures are very important in neutrosophic theory. Thus, many researchers studied based on decision-making applications in neutrosophic theory. Recently, Tian et al. obtained a multi-criteria decision-making method based on neutrosophic theory [28]; Saqlain et al. studied single and multi-valued neutrosophic hypersoft set [29]; Roy et al. introduced similarity Measures of Quadripartitioned single-valued bipolar neutrosophic sets [30]; Uluçay et al. obtained decision-making method based on neutrosophic soft expert graphs [31]; Şahin et al. studied interval valued neutrosophic sets and applications [32]; Nabeeh et al. obtained an integrated neutrosophicTOPSIS approach and its application to personnel selection [41]; Nabeeh et al. studied neutrosophic multi-criteria decision-making approach for IoT-Based enterprises [42]; Abdel-Basset et al. obtained utilizing neutrosophic theory to solve transition difficulties of IoT-Based enterprises [43].

In 2015, Smarandache discussed neutrosophic quadruple sets and neutrosophic quadruple numbers [1]. A neutrosophic quadruple set is a generalized form of a neutrosophic set. A neutrosophic quadruple set is denoted by $\{(\mathrm{x}, \mathrm{yT}, \mathrm{zI}, \mathrm{tF}): \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t} \in \mathbb{R}$ or $\mathbb{C}\}$. Here, x is referred to as the known part, ($\mathrm{yT}, \mathrm{zI}, \mathrm{tF}$) as the unknown part and T, I and F are the usual tools of the neutrosophic logic. So, neutrosophic quadruple sets are generalized of neutrosophic sets. Furthermore, researchers have studied neutrosophic quadruple sets and numbers [33-36]. Recently, Rezaei et al. studied neutrosophic quadruple a-ideals [38]; Mohseni et al. obtained commutative neutrosophic quadruple ideals [39]; Kandasamy et al. introduced neutrosophic quadruple algebraic codes [40]. Also, Şahin et al. introduced generalized set-valued neutrosophic quadruple sets and numbers [37]. A generalized set-valued neutrosophic quadruple set denoted by

$$
G_{s_{i}}=\left\{\left(K_{s_{i}}, L_{s_{i}} T_{s_{i}}, M_{s_{i}} I_{s_{i}}, N_{s_{i}} F_{s_{i}}\right): K_{s_{i}}, L_{s_{i}}, M_{s_{i}}, N_{s_{i}} \in \mathrm{P}(\mathrm{X}) ; \mathrm{i}=1,2,3, \ldots, \mathrm{n}\right\} .
$$

Where T_{i}, I_{i} and F_{i} have their usual neutrosophic logic; X is a nonempty set, $\mathrm{P}(\mathrm{X})$ is power set of $\mathrm{X}, K_{S_{i}}$ is called the known part and $\left(L_{s_{i}} T_{s_{i}}, M_{s_{i}} I_{s_{i}}, N_{s_{i}} F_{s_{i}}\right)$ is called the unknown part. Thanks to this definition, A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences
neutrosophic quadruple sets have become available in the field of decision-making application. Most importantly, this definition, which has a more general structure than neutrosophic sets, will find more application areas and will give more objective results to many problems with the help of the known part, unknown part and $\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$ sets.

As in many branches of science, many uncertainties are encountered in terms of application and decision-making in law science. In order to cope with these uncertainties, mostly known classical methods are inadequate or cause wrong decisions to be made. In addition, many criteria should be considered in determining the laws in law science. In addition, it is clear that unknown situations will arise in the implementation of laws prepared for known situations. For all these reasons, in this study, we have prepared an application in order to determine which of the different legal applications with multiple criteria will yield most effective results. For this application, we generalized Hamming similarity measures for the generalized set-valued neutrosophic quadruple sets (GsvNQs) and numbers (GsvNQn) since GsvNQs and GsvNQn are more useful then neutrosophic sets. Also, we generalized an algorithm [2] (based on single valued neutrosophic number (SvNn) and set (SvNs)) for the GsvNQs and GsvNQn. Also, we gave a multi-criteria decision-making application using this generalized algorithm. In this application, we examined which of the laws established in different situations were more efficient. Furthermore, we obtained different result compared to previous algorithm and previous similarity measure based on SvNn thanks to structure of GsvNQs and GsvNQn.
In this paper, in Section 2, we examined neutrosophic sets [3, 8], Hamming similarity measure [22], GsvNQs and properties [33]. In section 3, we defined firstly generalized Hamming similarity measure based on GsvNQn. In Section 4, we firstly generalized an algorithm [2] for GsvNQn. In Section 5, we give a multi-criteria decision making application using the generalized algorithm in Section 4. In Section 6 , we compared the results of the generalized algorithm in Section 5 with the results of algorithm (based on single valued neutrosophic set and Hamming similarity measure [22]) [2]. In Section 6, we give conclusions.

2 Preliminaries

Definition 1: [3] Let E be the universal set. For $\forall x \in E, 0^{-} \leq T_{A}(x)+I_{A}(x)+F_{A}(x) \leq 3^{+}$, by the help of the functions $\left.T_{A}: E \rightarrow\right]^{-} 0,1^{+}\left[, I_{A}: E \rightarrow\right]^{-} 0,1^{+}\left[\text {and } F_{A}: E \rightarrow\right]^{-} 0,1^{+}$[a neutrosophic set A on E is defined by

$$
A=\left\{\left\langle x, T_{A}(x), I_{A}(x), F_{A}(x)\right\rangle: x \in E\right\}
$$

[^0]Here, $T_{A}(x), I_{A}(x)$ and $F_{A}(x)$ are the degrees of trueness, indeterminacy and falsity of $x \in E$ respectively.

Definition 2: [8] Let E be the universal set. For $\forall x \in E, 0 \leq T_{A}(x)+I_{A}(x)+F_{A}(x) \leq 3$, using the functions $T_{A}: E \rightarrow[0,1], I_{A}: E \rightarrow[0,1]$ and $F_{A}: E \rightarrow[0,1]$, a SvNs A on E is defined by

$$
A=\left\{\left\langle x, T_{A}(x), I_{A}(x), F_{A}(x)\right\rangle: x \in E\right\} .
$$

Here, $T_{A}(x), I_{A}(x)$ and $F_{A}(x)$ are the degrees of trueness, indeterminacy and falsity of $x \in E$ respectively.

Definition 3: [22] Let

$$
A_{1}=\left\langle T_{A_{1}}(x), I_{A_{1}}(x), F_{A_{1}}(x)\right\rangle \text { and } A_{2}=\left\langle T_{A_{2}}(x), I_{A_{2}}(x), F_{A_{2}}(x)\right\rangle
$$

be two SvNns, $S: A_{1} \times A_{2} \rightarrow[0,1]$ be a function. The Hamming similarity measure between A_{1} and A_{2} denoted by $S\left(A_{1}, A_{2}\right)$ such that

$$
S\left(A_{1}, A_{2}\right)=\frac{1}{3}\left[\left|T_{A_{1}}(x)-T_{A_{2}}(y)\right|+\left|I_{A_{1}}(x)-I_{A_{2}}(y)\right|+\left|F_{A_{1}}(x)-F_{A_{2}}(y)\right|\right]
$$

Theorem 1: [22] Let A_{1} and A_{2} be two $\operatorname{SvNns}, S: A_{1} \times A_{2} \rightarrow[0,1]$ be a Hamming similarity measure. $S\left(A_{1}, A_{2}\right)$ satisfies below properties.
i. $\quad 0 \leq S\left(A_{1}, A_{2}\right) \leq 1$,
ii. $\quad S\left(A_{1}, A_{2}\right)=1$ if and only if $A_{1}=A_{2}$,
iii. $\quad S\left(A_{1}, A_{2}\right)=S\left(A_{2}, A_{1}\right)$,
iv. If $A_{1} \subseteq A_{2} \subseteq A_{3} \in E$, then $S\left(A_{1}, A_{3}\right) \leq S\left(A_{1}, A_{2}\right)$ and $S\left(A_{1}, A_{3}\right) \leq S\left(A_{2}, A_{3}\right)$.

Definition 4: [1] Neutrosophic quadruple number is a number of the form

$$
(\mathrm{k}, \mathrm{lT}, \mathrm{mI}, \mathrm{nF})
$$

Here, T, I and F are used as the ordinary neutrosophic logical tools and $\mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n} \in \mathbb{R}$ or \mathbb{C}. For a neutrosophic quadruple number ($\mathrm{k}, \mathrm{lT}, \mathrm{mI}, \mathrm{nF}$), k is named the known part and ($\mathrm{IT}, \mathrm{mI}, \mathrm{nF}$) is named the unknown part where k represents any asset such as a number, an idea, an object, etc. Also,

$$
\mathrm{NQ}=\{(\mathrm{k}, \mathrm{lT}, \mathrm{mI}, \mathrm{nF}): \mathrm{k}, \mathrm{l}, \mathrm{~m}, \mathrm{n} \in \mathbb{R} \text { or } \mathbb{C}\}
$$

is defined by neutrosophic quadruple set.
Definition 5: [33] Let X be a set and $P(X)$ be power set of X. A GsvNQs is a set of the form

$$
G_{s_{i}}=\left\{\left(A_{s_{i}}, B_{s_{i}} T_{s_{i}}, C_{s_{i}} I_{s_{i}}, D_{s_{i}} F_{s_{i}}\right): A_{s_{i}}, B_{s_{i}}, C_{s_{i}}, D_{s_{i}} \in \mathrm{P}(\mathrm{X}) ; \mathrm{i}=1,2,3, \ldots, \mathrm{n}\right\}
$$

Where, T_{i}, I_{i} and F_{i} have their usual neutrosophic logic means and GsvNQn defined by

[^1]$$
G_{N_{i}}=\left(A_{s_{i}}, B_{s_{i}} T_{s_{i}}, C_{s_{i}} I_{s_{i}}, D_{s_{i}} F_{s_{i}}\right) .
$$

As in neutrosophic quadruple number, for a GsvNQn $\left(A_{s_{i}}, B_{s_{i}} T_{s_{i}}, C_{s_{i}} I_{s_{i}}, D_{s_{i}} F_{s_{i}}\right)$, representing any entity which may be a number, an idea, an object, etc.; $A_{s_{i}}$ is called the known part and $\left(B_{s_{i}} T_{s_{i}}, C_{s_{i}} I_{s_{i}}, D_{s_{i}} F_{s_{i}}\right)$ is called the unknown part.

Definition 6: [33] Let

$$
G_{N_{1}}=\left(A_{s_{1}}, B_{s_{1}} T_{s_{1}}, C_{S_{1}} I_{s_{1}}, D_{s_{1}} F_{s_{1}}\right) \text { and } G_{N_{2}}=\left(A_{s_{2}}, B_{s_{2}} T_{s_{1}}, C_{s_{2}} I_{s_{2}}, D_{s_{2}} F_{s_{2}}\right)
$$

be two GsvNQns. $A_{s_{1}}=A_{s_{2}}, A_{s_{1}}=A_{s_{2}}, A_{s_{1}}=A_{s_{2}}, A_{s_{1}}=A_{s_{2}}$ and $T_{s_{1}}=T_{s_{2}}, I_{s_{1}}=I_{s_{2}}, F_{s_{1}}=F_{s_{2}}$ if and only if we say $G_{N_{1}}$ is a equal to $G_{N_{2}}$ and denote it by $G_{N_{1}}=G_{N_{2}}$.
Definition 7: [33] Let

$$
G_{N_{1}}=\left(A_{s_{1}}, B_{s_{1}} T_{s_{1}}, C_{s_{1}} I_{s_{1}}, D_{s_{1}} F_{s_{1}}\right) \text { and } G_{N_{2}}=\left(A_{s_{2}}, B_{s_{2}} T_{s_{1}}, C_{s_{2}} I_{s_{2}}, D_{s_{2}} F_{s_{2}}\right)
$$

be two GsvNQns. $A_{s_{1}} \subset A_{s_{2}}, A_{s_{1}} \subset A_{s_{2}}, A_{s_{1}} \subset A_{s_{2}}, A_{s_{1}} \subset A_{s_{2}}$ and $T_{s_{1}} \leq T_{s_{2}}, I_{s_{1}} \leq I_{s_{2}}, F_{s_{1}} \leq F_{s_{2}}$, if and only if we say $G_{N_{1}}$ is a subset of $G_{N_{2}}$ and denote it by $G_{N_{1}} \subset G_{N_{2}}$.

3 Generalized Hamming Similarity Measure for Generalized Set-Valued Neutrosophic Quadruple Numbers

Now, we define generalized Hamming similarity measure for GsvNQn. Also, we assume that T, I, F \in $[0,1]$, as in SvNn , in this paper.

Definition 8: Let X be a non - empty set,

$$
G_{N_{1}}=\left(A_{s_{1}}, B_{s_{1}} T_{s_{1}}, C_{S_{1}} I_{s_{1}}, D_{s_{1}} F_{s_{1}}\right) \text { and } G_{N_{2}}=\left(A_{s_{2}}, B_{s_{2}} T_{s_{1}}, C_{s_{2}} I_{s_{2}}, D_{s_{2}} F_{s_{2}}\right)
$$

be two GsvNQns, $S_{H}: G_{N_{1}} \times G_{N_{j}} \rightarrow[0,1]$ be a function. Then,

$$
S_{H}\left(G_{N_{1}}, G_{N_{2}}\right)=1-\frac{1}{2}\left[\frac{\left[T_{1}-T_{2}\left|+\left|I_{1}-I_{2}\right|+\left|F_{1}-F_{2}\right|\right.\right.}{3}+\frac{4-\left[\frac{s\left(K_{1} \cap K_{2}\right)}{\max \left\{\left(S K_{1} \cup K_{2}\right), 1\right] 1}+\frac{s\left(L_{1} \cap L_{2}\right)}{\max \left\{s\left(L_{1} \cup L_{2}\right), 11\right]}+\frac{s\left(M_{1} \cap M_{2}\right)}{\max \left\{\left(s\left(M_{1} \cup M_{2}\right), 1\right] 1\right]}+\frac{s\left(N_{1} \cap N_{2}\right)}{\max \left\{\left(S\left(N_{1} \cup N N_{2}\right), 1\right]\right.}\right]}{4}\right]
$$

is called generalized Hamming similarity measure for GsvNQns.
Where, $\mathrm{s}(\mathrm{A})$ is the number of element of $\mathrm{A} \in \mathrm{X}$.
Theorem 2: Let X be a non - empty set;

$$
G_{N_{1}}=\left(A_{s_{1}}, B_{s_{1}} T_{s_{1}}, C_{s_{1}} I_{s_{1}}, D_{s_{1}} F_{s_{1}}\right), G_{N_{2}}=\left(A_{s_{2}}, B_{s_{2}} T_{s_{1}}, C_{s_{2}} I_{s_{2}}, D_{s_{2}} F_{s_{2}}\right) \text { and } G_{N_{3}}=\left(A_{s_{3}}, B_{s_{3}} T_{s_{3}}, C_{s_{3}} I_{s_{3}}, D_{s_{3}} F_{s_{3}}\right)
$$

be three GsvNQns, $S_{H}: G_{N_{1}} \times G_{N_{j}} \rightarrow[0,1]$ be generalized Hamming similarity measure in Definition 8. Then, S_{H} satisfies the below conditions.
i) $S_{H}\left(G_{N_{1}}, G_{N_{2}}\right) \in[0,1]$
ii) $S_{H}\left(G_{N_{1}}, G_{N_{2}}\right)=1 \Leftrightarrow G_{N_{1}}=G_{N_{2}}$
iii) $S_{H}\left(G_{N_{1}}, G_{N_{2}}\right)=S_{H}\left(G_{N_{1}}, G_{N_{2}}\right)$
iv) If $G_{N_{1}} \subset G_{N_{2}} \subset G_{N_{3}}$, then
$S_{H}\left(G_{N_{1}}, G_{N_{3}}\right) \leq S_{H}\left(G_{N_{1}}, G_{N_{2}}\right)$ and $S_{H}\left(G_{N_{1}}, G_{N_{3}}\right) \leq S_{H}\left(G_{N_{2}}, G_{N_{3}}\right)$.

[^2]
Proof:

i) Let $G_{N_{1}}=G_{N_{2}}$. Then,

$$
\begin{aligned}
& S_{H}\left(G_{N_{1}}, G_{N_{1}}\right)=
\end{aligned}
$$

$$
\begin{align*}
& =1-\frac{1}{2}\left[\frac{0+0+0}{3}+\frac{4-[1+1+1+1]}{4}\right] \tag{1}
\end{align*}
$$

Thus, $\max \left\{S_{H}\left(G_{N_{1}}, G_{N_{1}}\right)\right\}=1$.
Now, let $K_{1} \cap K_{2}=\emptyset, L_{1} \cap L_{2}=\emptyset, M_{1} \cap M_{2}=\emptyset, N_{1} \cap N_{2}=\emptyset,\left|T_{1}-T_{2}\right|=1,\left|I_{1}-I_{2}\right|=1$ and $\left|F_{1}-F_{2}\right|$ $=1$. Then,

$$
\begin{aligned}
S_{H}\left(G_{N_{1}}, G_{N_{2}}\right) & =1-\frac{1}{2}\left[\frac{\left[T_{1}-T_{2}\left|+\left|I_{1}-I_{2}\right|+\left|\left|F_{1}-F_{2}\right|\right.\right.\right.}{3}+\frac{\left.4-\left[\frac{s\left(K_{1} \cap K_{2}\right)}{\max \left\{\left(S K_{1} \cup K_{2}\right), 1\right]}+\frac{s\left(L_{1} \cap L_{2}\right)}{\max \left(S\left(S L_{1} \cup L_{2}\right), 1\right]}+\frac{s\left(M_{1} \cap M_{2}\right)}{\left.\max s\left(S M_{1} \cup M_{2}\right), 1\right]}\right]+\frac{s\left(N_{1} \cap N_{2}\right)}{\max \left(s\left(N_{1} \cup N N_{2}\right), 1,1\right.}\right]}{4}\right] \\
& =1-\frac{1}{2}\left[\frac{1+1+1}{3}+\frac{4-[0+0+0+0]}{4}\right] \\
& =0 .
\end{aligned}
$$

Thus, $\min \left\{S_{H}\left(G_{N_{1}}, G_{N_{1}}\right)\right\}=0$. Hence, we obtain

$$
S_{H}\left(G_{N_{1}}, G_{N_{2}}\right) \in[0,1] .
$$

ii) Let $G_{N_{1}}=G_{N_{2}}$. From (1), we obtain $S_{H}\left(G_{N_{i}}, G_{N_{j}}\right)=1$. We assume that

$$
\begin{aligned}
& S_{H}\left(G_{N_{i}}, G_{N_{j}}\right)=1-\frac{1}{2}\left[\frac{\left[T_{1}-T_{2}\left|+\left|I_{1}-I_{2}\right|+\left|F_{1}-F_{2}\right|\right.\right.}{3}+\frac{4-\left[\frac{s\left(K_{1} \cap K_{2}\right)}{\max \left\{s\left(K_{1} \cup K_{2}\right), 1\right]}+\frac{s\left(L_{1} \cap L_{2}\right)}{\max \left\{\left(S L_{1} \cup L_{2}\right), 1,1\right]}+\frac{s\left(M_{1} \cap M_{2}\right)}{\max \left\{\left(S M_{1} \cup M_{2}\right), 1\right]}+\frac{s\left(N_{1} \cap N_{2}\right)}{\max \left\{s\left(N_{1} \cup N_{2}\right), 1\right]}\right]}{4}\right] \\
& =1 .
\end{aligned}
$$

Where, it must be

$$
\frac{1}{2}\left[\frac{\left|T_{1}-T_{2}\right|+\left|I_{1}-I_{2}\right|+\left|F_{1}-F_{2}\right|}{3}+\frac{4-\left[\frac{s\left(K_{1} \cap K_{2}\right)}{\max \left\{s\left(K_{1} \cup K_{2}\right), 1\right\}}+\frac{s\left(L_{1} \cap L_{2}\right)}{\max \left\{s\left(S L_{1} \cup L_{2}\right), 1,1\right.}+\frac{s\left(M_{1} \cap M_{2}\right)}{\max \left\{\left(s\left(M_{1} \cup M_{2}\right), 1\right\}\right.}+\frac{s\left(N_{1} \cap N_{2}\right)}{\max \left\{s\left(N_{1} \cup N_{2}\right), 1,1\right.}\right]}{4}\right]=0 .
$$

Thus,

$$
\left|T_{1}-T_{2}\right|+\left|I_{1}-I_{2}\right|+\left|F_{1}-F_{2}\right|=0
$$

and
$\left[\frac{s\left(K_{1} \cap K_{2}\right)}{\max \left\{s\left(K_{1} \cup K_{2}\right), 1\right\}}+\frac{s\left(L_{1} \cap L_{2}\right)}{\max \left\{\left(L_{1} \cup L_{2}\right), 1\right\}}+\frac{s\left(M_{1} \cap M_{2}\right)}{\max \left\{s\left(M_{1} \cup M_{2}\right), 1\right\}}+\frac{s\left(N_{1} \cap N_{2}\right)}{\max \left\{s\left(N_{1} \cup N_{2}\right), 1\right\}}\right]=4$.
(2)

From (2), we obtain that
$\left|T_{1}-T_{2}\right|=\left|I_{1}-I_{2}\right|=\left|F_{1}-F_{2}\right|=0$
and
$\frac{s\left(K_{1} \cap K_{2}\right)}{\max \left\{s\left(K_{1} \cup K_{2}\right), 1\right\}}=\frac{s\left(L_{1} \cap L_{2}\right)}{\max \left\{s\left(L_{1} \cup L_{2}\right), 1\right\}}=\frac{s\left(M_{1} \cap M_{2}\right)}{\max \left\{s\left(M_{1} \cup M_{2}\right), 1\right\}}=\frac{s\left(N_{1} \cap N_{2}\right)}{\max \left\{s\left(N_{1} \cup N_{2}\right), 1\right\}}=1$.
Thus, we have that

$$
T_{1}=T_{2}, I_{1}=I_{2}, F_{1}=F_{2}, K_{1}=K_{2}, L_{1}=L_{2}, M_{1}=M_{2}, N_{1}=N_{2} .
$$

A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

Therefore, from Definition 6; we obtain

$$
G_{N_{1}}=G_{N_{2}}
$$

iii)

$$
\begin{aligned}
& =S_{H}\left(G_{N_{2}}, G_{N_{1}}\right) \text {. }
\end{aligned}
$$

iv) Let $G_{N_{1}} \subset G_{N_{2}} \subset G_{N_{3}}$. From Definition 7, we obtain that
$T_{1}<T_{2}<T_{3}$,
$I_{1}<I_{2}<T_{3}$,
$F_{1}<F_{2}<T_{3}$,
$K_{1} \subset K_{2} \subset K_{3}$,
$L_{1} \subset L_{2} \subset L_{3}$,
$M_{1} \subset M_{2} \subset M_{3}$,
$N_{1} \subset N_{2} \subset N_{3}$.
From (3), we have that
$\frac{s\left(K_{1} \cap K_{2}\right)}{\max \left\{s\left(K_{1} \cup K_{2}\right), 1\right\}}+\frac{s\left(L_{1} \cap L_{2}\right)}{\max \left\{s\left(L_{1} \cup L_{2}\right), 1\right\}}+\frac{s\left(M_{1} \cap M_{2}\right)}{\max \left\{s\left(M_{1} \cup M_{2}\right), 1\right\}}+\frac{s\left(N_{1} \cap N_{2}\right)}{\max \left\{s\left(N_{1} \cup N_{2}\right), 1\right\}}>$
$\frac{s\left(K_{1} \cap K_{3}\right)}{\max \left\{s\left(K_{1} \cup K_{3}\right), 1\right\}}+\frac{s\left(L_{1} \cap L_{3}\right)}{\max \left\{s\left(L_{1} \cup L_{3}\right), 1\right\}}+\frac{s\left(M_{1} \cap M_{3}\right)}{\max \left\{s\left(M_{1} \cup M_{3}\right), 1\right\}}+\frac{s\left(N_{1} \cap N_{3}\right)}{\max \left\{s\left(N_{1} \cup N_{3}\right), 1\right\}}$.
(4)

Also, from (4), we have that
$\left|T_{1}-T_{2}\right|+\left|I_{1}-I_{2}\right|+\left|F_{1}-F_{2}\right|<\left|T_{1}-T_{3}\right|+\left|I_{1}-I_{3}\right|+\left|F_{1}-F_{3}\right|$.
(5)

Thus, from (4) and (5), we obtain that
$\frac{1}{2}\left[\frac{\left[T_{1}-T_{2}\left|+\left|I_{1}-I_{2}\right|+\left|F_{1}-F_{2}\right|\right.\right.}{3}+\frac{4-\left[\frac{s\left(K_{1} \cap K_{2}\right)}{\max \left\{\left(S K_{1} \cup K_{2}\right), 1\right\}}+\frac{s\left(L_{1} \cap L_{2}\right)}{\max \left\{\left(S L_{1} \cup L_{2}\right), 1\right]}+\frac{s\left(M_{1} \cap M_{2}\right)}{\left.\max \left(s M_{1} \cup M_{2}\right), 1\right]}+\frac{s\left(N_{1} \cap N_{2}\right)}{\max \left(S\left(S N_{1} \cup N_{2}\right), 1\right]}\right]}{4}\right]<$

Hence, from (6), we have that
$1-\frac{1}{2}\left[\frac{\left[T_{1}-T_{3}\left|+\left|I_{1}-I_{3}\right|+\left|F_{1}-F_{3}\right|\right.\right.}{3}+\frac{4-\left[\frac{s\left(K_{1} \cap K_{3}\right)}{\max \left\{\left(\left\{K_{1} \cup K_{3}\right), 1\right]\right.}+\frac{s\left(L_{1} \cap L_{3}\right)}{\max \left\{\left(S L_{1} U L_{3}\right), 1\right]}+\frac{s\left(M_{1} \cap M_{3}\right)}{\max \left(s\left(M_{1} \cup M_{3}\right), 1\right]}+\frac{s\left(N_{1} \cap N_{3}\right)}{\max \left(S\left(N_{1} \cup N_{3}\right), 1,3\right.}\right]}{4}\right]<$
$1-\frac{1}{2}\left[\frac{\left|T_{1}-T_{2}\right|+\left|I_{1}-I_{2}\right|+\left|F_{1}-F_{2}\right|}{3}+\frac{4-\left[\frac{s\left(K_{1} \cap K_{2}\right)}{\max \left\{\left(S K_{1} \cup K_{2}\right), 1\right\}}+\frac{s\left(L_{1} \cap L_{2}\right)}{\max \left(S\left(L_{1} \cup L_{2}\right), 1\right]}+\frac{s\left(M_{1} \cap M_{2}\right)}{\left.\max s\left(S M_{1} \cup M_{2}\right), 1\right]}+\frac{s\left(N_{1} \cap N_{2}\right)}{\max s\left(S N_{1} \cup N_{2}\right), 1,3}\right]}{4}\right]$.
Therefore, we obtain $S_{H}\left(G_{N_{1}}, G_{N_{3}}\right) \leq S_{H}\left(G_{N_{1}}, G_{N_{2}}\right)$.
A. Kargin, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

Also, $S_{H}\left(G_{N_{1}}, G_{N_{3}}\right) \leq S_{H}\left(G_{N_{2}}, G_{N_{3}}\right)$ can be proved similar to $S_{H}\left(G_{N_{1}}, G_{N_{3}}\right) \leq S_{H}\left(G_{N_{1}}, G_{N_{2}}\right)$.
Example 1: Let $\mathrm{X}=\{\mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{r}\}$ be a set, $G_{N_{1}}=(\{\mathrm{k}, \mathrm{l}, \mathrm{m}\},\{\mathrm{k}, \mathrm{l}\}(0.7),\{\mathrm{m}, \mathrm{l}\}(0.4),\{\mathrm{n}, \mathrm{p}, \mathrm{r}\}(0.1))$, $G_{N_{2}}=(\{\mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{r}\},\{\mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}\}(0.8),\{\mathrm{n}, \mathrm{r}\}(0.2),\{\mathrm{p}\}(0.2))$ be two GsvNQns and $S_{H}\left(G_{N_{1}}, G_{N_{2}}\right)$ be generalized Hamming similarity measure for GsvNQns. Then,

$$
\begin{aligned}
S_{H}\left(G_{N_{1}}, G_{N_{2}}\right) & =1-\frac{1}{2}\left[\frac{\left|T_{1}-T_{2}\right|+\left|I_{1}-I_{2}\right|+\left|F_{1}-F_{2}\right|}{3}+\frac{4-\left[\frac{s\left(K_{1} \cap K_{2}\right)}{\max \left\{s\left(K_{1} \cup K_{2}\right), 1\right\}}+\frac{s\left(L_{1} \cap L_{2}\right)}{\max \left\{\left(L_{1} \cup L_{2}\right), 1\right\}}+\frac{s\left(M_{1} \cap M_{2}\right)}{\max \left\{s\left(M_{1} \cup M_{2}\right), 1\right\}}+\frac{s\left(N_{1} \cap N_{2}\right)}{\max \left\{s\left(N_{1} \cup N_{2}\right), 1\right\}}\right]}{4}\right] \\
& =1-\frac{1}{2}\left[\frac{|0.7-0.8|+|0.4-0.2|+|0.1-0.2|}{3}+\frac{4-\left[\frac{3}{\max \{5,1\}}+\frac{2}{\max \{4,1\}}+\frac{0}{\max \{4,1\}}+\frac{1}{\max \{3,1\}}\right]}{4}\right] \\
& =0.6125 .
\end{aligned}
$$

Where,
$T_{1}=0.7, I_{1}=0.4, F_{1}=0.1 ; K_{1}=\{\mathrm{k}, 1, \mathrm{~m}\}, L_{1}=\{\mathrm{k}, 1\}, M_{1}=\{1, \mathrm{~m}\}, N_{1}=\{\mathrm{n}, \mathrm{p}, \mathrm{r}\} ;$
$T_{2}=0.8, I_{2}=0.2, F_{2}=0.2 ; K_{2}=\{\mathrm{k}, 1, \mathrm{~m}, \mathrm{n}, \mathrm{r}\}, L_{2}=\{\mathrm{k}, 1, \mathrm{~m}, \mathrm{n}\}, M_{2}=\{\mathrm{n}, \mathrm{r}\}, N_{2}=\{\mathrm{p}\}$.

4 Algorithm for Multi-Criteria Decision-Making Application

In this section, we rearranged the algorithm in Aslan et al. [2] for GsvNQns. Also, in this new algorithm, we used generalized Hamming similarity measure in section 3. So, we use the GsvNQns and generalized Hamming similarity measure instead of SvNns and similarity measure in algorithm [2]. Also, we assume that X is a nonempty set.

Step 1: The criteria are determined by considering the application. Let the set of criteria of laws be

$$
K=\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}
$$

Step 2: The weight values of the criteria for the application. Let the set of weight values be

$$
\mathrm{W}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}
$$

Where,
the weight value of criterion k_{1} is w_{1},
the weight value of criterion k_{2} is w_{2},
the weight value of criterion k_{3} is w_{3},

[^3]the weight value of criterion k_{m} is w_{m},
Also, $w_{i} \in[0,1]$ and $\sum_{i=1}^{m} w_{i}=1$.
Step 3: The ideal object is determined as GsvNQs according to criterias in Step 1 such that
$I=\left\{\mathrm{k}_{1}:\left(A_{I_{1}}, B_{I_{1}} T_{I_{1}}, C_{I_{1}} I_{I_{1}}, D_{I_{1}} F_{I_{1}}\right), \mathrm{k}_{2}:\left(A_{I_{2}}, B_{I_{2}} T_{I_{2}}, C_{I_{2}} I_{I_{2}}, D_{I_{2}} F_{I_{2}}\right), \ldots, \mathrm{k}_{\mathrm{m}}:\left(A_{I_{m}}, B_{I_{m}} T_{I_{m}}, C_{I_{m}} I_{I_{m}}\right.\right.$, $\left.\left.D_{I_{m}} F_{I_{m}}\right), \quad A_{I_{i}}, B_{I_{i}}, C_{I_{i}}, D_{I_{i}} \in \mathrm{P}(\mathrm{X}) ; \mathrm{i}=1,2,3, \ldots, \mathrm{~m}\right\}$.

Step 4: The n objects are determined as GsvNQs according to criterias in Step 1 such that
$O_{1}=\left\{\mathrm{k}_{1}:\left(A_{O_{1_{1}}}, B_{O_{1_{1}}} T_{O_{1_{1}}}, C_{O_{1_{1}}} I_{O_{1_{1}}}, D_{O_{1_{1}}} F_{O_{1_{1}}}\right), \mathrm{k}_{2}:\left(A_{O_{1_{2}}}, B_{O_{1_{2}}} T_{O_{1_{2}}}, C_{O_{1_{2}}} I_{O_{1}}, D_{O_{1_{2}}} F_{O_{1_{2}}}\right), \ldots\right.$,
$\left.\mathrm{k}_{\mathrm{m}}:\left(A_{O_{1_{m}}}, B_{O_{1_{m}}} T_{O_{1_{m}}}, C_{O_{1_{m}}} I_{O_{1 m}}, D_{O_{1_{m}}} F_{O_{1_{m}}}\right), \quad A_{O_{1_{i}}}, B_{O_{1_{i}}}, C_{O_{O_{i}}}, D_{O_{1_{i}}} \in \mathrm{P}(\mathrm{X}) ; \mathrm{i}=1,2,3, \ldots, \mathrm{~m}\right\}$
$O_{2}=\left\{\mathrm{k}_{1}:\left(A_{O_{2_{1}}}, B_{O_{2_{1}}} T_{O_{2_{1}}}, C_{O_{2_{1}}} I_{O_{2_{1}}}, D_{O_{2_{1}}} F_{O_{2_{1}}}\right), \mathrm{k}_{2}:\left(A_{O_{2_{2}}}, B_{O_{2_{2}}} T_{O_{2}}, C_{O_{2_{2}}} I_{O_{2_{2}}}, D_{O_{2_{2}}} F_{O_{2_{2}}}\right), \ldots\right.$,
$\left.\mathrm{k}_{\mathrm{m}}:\left(A_{O_{2_{m}}}, B_{O_{2_{m}}} T_{O_{2_{m}}}, C_{O_{2_{m}}} I_{O_{2_{m}}}, D_{O_{2_{m}}} F_{O_{2_{m}}}\right), \quad A_{O_{2_{i}}}, B_{O_{2_{i}}}, C_{O_{2_{i}}}, D_{O_{2_{i}}} \in \mathrm{P}(\mathrm{X}) ; \mathrm{i}=1,2,3, \ldots, \mathrm{~m}\right\}$
$O_{n}=\left\{\mathrm{k}_{1}:\left(A_{o_{n_{1}}}, B_{O_{n_{1}}} T_{O_{n_{1}}}, C_{O_{n_{1}}} I_{O_{n_{1}}}, D_{o_{n_{1}}} F_{O_{n_{1}}}\right), \mathrm{k}_{2}:\left(A_{o_{n_{2}}}, B_{o_{n_{2}}} T_{O_{n_{2}}}, C_{O_{n_{2}}} I_{o_{n_{2}}}, D_{o_{n_{2}}} F_{O_{n_{2}}}\right), \ldots\right.$,
$\left.\mathrm{k}_{\mathrm{m}}:\left(A_{O_{n_{m}}}, B_{O_{n_{m}}} T_{O_{n_{m}}}, C_{O_{n_{m}}} I_{O_{n_{m}}}, D_{o_{n_{m}}} F_{O_{n_{m}}}\right), \quad A_{O_{n_{i}}}, B_{O_{n_{i}}}, C_{O_{n_{i}}}, D_{O_{n_{i}}} \in \mathrm{P}(\mathrm{X}) ; \mathrm{i}=1,2,3, \ldots, \mathrm{~m}\right\}$
Step 5: The objects given in Step 4 are stated in the form of table (Table 1).

[^4]Table 1. Table of objects

	k_{1}	k_{2}	\ldots	k_{m}
O_{1}	$\left(A_{o_{11}}, B_{o_{11}} T_{O_{11}}, C_{o_{11}} I_{o_{11}}, D_{o_{11}} F_{o_{0_{1}}}\right)$	$\left(A_{o_{12}}, B_{o_{12}} T_{o_{12}}, C_{O_{1_{2}}} I_{o_{12}}, D_{o_{12}} F_{O_{1_{2}}}\right)$	\ldots	${\left(A_{o_{1 m}}, B_{o_{1_{m}}} T_{o_{1_{m}}}, C_{o_{1_{m}}} I_{o_{1 m}}, D_{o_{1_{m}}} F_{o_{1_{m}}}\right)}$
O_{2}	$\left(A_{o_{21}}, B_{O_{2_{1}}} T_{O_{2_{1}}}, C_{O_{2_{1}}} I_{o_{2_{1}}}, D_{o_{2_{1}}} F_{o_{2_{1}}}\right)$	$\left(A_{o_{22}}, B_{O_{2_{2}}} T_{O_{2}}, C_{O_{2_{2}}} I_{o_{2_{2}}}, D_{o_{2_{2}}} F_{O_{2_{2}}}\right)$...	$\left(A_{O_{2 m}}, B_{O_{2 m}} T_{O_{2 m}}, C_{O_{2 m}} I_{O_{2_{2}}}, D_{O_{2_{m}}} F_{o_{2_{m}}}\right)$
.	.		\ldots	.
.				

O_{n}	$\left(A_{o_{n_{1}}}, B_{o_{n_{1}}} T_{o_{n_{1}}}, C_{o_{n_{1}}} I_{o_{n_{1}}}, D_{o_{n_{1}}} F_{o_{o_{1}}}\right)$	$\left(A_{o_{n_{2}}}, B_{O_{n_{2}}} T_{o_{n_{2}}}, C_{o_{n_{2}}} I_{o_{n_{2}}}, D_{o_{n_{2}}} F_{o_{n_{2}}}\right)$	\cdots	$\left(A_{o_{n_{m}}}, B_{o_{n_{m}}} T_{\left.o_{{n_{m}}^{m}}, C_{o_{n_{m}}} I_{o_{n_{m}}}, D_{o_{n_{m}}} F_{o_{n_{m}}}\right)}\right.$

Step 6: In this step, the similarity value of the criteria of the ideal object and the criteria of other objects are calculated by using Table 1 with S_{H} in Section 3. So, $S_{H}\left(I_{k_{j}}, O_{i_{k_{j}}}\right)$ is calculated for $\mathrm{i}=1,2, \ldots, \mathrm{n} ; \mathrm{j}$ $=1,2, \ldots, \mathrm{~m}$. After all calculations, Table 2 is obtained .

Table 2. Similarity of the criterias of object to the criteria of ideal object

Step 7: The weight value of each criterion given in Step 2 is multiplied by the similarity values in Table 2. Hence, the weighted similarity of the criterias of object to the criteria of ideal object in Table 3 is obtained.
A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

Table 3. Weighted Similarity of the criterias of object to the criteria of ideal object

	$w_{1} k_{1}$	$w_{2} k_{2}$	\cdots	$w_{m} k_{m}$
O_{1}	$w_{1} \cdot S_{H}\left(I_{k_{1}}, O_{1_{k_{1}}}\right)$	$w_{2} \cdot S_{H}\left(I_{k_{2}}, O_{1_{k_{2}}}\right)$	\ldots	$w_{m} \cdot S_{H}\left(I_{k_{m}}, O_{1_{k_{m}}}\right)$
O_{2}	$w_{1} \cdot S_{H}\left(I_{k_{1}}, O_{2_{k_{1}}}\right)$	$w_{2} \cdot S_{H}\left(I_{k_{2}}, O_{2_{k_{2}}}\right)$	\ldots	$w_{m} \cdot S_{H}\left(I_{k_{m}}, O_{2_{k_{m}}}\right)$
-	.		\ldots	.
-	.	-	.	.

O_{n}	$w_{1} \cdot S_{H}\left(I_{k_{1}}, O_{n_{k_{1}}}\right)$	$w_{2} \cdot S_{H}\left(I_{k_{2}}, O_{n_{k_{2}}}\right)$..	$w_{m} \cdot S_{H}\left(I_{k_{m}}, O_{n_{k_{m}}}\right)$

Step 8: In this last step, the weighted similarity values for each objects given in Table 7 are added and the similarity ratio of each law over the ideal law is obtained. So,
$S_{H^{t}}\left(\mathrm{I}, O_{t}\right)=\sum_{t=1}^{m} w_{t} . S_{H}\left(I_{k_{t}}, O_{n_{k_{t}}}\right)$ is calculated for $\mathrm{k}=1,2, \ldots, \mathrm{~m}$. After all calculations, Table 4 is obtained.

Table 4. The similarity value of the object' to the ideal object

Similarity Value

[^5]

Graph 1: Diagram of the algorithm.

5 Multi-Criteria Decision-Making Application

We assume that four different state laws should be created to make use of night watchmen in places where police are inactive at night in four different states. We used the algorithm in Section 4 to find out which law in which state is more effective after a period of time.

Step 1: Let $K=\left\{k_{1}, k_{2}, k_{3}\right\}$ be set of criterias such that

$$
\begin{aligned}
& k_{1}=\text { life safety } \\
& k_{2}=\text { property safety }
\end{aligned}
$$

[^6]$$
k_{3}=\cos t
$$

Step 2: Let $W=\{0.6,0.3,0.1\}$ be set of the weight values such that
0.6 for the criterion k_{1}
0.3 for the criterion k_{2}
0.1 for the criterion k_{3}

Step 3: Let the ideal law of state be I such that

I
$=$
$\left\{\begin{array}{l}k_{1}:\left(\left\{p_{1}, \ldots, p_{4}, q_{1}, \ldots, q_{4}, r_{1}, \ldots, r_{4}, t_{1}, \ldots, t_{4}\right\},\left\{p_{1}, \ldots, p_{4}, q_{1}, \ldots, q_{4}, r_{1}, \ldots, r_{4}, t_{1}, \ldots, t_{4}\right\}(1), \emptyset(0), \emptyset(0)\right), \\ \left.k_{2}:\left(\left\{p_{1}, \ldots, p_{4}, q_{1}, \ldots, q_{4}, r_{1}, \ldots, r_{4}, t_{1}, \ldots, t_{4}\right\},\left\{p_{1}, \ldots, p_{4}, q_{1}, \ldots, q_{4}, r_{1}, \ldots, r_{4}, t_{1}, \ldots, t_{4}\right\}(1), \emptyset(0), \emptyset(0)\right),\right\} \\ k_{3}:\left(\left\{p_{1}, \ldots, p_{4}, q_{1}, \ldots, q_{4}, r_{1}, \ldots, r_{4}, t_{1}, \ldots, t_{4}\right\},\left\{p_{1}, \ldots, p_{4}, q_{1}, \ldots, q_{4}, r_{1}, \ldots, r_{4}, t_{1}, \ldots, t_{4}\right\}(1), \emptyset(0), \emptyset(0)\right)\end{array}\right\}$

Where, $\left\{p_{1}, \ldots, p_{4}, q_{1}, \ldots, q_{4}, r_{1}, \ldots, r_{4}, t_{1}, \ldots, t_{4}\right\}$ is known part and
$\left\{p_{1}, \ldots, p_{4}, q_{1}, \ldots, q_{4}, r_{1}, \ldots, r_{4}, t_{1}, \ldots, t_{4}\right\}(1), \varnothing(0), \varnothing(0)$ is unknown part for each criteria.
Where, $\mathrm{T}=1, \mathrm{I}=0$ and $\mathrm{F}=0$. This means that this law gave exactly the desired result. Therefore, this law is the ideal law.

Also,
p_{1} : Pedestrian police with night watchmen who drive a vehicle from 7.00 p.m to $10.00 \mathrm{p} . \mathrm{m}$ p_{2} : Pedestrian night watchmen with police who drive a vehicle from 1.00 a.m to 4.00 a.m p_{3} : Pedestrian police with pedestrian night watchmen from 7.00 p.m to 10.00 p.m p_{4} : Police who drive a vehicle with night watchmen who drive a vehicle from 7.00 p.m to 10.00 p.m q_{1} : Police who drive a vehicle with night watchmen who drive a vehicle from 7.00 p.m to $10.00 \mathrm{p} . \mathrm{m}$ q_{2} : Pedestrian police with pedestrian night watchmen from 1.00 a.m to 4.00 a.m $q_{3}:$ Pedestrian night watchmen with police who drive a vehicle from 7.00 p.m to $10.00 \mathrm{p} . \mathrm{m}$ $q_{4}:$ Pedestrian police with night watchmen who drive a vehicle from 7.00 p.m to 10.00 p.m

[^7]r_{1} : Pedestrian police with pedestrian night watchmen from 7.00 p.m to 10.00 p.m
r_{2} : Police who drive a vehicle with night watchmen who drive a vehicle from 1.00 a.m to 4.00 a.m
r_{3} : Pedestrian police with night watchmen who drive a vehicle from 7.00 p.m to 10.00 p.m
r_{4} : Pedestrian night watchmen with police who drive a vehicle from $7.00 \mathrm{p} . \mathrm{m}$ to $10.00 \mathrm{p} . \mathrm{m}$
t_{1} : Pedestrian night watchmen with police who drive a vehicle from $7.00 \mathrm{p} . \mathrm{m}$ to $10.00 \mathrm{p} . \mathrm{m}$
t_{2} : Pedestrian police with night watchmen who drive a vehicle from 1.00 a.m to $4.00 \mathrm{a} . \mathrm{m}$
t_{3} : Police who drive a vehicle with night watchmen who drive a vehicle from $7.00 \mathrm{p} . \mathrm{m}$ to $10.00 \mathrm{p} . \mathrm{m}$
t_{4} : Pedestrian police with pedestrian night watchmen from 7.00 p.m to 10.00 p.m
Step 4: Let $\mathrm{L}=\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$ be set of law of states such that

$L_{1}=\left\{\begin{array}{c}k_{1}:\left(\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\},\left\{p_{1}, p_{2}\right\}(0.8),\left\{p_{4}\right\}(0.2),\left\{p_{3}\right\}(0.1)\right), \\ \left.k_{2}:\left(\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\},\left\{p_{3}\right\}(0.8),\left\{p_{1}\right\}(0.3),\left\{, p_{2}, p_{4}\right\}(0.1)\right),\right\} \\ k_{3}:\left(\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\},\left\{p_{1}, p_{2}, p_{3},\right\}(0.9), \emptyset(0),\left\{p_{4}\right\}(0.3)\right)\end{array}\right\}$
$L_{2}=\left\{\begin{array}{l}k_{1}:\left(\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{1}, q_{2}, q_{3}\right\}(0.8),\left\{q_{4}\right\}(0.4), \emptyset(0)\right), \\ \left.k_{2}:\left(\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{1}, q_{2}, q_{3}\right\}(0.5), \varnothing(0),\left\{q_{4}\right\}(0.4)\right),\right\} \\ k_{3}:\left(\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{3}, q_{4}\right\}(0.4),\left\{q_{1}\right\}(0.1),\left\{q_{2}\right\}(0.7)\right)\end{array}\right\}$
$L_{3}=\left\{\begin{array}{c}k_{1}:\left(\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\},\left\{r_{1}\right\}(0.9),\left\{r_{2}, r_{3}\right\}(0.2),\left\{r_{4}\right\}(0.3)\right), \\ k_{2}:\left(\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\},\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}(0.9), \emptyset(0), \emptyset(0)\right), \\ k_{3}:\left(\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\},\left\{r_{1}, r_{4}\right\}(0.6),\left\{r_{2}\right\}(0.4),\left\{r_{3}\right\}(0.3)\right)\end{array}\right\}$
$L_{4}=\left\{\begin{array}{c}k_{1}:\left(\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\},\left\{t_{4}\right\}(0.9),\left\{t_{1}, t_{2}\right\}(0.1),\left\{t_{3}\right\}(0.1)\right), \\ \left.k_{2}:\left(\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\},\left\{t_{2}, t_{4}\right\}(0.7),\left\{t_{3}\right\}(0.5),\left\{t_{1}\right\}(0.2)\right),\right\} \\ k_{3}:\left(\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\},\left\{t_{1}, t_{2}, t_{4}\right\}(0.4),\left\{t_{3}\right\}(0.5), \emptyset(0)\right)\end{array}\right\}$
Step 5: We obtain Table 5 according to Step 4

[^8]Table 5. Table of laws

	k_{1}	$k_{2} \quad k_{3}$
L_{1}	$\binom{\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\},\left\{p_{1}, p_{2}\right\}(0.8)}{,\left\{p_{4}\right\}(0.2),\left\{p_{3}\right\}(0.1)}$	$\left(\begin{array}{c}\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\},\left\{p_{3}\right\}(0.8),\left\{p_{1}\right\}(0.3),\end{array}\left(\begin{array}{c}\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\},\left\{p_{1}, p_{2}, p_{3},\right\}(0.9), \emptyset(0), \\ \left\{p_{2}, p_{4}\right\}(0.1)\end{array}\right.\right.$
L_{2}	$\binom{\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{1}, q_{2}, q_{3}\right\}(0.8)}{,\left\{q_{4}\right\}(0.4), \emptyset(0)}$	$\left(\begin{array}{c}\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{1}, q_{2}, q_{3}\right\}(0.5), \emptyset(\mathrm{C} \\ \left\{q_{4}\right\}(0.4)\end{array}\binom{\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\},\left\{q_{3}, q_{4}\right\}(0.4),\left\{q_{1}\right\}(0.1)}{\left\{q_{2}\right\}(0.7)}\right.$
L_{3}	$\left(\begin{array}{c}\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\},\left\{r_{1}\right\}(0.9),\left\{r_{2}, r_{3}\right\}(0.2) \\ \left\{r_{4}\right\}(0.3)\end{array}\right.$	$\binom{\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\},\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}(0.9), \emptyset(C)\binom{\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\},\left\{r_{1}, r_{4}\right\}(0.6),\left\{r_{2}\right\}(0.4)}{\emptyset(0)}}{\left\{r_{3}\right\}(0.3)}$
L_{4}	$\left(\begin{array}{c}\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\},\left\{t_{4}\right\}(0.9),\left\{t_{1}, t_{2}\right\}(0.1 \\ \left\{t_{3}\right\}(0.1)\end{array}\right.$	$\left(\begin{array}{c}\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\},\left\{t_{2}, t_{4}\right\}(0.7),\left\{t_{3}\right\}(0.5) \\ \left\{t_{1}\right\}(0.2)\end{array}\binom{\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\},\left\{t_{1}, t_{2}, t_{4}\right\}(0.4),\left\{t_{3}\right\}(0.5)}{\emptyset(0)}\right.$

Step 6: We obtain similarity of the criterias of law to the criteria of ideal law in Table 6.

Table 6. Similarity of the criterias of law to the criteria of ideal law

	k_{1}	k_{2}	k_{3}
L_{1}	 L_{2} 0.322917 0.306250 0.339583 L_{3} 0.400000 0.350000 0.266667 L_{4} 0.400000 0.483333 0.316667	0.450000	0.333333

Step 7: We obtain weighted similarity of the criterias of law to the criterias of ideal law in Table 7.

[^9]Table 7. Weighted similarity of the criterias of law to the criterias of ideal law
(0.6). k_{1}
(0.3). k_{2}
(0.1). k_{3}

| L_{1} | |
| :--- | :--- | :--- | :--- |
| L_{2} | |
| L_{3} | 0.19375 0.091875 0.033958
 L_{4} 0.24000 0.10500
 0.24000 0.144999 0.026667
 0.27000 0.099990 |

Step 8: We obtain similarity value of the object' to the ideal object in Table 8.

Table 8. The similarity value of the law' to the ideal law

Similarity value
$L_{1}$$L_{2}$ L_{3} $L_{H^{1}}\left(\mathrm{I}, L_{1}\right)=0.319583$ $S_{H^{2}}\left(\mathrm{I}, L_{2}\right)=0.371667$ $S_{H^{3}}\left(\mathrm{I}, L_{3}\right)=0.41666$ $S_{H^{4}}\left(\mathrm{I}, L_{4}\right)=0.31958$

From Table 8 , the laws that work best are L_{3}, L_{2}, L_{1} and L_{4}, respectively.

6 Comparison Method

In this section, we compared the results of the generalized algorithm based on the generalized Hamming similarity measure and GsvNQn with the results of the algorithm [2] based on the Hamming similarity measure and SvNn .

If only the T, I, F components of the GsvNQns are in Section 5, we obtain in Table 9.

Table 9. Table of laws based on only (T, I , F)
A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

	k_{1}	k_{2}	k_{3}
	(0.8, 0.2, 01)	(0.8, 0.3, 0.1)	(0.9, 0.0, 0.3)
L_{2}	(0.8, 0.4, 0.0)	(0.5, 0.0, 0.4)	(0.4, 0.1, 0.7)
L	(0.9, 0.2, 0.3)	(0.9, 0.0, 0.0)	(0.6, 0.4, 0.3)
L_{4}	(0.9, 0.1, 01)	(0.7, 0.5, 0.2)	(0.4, 0.5, 0.0)

If we used the Hamming similarity measure [22] with algorithm [2] according to Table 9, we obtain Table 10 for choosing the best laws.

Table 10. The similarity value of the law' to the ideal law according to Hamming similarity measure [22] and SvNn

Similarity value

| L_{1} |
| :--- | :--- |
| L_{2} |
| $L_{3} \begin{array}{l}S_{H^{1}}\left(\mathrm{I}, L_{1}\right)=0.826656 \\ S_{H^{2}}\left(\mathrm{I}, L_{2}\right)=0.74333 \\ L_{4} \\ S_{H^{3}}\left(\mathrm{I}, L_{3}\right)=0.833333 \\ S_{H^{4}}\left(\mathrm{I}, L_{4}\right)=0.80333\end{array}$ |

From Table 10, the laws that work best are L_{3}, L_{1}, L_{4} and L_{2}, respectively. Thus, we obtain different result from Section 5.

[^10]
7 Discussion and Conclusions

In this study, we firstly generalized Hamming similarity measures for the GsvNQn. We showed that generalized Hamming measure satisfies the similarity measure condition. Also, we firstly generalized an algorithm (based on SvNn) for the GsvNQn and we gave a multi-criteria decision-making application using this generalized algorithm. In this application, we examined which of the laws established in different states were more efficient.

From Table 8, if we use generalized Hamming similarity measure and GsvNQn we obtain the laws that work best are

$$
L_{3}, L_{2}, L_{1} \text { and } L_{4}
$$

respectively.
From Table 10, if we use Hamming similarity measure and SvNn, we obtain the laws that work best are

$$
L_{3}, L_{1}, L_{4} \text { and } L_{2}
$$

respectively. Thus, we obtain different results according to Hamming similarity measure and SvNn in this paper. In addition, the result we obtained in Table 8 is more valid because the generalized set-valued neutrosophic quadruple numbers contain components (T, I, F) of neutrosophic sets and have more extensive components (known part, unknown part) than neutrosophic sets. As can be seen in this study, it is clear that generalized set-valued neutrosophic structures will give more objective results than both the applications using classical structures and the applications using neutrosophic structures.

Also, using this study or revising this application researchers can also work on other law applications and other science applications for decision-making problems. Furthermore, there are a lot of similarity measure for neutrosophic sets. Researchers can generalize the other similarity measures of neutrosophic set according to GsvNQn. Also, in this paper, we use single-valued neutrosophic component T, I, F \in $[0,1]$ (as in SvNn). Researchers can study generalized set-valued neutrosophic quadruple set according to bipolar neutrosophic component or interval valued neutrosophic component and researchers can use these structures for decision-making applications.

[^11]
Abbreviations

SvNn: Single valued neutrosophic number
SvNs: Single valued neutrosophic set
GsvNQn: Generalized set valued neutrosophic quadruple number
GsvNQs: Generalized set valued neutrosophic quadruple set

REFERENCES

1. Smarandache F. (2015) Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, and the multiplication of neutrosophic quadruple numbers, Neutrosophic Set and Systems, 10, 96 -98
2. Aslan, C., Kargın, A., \& Şahin, M. (2020). Neutrosophic Modeling of Talcott Parsons's Action and Decision-Making Applications for It. Symmetry, 12(7), 1166.
3. Smarandache, F. (1998). A unifying field in logics. Neutrosophy: neutrosophic probability, set and logic. Rehoboth: American Research Press.
4. Zadeh A. L. (1965) Fuzzy sets, Information and control ,8.3 338-353,
5. Atanassov T. K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets Syst, 20:87-96
6. Şahin, M., Kargın A. (2019), Neutrosophic triplet groups based on set valued neutrosophic quadruple numbers, Neutrosophic Set and Systems, 30, 122 - 131.
7. Şahin M. and Kargın A. (2019) Neutrosophic triplet metric topology, Neutrosophic Set and Systems, 27, 154-162
8. Wang H., Smarandache F., Zhang Y. Q., Sunderraman R. Single valued neutrosophic sets. Multispace Multistructure. 2010 4, 410-413.
9. Uluçay, V., Kiliç, A., Yildiz, I., \& Sahin, M. (2018). A new approach for multi-attribute decisionmaking problems in bipolar neutrosophic sets. Neutrosophic Sets and Systems, 23(1),12.

[^12]10. Şahin M., Kargın A. (2018) Neutrosophic triplet normed ring space, Neutrosophic Set and Systems, 21, 20-27
11. Şahin M., Olgun N, Uluçay V., Kargın A. and Smarandache F. (2017) A new similarity measure on falsity value between single valued neutrosophic sets based on the centroid points of transformed single valued neutrosophic numbers with applications to pattern recognition, Neutrosophic Sets and Systems, 15, 31-48, doi: org/10.5281/zenodo570934
12. Şahin M., Ecemiş O., Uluçay V. and Kargın A., (2017) Some new generalized aggregation operators based on centroid single valued triangular neutrosophic numbers and their applications in multi-attribute decision making, Asian Journal of Mathematics and Computer Research,16(2): 63-84
13. Şahin, M., Kargın A., (2019) Neutrosophic triplet groups based on set valued neutrosophic quadruple numbers, Neutrosophic Set and Systems, 30, 122-131
14. Uluçay, V., \& Şahin, M. (2019) Neutrosophic Multigroups and Applications. Mathematics, 7(1), 95.
15. Zhang, X., Ma, Z., \& Yuan, W. (2019). Cyclic associative groupoids (CA-groupoids) and cyclic associative neutrosophic extended triplet groupoids (CA-NET-groupoids). Neutrosophic Sets and Systems, 29(1), 2.
16. Shalla, M. M., \& Olgun, N. (2019). Direct and Semi-Direct Product of Neutrosophic Extended Triplet Group. Neutrosophic Sets and Systems, 29(1), 16.
17. Bakbak, D., Uluçay, V., \& Şahin, M. (2019) Neutrosophic soft expert multiset and their application to multiple criteria decision making. Mathematics, 7(1), 50.
18. Uluçay, V., Kılıç, A., Sahin, M., \& Deniz, H. (2019). A new hybrid distance-based similarity measure for refined neutrosophic sets and its application in medical diagnosis. MATEMATIKA, 2019, Volume 35, Number 1, 83-96.
19. Şahin, M., and Kargın, A. New Similarity Measure Between Single-Valued Neutrosophic Sets and Decision-Making Applications in Professional Proficiencies. In Neutrosophic Sets in Decision Analysis and Operations Research (pp. 129-149). IGI Global. 2020

[^13]20. Smarandache, F. (2013) n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progres in Physics, 4, 143-146
21. Peng, X., \& Smarandache, F. (2020). New multiparametric similarity measure for neutrosophic set with big data industry evaluation. Artificial Intelligence Review, 53(4), 3089-3125.
22. Ye, J. (2014). Clustering methods using distance-based similarity measures of single-valued neutrosophic sets. Journal of Intelligent Systems, 23(4), 379-389.
23. Uluçay, V., Kılıç, A., Yıldız, İ., \& Şahin, M. (2019). An outranking approach for MCDM-problems with neutrosophic multi-sets. Neutrosophic Sets and Systems, 30(1), 17.
24. Kandasamy, I., Vasantha, W. B., Obbineni, J. M., \& Smarandache, F. (2020). Sentiment analysis of tweets using refined neutrosophic sets. Computers in Industry, 115, 103180.
25. Hashmi, M. R., Riaz, M., \& Smarandache, F. (2020). m-Polar neutrosophic topology with applications to multi-criteria decision-making in medical diagnosis and clustering analysis. International Journal of Fuzzy Systems, 22(1), 273-292.
26. Uluçay, V., Şahin, M., \& Hassan, N. (2018). Generalized neutrosophic soft expert set for multiplecriteria decision-making. Symmetry, 10(10), 437.
27. Hassan, N., Uluçay, V., \& Şahin, M. (2018). Q-neutrosophic soft expert set and its application in decision making. International Journal of Fuzzy System Applications (IJFSA), 7(4), 37-61.
28. Tian, C., Peng, J. J., Zhang, Z. Q., Goh, M., \& Wang, J. Q. (2020). A Multi-Criteria DecisionMaking Method Based on Single-Valued Neutrosophic Partitioned Heronian Mean Operator. Mathematics, 8(7), 1189.
29. Saqlain, M., Jafar, N., Moin, S., Saeed, M., \& Broumi, S. (2020). Single and Multi-valued Neutrosophic Hypersoft set and Tangent Similarity Measure of Single valued Neutrosophic Hypersoft Sets. Neutrosophic Sets and Systems, 32(1), 20.
30. Roy, S., Lee, J. G., Pal, A., \& Samanta, S. K. (2020). Similarity Measures of Quadripartitioned Single Valued Bipolar Neutrosophic Sets and Its Application in Multi-Criteria Decision Making Problems. Symmetry, 12(6), 1012.4

[^14]31. Uluçay, V., \& Şahin, M. Decision-Making Method based on Neutrosophic Soft Expert Graphs. In Neutrosophic Graph Theory and Algorithms (pp. 33-76). IGI Global. 2020.
32. Şahin, M., Uluçay, V., \& Menekşe, M. (2018). Some new operations of (α, β, γ) interval cut set of interval valued neutrosophic sets. Journal of Mathematical and Fundamental Sciences, 50(2), 103-120.
33. Jun, Y. B., Song, S. Z., Smarandache, F., \& Bordbar, H. (2018). Neutrosophic quadruple BCK/BCIalgebras. Axioms, 7(2), 41.
34. Şahin, M., Kargın, A., \& Yıldız, İ., Neutrosophic triplet field and neutrosophic triplet vector Space Based on Set Valued Neutrosophic Quadruple Number. In Quadruple Neutrosophic Theory and Applications, Pons Editions Brussels, Belgium, EU, 2020 vol. 4, 52-61
35. Şahin, M., Kargın, A., Neutrosophic triplet metric space based on set valued neutrosophic quadruple number. In Quadruple Neutrosophic Theory and Applications, Pons Editions Brussels, Belgium, EU, 2020 vol. 5, 61-71
36. Şahin, M., Kargın, A., \&Kılıç, A. Generalized neutrosophic quadruple sets and numbers. In Quadruple Neutrosophic Theory and Applications, Pons Editions Brussels, Belgium, EU, 2020 vol. 1, 11-22
37. Şahin, M., Kargın, A., Generalized set - valued neutrosophic quadruple sets and numbers In Quadruple Neutrosophic Theory and Applications, Pons Editions Brussels, Belgium, EU, 2020 vol. 2, 23-40
38. Rezaei, G. R., Jun, Y. B., \& Borzooei, R. A. (2020). Neutrosophic quadruple a-ideals. Neutrosophic Sets and Systems, 31(1), 19.
39. Mohseni Takallo, M., \& Jun, Y. B. (2020). Commutative neutrosophic quadruple ideals of neutrosophic quadruple BCK-algebras. Journal of Algebraic Hyperstructures and Logical Algebras, 1(1), 95-105.
40. Kandasamy, V., Kandasamy, I., \& Smarandache, F. (2020). Neutrosophic Quadruple Algebraic Codes over Z2 and their properties. Neutrosophic Sets and Systems, 33(1), 12.

[^15]41. Nabeeh, A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H. A., Aboelfetouh, A. (2019). An Integrated Neutrosophic-TOPSIS Approach and its Application to Personnel Selection: A New Trend in Brain Processing and Analysis. IEEE Access, doi: 10.1109/ACCESS.2019.2899841
42. Nabeeh, A., Abdel-Basset M., El-Ghareeb, H. A., Aboelfetouh, A. (2019). Neutrosophic MultiCriteria Decision-Making Approach for IoT-Based Enterprises. IEEE Access, doi: 10.1109/ACCESS. 2019.2908919
43. Abdel-Basset M, Nabeeh, A, El-Ghareeb, H. A., Aboelfetouh, A. (2019). Utilizing Neutrosophic Theory to Solve Transition Difficulties of IoT-Based Enterprises. Enterprise Information Systems, doi: http//dx.doi.org/10.1080/17517575.2019.1633690.

Received: September 7, 2020 . Accepted: Feb 3, 2021

[^16]
[^0]: A. Kargin, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^1]: A. Kargin, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^2]: A. Kargin, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^3]: A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^4]: A. Kargin, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^5]: A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^6]: A. Kargin, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^7]: A. Kargin, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^8]: A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^9]: A. Kargin, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^10]: A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^11]: A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^12]: A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^13]: A. Kargin, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^14]: A. Kargin, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^15]: A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

[^16]: A. Kargın, A. Dayan and N. M. Şahin. Generalized Hamming Similarity Measure Based on Neutrosophic Quadruple Numbers and Its Applications to Law Sciences

