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Objective: The purpose of this study was to develop and validate a predictive

model of cognitive impairment in older adults based on a novel machine learning

(ML) algorithm.

Methods: The complete data of 2,226 participants aged 60–80 years were

extracted from the 2011–2014 National Health and Nutrition Examination

Survey database. Cognitive abilities were assessed using a composite cognitive

functioning score (Z-score) calculated using a correlation test among the

Consortium to Establish a Registry for Alzheimer’s Disease Word Learning and

Delayed Recall tests, Animal Fluency Test, and the Digit Symbol Substitution Test.

Thirteen demographic characteristics and risk factors associated with cognitive

impairment were considered: age, sex, race, body mass index (BMI), drink, smoke,

direct HDL-cholesterol level, stroke history, dietary inflammatory index (DII),

glycated hemoglobin (HbA1c), Patient Health Questionnaire-9 (PHQ-9) score,

sleep duration, and albumin level. Feature selection is performed using the Boruta

algorithm. Model building is performed using ten-fold cross-validation, machine

learning (ML) algorithms such as generalized linear model (GLM), random forest

(RF), support vector machine (SVM), artificial neural network (ANN), and stochastic

gradient boosting (SGB). The performance of thesemodels was evaluated in terms

of discriminatory power and clinical application.

Results: The study ultimately included 2,226 older adults for analysis, of whom

384 (17.25%) had cognitive impairment. After random assignment, 1,559 and 667

older adults were included in the training and test sets, respectively. A total of 10

variables such as age, race, BMI, direct HDL-cholesterol level, stroke history, DII,

HbA1c, PHQ-9 score, sleep duration, and albumin level were selected to construct

themodel. GLM, RF, SVM, ANN, and SGBwere established to obtain the area under

the working characteristic curve of the test set subjects 0.779, 0.754, 0.726, 0.776,

and 0.754. Among all models, the GLMmodel had the best predictive performance

in terms of discriminatory power and clinical application.

Conclusions: ML models can be a reliable tool to predict the occurrence of

cognitive impairment in older adults. This study usedmachine learningmethods to

develop and validate a well performing risk prediction model for the development

of cognitive impairment in the elderly.
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Introduction

Cognitive impairment is a process of neurodegenerative aging
that begins with mild cognitive impairment and ends with severe
dementia (McKhann et al., 2011; Peng et al., 2020). Cognitive
impairment manifests as impairment in multiple functions:
communication and language, attention, memory, reasoning,
judgment, and visual perception (McKhann et al., 2011). As
medical advances continue to extend human life expectancy,
cognitive decline associated with aging is a growing public health
problem, with approximately one in nine older adults suffering
from cognitive impairment, which can have a significant impact on
their work and lives, even in its mild stages (Johansson et al., 2015).
There is no cure for cognitive impairment, so early prevention and
early intervention are important to delay its onset (Barnes and
Yaffe, 2011).

The Dietary Inflammatory Index (DII) combines the anti-
/proinflammatory effects of multiple food components and is a
recognized indicator of overall dietary inflammation (Ryu et al.,
2019). There is evidence that both DII and age are negatively
associated with cognitive function (Frith et al., 2018). However,
there aremany risk factors for cognitive impairment in older adults,
such as race, nutritional status, and a history of chronic disease
(Hugues et al., 2021; Yeh et al., 2022), and these factors cannot be
ignored if cognitive impairment is to be accurately predicted using
clinical models, which are tools that combine multiple key factors
to predict specific outcomes (Zhang et al., 2018). Two recent studies
used generalized linear mixed models to demonstrate that urban
environmental features, such as the percentage of commercial land
in residential areas, can positively affect cognitive functions such as
working memory and processing speed by promoting engagement
in physical activity (Cerin et al., 2021), and the associated negative
effects of higher levels of ambient air pollution (Cerin et al., 2022).

Some multivariate prediction models based on traditional
statistical methods, such as logistic regression (LR) and Cox
proportional risk models (Yue et al., 2022), have been developed
for the occurrence of cognitive impairment in older adults (Xie
et al., 2021). Although previous studies have been useful to better
understand the relationship between environment and cognition
at the population level, the relationship between individual
variables in the clinical setting is complex and LR, which deals
with linear relationships between independent and dependent
variables by default, may oversimplify the complex non-linear
relationships. In addition, LR is susceptible to multicollinearity
among variables, which may reduce the performance of the model.
Therefore, exploring more effective and accurate prediction tools is
extremely important for the management of elderly patients with
cognitive impairment.

In recent years, machine learning (ML) has attracted the
attention and recognition of clinicians due to the development of
statistical theory and computer technology. Novel ML techniques
have been widely used in predictive models for various diseases and
have shown better performance compared to traditional predictive
models. Recent studies have used machine learning to predict
cognitive decline (Pinheiro et al., 2019) and the future incidence
of Alzheimer’s disease (Hu et al., 2021), using population-level
sociodemographic and health data. However, there are significant

gaps in our understanding of the models and factors that apply to
predict specific domains of cognitive function in middle-aged and
older adults. This study aims to address this gap by comparing the
performance of five different machine learning models. To achieve
this goal, we extracted demographics, lifestyle, nutrition, physical
inflammation, and blood lipids together as variables to analyze
a large population-representative sample of older adults for early
prediction of the risk of new-onset cognitive impairment in older
patients, attempted to develop and validate multiple ML models to
predict the risk of cognitive impairment in older adults and found
the model with the best predictive performance.

Methods

Data source

We conducted a cross-sectional study of data from the National
Health and Nutrition Examination Survey (NHANES) public
database of the United States. An informed-consent form has been
signed for all participants in the database either by themselves
or by a proxy. This database is comprehensive, accurate, and
systematic, and provides a wealth of data for use in developing
policies on nutrition and public health (Wu et al., 2021). There is
a dedicated system management system responsible for NHANES
data collection and updating, and the survey data are updated
regularly on the website and are open to access by the public free
of charge.

Participants

Data were obtained from NHANES database for the years
2011–2014.We included four cognitive assessment tests to calculate
the composite cognitive functioning score (Z-score): age, sex, race,
bodymass index (BMI), drink, smoke, direct HDL-cholesterol level,
stroke history, DII, glycated hemoglobin (HbA1c), Patient Health
Questionnaire-9 (PHQ-9) score, sleep duration, and albumin level
(Yang et al., 2020). Only people aged 60–80 years were included,
and data with missing values were excluded; we only analyzed
complete data, and 2,226 participants were recruited for this study
after screening using the exclusion criteria (Figure 1).

Depressive symptoms

The Patient Health Questionnaire (PHQ) is a depression
screening scale. The answer categories of the nine items “none at
all,” “a few days,” “more than half of the days,” and “almost every
day” were given a score ranging from 0 to 3. There are nine projects,
with a maximum score of 27 points.

Calculation of DII

This study analyzed 28 of the 45 food components from
the original DII: carbohydrate, protein, total fat, alcohol, fiber,
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FIGURE 1

Case inclusion process. DII, Dietary Inflammatory Index; HbA1c, glycated hemoglobin; PHQ9, Patient Health Questionnaire-9; sleep, how much

sleep do you get; HDL, direct HDL-cholesterol level.

cholesterol, saturated fat, MUFA, PUFA, n-3 fatty acids, n-6 fatty
acids, niacin, vitamin A, thiamin (vitamin B1), riboflavin (vitamin
B2), vitamin B6, vitamin B12, vitamin C, vitamin D, vitamin E, Fe,
Mg, zinc, selenium, folic acid, beta-carotene, caffeine, and energy.
There is evidence that DII is still useful for predicting overall
inflammation when only information on fewer food components is
available (Shivappa et al., 2014a). The calculation of the DII is based
on a 24-h dietary recall interview or food records (Shivappa et al.,
2014b; Wirth et al., 2017). There are standard reference values for
each food parameter in the world database. The 24-h dietary recall
data were multiplied by standard food parameters from the world
database to obtain individual dietary inflammation composite
cognitive function scores (Z-scores) relative to the standard global
average. We transformed this value into a percentile to reduce bias.
Each percentile was doubled, and then 1 was subtracted from it. The
percentage values for each food parameter were then multiplied
by their respective “overall food parameter-specific inflammatory
effect scores” to obtain individual food-specific DII scores. Finally,
the DII scores for all individual food components were summed
to obtain the “overall DII score” for each person (Shivappa et al.,
2014a).

Cognitive function

Cognitive function was assessed using four tests that were
administered in the following order: the Consortium to Establish
a Registry for Alzheimer’s Disease Word Learning (CERAD-WL)
test, the Animal Fluency (AF) test, the Digit Symbol Substitution

Test (DSST), and the CERAD Delayed Recall (CERAD-DR) test.
The CERAD-WL and CERAD-DR tests include three sequential
learning test phases and a delayed-recall test phase (Rosen, 1983).
The maximum score on the CERAD-WL test was 30 points, and
that of the CERAD-DR test, which was performed after the AF
test and DSST, was 10 points. In the AF test (Clark et al., 2009),
participants were asked to name as many animals as possible in
1min, and received 1 point for each correct answer. This test
examined the absolute verbal fluency and executive function of
the participants. For the DSST (Brody et al., 2019), we asked
participants to copy the corresponding symbols into the 133 boxes
next to the numbers within 2min, with correct sets earning 1 point
to give a maximum of 133 points. This test examined attention and
memory functions.

The composite cognitive score (Z-score) was calculated. To
exclude uneven differences in individual cognitive scores, we used a
Z-score that consisted of the CERAD-WL test, CERAD-DR test, AF
test, and DSST as the total globally standardized cognitive function
score. The Z-score was calculated as Z= (x-u)/σ, where x is the raw
score, u is the population mean, and σ is the population standard
deviation. A Z-score of <-1 was considered to indicate that the
person had cognitive impairment (Wirth et al., 2017; Frith et al.,
2018).

Statistical analysis

We calculated new sample weights for the data analysis (Liu
et al., 2013). Continuous variables that did not conform to a
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TABLE 1 Characteristics of participants.

Non-cognitive impairment (n = 1,842) Cognitive impairment (n = 384) P-value

Agea (year) 68.556 (0.220) 73.466 (0.601) <0.0001∗∗

Sexb , n (%) 0.87

Male 912 (47.10) 218 (46.49)

Female 930 (52.90) 166 (53.51)

Raceb , n (%) <0.0001∗∗

Mexican American 127 (2.56) 53 (9.72)

Non-Hispanic White 1,014 (82.94) 111 (53.01)

Non-Hispanic Black 380 (6.54) 126 (20.45)

Other 321 (7.95) 94 (16.82)

Body mass indexa , (kg/m2) 28.991 (0.259) 28.128 (0.634) 0.261

TC 1.434 (0.020) 1.399 (0.040) 0.456

Smoke at least 100 cigarettes in lifeb , n (%) 0.48

Yes 922 (49.55) 208 (52.12)

No 920 (50.45) 176 (47.88)

Had at least 12 alcohol drinks/yearb , n (%) <0.0001∗∗

Yes 1,307 (74.67) 244 (58.89)

No 535 (25.33) 140 (41.11)

Ever told you had strokeb , n (%) <0.001∗∗

Yes 91 (4.45) 49 (12.82)

No 1,751 (95.55) 335 (87.18)

DIIa 1.265 (0.084) 2.027 (0.107) <0.0001∗∗

HbA1ca 5.900 (0.033) 6.264 (0.103) 0.003∗∗

PHQ9a 2.541 (0.121) 4.471 (0.394) <0.0001∗∗

Sleepa , (h) 7.128 (0.030) 7.168 (0.079) 0.676

Albumina , (g/L) 42.324 (0.103) 41.137 (0.235) <0.0001∗∗

aValues are mean± (standard error) [Mean± (SE)].
bChi-square test was used to compare the difference between normal and low cognitive function participants, data is number of subjects (percentage) or medians (interquartile ranges).

DII, Dietary Inflammatory Index; HbA1c, glycated hemoglobin; PHQ9, Patient Health Questionnaire-9; sleep, how much sleep do you get.
∗∗P < 0.01.

normal distribution are expressed as median (interquartile range)
values, with mean and standard-error values provided for the other
continuous variables. Intergroup comparisons of baseline data
were performed using weighted-sample independent t-tests for
continuous variables and chi-square tests for categorical variables.
Feature selection is an important step in model construction. The
Boruta algorithm is used to identify the most important features
by comparing the Z-value of each feature with the Z-value of the
“shadow feature”. The Z-value of each attribute is obtained from
the Random Forest model at each iteration by replicating all the
true features and disrupting them in order, and the Z-value of
the shadow is created by randomly disrupting the true features.
A true feature is considered “significant” if its Z-value is greater
than the maximum Z-value of the shaded feature across multiple
independent trials (Lei et al., 2021).

After feature selection, five ML algorithms, generalized linear
model (GLM), random forest (RF), support vector machine (SVM),

artificial neural network (ANN), and stochastic gradient boosting
(SGB) are used for model construction. The data set was randomly
divided into a training set and a test set using the accepted Pareto
principle (70-30 partition). The training set contains 70% of
the observations used for model selection and tuning. Ten-fold
cross-validation is used for cross-validation during the training
period, the training set data set is divided into 10 copies, 9 copies
are used as the training set and 1 copy is used as the validation set
in turn, and finally, the average of the accuracy of the algorithm
obtained 10 times is taken as the accuracy of the algorithm. Thirty
percentage of the original dataset was used as a test set to evaluate
the model. The test set results are used for model performance
evaluation. In our cases, the model with the highest area under the
curve (AUC) of the receiver operating characteristic (ROC) curve
was selected as the best model for each algorithm. The performance
of prediction models was performed in terms of discrimination and
clinical utility. The discriminative performance of the five models
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FIGURE 2

Feature selection based on the Boruta algorithm. bmi, Body mass index; drink, Had at least 12 alcohol drinks/year; smoke, Smoke at least 100

cigarettes in life; stroke, ever told you had a stroke; DII, Dietary Inflammatory Index; HbA1c, glycated hemoglobin; PHQ9, Patient Health

Questionnaire-9; sleep, how much sleep do you get.

FIGURE 3

ROC curves from seven models, training set (A) and test set (B). GLM, generalized linear model; RF, Random Forest; SVM, support vector machine;

ANN, artificial neural network; SGB, Stochastic Gradient Boosting.

was quantitatively evaluated by ROC curves of under the curve,
specificity, sensitivity, accuracy, and specificity/sensitivity.
Clinical applications are studied through decision-curve
analysis (DCA). Results for which p < 0.05 were considered
significant. All analyses were performed using R software
(version 4.0.2).

Results

General characteristics

The 2,226 participants included 384 with cognitive impairment.
Table 1 describes the differences in characteristics between the
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TABLE 2 Model performance metrics.

Models Area under the curve Optimal cuto� Specificity Sensitivity Accuracy Specificity/sensitivity

GLM train 0.789 0.159 0.688 0.758 0.7 0.908

GLM test 0.779 0.174 0.712 0.748 0.718 0.952

RF train 1 0.305 0.999 1 0.999 0.999

RF test 0.754 0.153 0.636 0.757 0.657 0.840

SVM train 0.889 0.149 0.873 0.833 0.866 1.048

SVM test 0.726 0.154 0.708 0.661 0.7 1.071

ANN train 0.812 0.115 0.567 0.885 0.622 0.641

ANN test 0.776 0.179 0.672 0.774 0.69 0.868

SGB train 0.839 0.146 0.694 0.84 0.719 0.826

SGB test 0.754 0.178 0.748 0.67 0.735 1.116

GLM, generalized linear model; RF, Random Forest; SVM, support vector machine; ANN, artificial neural network; SGB, Stochastic Gradient Boosting.

cognitively impaired and non-cognitively impaired groups. The age
of the cognitively impaired group was significantly higher than
that of the non-cognitively impaired patients. Non-Hispanic whites
accounted for the majority of non-cognitively impaired patients
(82.94%). A higher percentage of people in the non-cognitively
impaired group drank alcohol (74.67%). The stroke rate was
higher in the cognitive impairment group (12.82%). DII, HbA1c,
and PHQ9 were significantly higher in the cognitively impaired
group than in the non-cognitively impaired patients. Albumin was
significantly lower in the cognitively impaired group than in the
non-cognitively impaired patients. The general characteristics of
the participants are listed in Table 1.

Feature selection

The results of feature screening based on Boruta algorithm are
shown in Figure 2. The 10 variables most strongly associated with
cognitive impairment, in order of z-value, were age, race, body
mass index (BMI), direct HDL-cholesterol level, stroke history,
dietary inflammatory index (DII), glycated hemoglobin (HbA1c),
Patient Health Questionnaire-9 (PHQ-9) score, sleep duration, and
albumin level.

Model performance comparison

We generated five ML models to predict the probability
of cognitive impairment in older adults. Figure 3 shows the
discriminant performance of the five models for the training set
and the test set in terms of ROC curves. The test set of our
model, Figure 3B, shows that among the five models, the GLM
model (AUC = 0.779) has the best prediction effect on cognitive
impairment in older adults, followed by the ANN (AUC = 0.776),
SGB (AUC = 0.754), RF (AUC = 0.754), and SVM (AUC =

0.726) models. When using the GLM model (AUC = 0.779) as
a reference, ANN, RF, SGB, and SVM were inferior in predicting
cognitive impairment in older adults. Table 2 lists a detailed set
of performance indicators for the five models. In the test set,

the ROC curve shows that the GLM model has better prediction
performance, with an area under the curve of 0.779. The SGBmodel
has the highest specificity and accuracy, with values of 0.748 and
0.735, respectively. The ANNmodel has a higher sensitivity, with a
value of 0.774. Figures 4A, B show the DCA curves of the training
set and the test set, respectively. According to the DCA curves of the
test set (Figure 4B), the GLM model exhibits a greater net income
sum compared to other models, indicating that the GLM model is
the optimal model with good clinical utility.

Variable importance

The importance analysis of various factors shows that GLM
is the best performance machine learning model in Figure 5. The
10 variables in order of importance are race, age, PHQ-9 score,
HbA1c, sleep duration, BMI, DII, albumin, stroke history, and
direct HDL-cholesterol level.

Discussion

This study found that race, age, PHQ-9 score, HbA1c,
sleep duration, BMI, DII, albumin, stroke history, and direct
HDL-cholesterol level are considered important determinants of
cognitive function in the elderly population of the United States.
Race and age are the strongest predictors, followed by PHQ-9 score,
HbA1c, and sleep duration, respectively. In addition, BMI, DII,
albumin, stroke history, and direct HDL-cholesterol level are also
predictors of cognitive impairment. Our results indicate that the
GLM model predicts cognitive impairment in older adults better
than the other four models.

There are many risk factors for the development of cognitive
impairment in older adults; for example, excessive sleep duration
increases the risk after adjusting for numerous relevant risk factors
(Yuan et al., 2022a), and those with a low BMI (<23 kg/m2) have
a higher risk of developing dementia (Yuan et al., 2022b). With the
advent of an aging society, cognitive impairment occurrence will
become more common (Afzal et al., 2014). Many risk factors that
affect cognitive function can be avoided and modulated, so it is of
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FIGURE 4

Decision curve analysis for four models, training set (A) and test set (B). GLM, generalized linear model; RF, Random Forest; SVM, support vector

machine; ANN, artificial neural network; SGB, Stochastic Gradient Boosting.

great interest to develop a simple and effective model for predicting
the risk of cognitive impairment in older adults. The model screens
for independent risk factors for cognitive impairment in older
adults and also predicts the weight of each risk factor, which will
facilitate the development of effective prevention strategies and
recommendations in public health to prevent or delay cognitive
impairment in older adults.

This study found that race and age are risk factors for the
development of cognitive impairment in older adults, and a review
of previous studies revealed a negative correlation between age
and cognitive function (Lacreuse et al., 2020). Some studies that
used MRI concluded that age-related decline in cognitive function
was associated with changes in the integrity of the prefrontal area
(Raz et al., 2005). Studies performed on animals found that age-
related changes in the white matter and more-subtle changes in
neurotransmitters, synaptic density, and neuron firing levels may
underlie age-related declines in cognitive function (Sherwood et al.,
2011). Race has also been found to be a risk factor for cognitive
impairment in older adults; the APOE genotype has been found to
be associated with cognitive impairment, and given the variations
in APOE genotypes by race, especially between individuals of
European and African ancestry, race plays an important role in
this association and thus leads to the probability of cognitive
impairment differing between races (Kim et al., 2017). In the
present study, age and race had higher weights in the prediction
model, and community and health-care units can rationalize
medical resources based on this result when allocating resources.

Another risk factor for cognitive impairment in this study was
the PHQ-9 score. A review of previous studies suggested that most
findings for older adults have consistently supported higher levels
of depressive symptoms being a key risk factor for cognitive deficits.
This was consistent with our findings, with this adverse effect being
particularly pronounced in older adults, who should therefore pay

extra attention to depressive symptoms. At the neurocognitive level
(Duman et al., 2016), depression is known as impaired cognitive
flexibility and prefrontal inhibition disorder (Disner et al., 2011),
which negatively affects cognition (Beck and Bredemeier, 2016).
Impaired neuroplasticity is the theoretical basis of depression,
which results in cognitive impairment, and patients with depression
should therefore be actively treated medically and psychologically
so as to reduce the risk of cognitive impairment.

In this study, HbA1c was also a risk factor for cognitive
impairment among the older adults, and a review of previous
studies found that patients with type 2 diabetes mellitus (T2DM)
had poor cognitive performance (Biessels et al., 2014), and that
higher HbA1c level is an independent risk factor for T2DM
(Biessels et al., 2014). A higher HbA1c puts the body in a state
of chronic inflammatory damage, and longer durations of diabetes
and lower blood glucose levels cause progressive neuron damage
(De Felice and Ferreira, 2014). Older adults should therefore strictly
control their HbA1c levels in order to preserve cognitive function.

Prolonged sleep time may be one of the clinical predictors
of a higher risk of cognitive impairment. Epidemiological studies
have shown that there is a non-linear relationship between sleep
time and cognitive function (Hou et al., 2020). In our study,
we observed that sleep duration is an independent predictor
of cognitive impairment. Previous studies have shown that
patients with cognitive impairment sleep longer than older adults
without cognitive impairment. Recent studies have also shown
that prolonged sleep is an early marker of neurodegeneration
(Westwood et al., 2017). The mechanism of prolonged sleep in
dementia patients may be related to changes in the brain’s sleep and
wake-up regions, including the suprachiasmatic nucleus between
the pineal gland and retina (Mihardja et al., 2020). Therefore,
professional advice should be given on the control of sleep time for
older adults. Both too short and too long sleep can lead to cognitive
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FIGURE 5

Analyze and visualize the feature importance of the classification model. GLM, generalized linear model; RF, Random Forest; SVM, support vector

machine; ANN, artificial neural network; SGB, Stochastic Gradient Boosting; bmi, Body mass index; stroke, ever told you had a stroke; DII, Dietary

Inflammatory Index; HbA1c, glycated hemoglobin; PHQ9, Patient Health Questionnaire-9; sleep, how much sleep do you get; HDL, direct

HDL-cholesterol level.

impairment. Doing a good job of education and maintaining good
living habits will be beneficial to cognitive health.

BMI is another independent risk factor for cognitive
impairment. Potential mechanisms for the pathophysiological
relationship between BMI and AD risk include neuropathological
changes occurring in regions such as the hypothalamus, which
play a key role in regulating energy metabolism and food intake
(Loskutova et al., 2010). As a modifiable factor, BMI may be a
potential intervention for cognitive impairment.

DII is also a risk factor for cognitive impairment in
the older adults. A review of previous studies indicated
that some inflammatory molecules can cross the blood–
brain barrier and increase neuroinflammation, thereby
impairing cognitive function (Heneka et al., 2015), which
is the neurological basis for cognitive impairment (Leng
and Edison, 2021). It is recommended to strictly control
the intake of foodstuffs associated with inflammation in the
older adults.
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The next risk factor identified in this study is albumin
level, which is an essential nutrient for normal body function
(Wu, 2016). A low protein intake may increase the risks of
sarcopenia and frailty especially in the older adults, which are
strongly associated with the development of cognitive impairment
(Chang et al., 2016). Proline-rich peptides exert a preventive
effect on dementia progression (Bilikiewicz and Gaus, 2004)
and decreased serum protein affects the protective effect (Van
De Rest et al., 2013), and so the older adults should consider
protein supplementation in order to delay and reduce the risk of
cognitive impairment.

This study found that a history of stroke is also a
risk factor for cognitive impairment in older adults, and a
review of previous studies suggested that cognitive impairment
is common after stroke (Kwakkel et al., 2006) and can
be caused directly by a stroke lesion or by structural and
functional impairments resulting from the lesion (Carrera and
Tononi, 2014). Stroke survivors also suffer from small-vessel
disease and neurodegenerative disorders (Arba et al., 2017;
Georgakis et al., 2019), which are the neurological basis for
the development of cognitive impairment. Extra care such as
secondary prevention should therefore be taken to prevent the
development of cognitive impairment, even in those with no
history of stroke.

Direct HDL cholesterol level is also a predictor of cognitive
impairment. Studies of the former have shown that HDL has
a positive impact on general cognitive performance in older
adults. HDL cholesterol is used to remove excess cholesterol
from cells and transport it back to the liver for bile processing,
thus preventing atherosclerosis and protecting arteries (Félix-
Redondo et al., 2013; Castañer et al., 2020). Low HDL is
associated with decreased hippocampal volume, a particularly
vulnerable region of the brain associated with neurodegenerative
diseases (Hillbrand and Spitz, 1997). Therefore, HDL is known
as cholesterol that is beneficial to the body (Hillbrand and
Spitz, 1997). Many factors affect cholesterol metabolism, including
lifestyle and behavioral factors, so it is possible to regulate
cholesterol levels through lifestyle interventions. In summary,
the mechanism of cognitive impairment is very complex.
Currently, primary prevention is the most effective intervention
method to prevent the occurrence of cognitive impairment.
Through the above factors in this study, it can help doctors
and potential patients achieve early intervention, prevention,
and treatment combination, and reduce the occurrence of
cognitive impairment.

Limitations

This study was subject to some limitations. First, its
cross-sectional design meant that data could not be collected
strictly according to our specific requirements. Second, we
did not identify the cause of any impairment. Third, this
study was internally validated, and so external validation
should also be conducted to determine whether the results
can be generalized to wider populations and regions. Finally,
we lack data on family history and hope to consider more

comprehensive and more variables for further analysis in
future research.

Conclusions

ML model can become a reliable tool for predicting the
occurrence of cognitive impairment in older adults. Among all
prediction models, the GLM model is the most effective model,
which can help clinicians accurately manage and early intervene in
older adults at risk of cognitive impairment to reduce mortality.
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