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Background: Association between heavy metals and Parkinson’s disease (PD) is 
well noted, but studies regarding heavy metal levels and non-motor symptoms of 
PD, such as PD’s dementia (PD-D), are lacking.

Methods: In this retrospective cohort study, we compared five serum heavy metal 
levels (Zn, Cu, Pb, Hg, and Mn) of newly diagnosed PD patients (n = 124). Among 
124 patients, 40 patients were later converted to Parkinson’s disease dementia 
(PD-D), and 84 patients remained without dementia during the follow-up time. 
We collected clinical parameters of PD and conducted correlation analysis with 
heavy metal levels. PD-D conversion time was defined as the initiation time of 
cholinesterase inhibitors. Cox proportional hazard models were used to identify 
factors associated with dementia conversion in PD subjects.

Results: Zn deficiency was significant in the PD-D group than in the PD without 
dementia group (87.53 ± 13.20 vs. 74.91 ± 14.43, p < 0.01). Lower serum Zn level was 
significantly correlated with K-MMSE and LEDD at 3 months (r = −0.28, p < 0.01; 
r = 0.38, p < 0.01). Zn deficiency also contributed to a shorter time to dementia 
conversion (HR 0.953, 95% CI 0.919 to 0.988, p < 0.01).

Conclusion: This clinical study suggests that a low serum Zn level can be a risk 
factor for developing PD-D and could be used as a biological marker for PD-D 
conversion.
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Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease after 
Alzheimer’s disease (AD) which typically affects sexagenarians or older people (Tysnes and 
Storstein, 2017). Starting from the development of levodopa in the late 1960s, several dopamine-
based therapies have been invented, which have controlled distinctive motor features of PD, such 
as tremor, rigidity, and bradykinesia, to some extent (Abbott, 2010). On the other hand, 
non-motor symptoms, characterized by cognitive impairment, autonomic dysfunctions and 
psychiatric symptoms, have gained interest in the recent past for their hindering effect on 
patients’ quality of life during disease progression, but still are often unintentionally under-
recognized in routine clinical practice (Chaudhuri et al., 2010).
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PD’s dementia (PD-D), characterized by impaired attention, 
executive, and visuospatial dysfunctions, apathy, and hallucinations, 
is known to manifest at later stages (Hanagasi et al., 2017; Schapira 
et al., 2017). Cognitive impairment in PD increases the disease-related 
costs and caregiver burden, leading to higher institutionalization rates 
and mortality than in those PD patients without dementia (Hiseman 
and Fackrell, 2017; Mosley et al., 2017). The point prevalence of PD-D 
is assumed to be as much as 30%, and the cumulative incidence is 
reported to increase with disease duration (Aarsland and Kurz, 2010; 
Hanagasi et al., 2017). Several risk factors have been reported, such as 
old age, severe parkinsonism, and mild cognitive impairment, but no 
biological markers are yet to have significant predictive value (Levy 
et al., 2002; Janvin et al., 2005; Aarsland and Kurz, 2010).

Although 5%–10% of the variance in PD is thought to be explained 
by genetic etiology, the etiology of most sporadic cases is still 
unknown (>90%), suggesting a role for environmental factors in the 
occurrence of PD (Bjorklund et al., 2018; Deng et al., 2018; Ullah et al., 
2021). Of that, heavy metals have gained attention among 
environmental factors due to increased exposure along with 
industrialization and their potential toxic influence on humans. 
Numerous epidemiological studies have reported relationships 
between long-term exposure to heavy metals and PD/PD-like 
symptoms. Most well known is probably Manganese (Mn), first 
described by John Couper in 1837, for its Mn-Induced Parkinsonism 
features in chemical factory employees (Guilarte, 2010). Normally, 
heavy metals are known for their free radical formation under the 
Fenton-Haber-Weiss reaction (Ball et al., 2019). These reactive oxygen 
species (ROS) induce oxidative stress, mitochondrial dysfunction, 
DNA damage, protein misfolding, and eventually apoptosis, resulting 
in neurodegeneration which is especially detrimental due to its 
limitation on recovery (Xie et al., 2012; Vellingiri et al., 2022).

However, not all heavy metals only have a detrimental influence 
on the body; metals such as manganese (Mn), iron (Fe), copper 
(Cu), and zinc (Zn) are classified as essential trace elements that act 
as cofactors for many enzymes, and the homeostasis of these 
elements is important because both deficiency and excess can result 
in various problems (Fraga, 2005). Furthermore, Uversky and Fink 
reported that some lower metal ion levels could accelerate the rate 
of α-synuclein (α-syn) fibril formation, a key pathologic substrate 
in PD pathogenesis, and Atarod et al. also revealed that different 
metal ions could trigger structural changes in α-syn fibrils and 
influence its cytotoxicity (Uversky et al., 2001; Atarod et al., 2022). 
Therefore, it could be  hypothesized that heavy metal levels are 
crucial environmental factors for neurodegenerative diseases, 
including PD.

As outlined above, many studies have reported correlations 
between heavy metals and PD. However, little has been revealed 
about the link between heavy metals and non-motor symptoms, 
such as cognition. Considering that many studies indicate heavy 
metals could influence circadian rhythm, dementia risk, and 
psychological symptoms, we  could postulate that serum heavy 
metals could also be associated with various non-motor symptoms 
in PD patients (Orisakwe, 2014; Parmalee and Aschner, 2017; 
Bakulski et  al., 2020). In the present study, we  examined five 
serum metals (zinc, copper, lead, mercury, and manganese) of 124 
drug-naïve PD patients at the time of diagnosis, and then 
evaluated the correlation between baseline heavy metal levels and 
clinical characteristics of PD subjects. Next, we  compared the 

serum heavy metal levels between PD-D and PD without dementia 
group. Finally, we examined the correlation between depletion or 
excess of these metals and PD-D development in drug-
naïve patients.

Materials and methods

Patients and clinical assessment

We retrospectively enrolled 124 drug-naïve PD patients in the 
Movement Disorder Clinic of Gangneung Asan from January 2011 to 
November 2020 by reviewing the medical record. All PD patients were 
diagnosed according to the United  Kingdom Parkinson’s Disease 
Society Brain Bank criteria, and the presence of relevant findings was 
revealed by [18F] N-(3-fluoropropyl)-2β-carbon ethoxy-3β-(4-
iodophenyl) nortropane (FP-CIT) positron emission tomography. All 
subjects were followed longitudinally for at least 24 months after 
diagnosis and visited an outpatient clinic every 2 to 3 months for 
evaluation of motor and non-motor symptoms such as dementia on 
history and neurologic examination.

The exclusion criteria included the following: (1) prior or 
concomitant diagnosis of dementia at the time of PD confirmation; 
(2) co-morbidities that could affect cognitive function such as 
depression, cerebrovascular disease, normal pressure hydrocephalus, 
endocrine disease, alcohol overuse, uncontrolled DM, chronic kidney 
disease, and autoimmune disorders; (3) severe white matter change 
defined as grade 3 Modified Fazekas scale for white matter; (4) 
possibility of atypical parkinsonism, including progressive 
supranuclear palsy, multiple system atrophy, and corticobasal 
syndrome; and (5) suspicion of possible secondary parkinsonism, 
including vascular or metabolic parkinsonism, or PD due to 
toxic causes.

Clinical information, including age, sex, body weight, age of 
diagnosis, disease duration, and motor subtype which was classified 
into tremor dominant, intermediate, and akinetic rigid types, was 
obtained from medical records. We assessed initial motor severity at 
off status using the Unified Parkinson Disease Rating Scale 
(UPDRS)-III and Modified Hohen and Yahr (H&Y) stage and 
K-MMSE at the point of PD diagnosis. Levodopa equivalent dose 
(LEDD) 3 months after the initial diagnosis was calculated by using a 
previously published method (Tomlinson et al., 2010). Brain MRI was 
performed in all enrolled PD subjects at the time of PD diagnosis, and 
the Modified Fazekas scale for the white matter was evaluated. The 
study was approved by the ethical committee of Gangneung 
Asan Hospital.

Assessment of the conversion of dementia

The time point of dementia conversion was defined as starting 
medication of cholinesterase inhibitors such as donepezil, 
rivastigmine, galantamine, and memantine. Before the initiation of 
medication, Korean version of the Frontal Assessment Battery 
(FAB-K) and K-MMSE were conducted in all PD subjects. Moreover, 
we also confirmed that all these subjects met the clinical criteria for 
diagnosing probable or possible PD dementia by a chart review from 
the Movement Disorder Society task force.
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Assay for heavy metal levels

Whole blood samples were collected in all enrolled PD subjects. 
This procedure was performed during hospitalization for workup of 
PD diagnosis, and samples were collected in the morning after 
overnight fasting. Collected samples were packed with ice and 
transferred to Eone Laboratories corporation (Incheon, South 
Korea), where the level of metals [zinc (Zn), copper (Cu), lead (Pb), 
mercury (Hg), and manganese (Mn)] was assayed by Inductively 
Coupled Plasma Mass Spectrometry (ICP-MS). Zn and Cu were 
measured by Agilent 7900 ICP-MS using serum acquired by 
centrifuging the whole blood sample at 200× g, and Hg, Mn, and Pb 
were measured by Agilent 7700 ICP-MS using whole blood. A 200-μL 
aliquot of sample was diluted (1,10) with 1,800 μL of 1% HNO3 and 
then centrifuged (701× g, 1  min). The assays were conducted 
following the standard guidelines provided by the manufacturer. To 
determine the level of contamination of elements from the collection 
tubes, a mock blood draw was performed using distilled water. 
Specifically, we collected and processed the distilled water using the 
same protocol and materials as the actual blood samples. We then 
analyzed the water samples for the presence of heavy metals using 
inductively coupled plasma mass spectrometry (ICP-MS). No 
significant contamination was observed in any of the distilled water 
samples, indicating that the collection tubes did not introduce any 
substantial levels of heavy metals into the blood samples. Trace 
Elements Serum and Metals Whole Blood from UTAK Laboratories 
Inc. were used as standard reference materials for quality control and 
assurance of Agilent 7900 and 7700. The inter-day and intra-day 
Coefficients of variation of all tests were <10%.

Statistical analysis

Statistical analyses were performed using R version 4.1 and 
GraphPad Prism 9.0 (GraphPad Software, Inc., San Diego, CA). 
We adopted χ2 Tests for differences in categorical variables and 
independent t-tests for comparing continuous variables. We first 
compared the demographic, clinical parameters, and heavy metal 
levels of PD patients with and without dementia. Then, correlation 
analysis was used to affirm the relationship between heavy metal 
levels in significance and various clinical parameters of PD, such 
as the age of diagnosis, LEDD at 3 months, UPDRS-III, and 
K-MMSE. Additional correlation analysis was conducted to 
confirm heavy metal levels of PD-D and PD without dementia 
patients and clinical parameters. Cox proportional hazards 
regression analysis was also performed to identify factors 
associated with the time to dementia conversion in PD subjects. 
The variable selection used a stepwise method combining forward 
and backward selection. Finally, the Akaike information criterion 
was used to select the best model. The significance value was 
p < 0.05 for all the analyses.

Results

Demographic characteristics of PD-D and 
PD without dementia patients

The demographic characteristics of the participants are 
presented in Table 1. PD-D patients were older than non-dementia 

TABLE 1 Comparison of basic demographic, clinical parameters, and serum heavy metal level between PD dementia and PD without dementia.

Parkinson’s disease without 
dementia conversion (n = 84)

Parkinson’s disease with 
dementia conversion (n = 40)

p-value

Age 71.49 ± 9.50 79.50 ± 7.92 <0.01

Gender (male/female) 40/44 15/25 0.39*

Weight (kg) 62.02 ± 11.00 60.71 ± 10.45 0.53

Disease duration (month) 72.08 ± 26.34 93.93 ± 24.16 <0.01

Observation duration (month) 65.68 ± 23.85 58.85 ± 25.34 0.16

Type of PD (TD/intermediate/AR) 48/17/19 11/11/18 <0.01*

Age at diagnosis 65.88 ± 9.67 72.05 ± 8.15 <0.01

UPDRS-III 20.69 ± 8.78 29.08 ± 8.30 <0.01

LEDD at 3 months 564.77 ± 195.15 729.55 ± 122.38 <0.01

Modified H&Y 1.77 ± 0.57 2.24 ± 0.34 <0.01

K-MMSE 26.11 ± 4.05 21.35 ± 3.64 <0.01

Fazekas scale 0.83 ± 0.51 1.33 ± 0.69 <0.01

Heavy metals

Zinc (μg/dL) 87.53 ± 13.20 74.91 ± 14.43 <0.01

Copper (μg/dL) 99.05 ± 20.82 99.16 ± 20.23 0.98

Lead (μg/dL) 1.82 ± 0.98 1.79 ± 0.91 0.86

Mercury (μg/L) 2.87 ± 2.04 2.71 ± 2.30 0.71

Manganese (μg/L) 11.08 ± 3.54 10.93 ± 4.03 0.84

These values represent the mean with the standard deviation or the number of subjects. *Chi-squared test PD, Parkinson’s disease; UPDRS-III, United Parkinson’s Disease Rating Scale Part 3; 
LEDD, L-dopa equivalent daily dose; H&Y, Hoeh and Yahr stage; K-MMSE, Korean version of the mini mental state examination scale; TD, Tremor-dominant; AR, Akinetic-rigidity.
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PD patients, including their age at diagnosis (79.50 ± 7.92 vs. 
71.49 ± 9.50 years, p < 0.01; 72.05 ± 8.15 vs. 65.88 ± 9.67 years, 
p < 0.01). PD-D patients also had more severe clinical parameters 
than non-dementia PD patients, including longer disease duration, 
higher UPDRS-III scores, LEDD at 3 months, and modified H&Y 
scale (93.93 ± 24.16 vs. 72.08 ± 26.34 months; 29.08 ± 8.30 vs. 
20.69 ± 8.78; 729.55 ± 122.38 vs. 564.77 ± 195.15 mg; 2.24 ± 0.34 vs. 
1.77 ± 0.57, all p < 0.01). PD-D patients showed lower baseline 
K-MMSE scores and higher Fazekas scale (21.35 ± 3.64 vs. 
26.11 ± 4.05, p < 0.01; 1.33 ± 0.69 vs. 0.83 ± 0.51, p < 0.01). Finally, 
PD-D patients were more prevalent in the akinetic rigidity subtypes 
group (p < 0.01).

Heavy metals and PD

Table 1 shows the heavy metal levels in PD-D and PD patients 
without dementia conversion. Of the five heavy metals, only Zn 
appeared to have a significant difference, with the former group 
showing a lower level of Zn than the latter (74.91 ± 14.43 vs. 
87.53 ± 13.20 μg/L, p < 0.01; reference range: 81.0~121.0 μg/L). Mn 
level was above the normal limit (reference range: ≤8.0 μg/L) in both 
groups (11.08 ± 3.54 vs. 10.93 ± 4.03, p = 0.84), but it did not show a 
significant difference. Figure  1 compares the Zn and Mn levels 
between PD-D and PD patients without dementia.

In correlation analysis between Mn, Zn level and clinical 
parameters of PD adjusting age (Figure 2), Zn level was most strongly 
correlated with K-MMSE (r = 0.38, p < 0.01), followed by LEDD at 3 
months (r = −0.28, p < 0.01), while there were no significant 
correlations between the Mn level and clinical parameters in PD 
subjects. UPDRS-III and age at diagnosis also showed negative 
correlation trends with Zn level, but it was not statistically significant 
(r = −0.17, p = 0.06; r = −0.17, p = 0.052). When classified into PD-D 
and PD without dementia groups, serum Zn was significantly 
correlated with K-MMSE among clinical parameters (r = 0.29, p < 0.01; 
r = 0.22, p < 0.05), while serum Mn did not have significant correlation 
with any parameters (Supplementary Table 1).

Predictive factors for time to conversion of 
dementia in PD patients

Univariate and multivariate Cox regression hazard models were 
used to investigate risk factors, including Zn level, for the time to 
conversion of dementia in PD patients (Table 2). The univariate model 
revealed that akinetic-rigidity type of parkinsonism was most strongly 
associated with dementia conversion in PD subjects (HR 3.066, 95% 
CI 1.442–6.520, p < 0.01). Several clinical factors, including age, LEDD 
at 3 months, UPDRS-III, K-MMSE, and Fazekas scale, were also 
associated with time to dementia conversion as significant predictive 
factors of PD-D (HR 1.067, 95% CI 1.026–1.110, p < 0.01; HR 1.003, 
95% CI 1.001–1.005, p < 0.01; HR 1.095, 95% CI 1.057–1.133, p < 0.01; 
HR 0.893, 95% CI 0.855–0.932, p < 0.01; and HR 2.515, 95% CI 1.538–
4.111; p < 0.01, respectively).

In multivariate analysis, the final model selected LEDD at 3 
months, UPDRS-III, K-MMSE, and serum Zn level for predicting the 
dementia conversion in PD patients (HR 1.002, 95% CI 1.000–1.004, 
p < 0.05; HR 1.071, 95% CI 1.033–1.109, p < 0.01; HR 0.921, 95% CI 
0.650–0.980, p < 0.01; and HR 0.953, 95% CI 0.919–0.988; p < 0.01, 
respectively). Figure 3 shows the proportion of PD without dementia 
according to time.

Discussion

This study reports two major findings. First, serum Zn level was 
significantly lower in the PD-D group compared with PD without 
dementia group at the time of diagnosis, and it also showed significant 
correlation with K-MMSE scores. Second, Zn deficiency contributed 
to a shorter time to dementia conversion in our study. To our 
knowledge, this is the first study confirming the longitudinal effect of 
Zn deficiency on dementia conversion in PD.

Although it remains unclear and inconsistencies persist, numerous 
studies indicate the role of heavy metals in the pathogenesis of PD 
(Bjorklund et al., 2018; Ball et al., 2019; Raj et al., 2021; Vellingiri et al., 
2022). Several epidemiologic studies have revealed a correlation 

FIGURE 1

Individual T-tests of serum Zn (A), Mn (B) level between PD with and without dementia.
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between exposure to these metals and the risk of PD. Dantzig reported 
that the blood mercury level was six times higher in PD patients, and 
chronic occupational exposure to Cu and Pb also were reported to 

increase PD risk in several studies (Kuhn et al., 1998; Gorell et al., 
1999; Dantzig, 2006). However, there were also studies denying these 
correlations between heavy metals and PD risk, and these 

FIGURE 2

Correlation analysis between serum Zn (A-D), serum Mn (E-H) and clinical parameters of PD.
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inconsistencies might be  associated with different methodologies 
(Semchuk et al., 1993; Vieregge et al., 1995).

Chronic overexposure to Mn leads to Manganese-induced 
parkinsonism, known as “Manganism,” by accumulation of Mn in the 
basal ganglia circuit (Kwakye et  al., 2015). Manganese-induced 
parkinsonism is similar to idiopathic PD in several clinical symptoms, 
including gait disturbance, masked face, and psychiatric changes. 

However, nonsignificant resting tremor and resistance to levodopa 
therapy combined with the absence of degeneration of dopaminergic 
neurons in the substantia nigra differentiate the two diseases (Guilarte, 
2010; Kwakye et al., 2015). Still, Mn remains a potential risk factor for 
idiopathic PD, as several studies have shown elevated Mn levels in PD 
patients (Fukushima et al., 2010; Du et al., 2018). In our study, serum 
Mn level was elevated in both PD and PD without dementia groups, 
while serum Cu, Pb, Hg levels were within the normal reference range 
(70.0–155.0, ≤1.7, and <3.40 μg/dL, respectively). However, there was 
no correlation between serum Mn level and disease severity variables 
such as LEDD, UPDRS-III scores, and K-MMSE in our study. 
Therefore, the role of higher serum Mn levels in PD pathogenesis 
should be further clarified.

In our study, serum Zn level was significantly lower than the 
reference level in both PD-D and PD without dementia groups. 
Previous studies have reported that both excess and deficiency of Zn 
are thought to contribute to neurotoxicity, probably due to its complex 
mechanism in various enzymes and signaling pathways. Animal 
studies using PD models have shown that an overload of intracellular 
Zn cations and Zn treatment can degenerate nigrostriatal 
dopaminergic neurons, while in vivo experiments have shown that 
intracellular zinc chelators act as neuroprotectors to neurotoxins (Lee 
et  al., 2009; Kumar et  al., 2010; Tamano et  al., 2019; Sikora and 
Ouagazzal, 2021). However, there are also studies showing conflicting 
results. While delicately regulated by Zn transporters and 
metallothioneins in normal conditions, recently, two meta-analyses 
regarding serum Zn level for its association with the risk of PD showed 
that reduced serum Zn level could be related to an increased risk of 

TABLE 2 Univariate and multivariate cox proportional hazard regression analysis for predicting dementia conversion in PD subjects.

Covariates

Univariable analysis Multivariable analysis

HR
95% CI

p-value HR
95% CI

p-value
Lower Upper Lower Upper

Age 1.067 1.026 1.110 <0.01

Weight (kg) 0.990 0.957 1.024 0.55

Sex

Male Ref

Female 1.250 0.657 2.377 0.50

Type

TD Ref

Intermediate 1.862 0.805 4.303 0.15

AR 3.066 1.442 6.520 <0.01

LEDD 1.003 1.001 1.005 <0.01 1.002 1.000 1.004 <0.05

UPRDS-III 1.095 1.057 1.133 <0.01 1.071 1.033 1.109 <0.01

K-MMSE 0.893 0.855 0.932 <0.01 0.921 0.65 0.980 <0.01

Fazekas scale 2.515 1.538 4.111 <0.01

Zinc (μg/dL) 0.972 0.936 1.009 0.14 0.953 0.919 0.988 <0.01

Copper (μg/dL) 0.997 0.983 1.010 0.62

Lead (μg/dL) 0.940 0.646 1.369 0.75

Mercury (μg/L) 0.919 0.777 1.089 0.33

Manganese (μg/L) 0.955 0.850 1.073 0.44

HR, Hazed Ratio; CI, Confidence Interval; UPDRS-III, United Parkinson’s Disease Rating Scale Part 3; LEDD, L-dopa equivalent daily dose; K-MMSE, Korean version of the mini mental state 
examination scale; TD, Tremor-dominant; AR, Akinetic-rigidity.

FIGURE 3

Risk of dementia conversion of PD patients.
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PD. In our study, Zn was also lower in PD patients, implying that Zn 
deficiency can be a risk factor for PD (Szewczyk, 2013; Du et al., 2017; 
Sun et al., 2017).

There are some studies which reported that serum Zn level was 
nonsignificant between PD and control patients (Kocatürk et  al., 
2000; Kim et al., 2018). For instance, Kim et al. recently reported a 
significant correlation between serum Cu levels and with risk of 
PD. In contrast, serum Zn level was not significantly different 
between the PD and control groups (Kim et al., 2018). However, the 
serum Zn level tended to be related to a lower dyskinesia risk in 
women, which indicates that the serum Zn level could be associated 
with the prognosis of PD. Regarding clinical prognosis, our results 
also showed a significant association between Zn level and many 
clinical parameters reflecting PD characteristics such as K-MMSE 
and LEDD at 3 months. There were also trends with UPDRS-III and 
age at diagnosis, but these associations did not reach statistical 
significance. Therefore, serum Zn level might also be serum biological 
markers reflecting clinical prognosis and PD occurrence. Notably, 
our study has collected blood samples taken from drug-naïve 
patients, to avoid confounding factors such as disease duration, 
medication effect, and heterogeneity of PD stage.

Many possible mechanisms could explain the association between 
Zn and PD. First, Zn is a key component of Cu, Zn-superoxide 
dismutase, which catalyzes superoxide to produce hydrogen peroxide 
and dioxygen, which are less harmful (Sea et al., 2015; Jarosz et al., 
2017). Furthermore, Zn-metalloproteins are known to protect 
neurons from oxidative damage by releasing Zn ions in oxidative 
stress conditions and conducting their antioxidant actions (Ruttkay-
Nedecky et  al., 2013). Considering that oxidative damage to 
dopaminergic neurons in substantia nigra and consequent 
inflammatory reaction is considered an important pathologic 
mechanism of PD, increasing oxidative stress led by the reduction of 
Zn could contribute to PD pathogenesis (Ball et al., 2019). Second, 
mitochondrial dysfunction is the key factor of cell degeneration and 
is considered one of the central mechanisms in PD development (Bose 
and Beal, 2016). Disrupted mitochondria result in increased reactive 
oxygen species and could affect various cellular pathways leading to 
impaired intracellular components and cell death. Furthermore, many 
causative genes linked to familial PD are associated with various 
aspects of mitochondrial quality control, such as PINK1(PTEN-
induced putative kinase 1) and Parkin (E3 ubiquitin ligase), which are 
known as familial PD-related gene products essential in the mitophagy 
process (Pickrell and Youle, 2015). Parkin has four ring domains, each 
coupled with two Zn2+ ions, and the removal of the Zn ion causes loss 
of function due to the unfolding of the protein (Seirafi et al., 2015). 
Saini and Schaffner suggested that Zn supplement could restore the 
condition of Parkin mutant Drosophila, which suggests that Zn 
deficiency could be associated with mitochondrial dysfunction (Saini 
and Schaffner, 2010). Therefore, mitochondrial dysfunction due to Zn 
deficiency may contribute to PD pathogenesis in increasing ROS and 
mitochondrial quality control. Third, the role of intracellular synaptic 
Zn level in PD pathogenesis has recently been emerging. In vitro, Zn 
was found to function as a potential neuromodulator, mainly for the 
N-methyl-D-aspartate (NMDA) receptor (Kay and Tóth, 2008; 
Amico-Ruvio et al., 2011). Pathological findings have revealed that 
synaptic Zn was densely deposited in the striatum and released along 
with glutamate at excitation. Zn modulates motor behaviors in 
harmony under normal conditions (Sikora and Ouagazzal, 2021). 

Considering that the degeneration of nigrostriatal neurons causes 
overactivation of glutamate projections to the striatum, excess 
intracellular Zn release combined with glutamate could accelerate the 
degenerative process. Sikora et al. reported the detrimental role of 
synaptic Zn ion promoting motor and cognitive deficits evoked by 
nigrostriatal dopaminergic denervation. On the contrary, a PD animal 
study showed that intracellular Zn ions might act as a protective factor 
by inhibiting the excessive NMDAR signaling that negatively impacts 
motor coordination and learning (Fantin et  al., 2008; Sikora and 
Ouagazzal, 2021). Therefore, although more remains to be investigated, 
the synaptic, and intracellular function of Zn could be related to the 
development of PD.

Another important finding regarding serum Zn level is that the 
Zn deficiency group showed a significantly shorter time to 
dementia conversion.

Disruption of Zn homeostasis is well-known for its implication in 
various neurodegenerative disorders, including Alzheimer’s disease 
(AD) and PD. Ventriglia et al. conducted a meta-analysis investigating 
the alteration of serum Zn levels in AD and confirmed that the serum 
Zn level was significantly lower in AD patients compared with the 
control group (Ventriglia et al., 2015). Low serum Zn level in AD 
could be explained by Zn sequestration due to binding with amyloid-
beta (Aβ; Sensi et al., 2018). Postmortem studies revealed that brain 
Zn accumulation could be  a prominent characteristic in AD, 
combined with brain Aβ deposition (Religa et al., 2006). Although 
cortical and limbic Lewy bodies and Lewy neurites are considered 
pathologic features and cholinergic dysfunction is a more prominent 
feature in PD-D, there is an increasing number of studies revealing 
that there could be  synergistic effects among α-syn, tau, and Aβ 
(Perez-Lloret and Barrantes, 2016; Jellinger and Korczyn, 2018). Irwin 
et  al. suggested that AD-type pathology (Aβ and tau-containing 
neurofibrillary tangles) combined with α-syn could have a synergistic 
role in PD-D, and the level of AD pathology was found to have a 
positive correlation with cognitive impairment (Irwin et al., 2012, 
2013). Therefore, considering the involvement of Zn in Aβ 
accumulation, zinc could also play a synergistic role in PD-D 
pathogenesis. Our finding that Zn deficiency could be associated with 
a shorter time of dementia conversion might support this hypothesis.

Zn in the brain is found mostly in the forebrain region, including 
the hippocampus, amygdala, olfactory bulbs, and frontal cortex, which 
are closely associated with memory and learning (Sikora and 
Ouagazzal, 2021). Current studies have revealed that along with 
cholinergic and cortical dopaminergic degeneration, increased α-syn 
accumulation in the basal forebrain and hippocampus, which overlaps 
the distribution of Zn, could contribute to PD dementia occurrence 
(Hall et al., 2014; Smith et al., 2019). Taken together, disruption of Zn 
homeostasis might contribute to the pathogenesis of PD-D, and the 
mechanism of Zn linked to PD-D must be further investigated.

This study has several limitations. First, it is a retrospective study, 
therefore the interval of the observation of the patients is 
heterogeneous. Patients might have been censored because of 
dementia development, and conversely, in those with regular clinical 
follow-ups, dementia might have been detected more easily. Both 
scenarios could have contributed to the over or underestimation of 
PD-D. Second, many previous studies that examined the relationship 
between heavy metal exposure and PD risk showed a correlation 
between chronic exposure and PD risk. However, our study estimated 
only the serum level at the diagnosis cross-sectionally. Therefore, there 
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is a limitation in that the source or exposure duration was not reflected 
in this study. Third, for the definition of the dementia conversion time 
point, the initiation date of dementia medication with cognitive 
function tests at outpatient clinic visits was adopted. Therefore, it 
could be possible that the exact point of dementia occurrence was 
missed. In addition, we retrospectively confirmed PD-D conversion 
using diagnostic criteria for PD-D through chart review. However, a 
neuropsychological test was performed for each subject using different 
tools and at different time points, except for the K-MMSE and 
FAB-K. As a result, we were unable to investigate the characteristics of 
cognitive dysfunction and dementia using a consistent 
neuropsychological test. To supplement this diagnostic insufficiency, 
we added the subscores of the K-MMSE and FAB-K for patients who 
converted to dementia in Supplementary Table 2. Fourth, we could 
not exclude potential confounding factors, including an olfactory 
function test, non-motor symptoms such as RBD and freezing of gait, 
which are related to cholinergic dysfunctions, and regimen of 
dopaminergic treatments. These factors could have longitudinally 
affected dementia conversion, but it is not possible to estimate their 
impact. Lastly, this study is a single-center study in which the patient 
group is mostly located in rural areas and may have been affected by 
a specific environment. Further nationwide multicenter studies are 
required for the generalization of the results.

In conclusion, we  demonstrated that PD-D patients had 
significantly lower Zn levels compared to PD without dementia groups. 
Furthermore, lower serum Zn level was significantly correlated with 
various clinical characteristics in PD patients, especially shorter time 
to dementia. These findings suggest that low serum Zn levels could 
be not only risk factors for developing PD but also one of the biological 
markers for predicting dementia conversion and disease subtyping. 
Therefore, a further prospective study is warranted to investigate the 
role of Zn in PD development and its pathogenesis.
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