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Background: Cardiac aging and ageing-related cardiovascular diseases remain
increase medical and social burden. Discovering the molecular mechanisms
associated with cardiac aging is expected to provide new perspectives for
delaying aging and related disease treatment.
Methods: The samples in GEO database were divided into older group and
younger group based on age. Age-associated differentially expressed genes
(DEGs) were identified by limma package. Gene modules significantly associated
with age were mined using weighted gene co-expression network analysis
(WGCNA). Protein-protein interaction networks (PPI) networks were developed
using genes within modules, and topological analysis on the networks was
performed to identify hub genes in cardiac aging. Pearson correlation was used
to analyze the association among hub genes and immune and immune-related
pathways. Molecular docking of hub genes and the anti-aging drug Sirolimus
was performed to explore the potential role of hub genes in treating cardiac aging.
Results:We found a generally negative correlation between age and immunity, with a
significant negative correlation between age and b_cell_receptor_signaling_pathway,
fc_gamma_r_mediated_phagocytosis, chemokine signaling pathway, t-cell receptor
signaling pathway, toll_like_receptor_signaling_pathway, and jak_stat_signaling_
pathway, respectively. Finally, 10 cardiac aging-related hub genes including LCP2,
PTPRC, RAC2, CD48, CD68, CCR2, CCL2, IL10, CCL5 and IGF1 were identified. 10-
hub genes were closely associated with age and immune-related pathways. There
was a strong binding interaction between Sirolimus-CCR2. CCR2 may be a key
target for Sirolimus in the treatment of cardiac aging.
Conclusion: The 10 hub genes may be potential therapeutic targets for cardiac aging,
and our study provided new ideas for the treatment of cardiac aging.
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DEGs, differentially expressed genes; FC, fold change; GEO, gene expression omnibus; GO, gene ontology;
HFpEF, heart failure with preserved ejection fraction; KEGG, Kyoto encyclopedia of genes and genomes;
PAH, pulmonary arterial hypertension; ssGSEA, single-sample gene set enrichment analysis; TOM,
topological overlap matrix.
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1. Introduction

Epidemiological studies have found that by 2050, the number

of people aged 65 and older will exceed 1.5 billion worldwide,

accounting for 16% of the global population (1). Cardiac aging

and related diseases will increase burden society. Cardiac aging

leads to heart failure, and furthermore, aging leads to a declined

ability of cardiomyocytes and non-cardiomyocytes to replicate

DNA, which in turn causes dysregulation of cellular life

processes (2). Cardiac aging can cause cardiovascular diseases

such as atrial fibrillation, heart failure and hypertension. The

prevalence of these cardiac aging-related diseases is increasing

annually (3, 4). The mechanisms of cardiomyocyte senescence

mainly include oxidative stress, autophagy and apoptosis (5).

However, the precise molecular mechanisms of cardiac aging are

not yet clarified. Therefore, in-depth studies are needed to

explore the mechanisms for improving the quality of life of

patients.

As biotechnology progresses in recent years, research

represented by transcriptomics has provided new insight into

disease pathogenesis. Bioinformatics has demonstrated

significant potential in detecting biomarkers related to disease

pathogenesis and progression (6, 7). Currently, there are studies

using bioinformatics methods to identify hub genes in the

pathogenesis of cardiovascular diseases and heart failure. For

instance, Zhao et al. (8) developed a machine learning

algorithm-based model for early assessment of heart failure

with preserved ejection fraction (HFpEF), which is expected to

provide guidance for clinical decision making. Qu et al. (9)

identified FAM171B as a novel biomarker of pulmonary arterial

hypertension (PAH) using bioinformatics such as WGCNA and

SVM, and showed that PAH may be closely associated with

FAM171B. Liu et al. (10) pointed out CALU and PALLD as

potential biomarkers associated with immune infiltration in

heart failure due to ischemic cardiomyopathy. From these

studies, it is obvious that bioinformatics tools are playing an

essential role in the era of precision medicine. Explosive

advances in next-generation sequencers (NGS) and

computational analysis to handle large amounts of data have

enabled us to comprehensively analyze cancer genome profiles

at the research and clinical levels and opening up the possibility

of precision medicine, such as RNA sequencing (RNA-seq)

(11). Current studies have focused on cardiovascular-related

diseases caused by heart failure, and there are no studies

directly targeting different age groups to explore the underlying

mechanisms of Cardiac aging.

By regulating oxidative stress, inflammation and organelle

function, rapamycin (also known by the trade names of

sirolimus or rapamune) may inhibit cardiac ageing (12).

Studies have shown that rapamycin can reduce mitochondrial

reactive oxygen species and inhibit cardiac hypertrophy and

cardiac ageing through the inhibition of mTORC1 (13, 14).

Rapamycin can directly inhibit mTORC1 and is the first and

only macrolide drug approved by the US Food and Drug

Administration (FDA).
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In this study, we identified age-related co-expressed gene

modules by weighted gene co-expression network analysis

(WGCNA) through analyzing different age cohort samples in

Gene Expression Omnibus (GEO) database, and further

identified closely related pathways and hub genes through linking

genes in the modules to immune status. Further, molecular

docking simulations were performed between anti-aging drugs

and hub genes to evaluate pathogenesis and therapeutic targets.

In particular, the pathogenesis of cardiac aging were

comprehensively investigated to provide so as to new evidence

for subsequent in-depth studies.
2. Materials and methods

2.1. Data acquisition and preprocessing

The RNA-Seq data (FPKM standardized data) and clinical

information of chip data sets GSE57338 (136 samples),

GSE141910 (166 samples) and GSE173608 (20 samples) as well

as the annotation information of chip probes of corresponding

platforms were obtained from GEO (https://www.ncbi.nlm.nih.

gov/geo/) database. Each data set was processed as follows: (1)

Disease samples were removed, and only normal and healthy

samples were retained; (2) Samples ≥65 were defined as the

elderly, and samples <65 were defined as the young group; (3)

Samples with age information and expression value were

retained; (4) The expression of samples was transformed into a

probe symbol.
2.2. Association between age and immunity

We employed the estimation of stromal and Immune cells in

malignant tumour tissues using expression data (ESTIMATE)

algorithm (15) to calculate the StromalScore, ImmuneScore, and

ESTIMATEScore for samples in the GSE57338 cohort. Next, the

Pearson correlation between age and the three scores was

respectively calculated, and the differences in the distribution of

the three scores between the older and younger groups were

examined. Finally, we employed the method of single sample

gene set enrichment analysis (ssGSEA) (16) to assess pathway

enrichment scores in c2.cp.kegg.v7.4.symbols.gmt and screened

for biological pathways significantly associated with age by

Pearson correlation (p < 0.05).
2.3. Identification of differentially expressed
genes (DEGs) for cardiac aging

We carried out a differential expression analysis between the

two groups of samples in the GSE57338 cohort using the limma

package (17) under the threshold criterion for DEGs set at |

logFoldChang (FC) >1.2 and p < 0.05.
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2.4. Gene ontology (GO) and Kyoto
encyclopedia of genes and genomes
(KEGG) enrichment analysis

Enrichment analysis allows to obtain important biological

processes associated with DEGs. In this study, we conducted GO

and KEGG functional enrichment analysis oncardiac aging-

associated DEGs using the WebGestaltR (V0.4.4) package (18).

The enriched GO terms and KEGG pathways were defined by p

value < 0.05.
2.5. Weighted gene co-expression network
analysis

To identify genes highly correlated with age, we used the

WGCNA package (19) to identify gene modules in the

GSE57338 cohort strongly correlated with age. The soft threshold

β for module analysis was determined by analyzing the scale

independence and average connectivity of the modules with

different weighting factors. After we determined soft threshold, a

scale-free topological distribution network was constructed, and

the correlation matrix was converted into an adjacency matrix

based on the Pearson correlation coefficient among genes and

further into a topological overlap matrix (TOM). The similarity

between genes (1-TOM) was calculated and genes with similar

expression profiles were grouped into the same gene module
FIGURE 1

Correlation between age and immunity. (A) Correlation between age and strom
of stromalScore, immuneScore and ESTIMATEScore between age groups.
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using hierarchical clustering function and dynamic shear tree and

a minimum size of 100. The gene modules most associated with

age were determined using Pearson.
2.6. Protein-protein interaction networks
(PPI) network analysis

The PPI network was constructed here through the STRING

database (http://www.string-db.org/) (20) for co-expressed genes

highly associated with age. The parameters were set as follows:

low confidence: score <0.4; moderate: 0.4–0.7; height: >0.7,

comprehensive score >0.4. Next, the PPI network was imported

into Cytoscape software (http://cytoscape.org/, version 3.7.2) (21).

The MCODE-based algorithm of metscape was used to find

tightly connected proteomes in the target network and noting

the biological function of each group. Finally, topological analysis

was conducted on the PPI network, the degree of each gene was

calculated, and genes with higher degree were selected as core

genes.
2.7. Association between cardiac aging-
associated hub genes and immunity

The intersection of MCODE and core genes was defined as the

hub genes of cardiac aging. To clarify the immune status of each
alScore, immuneScore, ESTIMATEScore. (B) Differences in the distribution
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FIGURE 2

Correlation between age and immunity. (A) Association between age and immunity score. (B) Distribution of immunity scores between age groups.
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sample in the GSE35959, GSE141910, and GSE173608 cohorts,

StromalScore, ImmuneScore, and ESTIMATEScore were

calculated for all the samples using the ESTIMATE algorithm,

and the abundance of 28 immune cells was determined by the

ssGSEA method. We then calculated Pearson correlations

between hub genes and each immune correlation score. Finally,

the H.A. v7.4.symbols.gmt pathway of HALLMARK was obtained

from GSEA website and its enrichment scores were calculated to

evaluate the correlation between hub genes and pathway

enrichment scores. The correlation heatmap was generated by the

heatmap package (https://www.datanovia.com/en/lessons/

heatmap-in-r-static-and-interactive-visualization/).
2.8. Molecular docking analysis

Sirolimus is an anti-aging drug (22), and we performed

molecular docking simulations of Sirolimus with hub genes to

select potential of hub genes for the treatment of cardiac aging.

The molecular structures of hub genes proteins were download
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in the Protein Data Bank database (PDB, https://www1.rcsb.

org/) and AlphaFold (https://alphafold.com/) database. Water

molecules and proligands from target were removed by PyMOL

2.3.0. The Sirolimus molecular structures were obtained from

the Pubchem database (https://pubchem.ncbi.nlm.nih.gov/).

The conformation of Sirolimus was molecularly and

mechanically optimized using Chem3D (version 2020, https://

library.bath.ac.uk/chemistry-software/chem3d) software to

obtain the optimal energy-minimized conformation of

Sirolimus. The pretreated target protein molecules were

hydrotreated using Auto Dock Tools1.5.6. The optimal

conformation of Sirolimus was hydrogenated and the torsional

bond was determined. POCASA protein active pocket online

prediction tool was used to predict the protein active pocket,

the docking range was set in the predicted active pocket and

the docking range information was saved for formal docking.

Auto Dock Vina v.1.2.0 was employed to conduct molecular

simulation docking between target proteins and Sirolimus

molecules using Lamarkian genetic algorithm and the semi-

flexible. The exhaustiveness was set to 8, the maximum number
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FIGURE 3

Identification and functional analysis of DEGs. (A) Volcano map of DEGs. (B) Bubble diagram of KEGG enrichment analysis of DEGs. Red means
upregulated genes, and blue means downregulated genes, grey means there was no difference in gene expression.
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of conformations output was set to 9. The binding free energy of

Sirolimus to each hub gene protein was obtained.
2.9. Statistical analysis

All statistical analyses in this study were conducted in R

software (version 4.1.1), PyMOL (version 2.3.0), and Chem3D

(version 2020). And p < 0.05 was considered statistically

significant. Sangerbox provided analytical assistance in this

article (23).
3. Results

3.1. Correlation between age and immunity

To explore the association between age and immune status, we

assessed the StromalScore, ImmuneScore, and ESTIMATEScore of

the samples in the GSE57338 cohort using ESTAMATE software,

and then calculated their Pearson correlation with age. It could

be observed that age was negatively correlated with ImmuneScore

and ESTIMATEScore, respectively (Figure 1A). The

ImmuneScore and ESTIMATEScore of the young group were

significantly higher than those of the elderly (Figure 1B).

Naturally, the ssGSEA method was used to identify factors

significantly associated with age. We found 73 pathways

significantly associated with age, of which B_CELL_

RECEPTOR_SIGNALING_PATHWAY (R =−0.259, p = 0.00231),

FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS (R =−0.235,
p = 0.00588), CHEMOKINE_SIGNALING_PATHWAY (R =

−0.217, p = 0.0111), T_CELL_ RECEPTOR_SIGNALING_

PATHWAY (R =−0.204, p = 0.0171), TOLL_LIKE_RECEPTOR_
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SIGNALING_PATHWAY (R =−0.204, p = 0.0172), JAK_STAT_

SIGNALING_PATHWAY (R =−0.198, p = 0.0206) were negatively

correlated with age (Figure 2A). A violin plot showing the

differences in these six pathway scores in the younger and older

groups displayed that the six pathway scores were significantly

higher in the younger group than in the older ones (Figure 2B).
3.2. Identification of cardiac aging-related
DEGs

In the GSE57338 cohort, a total of 606 DEGs, including 352

up-regulated genes and 254 down-regulated genes, were

identified by differential analysis on the older and younger

groups under the screening threshold of p < 0.05 and |log2FC| >

1.2 (Figure 3A). GO and KEGG enrichment analysis revealed

that these 606 DEGs were mainly enriched in Fc gamma

R-mediated phagocytosis, IL-17 signaling pathway, Chemokine

signaling pathway, Cytokine-cytokine receptor interaction, ECM-

receptor interaction, FoxO signaling pathway, JAK-STAT

signaling pathway, cAMP signaling pathway, PI3K-Akt signaling

pathway (Figure 3B). Most of these pathways can be found to be

associated with chemokine signaling in immune response.
3.3. WGCNA analysis

A co-expression network was constructed in the GSE57338

cohort to identify age-associated gene modules. Specifically, the

samples were first clustered and outlier samples were excluded,

and the sample clustering map is shown in Figure 4A. In this

study, we found that the co-expression network at this time was

consistent with the scale-free network when the power β = 10
frontiersin.org
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FIGURE 4

WGCNA construction. (A) Hierarchical clustering tree for each sample in the GSE57338 cohort. (B) The scale-free fit index for various soft-thresholding
powers. (C) The mean connectivity for various soft-thresholding powers. (D) Genes are divided into different modules by hierarchical clustering, and
different colors represent different modules. (E) Correlation of module eigenvectors of modules with age and immunity. (F) Functional annotation of
yellow module genes. (G) Functional annotation of turquoise module genes.

Ping et al. 10.3389/fcvm.2023.1146225
(Figures 4B,C). Similar gene modules are merged by dynamic

shear tree algorithm (Figure 4D). Furthermore, we analyzed the

Pearson correlation of each module with immune-related scores,

and found that the yellow module was significantly negatively

correlated with age (R =−0.22, p < 0.05), and positively

correlated with ImmuneScore (R = 0.97, p < 0.05), B_CELL_

RECEPTOR_SIGNALING_PATHWAY (R = 0.87, p < 0.05),

FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS (R = 0.94,

p < 0.05), CHEMOKINE_SIGNALING_PATHWAY (R = 0.87, p <

0.05), T_CELL_RECEPTOR_SIGNALING_PATHWAY (R = 0.77,

p < 0.05), TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY (R

= 0.89, p < 0.05), JAK_STAT_SIGNALING_PATHWAY (R = 0.74,

p < 0.05). The turquoise module was significantly positively

correlated with age (R = 0.32, p < 0.05) and significantly negatively
Frontiers in Cardiovascular Medicine 06
correlated with ImmuneScore (R =−0.61, p < 0.05),

B_CELL_RECEPTOR_SIGNALING_PATHWAY (R =−0.77, p <

0.05), FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS (R =−0.7,
p < 0.05), CHEMOKINE_SIGNALING_PATHWAY (R =−0.68,
p < 0.05), T_CELL_RECEPTOR_SIGNALING_PATHWAY (R =

−0.77, p < 0.05), TOLL_LIKE_RECEPTOR_SIGNALING_

PATHWAY (R =−0.7, p < 0.05), JAK_STAT_SIGNALING_

PATHWAY (R =−0.71, p < 0.05) (Figure 4E). Finally, we

analyzed the biological functions of genes in the yellow and

turquoise modules. It was observed that the yellow module genes

were mainly enriched in immune-related pathways such as T cell

receptor signaling pathway, B cell receptor signaling pathway, and

Natural killer cell mediated cytotoxicity (Figure 4F). The

turquoise module genes were mainly enriched in PI3K-Akt
frontiersin.org
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FIGURE 5

PPI network diagram, the darker the color and the larger the circle, the more important the gene; the thickness of the line represents the strength of the
binding between genes.
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signaling pathway, p53 signaling pathway, ECM-receptor

interaction and other related pathways (Figure 4G). Therefore,

the yellow and turquoise modules were chosen for subsequent

analysis.
3.4. PPI network

The intersection of the yellow module, the turquoise module

and 606 DEGs had a total of 380 genes, which were mapped in

the String database to construct a PPI network. The nodes with

fewer edges in the PPI network were eliminated, and 255 nodes
Frontiers in Cardiovascular Medicine 07
were finally retained for subsequent analysis (Figure 5). Nodes in

PPI were analyzed by metscape. The MCODE plugin in

cytoscape was used to find tightly linked proteomes in the

network (Figure 6A). Four functional modules were extracted

from 255 nodes, and we performed functional enrichment

analysis on the genes in MCODE module 1. The results showed

that the genes in MCODE module 1 were mainly involved in

Cytokine-cytokine receptor interaction, Chemokine signaling

pathway, T cell receptor signaling pathway, Natural killer cell

mediated cytotoxicity, IL-17 signaling pathway, Toll-like receptor

signaling pathway and other biological writing functions

(Figure 6B). These results indicated that genes highly associated
frontiersin.org
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FIGURE 6

PPI network module analysis by MCODE. (A) Module-based network analysis of potential genes. (B) Functional annotation of MCODE module 1 gene.
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with these age-related factors were also closely related to immune

function. Finally, we calculated the degree of 255 nodes in the

PPI network, from which we selected the top 15 genes as the

potential core genes (Table 1). These genes may be hub genes in

the aging process of the cardiac aging.
3.5. Correlation between hub genes and
immunity

After the intersection of MCODE module gene and 15

potential core genes, a total of 10 genes including LCP2, PTPRC,
TABLE 1 Topological parameters of core genes in the PPI network.

Numbers Gene Degree Betweenness
centrality

Closeness
centrality

1 PTPRC 52 0.12872569 0.36705202

2 EGF 33 0.11947336 0.35425384

3 CCL2 33 0.07109627 0.34370771

4 ITGB2 33 0.06433343 0.35034483

5 FCGR3A 33 0.03356093 0.32987013

6 IL10 32 0.0765978 0.34324324

7 LCP2 31 0.03237325 0.32439336

8 CCL5 27 0.0224443 0.32315522

9 CCR2 27 0.01555626 0.32439336

10 PIK3R1 24 0.14734879 0.35825106

11 CD68 24 0.01401788 0.32439336

12 IGF1 23 0.14235186 0.35674157

13 CD48 22 0.01491111 0.3020214

14 RAC2 21 0.05313282 0.32480818

15 IL2RG 21 0.03304713 0.32816537
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RAC2, CD48, CD68, CCR2, CCL2, IL10, CCL5 and IGF1 were

obtained. To assess the association between the 10 hub genes and

immunity, we first calculated the StromalScore, ImmuneScore,

ESTIMATEScore and ssGSEA scores of 28 kinds of immune cells

in the GSE35959, GSE141910 and GSE173608 cohorts. Through

Pearson correlation analysis, we found that the 10 hub genes

showed a positive correlation with most immune scores, and that

they were significantly positively correlated with Type 1 T helper

cell Immature dendritic cell and immature dendritic cell

(Figure 7). Considering telomere shortening is an important

feature of aging, the association analysis of 10 hub genes and

telomerase genes in 3 datasets indicated that 10 hub genes were

associated to telomerase genes varying degrees (Supplementary

Figure S1).
3.6. Correlation between hub genes and
pathways

We obtained the h.all.v7.4.symbols.gmt pathway from

HALLMARK in the GSEA website and used the ssGSEA method to

calculate these pathway scores in the GSE35959, GSE141910, and

GSE173608 cohorts. We then calculated Pearson correlation

coefficients between the 10 hub genes and pathway scores. The heat

map showed that the trend of the 10 hub genes in the GSE35959,

GSE141910, and GSE173608 cohorts was generally consistent, and

that they were mainly positively correlated with IL6_

JAK_STAT3_SIGNALING, P53_PATHWAY, EPITHELIAL_

MESENCHYMAL_TRANSITION, ALLOGRAFT_REJECTION but

negatively correlated with OXIDATIVE_PHOSPHORYLATION,

FATTY_ACID_METABOLISM (Figure 8).
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FIGURE 7

Correlation between hub genes and immunity, red represents positive correlation, blue represents negative correlation, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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3.7. Molecular docking simulation

In this study, the binding stability of Sirolimus to 10-hub genes

was assessed using molecular docking techniques to identify the

optimal cardiac aging genes. Generally speaking, a binding

energy less than −5 kcal/mol indicates an excellent binding and

less than −7 kcal/mol indicates a strong binding. The molecular

docking results were shown in Table 2, from which it could be

observed that there were strong binding interactions between

Sirolimus and all 10-hub genes, with the strongest direct in

Sirolimus-CCR2 binding. The 3D schematic of Sirolimus-CCR2

binding is displayed in Figure 9. The 2D schematic diagram

showed that Sirolimus formed a hydrogen bond with the amino

acid residue Gln-288 of the A chain of the CCR2 protein and a

hydrophobic interaction with 13 amino acid residues such as

THR-287, TYR-19 and PRO-192 (Figure 9).
3.8. Construction of the diagnosis model
using 10 hub genes

The 10 hub genes were used to construct diagnosis model in

GSE57338 dataset using Xgboost package (eta = 0.3, gama =

0.001, max_depth = 3, subsample = 0.7, colsample_bytree = 0.4,

num_class = 2, objective = “multi:softprob”, nrounds = 1,000), and
Frontiers in Cardiovascular Medicine 09
validated in GSE141910 dataset and GSE173608 dataset. The

Accuracy, sensitivity, specificity and F1 of the diagnosis model in

GSE57338 dataset and GSE173608 dataset were both 1, and in

GSE141910 dataset were respectively 0.994, 1, 0.978 and 0.996

(Figure 10A). In addition, the AUC were 1, 0.989, and 1

respectively in GSE57338 dataset, GSE141910 dataset and

GSE173608 dataset (Figure 10B). The analysis data showed that

the diagnosis model could identified Cardiac aging from samples.
4. Discussion

Given the lack of age-related biomarkers of cardiac aging, it is

necessary to identify potential molecular mechanisms and hub

genes in cardiac aging through emerging technologies. Here, we

identified age-associated hub genes of cardiac aging by analyzing

transcriptome sequencing data from different age-stratified

populations, and primarily explored the potential mechanisms

associated with cardiac aging.

The 10 identified genes included LCP2, PTPRC, RAC2, CD48,

CD68, CCR2, CCL2, IL10, CCL5 and IGF1. We also found that

most of the 10-hub genes were positively correlated with immune

scores and immune-related pathways. Previous studies have

confirmed a close relationship between these genes and immunity.

Lymphocyte Cytosolic Protein 2 (LCP2) encodes the bridging
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FIGURE 8

Correlation between hub genes and pathways, red represents positive correlation, blue represents negative correlation, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.

TABLE 2 Molecular docking results of sirolimus and 10-hub genes.

Name Center (x, y,
z)

Size (x × y ×
z)

Energy (kcal/
mol)

RMSD

CCL2 12, −29, −20 27 × 27 × 27 −7.2 7.226

CCL5 −6, 15, −27 27 × 27 × 27 −7.2 7.037

CCR2 6, 21, 155 27 × 27 × 27 −10.5 6.879

CD48 25, 1, −24 27 × 27 × 27 −8.3 7.238

CD68 7, −9, −1 27 × 27 × 27 −8.6 7.407

IGF1 3, −2, −28 27 × 27 × 27 −8.4 6.669

IL10 8, 48, 37 27 × 27 × 27 −9.8 6.363

LCP2 −16, −5, −3 27 × 27 × 27 −8.9 6.426

PTPRC 6, −4, 33 27 × 27 × 27 −8.0 6.817

RAC2 −9, −30, 22 27 × 27 × 27 −9.8 6.948
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protein SLP76, and Siggs et al. (24) showed that a splice variant in

LCP2 decreases SLP76 levels, triggering immune dysregulation

and ultimately excessive production of pro-inflammatory

cytokines and autoantibodies. Protein Tyrosine Phosphatase

Receptor Type C (PTPRC), also known as CD45, was found in

one study to maintain its expression in CD45-derived cells, and

the percentage of CD45-positive extracardiac cells located within

endothelial cells as well as in the interstitial region of heart valve

structures increases with age (25). Ning et al. (26) showed that

suppression of RAC2 expression reduced isoproterenol-induced

cardiac injury and fibrosis. cd48 promoted interactions between

activated lymphocytes and was involved in regulatory T cell
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FIGURE 9

Schematic diagram of sirolimus-CCR2 molecular docking.
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activation (27). Zawia et al. (28) reported a decrease in CD68+

macrophages in mice correlation with the development of PAH.

Jung et al. (29) pointed out that IL10 plays an essential role in

the cardiac remodeling process after myocardial infarction. When

IL-10 is injected into mice with myocardial infarction, fibroblast

activation (proliferation, migration and collagen production)

could be significantly observed under the influence of

macrophage M2. Young et al. (30) demonstrated that the

decreased expression level of IGF1 in the bone marrow

microenvironment would stimulate the aging of hematopoietic

stem cells, and that the aging trend of patients could be

improved by stimulating the recovery of IGF1 expression of

hematopoietic stem cells. In this study, we found that these genes

were highly connected in PPI network and WGCNA module,

suggesting that they might play an essential role in cardiac aging.

Evidence from previous studies has confirmed a close

relationship between these genes and immune or cellular

senescence. Therefore, we reasonably speculated that they may be

major evidence to explain the mechanisms of cardiac aging.

Robbie et al. (31) noted that aging is associated with

upregulation of proinflammatory-related signaling pathways

caused by the CCL2-CCR2 axis during retinal aging, and that

CCL2-driven myeloid cell recruitment and CNV attenuation

severity increases with age. Moreover, Robbie et al. also noted

that similar molecular mechanisms may be associated with other
Frontiers in Cardiovascular Medicine 11
age-related inflammatory diseases. In this study, CCL2 and CCR2

were the hub genes associated with cardiac aging, but the

connection between the CCL2-CCR2 axis and cardiac aging has

not yet been elucidated, which could be a breakthrough for

future research. Interestingly, molecular docking analysis showed

that the anti-aging drug Sirolimus had excellent and stable

binding to CCR2, the binding of Sirolimus to CCR2 target

proteins was likely to exert corresponding pharmacological

effects. Sirolimus was found to extend the life span of mice in a

study by Harrison et al. (32). Studies have shown that Sirolimus

can reduce mitochondrial reactive oxygen species and inhibit

cardiac hypertrophy and cardiac ageing through the inhibition of

mTORC1 (14, 33). Das et al. have shown that Sirolimus can

reverse the metabolic changes associated with ageing and thereby

exert a cardioprotective effect in experimental models of cardiac

ageing (34). It was experimentally confirmed that Sirolimus

extended the life span of male and female mice by 9% and 14%,

respectively. However, published papers indicated that Sirolimus

is an mTOR inhibitor that reduces the rate of cellular senescence

through inhibiting the mTOR pathway, which in turn

ameliorates aging-related diseases (35). There were no reported

studies on Sirolimus action on CCR2 to inhibit senescence,

which may be a new potential molecular mechanism of effect.

In summary, this report applied bioinformatics such as

WGCNA to mine 10 cardiac aging-related hub genes, which may
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FIGURE 10

Construction of a diagnosis model. (A) The accuracy, sensitivity, specificity, and F1 of diagnosis model in GSE57338 dataset, GSE141910 dataset and
GSE173608 dataset. (B) The AUC of diagnosis model in GSE57338 dataset, GSE141910 dataset and GSE173608 dataset.
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provide new insights for elucidating the risk of cardiac aging. Apart

from our systematic bioinformatics analyses, the present study also

has limitations. Firstly, this study was based on bioinformatics

approach using a calculator and other related devices as a

preliminary data analysis, and the specific biological functions of

the 10-hub genes will have to be explored at the cellular,

molecular, and animal levels, as well as clinical shape. Secondly,

Sirolimus is an anti-aging drug but is not currently used in

treating cardiac aging-related diseases, and its potential

relationship with CCR2 should be further explored. Therefore,

conducting comprehensive and systematic in vivo and in vitro

assays to explore more in-depth molecular mechanisms is our

subsequent key research targets.
5. Conclusion

In the present report, we identified 10 hub genes associated with

cardiac aging and systematically elucidated the correlation between
Frontiers in Cardiovascular Medicine 12
these genes and immunity. Our study revealed that cardiac aging

was correlated with immune system activity, and that CCR2 may

be a potential core target in cardiac aging. The Sirolimus-CCR2

interaction relationship provided an important scientific basis for

elucidating cardiac aging-related gene functions and may help to

elucidate aging-related mechanisms in human life.
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