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Copper-related genes predict
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of breast cancer

Yi Liu1†, Jiandong Wang2† and Mengxi Jiang1,3*

1Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University,
Beijing, China, 2Department of General Surgery, The First Medical Center, Chinese People's Liberation
Army (PLA) General Hospital, Beijing, China, 3Advanced Innovation Center for Human Brain
Protection, Capital Medical University, Beijing, China
Background: The role of copper in cancer treatment is multifaceted, with copper

homeostasis-related genes associated with both breast cancer prognosis and

chemotherapy resistance. Interestingly, both elimination and overload of copper

have been reported to have therapeutic potential in cancer treatment. Despite

these findings, the exact relationship between copper homeostasis and cancer

development remains unclear, and further investigation is needed to clarify this

complexity.

Methods: The pan-cancer gene expression and immune infiltration analysis were

performed using the Cancer Genome Atlas Program (TCGA) dataset. The R

software packages were employed to analyze the expression andmutation status

of breast cancer samples. After constructing a prognosis model to separate

breast cancer samples by LASSO-Cox regression, we examined the immune

statement, survival status, drug sensitivity and metabolic characteristics of the

high- and low-copper related genes scoring groups. We also studied the

expression of the constructed genes using the human protein atlas database

and analyzed their related pathways. Finally, copper staining was performed with

the clinical sample to investigate the distribution of copper in breast cancer tissue

and paracancerous tissue.

Results: Pan-cancer analysis showed that copper-related genes are associated

with breast cancer, and the immune infiltration profile of breast cancer samples is

significantly different from that of other cancers. The essential copper-related

genes of LASSO-Cox regression were ATP7B (ATPase Copper Transporting Beta)

and DLAT (Dihydrolipoamide S-Acetyltransferase), whose associated genes were

enriched in the cell cycle pathway. The low-copper related genes scoring group

presented higher levels of immune activation, better probabilities of survival,

enrichment in pathways related to pyruvate metabolism and apoptosis, and

higher sensitivity to chemotherapy drugs. Immunohistochemistry staining

showed high protein expression of ATP7B and DLAT in breast cancer samples.

The copper staining showed copper distribution in breast cancer tissue.

Conclusion: This study displayed the potential impacts of copper-related genes

on the overall survival, immune infiltration, drug sensitivity and metabolic profile

of breast cancer, which could predict patients’ survival and tumor statement.

These findings may serve to support future research efforts aiming at improving

the management of breast cancer.
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Introduction

Breast cancer has become a significant worldwide health issue, with

over two million emerging cases and six hundred thousand death

records in 2020 (1, 2). Common treatment options, such as

chemotherapy, endocrine therapy, immunotherapy and radiotherapy,

do not always provide optimal therapeutic effects to breast cancer

patients (3). Therefore, it is important to develop more accurate and

effective prognostic models that can effectively characterize and classify

the molecular subtypes of breast cancer in order to diagnose, treat and

prevent breast cancer in a more precise manner.

Copper is a cofactor for various enzymes and plays a vital role in

cellular metabolism and respiration, and disruption of copper

homeostasis cause Wilson disease and Menkes disease (4, 5). Copper

also contributes to cancer development by enhancing tumor cell

proliferation and angiogenesis. Consequently, copper chelator has

been applied to inhibit cancer metastasis in clinical trials (6–8). On

the contrary, copper overload has been recently proposed to induce

lipoylated protein aggregation and cancer cell death (9). Copper

homeostasis-related genes have been implicated in breast cancer

prognosis and chemotherapy resistance. Studies have shown that

breast cancer patients with poor prognoses exhibit higher expression

of the copper importer solute carrier family 31 member 1 (SLC31A1)

and the copper binding protein ceruloplasmin, which could be utilized

as potential prognosis factors (10–12). Decreased expression of the

copper exporters ATPase copper transporting a (ATP7A) and ATPase

copper transporting b (ATP7B) have been associated with decreased

chemotherapy resistance in breast cancer cells (13, 14). It is currently

not fully understood how copper metabolism may be involved in

breast cancer or the potential mechanisms by which it may influence

the development or progression of the disease. Therefore, a

comprehensive analysis of the genetic alterations of copper-related

genes in tumor tissue could identify molecular targets for future

diagnosis and treatments for breast cancer.

Our pan-cancer analysis identified a differential expression pattern

of copper-related genes and immune cell infiltration profile in breast

cancer. We further investigated the expression and copy number

variation (CNV) of copper-related genes in breast cancer and

separated breast cancer samples based on the risk score. We then

compared the survival status, immune status, drug sensitivity and

metabolic pathways of the high- and low-copper related genes scoring

groups. Specifically, we analyzed the protein expression, the related genes

and themetabolic pathways of the essential copper-related genes, namely

ATP7B and DLAT, in breast cancer samples. The clinical sample also

confirmed that copper is distributed in breast cancer tissue. In summary,

this studymay offer valuable insights for identifying potential therapeutic

interventions and biomarkers for breast cancer treatment.
Materials and methods

Acquisition of copper-related genes and
data collection

We collected copper metabolism-related genes from MSigDB (15)

and cuproptosis-related genes from literature (9). The 42 copper-related
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genes are listed in Table S1. The transcriptome data and medical

information of breast cancer patients were obtained from the Cancer

Genome Atlas (TCGA) database (https://www.cancer.gov/tcga). After

excluding sampleswith incomplete transcriptomic and survival data,we

obtained a final dataset with 1069 breast cancer samples and 113

paracancerous samples, which were used for the following analysis.

The validating datasets were procured fromGene Expression Omnibus

(GEO), including GSE96058 with 3273 breast cancer samples (16),

GSE18229 with 82 samples of luminal A and HER2-enriched subtypes

(17), and GSE58812 with 107 samples of triple-negative breast cancer

(18). The data of Infiltration Estimation for all TCGA tumors were

obtained from TIMER2.0 (19). Copy number variation landscape was

presented by the R package “maftools” (20).
Heatmap, PPI network, and
correlation network

The heatmap was presented by chip lot (ht tps : / /

www.chiplot.online/) and data were collected from TCGA

database and Genotype-Tissue Expression (GTEx) based on

UCSC XENA platform (21). The PPI network (Protein-Protein

Interaction Networks) was created by the STRING database (22)

and Cytoscape (23). The degree of cuproptosis and copper

metabolism-related genes was calculated by CytoNCA (24). The

correlation network was presented by the R package “corrr”.
Construction and validation of the copper-
related genes’ prognostic index

Copper-related genes were analyzed by univariate Cox regression

and genes with p < 0.05 were integrated into the LASSO-Cox

regression via 10-fold cross-validation in order to narrow down

candidate genes. A prognostic signature was built by multivariate

Cox regression, whose predictive capability on overall survival (OS)

was analyzed by time-dependent receptor operating characteristic

(ROC) curves by using the R package “timeROC” and “ggplot2”

(25). The univariate and multivariate Cox regression results were

obtained from the online analysis platform ToPP (http://

www.biostatistics.online/topp/index.php.) (26).
Survival analysis

The Kaplan–Meier curve was performed to compare the

survival status of the high- and low-copper related genes scoring

groups stratified by the risk score of copper-related genes using the

R packages “survival”, “survminer” and “ggplot2” (R version 4.1.3).

Genes were considered statistically significant at the p < 0.05 level.
Immune profile analysis

In order to identify the immune states and prognostic features

of the high- and low-copper related genes scoring groups, we
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applied CIBERSORT (27) to evaluate and compare the immune

composition between the two groups. By Tumor Immune

Dysfunction and Exclusion (TIDE) (28), we obtained the MSI

(microsatellite instability), Exclusion and Dysfunction to compare

the potential of tumor immune escape between the two groups. We

calculated the stromal score, immune score, tumor purity and

estimated score through the ESTIMATE algorithm (29).
Immunohistochemical staining of
ATP7B and DLAT by the human protein
atlas (HPA) database

The gene expression data based on breast cancer clinical

specimens were obtained from the HPA database (https://

www.proteinatlas.org/). Visualizing data of HPA were presented

using the R package “HPAanalyze”.
GSEA

Gene set enrichment analysis (GSEA) of the high- and low-

copper related genes scoring groups was created by the desktop

application of GSEA 4.2.3. Pathways were considered statistically

enriched at the cut-off point of p< 0.05 and FDR < 0.25 (15).
Drug sensitivity analysis

Based on the transcriptome data of breast cancer samples, the

drug sensitivity was analyzed by the R package “oncoPredict” and

the Genomics of Drug Sensitivity in Cancer (GDSC) database (30).
LinkedOmics analysis

The LinkFinder and LinkInterpreter modules of the

LinkedOmics web application were employed to investigate the

potential gene regulation network of the signature genes (31). These

tools allowed for identifying and analyzing relevant attributes,

providing insight into the functional relationships and regulatory

mechanisms at play in the network.
Copper staining of breast cancer samples

Tissue sections were obtained from both cancerous and

paracancerous areas of a patient with stage III/IV breast cancer that

tested negative for both estrogen receptor (ER) and progesterone

receptor (PR). The tissue sections were fixed with 4% formaldehyde

(G1101; Servicebio, Wuhan, China) overnight. After dehydration,

wax leaching, deparaffinization and rehydration with ethanol and

xylene, the slides were stained following the kit manufacturer’s

instructions for copper stain (M094; Gefanbio, Shanghai, China)

followed by hematoxylin stain (G1004-500ML; Servicebio, Wuhan,

China). The histological images of the tissue sections were scanned by
Frontiers in Immunology 03
a digital slide scanner (Pannoramic scan, Hungary). This study was

approved by the ethics committee of the Chinese People's Liberation

Army (PLA) General Hospital (No. S2016-055).
Statistical analysis

The R version 4.1.3 was used to analyze data. The comparative

methods of difference between the groups were applied, including

Student’s t-test, Wilcoxon test, Kruskal-Wallis, and Log-Rank test

for survival analysis. The asterisks symbolized the statistical p value

(*p < 0.05; **p < 0.01; ***p < 0.001, ****p< 0.0001).
Results

The pan-cancer expression patterns of the
copper-related genes and the pan-cancer
immune statement

Based on the Molecular Signatures Database (MsigDB) (15) and

the recent cuproptosis literature (9), we selected 42 copper-related

genes for analysis (Table S1). The expression of copper-related

genes in 14 cancer types was examined and demonstrated by a

heatmap (Figure 1A). The stacked bar chart showed differentially

expressed copper-related genes in different cancer types (Figure 1B).

The Sankey diagram showed the log2 fold change (tumor vs. non-

tumor sample) of differentially expressed copper-related genes

across different cancer types (Figure 1C). These results

demonstrated the dysregulation of copper-related genes in breast

cancer and other cancer types. To further identify the immune

profile of different types of cancer, we generated the boxplot to

compare the immune cells’ infiltration profile in tumor samples and

their paired non-tumor samples. The boxplot showed the different

immune cells statement of tumor samples, demonstrating that the

enrichment of naive B cells (Figure 1D), memory B cells (Figure 1E),

CD8+ T Cells (Figure 1F), activated memory CD4+T

Cells (Figure 1G), activated NK cells (Figure 1H), M0

macrophages (Figure 1I), M1 macrophages (Figure 1J) and M2

macrophages (Figure 1K) was significantly changed in many cancer

types, especially in breast cancer samples.
The expression and genetic variation
profile of copper-related genes in breast
cancer samples

We analyzed the expression of copper-related genes in breast

cancer and non-tumor samples, which verified that breast cancer

samples had dysregulation of copper-related genes (Figures 2A, B).

The PPI network (Figure 2C) and correlation analysis (Figure 2D)

of copper-related genes in breast cancer samples showed the

interactions between candidate genes. Genetic variation plays a

crucial role in cancer origin and development. Therefore, we

analyzed somatic mutations and CNV of copper-related genes in

breast cancer samples (Figures 2E, F). According to the variant
frontiersin.org
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classification, the most prevalent variant, variant type and single

nucleotide variant (SNV) were missense mutations, single-

nucleotide polymorphisms (SNPs), and the C > T mutation,

respectively. In breast cancer samples, ATP7A (18%), amyloid

beta precursor protein (APP) (11%) and ATP7B (9%) were the

more frequently mutated genes. Cuproptosis genes, such as

d ihyd ro l i poamide dehydrogena s e (DLD) (2%) and

dihydrolipoamide s-acetyltransferase (DLAT) (2%), were also

among the top ten mutated genes.
Frontiers in Immunology 04
Construction of the breast cancer’s survival
prediction model by copper-related genes

To predict the breast cancer survival pattern by a

prognostic gene set, we utilized univariate and multivariate

Cox regression analysis to plot the association between the

expression of copper-related genes and the OS of breast

cancer patients (Figures 3A, B and Table S2). Then, we built

the LASSO-Cox model using univariate Cox regression
A
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FIGURE 1

The pan-cancer analysis of copper-related genes. (A) Heatmap of copper-related genes showed different expression patterns across different types
of cancers. (B) A stacked bar chart of copper-related genes in different types of cancer samples showed the number of differentially expressed
genes. The red and blue colors represented upregulated and downregulated genes, respectively. (C) The Sankey diagram of differentially expressed
copper-related genes across different cancer types. (D–K) Box plot comparison of the abundance of naive B cells (D), memory B cells (E), CD8+ T
Cells (F), memory CD4+ T cells (G), activated NK cells (H), M0 macrophages (I), M1 macrophages (J), and M2 macrophages (K) in different types of
cancers compared with paired non-tumor samples. (*p < 0.05; **p < 0.01; ***p < 0.001, ****p< 0.0001,NS: no significance).
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genes (p value <0.1) to select the best candidate genes for

constructing a survival prediction model of breast cancer

patients (Figure 3C). Eventually, 21 candidate gene signatures

emerged with the optimal log l value of the LASSO-Cox

model. We selected DLAT and ATP7B as the signature

genes to construct the prediction model based on OS

outcomes using regression coefficients. Risk score= 0.6664 x

DLAT - 0.1985 x ATP7B.
Frontiers in Immunology 05
Prediction of breast cancer survival rates
by gene expression of ATP7B and DLAT

Weconfirmed the predictive performance of the prognostic gene set

using the TCGA-BRCA dataset (Figures 4A, C, E) and a validating

dataset (Figures 4B, D, F). Figures 4A, B presented Kaplan-Meier plot of

the two risk groups’OS in the training and validating dataset. We then

further demonstrated the risk score distribution plot and expression of
A B

D

E F

C

FIGURE 2

The expression and genetic variation of copper-related genes in breast cancer samples. Heatmap (A) and box plots (B) of differentially expressed
copper-related genes in breast cancer samples. (C) PPI network of copper-related genes. (D) Correlation of copper-related genes in breast cancer
samples. CNV, mutation frequency (E) and classification (F) of copper-related genes in breast cancer samples. (*p < 0.05; **p < 0.01; ***p < 0.001).
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ATP7BandDLATinbreastcancer samples (Figures4C,D).Thesurvival

plots indicated that the high- copper related genes scoring group had

poor survival. For ease of description, we define the high- and low-

copper related genes scoring groups as high- and low-scoring groups.

Time-dependentROCcurveswereconstructed toevaluate thepredictive

model’s efficacy. At the 1-, 3-, and 5-year time points, the TCGA-BRCA

dataset’s area under curves (AUCs) were 0.617, 0.623, and 0.597,

respectively (Figure 4E). As for the validating breast cancer dataset

(GSE96058), the areasunder the time-dependentROCcurvewere0.738,

0.623 and 0.595 at the 1-, 3- and 5-year time points (Figure 4F).

Comparison of the immune cells’
infiltration profile of the high-
and low-scoring groups

Immune infiltrates were increasingly considered responsible for

influencing the prognosis and clinical outcome of breast cancer
Frontiers in Immunology 06
patients (32). Therefore, we compared the profile of tumor-

infiltrating immune cells between the high- and low-scoring

groups based on copper-related genes by heatmap (Figure 5A)

and box plot (Figure 5B). The low-scoring group had more naive B

cells, M2 macrophages, resting mast cells, monocytes, and CD8+ T

cells than the high-scoring group, while the high-scoring group had

more activated dendritic cells, M0 macrophages, M1 macrophages

and follicular helper T cells. The histogram (Figure 5C) and box plot

(Figure 5D) displayed the composition of different immune cells in

breast cancer samples. In order to further estimate the immune

statement of the two subgroups, four immune state indicators,

including the Immune score (Figure 5E), ESTIMATE score

(Figure 5F), stromal score (Figure 5G) and tumor purity

(Figure 5H) were plotted. The result showed that the low-scoring

group had a higher ESTIMATE score and stromal score and lower

tumor purity. To assess the likelihood of immune evasion in

tumors, we used TIDE to compare the gene expression profiles of
A B

C

FIGURE 3

Univariate and multivariate analysis and LASSO-Cox regression of copper-related genes in breast cancer samples. Univariate (A)- and multivariate
(B)-analysis of copper-related genes in breast cancer samples. (C) LASSO-Cox regression was built up from copper-related genes, based on which
we selected optimal genes by the cross-validation method.
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the high- and low-scoring groups (33). The box plot of Tide, MSI,

Exclusion, and Dysfunction (Figures 5I–L) also demonstrated that

the low-scoring group had lower TIDE, Exclusion and MSI than

those of the high-scoring group.
Metabolic features of the high- and
low-scoring groups

Cancer cells have a unique metabolic alteration known as aerobic

glycolysis, in which glucose is preferentially converted to lactate even
Frontiers in Immunology 07
when oxygen is available (34). This phenomenon is in contrast to the

typical cellular metabolism of non-malignant cells. GSEA demonstrated

that breast cancer patients with lower scores for copper-related genes

were more likely to have enrichment in pathways related to pyruvate

metabolism and apoptosis (Figures 6A, B).

Tumor protein P53 (TP53), a crucial regulator of the Warburg

effect, may influence glycolysis by reducing pyruvate dehydrogenase

kinase-2 (Pdk2) expression, which results in the production of acetyl-

CoA rather than lactate (35). We identified that the low-scoring group

had a higher level of TP53 than the high-scoring group (Figure 6C).

The pyruvate dehydrogenase (PDH) complex, which converts pyruvate
A B

D

E F

C

FIGURE 4

Survival analysis of breast cancer patients stratified by the risk score of copper-related genes. The Kaplan–Meier curves of TCGA-BRCA samples
(A) and a validating dataset GSE96058 (B) grouped based on the risk score of copper-related genes at the best cut-off point. The statistical method
is the Log-rank test. The low-scoring group had a better survival probability in both TCGA-BRCA samples and GSE96058 samples. The dot and line
diagram of risk score, state of survival and expression of ATP7B and DLAT from TCGA-BRCA samples (C) and a validating dataset GSE96058 (D).
Time-dependent ROC curve of the constructed model of TCGA-BRCA samples (E) and the validating dataset (F).
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to acetyl-CoA, controls pyruvate entering the citric acid cycle or

participating in glycolysis. Pyruvate kinase M1/2 (PKM) converts

phosphoenolpyruvate to pyruvate and can inhibit the expansion

and metastasis of triple-negative breast cancer cells (36). We

observed that the low-scoring group had a higher level of

pyruvate dehydrogenase E1 subunit beta (PDHB) and PKM,

which tends to produce pyruvate rather than lactate (Figure 6C).

This result has revealed that the low-scoring group tended to rely
Frontiers in Immunology 08
on pyruvate metabolism for energy supply. Hypoxia inducible

factor 1 subunit alpha (HIF1A) and the lactate transporter solute

carrier family 16 member 1(SLC16A1) also regulate aerobic

glycolysis in cancer metabolism, whose high expressions are

correlated with poor clinical outcomes in breast cancer patients

(37, 38). Pyruvate dehydrogenase kinase 1 (PDK1), a target of

HIF1A, could prevent pyruvate from entering into the

tricarboxylic acid cycle (TCA cycle) (39). The expression of
A B

D
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FIGURE 5

Immune cells infiltration analysis of the high- and low-scoring groups. Heatmap (A) and box plot (B) of immune cell abundance in breast cancer
samples. (C) Histogram of the proportion of immune cells in each sample. (D) Box plot of the proportion of different immune cells (*p < 0.05;
**p < 0.01; ***p < 0.001, ****p< 0.0001). Box plots of the immune score (p=0.67) (E), ESTIMATE score (p < 0.01) (F), stromal score (p<0.0001)
(G) and tumor purity (p < 0.01) (H) of the high- and low-scoring groups were calculated by ESTIMATE algorithm. Violin plots of Tide (p=0.01) (I),
MSI (p <0.0001) (J), Exclusion (p =0.02) (K), and Dysfunction (p =0.79) (L) of the high- and low-scoring groups were calculated by TIDE algorithm.
(NS: no significance).
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HIF1A, SLC16A1 and PDK1 was increased in the high-scoring

group (Figure 6C), suggesting its glycolysis metabolic feature.
Treatment prognosis of the high- and
low-scoring groups

We predict breast cancer patients’ drug response using

“oncoPredict”. The lower sensitivity score represented a more

sensitive clinical response. Drugs with lower drug sensitivity

scores in the low-scoring group were selected using the t-test (p <

0.05). These selected drugs are Nilotinib, Nutlin 3A, RO 3306,

AZD8055, PF4708671, Niraparib, GSK269962A, Fulvestrant,

Temozolomide, Ruxolitinib, LCL161, IWP_2, Ribociclib,

Fludarabine, Nelarabine, GSK2578215A, MIM1, LJI30 and

BMS_754807 (Figures 7A–S). The low-scoring group had lower

drug sensitivity scores than the high-scoring group, indicating that
Frontiers in Immunology 09
individuals in the low-scoring group responded better to the above-

indicated chemotherapy drugs.
ATP7B- and DLAT-related functional
networks in breast cancer

To reveal additional links to the biological function of ATP7B and

DLAT in breast cancer development, we utilized the functional module

of LinkedOmics to analyze genes that were positively or negatively

correlated with ATP7B and DLAT (Figures 8A–C, E–G). Additionally,

we performed an enrichment analysis on the association results

(Figures 8D, H). ATP7B and its associated genes were enriched in

the cell cycle pathway (FDR ≤ 0.05). DLAT and its associated genes

were enriched in the cell cycle, oxidative phosphorylation and DNA

replication pathways (FDR ≤ 0.05). The result of this study suggested

that the two feature genes may contribute to the development of breast
A B

C

FIGURE 6

Metabolic characterization of breast cancer samples stratified by the high- and low-scoring groups. GSEA enrichment plot of regulation of
autophagy (A) and pyruvate metabolism (B) of the low-scoring group. (C) Boxplot showed that glycolysis-related genes, including HIF1A, PDHB,
PDK1, PKM, SLC16A1, and TP53, had a differential expression pattern among the high- and low-scoring groups. (***p < 0.001, ****p< 0.0001).
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cancer by impacting cell growth and energy metabolism, potentially in

collaboration with their co-expressed genes.
Dysregulation of ATP7B and DLAT proteins
in breast cancer

According to the HPA database (http://www.proteinatlas.org)

(40), the high staining intensity of ATP7B and DLAT in breast

cancer tissues is in contrast to those lowly stained in normal tissues

as indicated by the immunohistochemical analyses (Figures 9A, B).

HPAanalyze, a visualization R package, presented the expression of

ATP7B and DLAT proteins in myoepithelial and glandular cells in

breast cancer tissue using a heatmap (41) (Figure 9C). The IHC

staining intensity of ATP7B and DLAT is shown in Figure 9D, and

the subcellular locations of ATP7B (Golgi apparatus) and DLAT

(mitochondria) are also indicated (Figure 9E).
The expression profile and OS statement of
different breast cancer subtypes

We obtained the subtype information of TCGA samples from

XENA (42), based on which we grouped the primary breast cancers

samples into five subtypes using the Prediction Analysis of

Microarray 50 (PAM50) model, including luminal A, luminal B,

normal-like, HER2-enriched and basal-like subtypes (43). The
Frontiers in Immunology 10
heatmap showed that copper-related genes had a differential

expression pattern among breast cancer subtypes, indicating a

potential role of copper in the heterogeneity of breast cancer

(Figure 10A). Intriguingly, the expression of ATP7B and DLAT

were decreased and increased respectively in the basal-like subtype

compared with non-cancerous samples, which is opposite to those

in other breast cancer subtypes. In addition to differences in copper-

related gene expression, the survival status of breast cancer subtypes

differed. The Kaplan–Meier curves of different breast cancer

subtypes showed that the basal-like subtype had a worse survival

probability than the luminal A- and luminal B-subtypes in the early

stage (Figure 10B). We then used copper-related gene risk score to

assess our predictive model in different subtypes. According to the

survival curves, patients with basal-like subtype (Figure 10D) and

triple-negative breast cancers (TNBC) (Figure 10G) present better

survival in the high-scoring group and worse survival in the low-

scoring group, in contrast to other subtypes (Figures 10C, E, F).

This result suggests that the basal-like and TNBC patients had a

unique copper-related genes profile among breast cancer subtypes.
Copper staining of clinicopathological
sections of breast cancer

According to literature reports, breast cancer patients have

higher tissue and serum copper levels than normal subjects (44,
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FIGURE 7

Drug sensitivity score of the high- and low-scoring groups. Box plot of the drug sensitivity score of Nilotinib (A), Nutlin 3A (B), RO 3306 (C),
AZD8055 (D), PF4708671 (E), Niraparib (F), GSK269962A (G), Fulvestrant (H), Temozolomide (I), Ruxolitinib (J), LCL161 (K), IWP_2 (L), Ribociclib (M),
Fludarabine (N), Nelarabine (O), GSK2578215A (P), MIM1 (Q), LJI308 (R) and BMS_754807 (S). The drug sensitivity score was predicted based on the
R package “oncoPredict”, with a lower score representing a better clinical response. (*p < 0.05; **p < 0.01; ***p < 0.001, ****p< 0.0001).
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FIGURE 9

The protein expression of ATP7B and DLAT in BRCA tissues compared with non-tumor tissues in the HPA database. The protein expression of ATP7B
(A) and DLAT (B) in breast cancer and normal tissues in the HPA database (http://www.proteinatlas.org) (40). (C) The expression of ATP7B and DLAT
plotted according to cell types. (D) Column graphs showed the expression of ATP7B and DLAT in breast cancer samples. The subcellular localization
of ATP7B and DLAT (C–E) was visualized by the R package “HPAanalyze” (41).
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FIGURE 8

Genes co-expressed with ATP7B (A–D) and DLAT (E–H) in breast cancer. Volcano Plot showed genes associated with ATP7B (A) and DLAT (E) in
breast cancer samples analyzed by LinkedOmics. Heatmap showed the positively correlated genes with ATP7B (B) and DLAT (F) and the negatively
correlated genes with ATP7B (C) and DLAT (G) in breast cancer samples. The bar plot showed the GSEA results of genes associated with ATP7B (D)
and DLAT (H).
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45). We performed Timms copper staining on the paraffin section

of breast cancer patient to evaluate copper content and distribution

in their tumor tissue. In the breast cancer sample, copper particles

were found in the cytoplasm and nucleus of the breast cancer cells

(Figures 11A, B). The paired paracancerous tissue did not yield a

positive copper stain result (Figures 11C, D).
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Discussion

Breast cancer patients have been reported to exhibit higher

serum and tissue content of copper, with even higher serum copper

levels observed in patients non-responsive to chemotherapy

(46–48). The amount of copper-containing cells was positively
A B

D E

F G

C

FIGURE 10

Gene expression profile and survival analysis of different subtypes of breast cancer stratified by the risk score of copper-related genes. (A) The gene
expression heatmap of different subtypes of breast cancer. The subtype information was obtained from Xena. (B) The Kaplan–Meier curves of
luminal A, luminal B, HER2-enriched and basal-like breast cancer patients. The Kaplan–Meier curves of luminal B (C), basal-like (D), luminal A and
HER2-enriched patients (E) from TCGA. (F) The Kaplan–Meier curves of luminal A and HER2-enriched patients from GSE18229. (G) The Kaplan–
Meier curves of Triple-negative breast cancers (TNBC) patients from GSE58812. The group was stratified based on the risk score of copper-related
genes at the best cut-off point.
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correlated with tumor growth rate (49). These results suggest that

copper levels may indicate breast cancer progression and

chemotherapy effectiveness in breast cancer patients. We found

that copper particles in the clinical breast cancer sample were

located in the cytoplasm and nucleus of the cancer cells

(Figures 11A, B), which might be associated with the function of

copper in promoting breast cancer metastasis. Several preclinical

studies have found that reducing copper levels could inhibit tumor

growth, angiogenesis and metastasis (50–52). Clinical trials using

tetrathiomolybdate to deplete copper levels have enhanced event-

free survival in breast cancer patients. Additionally, preclinical

models have shown that tetrathiomolybdate could reduce breast

cancer metastases to the lungs (53, 54). However, there is still a lack

of elucidation on how copper content may influence breast cancer

progression. Intriguingly, cuproptosis has been recently reported to

mediate copper’s effect on cell death and cancer development. In

breast cancer models, overloading copper by copper ionophores

could inhibit tumor growth (55–57). These seemingly opposite

conclusions prompted us to investigate the exact function of

copper homeostasis in breast cancer development.

We constructed a copper-related gene scoring system using

LASSO-Cox regression based on cuproptosis and copper

metabolism genes to recognize the essential copper-related genes

(Figure 3C). Two essential copper-related genes, ATP7B and DLAT,

were selected to construct the scoring model to predict breast cancer

patient survival. The higher AUCs of this model indicated advanced

predictive performance (Figure 4). ATP7B, a P-type ATPase

involved in copper secretion, played a pivotal role as a copper

transporter, whose mutation caused Wilson’s disease due to excess

copper accumulation-induced chronic liver diseases (58). DLAT,

which is subjected to lipoylation modification, mediates the entry of

carbon into the tricarboxylic acid cycle. Aggregation of lipoylated
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DLAT and reduction of iron-sulfur cluster proteins can be induced

by copper ions, which results in proteotoxic stress and cell death

(59). ATP7B and DLAT are both mutated in breast cancer samples,

with the most common mutation being missense mutation

(Figures 2E–F). Besides, we wonder what critical role ATP7B and

DLAT played in breast cancer, given that these genes are essential

for copper homeostasis and cuproptosis. The associated genes of

ATP7B and DLAT genes are enriched in the cell cycle, oxidative

phosphorylation, and DNA replication pathways (Figures 8A–H),

suggesting that these two genes and their associated genes might

influence breast cancer development by regulating the pathways

mentioned above. Aerobic glycolysis, also known as the Warburg

effect, is a characteristic metabolic process that is commonly

observed in cancer cells (60). Many types of tumors limit the

pyruvate oxidation process to meet the needs of the highly

proliferative tumor cells (61). The low-scoring group is enriched

in the pyruvate metabolism pathway (Figure 6A), suggesting that

the low-scoring group might have an altered metabolic profile

which is difficult to sustain the infinite growth of malignant cells.

Breast cancer is heterogeneous in genetic and biological features

(62). Generally, luminal A breast cancer had a better prognosis.

Compared with the luminal A subtype, the luminal B-and HER2-

enriched tumors present higher recurrence rates and worse survival

(63, 64). The basal-like breast cancer is associated with poor

prognosis, early relapses, and the highest locoregional recurrence

among all subtypes (65, 66). Interestingly, basal-like patients had a

unique expression and survival probability than other subtypes

(Figure 10). The expression of ATP7B and SLC31A1 were decreased

and increased, respectively, in the basal-like subtype patients

(Figure 10A), suggesting that patients with the basal-like subtype

of breast cancer may have different levels of copper in their tumor

tissues compared with those with other breast cancer subtypes. This

result might provide a comprehensive understanding of copper in

different breast cancer subtypes.

Previous studies mainly focused on the relationship between

cuproptosis-related genes and breast cancer (67, 68). Our study

included not only cuproptosis-related genes but also copper

metabolism-related genes to perform a comprehensive analysis of the

role of copper-related genes in breast cancer development. Our results

showed that the low-scoring group had lower expression of the copper

importer SLC31A1 and higher expression of the copper exporter

ATP7B (Figures S1A, B), which may altogether reduce intracellular

copper content. The low-scoring group with less copper content

appeared to have better survival outcomes and immune profiles.

Combined with the evidence that copper chelators inhibited breast

cancer metastasis, it is possible that reducing copper levels rather than

increasing them is an effective way to improve breast cancer outcomes,

which needs more experimental evidence for validation.

The composition of immune cells influences cancer progression.

Evidence suggests that B cells are anti-tumor through various

mechanisms, such as improving cytotoxic T cell activity and

activating antibody dependence (69, 70). Activated CD8+ T

lymphocytes are anti-tumor with cytotoxic molecules and have been

reported to correlate with favorable prognosis in triple-negative breast

cancer patients (71). In our result, the low-scoring group had more

naive B cells and CD8+ T cells compared with the high-scoring group
FIGURE 11

The copper stain of BRCA patients’ paraffin section using Timm’s
method. Copper staining of the pathological section of breast
cancer (A: 20x, B: 40x) and paired paracancerous (C: 20x, D: 40x)
sample. The copper-positive areas contain small black granules.
Coarse granules indicated intense copper deposition. The arrows
indicate the distribution of copper in pathological sections.
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(Figure 5B), indicating better immune response in the low-scoring

group. Additionally, because the copper chelate could reprogram and

enhance the anti-tumor reaction of T cells (72), eliminating copper

might be helpful for the anti-tumor response of breast cancer.

Based on the R package “oncoPredict”, we predict novel

chemotherapy drugs which might be helpful for the low-scoring

group’s breast cancer treatment. The low-scoring group seemed to

be more responsive to chemotherapy drugs (Figure 7) which have

been reported to suppress the metastasis or growth of breast cancer

cells and overcome tamoxifen resistance by targeting essential

regulators such as discoidin domain receptor 1, mTORC1/2,

PARP-1/2, JAK1/2, and CDK1 (73–82). In the future, utilizing

these newly developed chemotherapy drugs to treat breast cancer

may be possible after conducting appropriate screening and

classification and providing clinical guidance.

In summary, our study provided a novel prognostic signature to

predict breast cancer development, which revealed the association

of copper-related gene expression with immune cell infiltration,

cancer metabolic feature, and drug response. These results may

assist in the clinical management of breast cancer.
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