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Ischemic stroke is characterized by a complex cascade of events starting from 
vessel occlusion. The term “penumbra” denotes the area of severely hypo-perfused 
brain tissue surrounding the ischemic core that can be potentially recovered if 
blood flow is reestablished. From the neurophysiological perspective, there are 
local alterations—reflecting the loss of function of the core and the penumbra—
and widespread changes in neural networks functioning, since structural and 
functional connectivity is disrupted. These dynamic changes are closely related 
to blood flow in the affected area. However, the pathological process of stroke 
does not end after the acute phase, but it determines a long-term cascade of 
events, including changes of cortical excitability, that are quite precocious and 
might precede clinical evolution. Neurophysiological tools—such as Transcranial 
Magnetic Stimulation (TMS) or Electroencephalography (EEG)—have enough 
time resolution to efficiently reflect the pathological changes occurring after 
stroke. Even if they do not have a role in acute stroke management, EEG and TMS 
might be helpful for monitoring ischemia evolution—also in the sub-acute and 
chronic stages. The present review aims to describe the changes occurring in the 
infarcted area after stroke from the neurophysiological perspective, starting from 
the acute to the chronic phase.
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Introduction

The first studies regarding cerebral perfusion in humans date back to the 1950s. Finnerty and 
coworkers demonstrated that when cerebral blood flow (CBF) drops below 29 mL/100 g/min, 
neurological impairment occurs (1). Some years later Jennet et al. showed that hemiparesis 
consistently occurred when relative cortical CBF was less than 30% compared with the baseline 
level (2) and subsequently, studies on vessel occlusion in animal models identified a critical 
threshold—i.e., 18 mL/100 g/min—for irreversible brain tissue damage (3). However, it is now 
clear that different individual factors contribute to tissue vulnerability after vessel occlusion, such 
as age, the brain structural reserve, inter-individual characteristics and collateral circulation. 
Indeed, adequate collateral blood flow limits the size of the infarct core in favor of the ischemic 
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penumbra, i.e., the severely hypo-perfused and hypoxic brain tissue 
surrounding the core, that can be  potentially saved if reperfusion 
occurs. In recent years there have been substantial advances in acute 
stroke management, regarding the extended time window for 
reperfusion therapies (4). The rationale is to select patients with large 
ischemic penumbra and small infarct using perfusion imaging.

However, perfusion imaging offers a “snapshot” in time of cerebral 
blood flow and it is not capable of capturing the evolution of stroke. MRI 
and CT scan provide several short-term prognostic parameters (e.g., 
hypoperfusion intensity ratio, Tmax, relative cerebral blood volume), 
reflecting the potential risk of infarction in the absence of reperfusion 
and, indirectly, the degree of collateral circulation (5, 6). The pathological 
process of stroke does not end after the acute phase, but it determines a 
long-term cascade of events, including changes of cortical excitability, 
that are quite precocious and might precede clinical evolution. These 
changes are difficult to detect with conventional neuroimaging, while 
electrophysiological techniques allow to capture the dynamic nature of 
stroke and thanks to their time resolution might be  employed for 
repetitive evaluations. To this end, Electroencephalogram (EEG) or 
transcranial-magnetic stimulation (TMS) have been used as monitoring 
or prognostic tools in different stages of cerebrovascular disease.

EEG signal arises from synchronized synaptic activity in 
populations of cortical neurons. Studies on animal models have 
demonstrated that EEG actually reflects the cerebrovascular reactivity 
after vessel occlusion in the penumbra, while TMS might capture the 
reorganization of cortical circuits and the changes in functional 
connectivity due to plasticity mechanisms in later stages. Hence, 
electrophysiological techniques might be  complementary to 
neuroimaging in the functional and structural evaluation of the brain 
after stroke.

In this review, we will investigate the potential employment of 
neurophysiological tools (e.g., EEG, TMS) to evaluate from a 
functional perspective how the changes in cerebrovascular reactivity 
influence the evolution of brain damage over time.

The pathological evolution of brain 
infarction

Cerebral ischemia occurs when blood flow to the brain is 
insufficient to meet metabolic demands. This might be focal—when a 
vessel supplying blood to the brain is obstructed—or global, e.g., in 
case of cardiac arrest. In stroke, the reduction of oxygen and glucose 
supply to energy-hungry brain cells—mainly neurons, but also glial 
cells—produces a cascade of time-dependent effects (Figure 1). The 
maintenance of ionic gradients and membrane potential of neurons 
consumes a great amount of energy, thus the reduction of CBF affects 
significantly brain oscillations. Neurons exhibit an individual 
vulnerability to hypoxia and the signal power of high frequency waves 
are first to be decreased at the early stage of stroke (8). If blood flow is 
interrupted for more than 20–60 s, synaptic dysfunction occurs, 
leading to neural function suppression (9). The absence of oxygen and 
glucose induces membrane ATPase failure and, consequently, a large 
Na + and Ca2+ intracellular influx with a massive neuronal 
depolarization. If oxygen shortage persists, the activation of calcium-
dependent enzymes stimulates cell catabolism and induces cell death. 
In addition, glutamate release activates NMDA and AMPA receptors, 
exacerbating the intracellular calcium concentration, and producing 

excitotoxicity (10). Hypoxia damages the blood–brain barrier (BBB) 
and promotes the early migration of neutrophils (within 30 min) and 
lymphocytes (within 24 h), inducing inflammation (11, 12).

From the neurophysiological standpoint, the ischemic area is 
electrically silent, while the release of calcium and excitatory 
neurotransmitters generates a peri-infarct depolarization (PID) 
propagating across the surrounding area. This is not just a stroke 
epiphenomenon, but also induces calcium accumulation favoring 
delayed secondary pathology and neuronal death (13). Neurons in 
the penumbra are functionally impaired, so that they are 
“freezed”—i.e., electrically silent due to membrane potential 
imbalance—but anatomically preserved, as first described by Astrup 
and colleagues in the early ‘80s (14). Inflammation and apoptosis 
represent the main mechanism of damage within the ischemic 
penumbra in case of prolonged blood flow restriction, together with 
the production of detrimental oxygen-reactive species, ionic 
imbalance, protease activation, and DNA disruption (15).

In the acute phase, arterial collateral remodeling provides a 
compensatory supply since the sudden distal drop of pressure due to 
vessel occlusion generates an increase in flow within collateral circuits, 
namely “collateral recruitment” (16). If this mechanism is effective, the 
damage is limited.

In the subacute stage, the role of excitotoxicity and oxidative stress 
decreases while glial activation and neuroinflammation become more 
important (15). After 2 weeks, an immature glial scar begins to seal 
and compartmentalize the area of infarction from the surrounding 
parenchyma. About 7 weeks after, the process of gliosis culminates into 
a mature glial scar, defining the chronic phase of ischemic stroke (17).

For the scope of the present review, in agreement with the Stroke 
Roundtable Consortium, we designated the time after stroke as “acute” 
within the first 7 days, “subacute” within 6 months and “chronic” after 
6 months (18). However, we  have to acknowledge that a major 
limitation of literature regarding neurophysiology and stroke is the 
lack of a standard definition of stroke timepoints and the great 
heterogeneity of papers in this regard.

Neurophysiological tools to monitor 
stroke evolution

Neural oscillations allow short- and long-term communication 
among neurons in the brain. At cortical level, they can be observed as 
large-scale oscillations in EEG signal. However, human networks have 
been studied in-vivo by other tools such as functional magnetic 
resonance imaging (fMRI) or noninvasive brain stimulation (NIBS) 
techniques (e.g., TMS) (19).

EEG is a non-invasive tool that has been frequently applied for 
stroke diagnosis and prognostication (20–22). EEG reflects 
extracellular currents resulting from excitatory and inhibitory post 
synaptic currents of cortical pyramidal cells. Quantitative EEG (qEEG) 
measures have been used as a more standardized approach to predict 
outcomes in ischemic stroke (23, 24), and qEEG metrics include the 
frequency spectrum analysis and topographic mapping. Other 
parameters can be  derived from the EEG power spectrum. For 
instance, ratios of absolute power of different frequency bands, such as 
ratio of delta/alpha power, have shown to have a significant correlation 
with the clinical status—thus allowing a better categorization of stroke 
severity—and are also considered reliable prognostic values.
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NIBS techniques explore functional alterations due to stroke on 
cortex excitability and on plasticity propensity (25). Besides, NIBS might 
be applied to evaluate connectivity. TMS is a non-invasive and painless 
technique which, when applied over the primary motor cortex (M1), 
generates a descending volley in the corticospinal pathway, and elicits a 
motor evoked potential (MEP) in the target muscles of the contralateral 
limb (26). Over the last 30 years, TMS has been widely used to study the 
underlying pathophysiology of various disorders, optimizing single-
pulse, paired-pulse and repetitive stimulation protocols (27). TMS has 
been widely used in the acute phase after stroke to investigate changes in 
neural circuits and to provide information about cortical excitability, the 
cortical reorganization phenomena and to predict functional recovery.

A recent evolution of TMS technology allows to record the output 
of magnetic stimulation directly at the scalp using EEG. TMS-EEG has 
been used on stroke patients to probe cortical structural integrity and 
brain connectivity. Indeed, TMS-EEG elicits the so-called TMS evoked 
potentials (TEPs), characterized by positive and negative waveforms, that 
are indirect measures of functional integrity of cortical structures (28) 
(Table 1).

Neurophysiological changes during 
the acute phase

The first hours after ischemic stroke are of paramount importance 
in terms of survival and long terms functional prognosis. Given the 
critical relevance of this phase, a lot of effort has been put to identify 

the best diagnostic and prognostic tools and to better understand the 
neuronal changes occurring in acute stroke. From the 
neurophysiological perspective, after vessel occlusion there are local 
changes—reflecting the loss of function in the infarcted area—but also 
widespread changes in neural networks, since structural and 
functional connectivity is disrupted (29). Changes in neural networks 
activity accurately reflect the blood flow in the affected area. These 
changes are highly dynamic and might indicate the improvement or 
the worsening of perfusion of brain tissue. Prompt restoring of blood 
flow in viable tissue stops the ischemic pathological cascade, 
improving local and global functional connectivity (30, 31).

EEG studies

Immediately after vessel occlusion, high-amplitude slow 
activity—in the delta frequency band (1–3 Hz)—appears in the 
involved brain regions (22, 32–34) (Figure 2). At intermediate level 
of ischemia—i.e., penumbra tissue—EEG changes might be  less 
dramatic, including attenuation of beta activity and alpha slowing 
(21). In a single report of an animal model of ischemia, a significant 
increase of alpha band power during vessel occlusion has been found, 
immediately followed by the marked increase of delta power (35). 
Delta activity is the hallmark of cerebral dysfunction and has been 
reliably correlated with lesion location on neuroimaging (22). In fact, 
it is particularly evident on fronto-temporo-central electrodes after 
middle cerebral artery stroke (36).

FIGURE 1

The ischemic cascade [modified from Endres et al. (7)]. This figure shows a simplified overview of the main pathological mechanisms occurring during 
acute ischemic stroke.
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Vascular insults produce an imbalance in the frequency activity 
between hemispheres since in the affected side there is a reduction of 
higher frequency activity and the increase of low-frequency bands. 
The brain asymmetry index (BSI) is a biomarker of motor functioning 
and recovery after stroke. Higher values of BSI—indicating a more 
pronounced asymmetry—are observed in acute stroke patients with a 
trend to normalization with spontaneous recovery (37). Most data 
indicate that the reestablishment of a balanced high frequency activity 
between motor areas predicts favorable motor recovery (28). However, 
the role of controlesional hemisphere is still debated and might 
depend upon stroke type and deficits (38).

FIGURE 2

Cerebral blood flow related to Electroencephalographic findings in 
acute stroke [modified from Hofmeijer and Van Putten (9)]. In acute 
ischemic stroke, EEG signal changes according to CBF reduction. 
The infarcted area—where the damage is irreversible—is typically 
electrically silent on EEG.

TABLE 1 Overview of the reviewed sources.

Stage Authors Neurophysiological 
evaluation

Acute Finnigan et al. (32) EEG

Acute Shreve et al. (33) EEG

Acute Cohen et al. (34) EEG

Acute Ferreira et al. (35) EEG

Acute Phan et al. (36) EEG

Acute Agius et al. (37) EEG

Acute Cuspineda et al. (39) EEG

Acute Bentes et al. (40) EEG

Acute Jiang et al. (41) EEG

Acute Cuspineda et al. (42) EEG

Acute Aminov et al. (43) EEG

Acute Finnigan et al. (46) EEG

Acute Ajčević et al. (47) EEG

Acute Biskamp et al. (48) EEG

Acute Johnston et al. (49) EEG

Acute Schleiger et al. (50) EEG

Acute Ioroi et al. (51) EEG

Acute Pennisi et al. (52) TMS

Acute Rapisarda et al. (53) TMS

Acute Smith et al. (54) TMS

Acute Heald et al. (55) TMS

Acute Delvaux et al. (56) TMS

Acute Escudero et al. (57) TMS

Acute Stinear et al. (58) TMS

Acute Manganotti et al. (59) TMS

Acute Ahonen et al. (60) TMS

Acute Traversa et al. (61) TMS

Acute Classen et al. (62) TMS

Acute Cicinelli et al. (63) TMS

Acute Catano et al. (64) TMS

Acute Oozumi et al. (65) TMS

Acute McDonnell et al. (66) TMS

Acute Liepert et al. (67) TMS

Acute Swayne et al. (68) TMS

Acute Di Lazzaro et al. (69) TMS

Acute Tscherpel et al. (70) TMS-EEG

Acute-Chronic Gray et al. (71) TMS-EEG

Acute Russo et al. (72) TMS-EEG

Subacute Giaquinto et al. (73) EEG

Subacute Assenza et al. (74) EEG

Subacute Stinear et al. (75) EEG

Subacute Bütefisch et al. (76) TMS

Subacute Casula et al. (77) TMS-EEG

Subacute Finnigan et al. (78) EEG

(Continued)

Stage Authors Neurophysiological 
evaluation

Chronic Lanzone et al. (79) EEG

Chronic Vatinno et al. (80) EEG

Chronic Saes et al. (81) EEG

Chronic Cassidy et al. (82) EEG

Chronic Pirovano et al. (83) EEG

Chronic Graziadio et al. (84) EEG

Chronic Bembenek et al. (85) EEG

Chronic Stinear et al. (86) EEG;TMS

Chronic Madhavan et al. (87) TMS

Chronic Sivaramakrishnan et al. (88) TMS

Chronic Blicher et al. (89) TMS

Chronic Rolle et al. (90) TMS-EEG

Chronic Sarasso et al. (91) TMS-EEG

Chronic Hordacre et al. (92) TMS-EEG

TABLE 1 (Continued)

https://doi.org/10.3389/fneur.2023.1178408
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Motolese et al. 10.3389/fneur.2023.1178408

Frontiers in Neurology 05 frontiersin.org

A greater delta and theta activity within 24 h from onset, together 
with decreased faster activity and a greater interhemispheric 
asymmetry are associated with poor modified Rankin Scale (mRS) at 
discharge and worse prognosis (39–43). Two recent studies aimed to 
correlate changes of qEEG measures with long terms prognosis in 
acute stroke patients that underwent mechanical thrombectomy (44, 
45). The results have shown that delta power 24 h after mechanical 
thrombectomy and the interhemispheric delta-alpha ratio are the best 
prognostic markers to define prognosis, even when compared with CT 
perfusion values (44).

Power measures—and especially delta activity—are associated 
with regional CBF, so that delta is negatively correlated with CBF 
while alpha is positively correlated (20). These measures might 
dynamically change, reflecting blood flow status, since reperfusion 
promptly induces the improvement of qEEG parameters. After blood 
flow restoration, there is a sudden increase of theta, alpha, and beta 
waves bandpower (35), while delta activity drops significantly but 
might persist for a while (46). Reduction of delta activity before 
symptoms improvement within 20 min after r-tPA administration has 
also been reported (46, 47). For these reasons, continuous EEG has 
been suggested as a monitoring tool during thrombolysis 
and thrombectomy.

qEEG measures include more complex indices such as delta/
theta ratio (DTR), the delta/alpha ratio (DAR), and the (delta + 
theta)/(alpha + beta) ratio (DTABR). In an animal model of middle 
cerebral artery occlusion, the aperiodic spectral exponents—i.e., a 
putative marker of disrupted, inefficient neural communication—
in peri-infarct area increased transiently and this correlated to a 
better recovery (48). Indeed, measures that asses the 1/f shape of 
the EEG spectrum have been proposed as a comprehensive way to 
assess the excitation/inhibition balance that is inherently expressed 
in EEG (49). All these parameters seem promising for monitoring 
stroke evolution, since their changes reflect accurately blood 
flow status.

Higher values of DTR, DAR and DTABR are observed during 
ischemia and rapidly decrease after reperfusion (32, 35). Schleiger 
and colleagues (50) acquired EEG continuously during 
thrombectomy, observing a significant reduction of DAR within 
several minutes of middle cerebral artery reperfusion. This change 
in EEG signal preceded the improvement of clinical symptoms. 
Authors concluded that DAR can effectively and immediately index 
salvage of the penumbra and might help clinicians predict the 
clinical outcomes in combination with the evidence of reperfusion 
revealed by imaging.

It has been also observed that in animal models of hypoxic brain 
one of the first feature to develop after vessel occlusion is a rapid 
reduction of EEG signal amplitude, that persist even after reperfusion 
occurs, probably due to a “safety mechanism” to reduce neuronal 
metabolism and protect cells (51). However, in the same study the 
reduced electrocortical brain activity after blood flow restoration was 
associated with lower oxygen utilization, thus suggesting the potential 
long-term development of brain damage (51). In this regard, 
neuroprotective treatments might be useful to protect tissue from 
delayed injury mechanism and preserve plasticity propensity in this 
stage (93).

To conclude, there are multiple evidence that indicate a strong 
relationship between EEG frequency/amplitude characteristics, CBF, 
and cerebral metabolism (23) in the acute phase.

TMS studies

During the hyper-acute and acute phase of stroke, TMS over the 
affected hemisphere often fails to elicit motor evoked potentials 
(MEP) (52, 53) and the persistent absence of MEP after stroke is 
considered a marker of poor prognosis (54). In patients with intact 
cortico-spinal tract and preserved MEP, the motor thresholds are 
typically higher (53), MEP amplitudes are smaller and cortico-motor 
conduction time (CMCT) is delayed (55, 56) in comparison with 
those recorded from the unaffected hemisphere or from healthy 
individuals. These findings correlate with the long-term functional 
outcome and predict poor motor recovery (52, 53, 57, 58), although 
exceptions have been reported (56, 59). Another prognostic factor is 
cortical silent period (CSP), that is often prolonged after stroke (60–
63) and it is correlated to the development of spasticity (64, 65).

In the first hours after stroke, the balance between cortical 
inhibition and excitation is altered. Cortical excitability of the affected 
hemisphere is usually reduced in both early and chronic phases of 
stroke (66). Thus, in most cases, the balance between hemisphere 
shifts toward excitation, while activity in the local inhibitory circuits 
is reduced. Short-interval intracortical inhibition (SICI) (59, 67) and 
long-interval intracortical inhibition (LICI) (68)—markers of GABAA 
and GABAB activity, respectively—of the affected hemisphere are 
reduced in the acute phase, whereas intracortical facilitation (ICF)—
indicating Glutamatergic activity—remains normal (67, 68). Also, 
Short-Latency Afferent Inhibition (SAI), a paired pulse TMS protocol 
marker of central cholinergic activity, is suppressed in the acute phase 
of stroke and persistent suppression might indicate a better prognosis 
(69). These findings suggest that there is—in most cases—a 
“disinhibition” of the affected hemisphere, probably to favor plasticity 
and functional recovery.

Data regarding controlesional hemisphere are more controversial, 
since most evidence confirm that cortical excitability of the unaffected 
hemisphere does not change during stroke (66), and only SICI has 
been found to be  suppressed (59, 67). Data also suggest that 
normalization of SICI in the unaffected hemisphere seems to 
be  associated with good recovery (59, 68). Moreover, evidence 
regarding hemispheric imbalance are debated, since unaffected 
hemisphere might contribute to stroke recovery—i.e., vicariation 
model of functional recovery—or might have a detrimental effect on 
lesioned hemisphere—i.e., competition model. In this regard, another 
factor should be considered, the so-called structural reserve, a term 
indicating the non-lesioned residual neural networks, which is a 
critical element in determining if the effect of the contralateral 
hemisphere is beneficial or detrimental (38).

TMS-EEG is a more reliable measure of cortical reactivity 
compared with conventional TMS, since it is not influenced by distal 
components of the nervous system. Indeed, in patients with brainstem 
injuries MEPs could not be elicitable while TEPs are usually present 
(28). There are few interesting reports on the modifications of TEPs in 
acute stroke patients, because this technique requires long and careful 
recording sessions. Available data suggests that TEPs from lesioned 
hemisphere are less complex, more local and with a longer latency 
(70), and the absence of N100 or higher amplitude and delayed P30 
are associated with poor functional recovery (59, 71). In a case report 
by Russo et al., the sleep-like slow-wave TMS-EEG response of acute 
stroke seems to partially recover with longitudinal follow up, along 
with clinical improvement (72).
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Takin together, this evidence shows that local changes in connectivity 
and intracortical disinhibition of the affected hemisphere might 
be helpful for the recruitment of remaining motor output in the acute 
stage, and subsequently favor synaptic plasticity to promote recovery.

Neurophysiological changes during 
the subacute phase

During the subacute phase of stroke, the ischemic lesion becomes 
better defined, while in the brain tissue surrounding ischemic area, 
hypoperfusion might variably persist (94). During acute and subacute 
phase of stroke, the neuroradiological findings might not correlate 
with the clinical impairment, because of the dynamic changes of the 
hypoperfused area and the extent of the surrounding edema. As time 
passes, other mechanisms, such as neuroplasticity or the brain 
structural reserve, might influence the clinical presentation. Indeed, 
since neurons are organized in networks, clinical manifestations do 
not depend just on the loss of function of the lesioned area, but on the 
global impairment of medium and large-scale circuits. Focal brain 
lesions may functionally impair remote regions, a phenomenon 
known as “diaschisis,” in which the excitability and metabolism of the 
remote regions, including the hemisphere contralateral to the stroke 
side, are reduced (95, 96).

Finally, neuroinflammatory mechanisms and vasogenic edema 
due to tight junction disruption might influence lesion consolidation 
and thus neurological impairment.

The quantification of EEG and TMS changes in this stage is of 
critical importance for defining the extent of brain damage after stroke.

EEG studies

EEG and qEEG measures might be  employed in this stage as 
prognostic tools. Slower frequency might persist on the electrodes 
overlying the lesioned area even after the acute stage and the 
magnitude of this activity depends on infarct volume (22). In one 
study about subacute stage, even after reperfusion, whole EEG power 
was lower than that of the control group, and also the DTR, DAR, and 
DTABR indices remained relatively high (35). This probably indicates 
the persistence of the ischemic stunning of the brain and the 
disruption of neural networks in stroke later stages.

In subacute middle cerebral artery stroke, the reduction of the 
asymmetry in high frequency activity between affected and unaffected 
hemispheres was associated with better motor performances over time 
(73). The presence of higher BSI value in the subacute phase is a strong 
indicator of poor prognosis, in particular if delta band power is 
present in the contralateral hemisphere (74), while more balanced 
high-frequency activity between hemispheres indicate a better 
functional prognosis.

Then, the persistence of slow activity and hemispheric asymmetry 
is a marker of greater damage post-stroke and of poor prognosis.

TMS studies

In the subacute phase of stroke, the recruitment of spared neural 
networks became progressively more important in compensating the 

clinical impairment. Indeed, cerebral reorganization is critical for 
functional recovery.

Even in this phase, the absence of MEP from lesioned 
hemisphere—either in case of cortical or subcortical location—is 
related to poor functional prognosis (61). After infarction, the 
clinical recovery is associated with increased excitability, while the 
persistence of reduced cortical excitability in the affected 
hemisphere—as observed by increased resting MT or reduced 
SICI—is negative correlated with recovery (66). Stinear and Byblow 
proposed a simple diagnostic algorithm to predict functional 
recovery at 6 months on the basis of various measures collected 
during the first 7–10 days after stroke (75). In this algorithm the 
absence of MEP response, with significant clinical impairment, likely 
predicts poor functional prognosis.

A single study regarding subacute stroke patients reported the 
abnormal decreased of SICI of both hemispheres, with abnormal IHI 
from affected to unaffected hemisphere and preserved IHI the other 
way around (97). This finding was associated with excellent recovery 
of motor function and was interpreted as an adaptive process 
supporting recovery.

Following stroke, there is the expansion of the cortical map—i.e., 
the number of sites from where a MEP is elicited—indicating a 
progressive spatial recruitment of perilesional neurons. Indeed, this 
effect becomes more evident in patients undergoing rehabilitation, 
where training stimulate plasticity processes (76). Of note, the 
alteration of cortical excitability and inter-hemispheric communication 
might persist in cases of suboptimal recovery. Casula and colleagues 
reported a remarkable interhemispheric imbalance in stroke patients 
within 6 months from onset as evaluated by TMS-EEG. Also, they 
found that better recovery of hand strength was associated with a more 
stable interhemispheric balance (77).

These results indicate that remodeling of neural circuits underlying 
neuroplasticity and the reestablishment of interhemispheric balance are 
essential for recovery.

Neurophysiological changes during 
the chronic phase

The natural evolution of vascular insult in the chronic phase is the 
formation of a glial scar. In this stage the reorganization of neural 
networks keeps on promoting functional recovery, even if this effect 
becomes weaker as time passes. However, this neural circuits 
remodeling might also have detrimental effects. For instance, the 
disruption of communication among neural networks might 
consolidate, constituting a putative mechanism of cognitive deficits 
after stroke (8).

In chronic stage, perfusion imaging shows the persistence of 
hypoperfusion in the area surrounding ischemic core (94). A study 
from Walenski et al. did not find any significant changes over time 
of tissue perfusion, even in patients that underwent successful 
rehabilitation (98). Also, hypoperfusion of areas close to the 
ischemic lesion was shown to correlate with the clinical status of 
aphasic patients (99). These data suggest that alterations of post-
ischemic perfusion tend to persist in perilesional areas and 
cerebrovascular reactivity does not always seem to sensibly 
improve over time. Rather, it is the remodeling process that 
promote recovery.
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EEG studies

EEG is an helpful instrument for the longitudinal observation of 
stroke (28). The alterations in the slow band, usually found in the EEG 
of stroke patients, were consistently shown to improve from the 
sub-acute to the chronic phase in patients with good recovery (22, 78). 
Also changes in the 1/f properties of the EEG spectrum are sensitive 
to stroke’s evolution from sub-acute to chronic (79). These findings 
were also associated with various degrees of clinical correlation 
(79, 80).

As already said, patients with higher interhemispheric imbalance 
in the acute stage have usually a worse prognosis. The persistence of 
higher values of BSI in the subacute and chronic stage is still a 
biomarker of poor functional recovery, especially for what concerns 
the motor system (81, 82).

Finally, EEG connectivity appears to be  locally impaired in 
chronic stroke, with significant modifications in connectivity from the 
subacute to the chronic stage (83). In the chronic phase, the reduction 
of the beta band (12.5–30.0 Hz) oscillatory activity in the motor cortex 
is an index of motor impairment (84).

TMS studies

Studies regarding cortical excitability in chronic stroke confirm 
the findings discussed for acute and subacute stage. In particular, the 
presence of a motor-evoked potential within the first 2 weeks after 
stroke seems to have a strong predictive value on recovery (85) and 
the presence of MEP was shown to predict the residual potential for 
functional improvements, even several months after stroke (86). For 
these reasons, the presence of MEP in chronic stroke patients seems 
to be a promising marker to tailor the best rehabilitative approach 
(75). However, the presence of lower limb MEP did not seem to 
predict more specific features, such as walking speed (87, 88).

Some degree of disinhibition might persist even >6 months after 
stroke, without being modified by short-term training (89). Once 
again, this could be beneficial since it favors structural and functional 
remodeling but it might also indicate a persistent alteration of 
cortical circuitry.

TMS-EEG can increase the signal-to-noise ratio of EEG using 
magnetic perturbation. There are interesting reports on the 
modifications of TEPs in chronic stroke patients (70, 71, 90), despite 
the long recording sessions required. TMS-EEG modifications in peri-
ischemic areas shows a peculiar modification of the evoked potentials, 
that compared with the contralateral hemisphere, loses fast complex 
oscillations and takes the shape of a bistable slow wave (91). In this 
regard, a higher amplitude of the P30 TEP component in chronic 
stroke patients has been reported (92). Generally speaking, data 

indicate that higher cortical reactivity and more complex evoked 
oscillatory activity in the lesioned hemisphere predicts better 
functional prognosis (28).

Conclusion

Neurophysiological tools might still play a role in the evaluation 
of stroke, even in the “Imaging is brain” era (100). Ischemic stroke is 
a dynamic process, in which a cascade of events takes place after vessel 
occlusion. Neurophysiological tools are of great value for capturing 
these changes over time thanks to the excellent time resolution, 
allowing the longitudinal evaluation till the chronic phase. However, 
the methodological heterogeneity of the literature has limited the 
diffusion of techniques such as EEG or TMS in daily practice.

Neurophysiology and neuroimaging should be then considered as 
complementary tools exploring the same event from two different 
perspectives. This regards also the viability of penumbra brain tissue 
during stroke and, indirectly, the blood flow status. More studies are 
warranted for getting a better insight into stroke pathophysiology. This 
is of critical importance for developing tailored rehabilitation approach.
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